
Engineering Structures 31 (2009) 2236–2246
Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Simulation of offshore wind turbine response for long-term extreme
load prediction
Puneet Agarwal 1, Lance Manuel ∗
Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA

a r t i c l e i n f o

Article history:
Received 9 July 2007
Received in revised form
4 April 2009
Accepted 6 April 2009
Available online 8 May 2009

Keywords:
Offshore wind turbines
Long-term loads
Extrapolation
Inverse reliability
Control actions
Response variability

a b s t r a c t

When there is interest in estimating long-term extreme loads for an offshore wind turbine using
simulation, statistical extrapolation is the method of choice. While the method itself is rather well-
established, simulation effort can be intractable if uncertainty in predicted extreme loads and efficiency
in the selected extrapolation procedure are not specifically addressed. Our aim in this study is to address
these questions in predicting blade and tower extreme loads based on stochastic response simulations of
a 5 MW offshore turbine. We illustrate the use of the peak-over-threshold method to predict long-term
extreme loads. To derive these long-term loads, we employ an efficient inverse reliability approachwhich
is shown to predict reasonably accurate long-term loads when compared to the more expensive direct
integration of conditional load distributions for different environmental (wind and wave) conditions.
Fundamental to the inverse reliability approach is the issue of whether turbine response variability
conditional on environmental conditions is modeled in detail or whether only gross conditional statistics
of this conditional response are included.Wederive long-term loads for both these cases, anddemonstrate
that careful inclusion of response variability not only greatly influences such long-term load predictions
but it also identifies different environmental conditions that bring about these long-term loads compared
with when response variability is only approximately modeled. As we shall see, for this turbine, a major
source of response variability for both the blade and tower arises from blade pitch control actions due to
which a large number of simulations are required to obtain stable distribution tails for the turbine loads
studied.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical extrapolation of extreme loads is being increasingly
used in the design of offshore wind turbines against ultimate
limit states, and a recent draft [1] of design guidelines from the
International Electrotechnical Commission (IEC) also recommends
its use. Statistical extrapolation involves integration of the
distribution of turbine loads given specified environmental states
with the likelihood of occurrence of the different environmental
states; the (conditional) load distributions are obtained by means
of turbine response simulations.
While extrapolationmethods are relatively well understood for

onshorewind turbines [e.g., [2–4]], they present several challenges
for offshore turbines. For one, the offshore environment involves,
as a minimum, the consideration of waves in addition to wind;
hence, the number of random variables describing the environ-
ment increases. As a result, the domain of integration expands and
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it can often become impractical to perform computationally ex-
pensive simulations over this entire domain if one uses the basic
extrapolation approach that involves direct integration. It is thus
of interest to explore efficient alternative extrapolation techniques
for offshorewind turbine design. A second challenge is that extrap-
olation of turbine loads needs to recognize the dependence on two
(or more) random processes representing the environment—wind
and waves, say—each of which influence turbine loads in distinct
ways. Several studies in recent years have focused on the com-
plexity of these issues in the offshore environment and have ad-
dressed comparisons of alternativemethods to extract turbine load
extremes [5], possible reduction in simulation effort by careful se-
lection of critical environmental states [6], use of the environmen-
tal contourmethod [7], and use of a suitable percentile of thewave-
related random variable (conditional on wind speed) in lieu of the
full joint wind-wave distribution [8].
On related matters to those highlighted in these previous

efforts, we attempt here to answer several open questions
regarding how the peak-over-threshold method should be used
with the environmental contour method; whether or not the
environmental contour method, which requires considerably less
simulation effort is as accurate as direct integration in statistical
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load extrapolation; and whether or not variability in turbine
loads must be carefully accounted for in order to yield accurate
long-term loads. To address these issues, we derive long-term
loads using a model of a utility-scale 5MW offshore wind turbine
that was developed at the National Renewable Energy Laboratory
(NREL), and which is assumed to be sited in 20 m of water.
Stochastic time-domain simulations of turbine response form the
basis for this study. While the inflow turbulence describing the
wind field is simulated using similar procedures to those for
onshore turbines, excitation from waves is simulated assuming
simplified linear irregular wave kinematics that may not be
suitable for this shallow-water site. In shallow waters, irregular
waves are more appropriately modeled using a second-order
wave theory such as that developed by Sharma and Dean [9].
While such nonlinear wave modeling capabilities were not fully
integrated with wind turbine aeroelastic simulation software such
as FAST [10] at the time of this writing, such enhancements
are planned, given the preponderance of shallow-water sites for
offshore wind turbines.
The outline of this work is as follows: after describing the ex-

trapolation methods and the simulation model, we examine tur-
bine response statistics for several representative environmental
conditions.We thendiscuss application of thepeak-over-threshold
(POT) method to derive probability distributions of turbine loads.
We illustrate how long-term loads can be derived using the In-
verse First-Order Reliability Method, first by omitting turbine load
variability as in the environmental contour (EC) method, and then
by explicitly accounting for this variability (given environmental
state). Comparison of EC-based long-term load predictions with
those obtained by direct integration is discussed. We also dis-
cuss how turbine control actions influence variability in long-term
loads. Finally, we compare predictions of rare (long-term) load
fractiles based on the POT and global maxima methods.

2. Load extrapolation methods

Design Load Case (DLC) 1.1b of the IEC 61400-3 draft design
guidelines [1] for offshore wind turbines, which is based on
DLC 1.1 of the IEC 61400-1 guidelines [11] for onshore wind
turbines, recommends the use of statistical extrapolation methods
to predict turbine characteristic loads for an ultimate limit
state. In direct integration, which is most often employed in
statistical extrapolation for wind turbine extreme loads, one seeks
to estimate the turbine long-term load, lT , associated with an
acceptable exceedance probability, PT , or equivalentlywith a target
service life of T years, using the following equation:

PT = P[L > lT ] =
∫
X
P [L > lT |X = x] fX (x)dx (1)

where fX (x) is the joint probability density function of the
environmental random variables, X , and L is the random variable
describing the load of interest. For different trial values of load,
lT , Eq. (1) enables one to compute the long-term probability of
exceeding that load by integrating the short-term load exceedance
probability conditional onX , i.e., P [L > lT |X = x], with the relative
likelihood of different environmental conditions, X . The load level
at which the computed long-term probability matches the target
probability is the desired characteristic T -year load. The direct
integration method, while exact, is computationally expensive
as one is required to integrate over the entire domain of all
the environmental random variables. For offshore wind turbines,
X is usually assumed to be comprised of the ten-minute mean
wind speed, V , at hub height in the along-wind direction and the
significant wave height, Hs (four times the standard deviation of
the sea surface elevation process), for waves assumed to be aligned
with the wind. The averaging duration of ten minutes is standard
practice for wind turbines [1,11]. When such ten-minute time
series are simulated to yield statistics on L, the T -year load, lT , is
expressed in terms of the distribution of L as follows:

PT = P(L > lT ) = 1/(T × 365.25× 24× 6)

= 1.90× 10−5/T . (2)

It is convenient to define a target reliability index, β , that is
associated with the target return period, T , and thus with PT such
that 8(−β) = PT , where 8() refers to the standard Gaussian
cumulative distribution function.
The flowchart in Fig. 1 shows how turbine response simulations

are used to establish the long-term load distribution using direct
integration. For specific choices of the environmental random
variable vector, X = x, we first seek to establish the short-
term distribution of load conditional on the environment, FL|X=x(l).
To do so, M load extremes, Lr (r = 1, 2, . . .M), are extracted
from repeated simulations. These extremes can then be used
to establish an empirical (short-term) distribution function, to
which a parametric probability distribution model may be fit if
desired. A globalmaximum, defined as the single largestmaximum
value obtained from a turbine response time series of ten-minute
duration (the chosen duration here, as recommended by design
standards [1,11]), is an example of a load extreme. Peak-over-
threshold (POT) maxima represent another choice of extreme
statistics that may be extracted from each ten-minute sample;
POT extremes will be discussed later. To obtain a single time
series realization of the stochastic turbine response process, we
first simulate a ten-minute realization of the inflow stochastic 3-
D wind velocity field on a gridded 2-D rotor plane; this is achieved
using standard Fourier approaches togetherwith target turbulence
power spectra and coherence functions [11,12]. The incident sea
surface elevation process at the location of the turbine support
structure is also simulated, generally using a linear irregular
(stochastic) wave modeling approach. Once these environmental
inputs are in place, the response of the turbine is computed
using an aero-servo-hydro-elastic analysis in the time domain.
Due to the nature of the machine-specific airfoil data for blades,
matching control systems, etc., the response computations are
usually carried out using integrated simulation software such as
FAST [10]. By varying a set of random seeds, sr , that produces
different realizations of the stochastic wind and wave processes
for the same environmental conditions, x, and thus generates a
different realization of the turbine response each time, one can
obtain the desired M load extremes. Once the short-term load
distributions for allX (i.e., for all combinations ofmeanwind speed
and significant wave height in our case) are established, we can
integrate them with the joint probability distribution function of
the environmental random variables, fX (x), in order to obtain the
long-term load distribution using Eq. (1).
The direct integration method is computationally expensive

as it requires multiple simulations over the entire domain of the
environmental variables, X . Therefore, it is of interest to explore
more efficient methods for extrapolation—an inverse first-order
reliability method (IFORM) [13] approach is one such alternative
efficient procedure. To understand IFORM, it is instructive to first
consider a sphere of radius equal to β , i.e., the reliability index,
in a three-dimensional space, U , describing independent standard
normal variables, U1, U2, and U3, one for each of the physical
random variables (V , Hs, and L) in the problem of interest. On such
a sphere, we have:

u21 + u
2
2 + u

2
3 = β

2. (3)

The probability of occurrence of values on the side of a tangent
plane to the sphere away from the origin is computed as 8(−β).
In our case, the standard normal random variables, U1, U2, and
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Fig. 1. Flowchart describing the steps involved in establishing short-term and long-term load distributions based on turbine response simulations. A total ofM simulations
are carried out for each realization, x, of the environmental random variable vector, X . For the rth single simulation (where r varies from 1 to M), the seeds, sr , lead to a
single 10-min extreme load, Lr . Once all M simulations are carried out, the short-term distribution, FL|X=x(l) = P[L < l|X = x] is established. By varying x, the long-term
distribution, FL(l) is established by weighting the short-term load distribution by the environmental variables’ joint probability density function, fX (x).
U3 are related to physical random variables, V , Hs, and L; thus, all
points on the sphere can be thought to represent combinations of
variables associatedwith equal probability. Since each point on the
sphere is associated with the same reliability index, the desired
load, lT , is also associated with this same reliability—it represents
the largest value that L can have among all possible values on the
surface of the sphere. The only apparent complication is that the
sphere is in a three-dimensional space of independent standard
normal variables, not in the physical space of the jointly distributed
variables, V , Hs, and L. If, however, a mapping (such as the
Rosenblatt transformation [14]) were possible, again, since each
point on the sphere is associated with the same (target) reliability,
all of these points on the sphere need to be systematically searched
until the largest load, L, is found. This largest load is then, by
definition, lT . This procedure is the inverse first-order reliability
method (IFORM) [13].
A simplified version of the inverse first-order reliabilitymethod

is the environmental contour (EC) method [13], which represents
the response random variable, conditional on the environmental
variables, only at its median value. Based on the Rosenblatt
transformation, u3 is thus identically zero. As such, the EC
method does not utilize nor need the full distribution of the load
given the environmental random variables (as established from
simulations). Since u3 = 0, the sphere of radius, β , reduces to a
circle (such that u21 + u

2
2 = β2), whose transformation onto the

physical space is termed an ‘‘environmental contour’’. Analogous
to the 3-D case, one is now required to search for the point of
maximum median load (i.e., the design point) by only considering
those environmental states defined on this environmental contour.
It can be easily shown that the environmental contour method
essentially approximates the solution for lT in Eq. (1) by replacing
the conditional cumulative distribution of L given V and Hs by a
step function,H(fL(V ,Hs)), where fL(V ,Hs) = Lmed(V ,Hs)− lT , and
H(y) = 1, if y > 0, and 0 otherwise; also Lmed(V ,Hs) represents
the ‘‘median’’ load given V and Hs. The reader is referred to
other studies [3,7] for more details on the environmental contour
method as applied to wind turbines.
3. Simulation model

A 5MW wind turbine model [15] developed at NREL and
closely representing utility-scale offshore wind turbines being
manufactured today is used in our simulation studies. The turbine
is assumed to have a hub height of 90 m above the mean sea level,
and a rotor diameter of 126 m. The turbine is a variable-speed
and collective pitch-controlled machine, with a maximum rotor
speed of 12.1 rpm. The rated wind speed is 11.5 m/s. The turbine
is assumed to be sited in 20 m of water; it has a monopile support
structure, which is assumed to be rigidly connected at themudline.
The turbine is assumed to be installed at an IEC Class I-B wind
regime site [1,11]. A Kaimal power spectrum and an exponential
coherence spectrum are employed to describe the turbulence
random field over the rotor plane, which is simulated using the
computer program, TurbSim [12]. For the hydrodynamic loading
on the support structure, irregular linear long-crested waves
are simulated using a JONSWAP spectrum [16]. Hydrodynamic
loads are computed using Morison’s equation; Wheeler stretching
is used to account for the influence of the instantaneous sea
surface elevation on kinematics and hydrodynamics. Once time
histories of the wind velocity field and the sea surface elevation
processes are generated, stochastic time-domain simulations of
the turbine response are performed using a combined modal and
multi-body dynamics formulation [10] that models the tower and
blades as flexible bodies using their first two bending modes in
the longitudinal and transverse directions. Nacelle yaw motion,
generator speed, torsional flexibility of the drivetrain, etc. are all
accounted for as well in the analysis, as needed.

4. Turbine response

We are interested in the response of the turbine only while
it is in an operating state. Accordingly, we perform response
simulations for mean wind speeds ranging from cut-in to cut-out
wind speeds (i.e., 3 to 25m/s, here). As a function of themeanwind
speed in each simulation, the turbulence intensity is assumed per
IEC Class I-B site conditions using the Normal Turbulence Model
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Fig. 2. Variation with mean wind speed and significant wave height of the mean of the maximum values from six simulations of (a) the out-of-plane blade root moment;
and (b) the fore-aft tower base moment.
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Fig. 3. Representative time series of wind speed, sea surface elevation, out-of-plane blade moment, and tower bending moment for mean wind speeds of (a) 3.7 m/s, (b)
12.1 m/s and (c) 24.2 m/s. The significant wave height is fixed at 4.2 m.
(NTM) [11]. The peak spectral period for the waves is modeled as a
function of significant wave height based on one year’s data from
the National Oceanic and Atmospheric Administration’s National
Data Buoy Center’s Buoy 44007,where thewater depth is 19m.We
discretize the domain of the two environmental random variables
using a two-dimensional interval or bin of 2 m/s for mean wind
speed and1m for significantwave height.Wewill focus on the out-
of-plane blade moment (OoPBM) at the blade root and the fore-aft
tower base moment (TBM) at the mudline as the two turbine load
variables whose extreme values are of interest in this study.
In order to derive statistics or distributions of turbine loads

conditional on wind speed and wave height, multiple simulations
have to be carried out for selected pairs of mean wind speed and
significant wave height values. Fig. 2 shows the average of ten-
minute maximum loads from six simulations for each V–Hs bin
considered. It is observed that the maximum out-of-plane blade
moment increases with wind speed, up to the rated wind speed
of 11.5 m/s, and then decreases, as is expected due to blade-
pitch control actions. Also blade loads are seen to be relatively
insensitive to wave height. On the other hand, the maximum fore-
aft tower basemoment, while it also peaks at the ratedwind speed,
is seen to increase almost linearly with wave height.
To investigate the effect of wind on turbine loads in greater

detail, we compare the turbine response for mean wind speeds of
3.7 m/s, 12.1 m/s, and 24.2 m/s, while the significant wave height
is held constant at 4.2 m. Figs. 3 and 4 suggest that in general
blade and tower loads have increased energy (variance) with
increasingwind speed. Even thoughmaximum blademoments are
higher around the rated wind speed (see Figs. 3(b) and 2(a)), the
variance is smaller there than at 24.2 m/s (Figs. 3(c) and 4(b)).
Such response is due to blade pitch control actions which act to
reduce aerodynamic forces on blades by limiting the rotor speed
when the instantaneous wind speed increases above the rated
wind speed (11.5 m/s, here). As a result, mean blade loads (as
well as mean tower loads) reduce as the mean wind speed is
increased from rated to cut-out. Additionally, though, in each ten-
minute simulation, the instantaneous wind speed fluctuates about
the mean wind speed (these fluctuations are described by the
turbulence standard deviationwhich is directly proportional to the
mean wind speed here); hence, with increasing wind speed, the
blade pitch angle, the aerodynamic forces and, ultimately, blade
loads show significant variability as is evidenced by their larger
variance at the larger mean wind speeds.
Note that tower load variance differences between rated and

very high wind speeds are smaller than is the case for blade loads.
Important peaks in the power spectra of the loads are seen at the
so-called 1P frequency (corresponding to the rotor rotation rate of
0.2 Hz at and above the rated wind speed) and at multiples of this
frequency, where the peaks are dominant, as well as at resonant
frequencies associated with edgewise and flapwise modes (both
of which are present in the OoPBM process) and with tower fore-
aft bending. These resonant frequencies were computed from a
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linearized modal analysis of the nonlinear aeroelastic model of the
wind turbine [10].
The effect of waves is studied by comparing the turbine re-

sponse for significantwave heights of 0.5m, 4.2m and 9.4m,while
the mean wind speed is held constant at 12.1 m/s. Fig. 5 clearly
shows larger peaks in the TBM time series with increasing wave
heights. Blade loads are seen to be insensitive to wave height vari-
ation. Accordingly, power spectra for tower loads alone are pre-
sented in Fig. 6 where no significant influence of wave height is
noted, except at frequencies below around 0.2 Hz where wave en-
ergy is dominant, with sea surface elevation peak spectral frequen-
cies occurring at 0.14, 0.10 and 0.08 Hz for significant wave heights
of 0.5, 4.2 and 9.4 m, respectively.
Table 1 summarizes statistics of the blade and tower loads

obtained from six simulations each for the wind and wave
conditions discussed in Figs. 3–6. OoPBM statistics, as was
discussed before, are insensitive to wave height. Also, the mean
and maximum OoPBM are systematically higher around the rated
wind speed compared to other wind speeds—e.g., the maximum
OoPBM load near the rated wind speed is about 37% larger than
it is near the cut-out wind speed. Table 1 also presents values of
the skewness, kurtosis and peak factors of the turbine loads; these
statistics provide some insights into the non-Gaussian character
of the load processes. Assuming that a process is Gaussian, one
can estimate a theoretical peak factor (which describes maxima in
terms of the number of standard deviations above the mean) from
knowledge of the number ofmaxima in each time series realization
(here, of ten-minute duration) [17]. For the OoPBM process, a
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significant wave height. The mean wind speed is fixed at 12.1 m/s.

Gaussian peak factor for all three wind speeds and wave heights is
about 3.3, which is larger than the computed peak factors (shown
in Table 1) when the skewness is negative, and smaller when the
skewness is positive (only for the case where V = 4 m/s and
Hs = 4.5 m). Note that kurtosis values for the OoPBM process are
also somewhat different from those for a Gaussian process, whose
kurtosis value is 3.0. The implication of the non-Gaussian character
of the turbine load processes is that extremes associated with rare
(low probability of exceedance) levels may be very different from
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Table 1
Ten-minute statistics of turbine loads for different wind speed and wave height bins.

V (m/s) Hs (m) Out-of-plane moment at the blade root Fore-aft tower base moment
Max Mean SD Skew. Kurt. PF Max Mean SD Skew. Kurt. PF
(all in MN m) – (all in MN m) –

12.0 0.5 12.5 8.2 1.5 −0.05 2.64 2.85 97.3 65.2 10.9 0.11 2.41 2.96
12.0 4.5 12.7 8.3 1.6 −0.25 2.74 2.80 106.6 66.3 12.7 −0.03 2.76 3.17
12.0 9.5 12.2 8.2 1.5 −0.14 2.61 2.60 124.2 66.2 16.1 0.18 3.08 3.61
4.0 4.5 4.5 2.3 0.6 0.49 2.83 3.65 39.4 12.3 8.6 0.07 2.79 3.16
12.0 4.5 12.7 8.3 1.6 −0.25 2.74 2.80 106.6 66.3 12.7 −0.03 2.76 3.17
24.0 4.5 9.3 3.0 2.0 −0.14 2.89 3.07 78.4 32.8 12.3 0.07 3.07 3.73

Note: V : Mean wind speed, Hs: Significant wave height, Max: Ten-minute maximum, SD: Standard deviation, Skew.: Skewness, Kurt.: Kurtosis, PF: Peak Factor =
(Max−Mean)/SD.
those predicted by a Gaussian process with the same mean and
variance.
The TBM process statistics are also interesting—when studied

with variation in wave height, it is seen that mean levels change
only very slightly. This is because the sea surface elevation process
has a zero mean, and changes in significant wave height do not
affect the mean response, especially since no current is assumed
present. On the other hand, as the significant wave height is
increased from 4.5 m to 9.5 m, the standard deviation and
maximum values of the TBM increase by about 27% and 17%,
respectively. This is because significant wave height, which is
directly related to the energy (variance) of the wave process,
directly affects the energy in the turbine response process;
hence, the maximum and variance of the TBM process increase
systematically with wave height. As was the case for the blade
loads, peak factors for the TBM process are different from those
for a Gaussian process, as are skewness and kurtosis values. Again,
these reflect the non-Gaussian nature of the tower load process.
From the preceding results, it can be concluded that: (1) blade

and tower loads are largest around the rated wind speed, but peak
factors are lowest there; (2) blade loads are independent of wave
height; and (3) maximum tower loads increase systematically
with wave height. Hence, turbine long-term extreme loads are
expected to be governed either by mean wind speeds near rated
(for instance, the mean and maximum blade bending loads are
higher there) or by higher-than-rated wind speeds where larger
variability in loads and associated large peak factors could lead
to large extreme values. Also, tower long-term extreme loads are
likely to result from larger wave heights.

5. Short- and long-term loads

5.1. Short-term extreme load distributions

The short-term distribution of turbine extreme loads, FL|X (l),
which enables prediction of long-term loads according to Eq. (1),
requires data on load extremes. The global maximum and peak-
over-threshold methods are commonly used to extract load
extremes from time series data. We use the peak-over-threshold
method here, as it can provide a large number of load extremes
from a given number of simulations, resulting in better definition
of distribution tails which is important when extrapolating loads
to rare fractiles or low probability of exceedance levels.
In the peak-over-threshold (POT) method, the maximum load

from each segment of a time series that lies between two
successive upcrossings of a chosen threshold is retained as a load
extreme. While the choice of threshold may be optimized [4],
here we choose a threshold fixed at a mean plus 1.4 SD level [2],
which is also suggested by the IEC standard [11]. The mean and
standard deviation used are based on all the load time series
simulations carried out for a wind speed and wave height bin (X).
The cumulative distribution function for load extremes, FL|X=x (l)is:

FL|X=x (l) =
[
FLPOT |X=x (l)

]n (4)
where n is the expected number of peaks (above the chosen thresh-
old) in tenminutes, and FLPOT |X=x (l) represents the cumulative dis-
tribution function of POT-based load extremes. This distribution is
established non-parametrically here since distribution tails from
a limited number of simulations—six, here—are not stable enough
to allow parametric model fits. Note that we begin by using only
six simulations per bin because the design standards for wind tur-
bines [1,11] suggest that this small number of simulations is per-
mitted for purposes of loads extrapolation. Later, we investigate
how short-term load distributions and long-term load predictions
change as the number of simulations is increased, and also discuss
whether six simulations is adequate or not for the prediction of ac-
curate long-term loads.
Eq. (4) is based on the assumption that the peaks above

the chosen threshold in a bin are independent. If a load non-
exceedance probability level, p, is of interest, the corresponding
load fractile, lp, based on the POT distribution, is associated with
a non-exceedance probability, p1/n, and may be estimated as:

lp = F−1LPOT |X
[
p1/n

]
. (5)

Note that as the selected threshold level is increased, the
expected number of peaks that are retained in a specified duration
(which is ten minutes here) decreases, and when this number is
unity, the POT method approaches the global maximum method,
since then on average, one peak is extracted from each simulation.
For typical threshold levels, the expected number of retained
peaks is significantly larger than unity and, as a result, p1/n can
approach values that are close to unity. As an example, if the
expected number of peaks above a chosen threshold is 80, then
the non-exceedance fractile level for POT data corresponding to
the ten-minute median extreme load is 0.51/80 = 0.99137. If
loads corresponding to this probability level are to be established
non-parametrically from simulations, at least 1/(1 − 0.99137) or
116 peak values above the chosen threshold must be available
for the wind speed and wave height bin representing X . For
tight confidence intervals on such rare load levels, the number of
peaks (and thus simulations) might even need to be an order of
magnitude higher. Note that extrapolation may often be required
then for two reasons: (1) to estimate rarer fractiles (such as, say,
the 80th percentile of the ten-minute extreme load instead of the
median) as the minimum number of required data may exceed the
amount of POT data available from limited simulations; and (2)
to have tight confidence intervals on predicted POT load fractiles.
Extrapolation is discussed further when addressing long-term
loads in the context of the inverse first-order reliability method.

5.2. Long-term loads

With the inverse first-order reliability method, long-term loads
may be estimated by using simulations to establish the full
conditional distribution for the turbine load variable given wind
speed and wave height and then turning the integral equation of
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Table 2
Comparison of 20-year loads for blade and tower loads estimated by different methods, when load extremes data are based on the peak-over-threshold method.

Method 20-year load for OoPBM 20-year load for TBM
V (m/s) Hs (m) OoPBM (MNm) V (m/s) Hs (m) TBM (MNm)

2-D Environmental Contour 12.0 6.2 12.8 12.0 6.2 105.2
2-D Environmental Contour with corrections 12.0 6.2 13.2 12.0 6.2 107.9
3-D Inverse First-Order Reliability Method 14.0 5.5 13.6 16.0 5.5 119.9
Eq. (1) into a search for the maximum load on a locus of points in
a 3-D space (representing, V , Hs, and L) associated with the target
probability of load exceedance. A reduced effort, though less exact,
is possible with the environmental contour method where the 3-
D locus searched is reduced to a 2-D one and, additionally, only
the conditional median value of L (rather than the full distribution)
given V and Hs must be estimated for points on the locus.
We first estimate long-term loads using the 2-D formulation,

also referred to as the environmental contour method. Then, we
compare 2-D long-term loads with those obtained from a full 3-
D inverse reliability approach. We start by using six ten-minute
turbine response simulations for each environmental state to
establish turbine load statistics, and subsequently investigate the
effect of number of simulations on long-term load predictions. All
the long-term loads discussed hereinafter correspond to a return
period of 20 years, which, according to the wind turbine design
standards [1,11], is the target service life for which wind turbines
are typically designed.
To derive long-term loads at the site of interest, we require

information on the joint distribution of the environmental random
variables. For the IEC Class I-B wind regime (for which our turbine
model is being considered), we assume that the ten-minute mean
wind speed, V , at hub height has an average value of 10 m/s and
that it can be described by a Rayleigh distribution. We choose
to truncate this distribution below the cut-in wind speed of 4
m/s and above the cut-out wind speed of 24 m/s, since we
are interested only in studying turbine loads during operation.
The significant wave height, Hs, conditional on the mean wind
speed, is assumed to be represented by a two-parameter Weibull
distribution. The expected value of Hs given V is based upon
the JONSWAP correlation between wind and waves [16], while a
coefficient of variation for Hs given V is assumed to be constant
at 0.2.

5.2.1. The 2-D environmental contour (EC) method
In the 2-D formulation with the EC method, we first estab-

lish the environmental contour associated with the desired target
probability, using the joint probability density function of mean
wind speed and significant wave height, and based on the proce-
dures outlined earlier in the section entitled, ‘‘Load Extrapolation
Methods’’. We then seek the maximum value (on this contour) of
themedian turbine load given X . Themedian load is obtained from
POT data by setting p to be 0.5 in Eq. (5). The estimated 20-year
loads are presented in Table 2. The 20-year OoPBM load is 12.8 MN
mwhich is associated with ameanwind speed of 12m/s and a sig-
nificant wave height of 6.2 m. The 20-year TBM load is 105.2 MN
m and it also results from the same wind speed and wave height.
That the ‘‘design’’ wind speed is close to the ratedwind speed is ex-
pected as median extreme turbine loads are largest there, as was
discussed earlier. The design wave height of 6.2 m is the larger of
the two possible wave heights on the 20-year environmental con-
tour that accompanies the mean wind speed of 12 m/s.
The accuracy of the derived long-term loads by the EC method

may be evaluated by determining whether the desired fractile
for the POT load requires extrapolation, given the number of
peaks above the threshold retained from six simulations. Table 3
shows that for both blade and tower loads, the required POT
(non-exceedance) fractiles are smaller than the largest available
Table 3
Required fractiles for the design environmental states with the 2-D environmental
contour method.

Load Average number
of peaks, n

Required fractile,
0.51/n

Largest empirical
fractile

OoPBM 87.2 0.9921 0.9981
TBM 80.2 0.9914 0.9979

empirical fractile, 1− 1/(6n+ 1). This suggests that extrapolation
is not necessary to arrive at turbine 20-year loads with the EC
method; nevertheless, the method has accuracy limitations both
because it does not employ the full distribution of turbine loads
conditional on X and because even the non-extrapolated fractile is
subject to statistical uncertainty due to limited data. To assess both
these sources of inaccuracy, we estimate long-term loads using
direct integration. We model the conditional load distribution
in Eq. (1) as a step function that attains a unit value at the
median load. To yield the desired probability level, the 20-year
loads are found to be 12.7 MN m and 110.2 MN m, respectively,
for OoPBM and TBM, which are very close to those obtained
from the environmental contour method. Hence, we conclude
that the EC method is not grossly inaccurate relative to an exact
integration approach that works with the same data. Still, there
are other reasons why the EC-based long-term loads might not
be correct; these reasons have to do with incomplete modeling of
the conditional distribution of turbine loads given wind speed and
wave height. This is addressed next.

5.2.2. Correction to the EC long-term loads
While the full distribution of loads (given environmental

conditions) can be employed in a 3-D inverse FORM approach,
this requires far greater computational effort. An alternative
strategy is to apply a correction to the 2-D EC loads [18], as has
been successfully demonstrated for onshore turbine long-term
loads [4]. In this approach, the neglected response variability in
the EC method is attributed to (1) background variability in the
median extreme response, L̂, which accounts for the variability
in the median response with changing environmental states
(corresponding to different return periods); and (2) response
variability which arises due to different stochastic components
for a specific environmental condition (this variability is modeled
by quantifying different load fractiles at the same environmental
condition). To quantify this overall variability in response, a
localized lognormal model is assumed; then, the corrected short-
term extreme response, L, may be expressed as L = L̂ε, where ε
is taken to be a unit-median random variable that represents the
variability in the extreme response for a given set of environmental
conditions. Standard deviations of the natural logarithms of these
two random variables, L̂, and ε, are given by

σln L̂ =
ln
(
L̂T1/L̂T2

)
βT1 − βT2

; σln ε =
ln
(
εp2/εp1

)
8−1 (p2)−8−1 (p1)

(6)

where T1 is the target return period (20 years) while T2 is a slightly
shorter return period (taken to be 16 years here), and βT1 and βT2
are associated reliability indices. Also, with the EC method, p1 is
the median fractile level (i.e., p1 = 0.5) while p2 is taken to be
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Fig. 7. Load distributions of the POT data for governing environmental states based on 6 simulations for (a) a mean wind speed of 14 m/s and significant wave height of 5.5
m for OoPBM; and (b) a mean wind speed of 16 m/s and a significant wave height of 5.5 m for TBM.
a somewhat higher fractile (here, we take p2 = 6/7 = 0.86),
and εp1 and εp2 are associated fractiles. The local lognormal model
that is assumed for L̂ and ε is best defined by using environmental
conditions associatedwith shorter return periods than T1 (i.e., T1 <
T2) but with rarer conditional load fractiles than median levels
(i.e., p2 > p1 = 0.5). The correction factor, R, is finally expressed
as

R =
LT
L̂T
= exp

[(
σln L − σln L̂

)
βT
]

(7)

where σ 2ln L = σ
2
ln L̂
+ σ 2ln ε .

After applying this correction, 20-year loads are estimated to
be 13.2 MN m and 107.9 MN m for OoPBM and TBM, respectively
(see Table 2). Response variability is largely responsible for the
change in the 20-year loads here. However, these corrected blade
and tower 20-year loads are only about 3% larger than the 2-D EC
values.

5.2.3. 3-D inverse FORM
If instead of only seeking the median extreme load given X ,

the full probability distribution of the turbine extreme load, L, is
established by simulations, a search is needed for the maximum
value of a different fractile, p3, on load extremes consistent with
each environmental state (V , Hs) and with the specified target
probability of failure, PT (or associated reliability index, β). The
desired load fractile level, p3, equals 8(u3) (see Eq. (3)), and
by expressing the standard normal random variables, u1 and
u2, in terms of the physical environmental random variables
using the Rosenblatt transformation [14], we obtain the following
expression for p3:

p3 = 8
[
β2 −

(
8−1 (FV (v))

)2
−
(
8−1

(
FH|V (h)

))2] 12
(8)

where 8() and 8−1() refer to the standard normal cumulative
and inverse cumulative distribution functions, respectively, while
FV (v) and FH|V (h) refer to the cumulative distribution functions
for wind speed and for significant wave height (given wind
speed), respectively. For POT data, the load fractiles are estimated
according to Eq. (5). Note that with the EC method, effectively,
p3 is the conditional median of the load extreme given V and Hs
(i.e., u3 = 0 and p3 = 0.5).
With this 3-D inverse FORM approach, the 20-year loads

(here obtained by searching only on gridded V–Hs pairs where
simulations were carried out) are 13.6 MN m and 119.9 MN m for
the blade and tower loads, respectively (see Table 2). These same
loads are obtained using the direct integration method, which
establishes the accuracy of the 3-D inverse FORM results. These 3-
D 20-year loads are roughly 6% and 14% larger, respectively, for the
blade and tower loads than those obtained with the 2-D method.
Interestingly, the controllingwind speedwith the 3-D formulation,
which is 14 m/s for the 20-year blade load and 16 m/s for the 20-
year tower load, is no longer near the rated wind speed, as was the
casewith the 2-D formulation. This implies that the full conditional
load variability (as a function of wind speed and wave height) is
important.
Note that for a pitch-controlled turbine, the rated wind speed

is expected to be the wind speed that directly influences long-
termextreme loads. Furthermore, in order to reduce the simulation
effort, a limited number of wind speeds (as few as three), near
rated,maybe selected for simulations, as is also suggested inAnnex
G of the draft IEC guidelines for offshore wind turbines [1]. If we
used this criterion, with a small wind speed bin size of 1 m/s, we
might miss the controlling-wind speed of 16 m/s that was found
here. Ignoring load variability may lead to misleading long-term
loads.
We should note that the 2-D EC 20-year loads and the 3-D

inverse FORM 20-year loads were calculated based on simulations
for a discrete set of gridded values of V and Hs. In subsequent
discussions, we examine the environmental state (i.e., V and Hs
values) at the 3-D ‘‘design’’ point in Table 2. For the blade and tower
loads, these environmental states corresponding, respectively, to
V = 14m/s, Hs = 5.5 m and V = 16 m/s, Hs = 5.5 m in the 3-D
approach, are studied in greater detail in the following.
In order to assess the accuracy of estimated p3-fractile loads

for the design environmental state in this 3-D inverse FORM
approach, it is useful to first determine if the required fractile
needed to be extrapolated from the POT data. Table 4 shows that,
for both loads, the required POT fractiles are significantly higher
than the largest available empirical fractile. In our non-parametric
model for load distributions, we assume saturation of the tail
and somewhat simplistically estimate the required fractile as the
largest observed value. The load distribution (Fig. 7), however,
shows that the assumption of saturation of tails cannot be justified.
As a result, 3-D inverse FORM long-term loads based on this non-
parametric approach would clearly be low and unconservative.
Next, by performing additional simulations, we seek to obtain
more accurate long-term load estimates by establishing short-
term loads distributions with more stable tails, at the design
environmental states.
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Table 4
Required fractiles for the design environmental states with the 3-D inverse FORM
approach.

Load Required load
fractile, p3

Average no.
of peaks, n

Required fractile
for POT, p1/n3

Largest empirical
fractile

OoPBM 0.99998997 66.2 0.99999985 0.9975
TBM 0.99999613 74.2 0.99999995 0.9978
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Fig. 8. Time series of wind speed, blade pitch, OoPBM, and TBM for a mean wind
speed of 14 m/s and significant wave heights of 5.5 m.

5.2.4. Control actions and number of simulations
An interesting aspect that may be seen from Fig. 7 is that the

maximum observed load value, which determines the required
extrapolated fractile, is significantly larger than other load values
in the tail of the distribution for both OoPBM and TBM. To
investigatewhat conditions bring about this large load, we study in
Fig. 8 relevant time histories ofwind speed, OoPBM, and TBMalong
with that of blade pitch angle for a single ten-minute simulation
(out of six for the controlling V–Hs combination) that included
this large load. The maximum loads were seen to occur when
the blade pitch angle suddenly reduced to zero at time instants
corresponding roughly to 20 s, 100 s, and 175 s. This is due to
the control system for this pitch-controlled turbine, which is such
that the blades start to pitch when the instantaneous wind speed
exceeds the rated wind speed of 11.5 m/s. At instants when the
wind speed falls below the rated speed, the pitch angle reduces to
zero and, if the wind speed increases before the blade can pitch
back, large loads result.
Since these large loads due to control actions are observed

in only one out of six simulations, the distribution tails may
only saturate and have better definition than in Fig. 7 if more
such large load values result upon performing more simulations.
We therefore carry out more simulations for the governing
environmental states and find that at least 60 and 150 simulations,
respectively, are needed for the blade and tower loads. The
corresponding distributions, shown in Fig. 9, also illustrate how the
distribution tails fill in and, hence, become more reliable. Clearly,
due to blade pitch-control actions, performing only six simulations
per environmental state may be inadequate to obtain reliable
distributions by means of parametric model fits to the data; this
is why non-parametric fractiles were employed with the 2-D and
3-D approaches that were based on only six simulations.
With themore reliable POT load distribution tailsmade possible

due to the larger number of simulations, we attempt fits with
parametric models. With a two-parameter Weibull distribution fit
to the tails and a least squares basis, Figs. 10(a) and 11(a) show that
for the required fractiles of Table 4, 20-year loads of 15.3 MN m
and 147.1 MNm result for the blade and tower loads, respectively.
These loads are about 13% and 23% larger for blade and tower
loads, respectively, than those from the non-parametric approach
and based on only six simulations. This is expected since the
non-parametric approach unconservatively assumed saturation of
distribution tails. As seen, a large number of simulations is required
to yield reliable distribution tails and accurate long-term loads.
Note that the accuracy of turbine response simulations and, hence,
of load distributions and predicted long-term loads also depends
on model uncertainties associated with the aeroelastic model and
other assumptions made in the stochastic simulation. A limitation
of the present study is that we do not address such model
uncertainties that are associated with limitations in simulation
capability.

6. Comparison of POT and global maxima

In the preceding discussions, we used the peak-over-threshold
(POT) data to extract load extremes. An alternative approach is
to use global (or epochal) maxima in which only statistics of the
single largest load value from each simulation are used. It is of
interest to examine how long-term load predictions differ from the
two methods. We fit two-parameter Weibull distributions to the
tails of global maxima data for the design environmental states,
and estimate load fractiles required with the 3-D inverse FORM
approach. Figs. 10(b) and 11(b) show these fits for the blade and
tower loads, respectively. Long-term load predictions obtained
using the global maxima method are 14.5 MN m and 136.6 MN m
for the blade and tower loads, respectively; these are only about 5%
and 7% smaller for blade and tower loads, respectively, than those
obtained using the POT method with parametric distribution fits
(Figs. 10(a) and 11(a)). The slightly larger differences in predictions
for the tower loads are likely due to relatively poor distribution fits
with both methods.
Finally, an important issue when using the POT method is

related to the selection of an appropriate threshold level. As
the threshold level is increased, the number of peaks decreases
and, at an appropriately high threshold, the POT method may
result in the same number of load extremes, on average, as the
global maxima method. We now estimate required fractiles for
the governing environmental state with the 3-D inverse FORM
approach using different thresholds and two-parameter Weibull
fits for POT distribution tails. Table 5 shows computed fractiles
for blade and tower loads. For blade loads, it can be seen that
the variation in load fractiles with different thresholds is not
significant. The reason is that very good parametric fits, such as
those shown in Fig. 10(a), are obtained for all threshold levels.
For tower loads, the required load fractiles show slightly greater
variationwith different threshold choiceswhichmay be partly due
to less evident and stable trends in distribution tails for these loads
(as seen, for example, in Fig. 11(a)). Based on these observations,
we conclude that the agreement between long-term loads using
the POT and global maxima methods is generally good and is
independent of threshold choice as long as distribution tails are
reliable enough to allow a good parametric fit.

7. Conclusions

Our objective in this study was to derive long-term loads for a
utility-scale 5MWoffshorewind turbine sited in 20mofwater. The
focus was on the out-of-plane blade bending moment at a blade
root and the fore-aft tower base moment at the mudline. Load
extremes data needed to establish short-term load distributions
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Fig. 9. Load distributions of the POT data for governing environmental states based on (a) 60 simulations of OoPBM for a mean wind speed of 14 m/s and a significant wave
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fromWeibull fits shown in Figs. 10(a) and 11(a).
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Table 5
Effect of threshold level on the estimate of load fractile for the 20-year environmental state for OoPBM (p3 = 0.99998997) and TBM (p3 = 0.99999613). Threshold =
Mean+ Nσ × (Standard deviation).

Threshold
Level, Nσ

OoPBM (V = 14 m/s, Hs = 5.5 m) TBM (V = 16 m/s, Hs = 5.5 m)

Ave. no. of
peaks, n

Required exceedance probability,
1− p1/n3

Load fractile
(MN m)

Ave. no. of
peaks, n

Required exceedance probability,
1− p1/n3

Load fractile (MN m)

1.4 66.8 1.50× 10−7 15.3 85.6 4.52× 10−8 147.1
1.7 44.7 2.24× 10−7 14.9 56.4 6.86× 10−8 148.1
2.0 28.9 3.47× 10−7 14.8 34.9 1.11× 10−7 145.9
2.3 17.1 5.86× 10−7 14.7 20.2 1.91× 10−7 143.0
2.7 8.1 1.23× 10−6 14.6 9.7 3.97× 10−7 139.7
3.0 4.0 2.51× 10−6 14.6 4.9 7.97× 10−7 142.4
Max 1.0 1.00× 10−5 14.5 1.0 3.87× 10−6 136.6
were extracted from time series of turbine response simulations
using the peak-over-threshold method. Long-term loads were
estimated using 2-D and 3-D inverse first-order reliability method
approaches (the former is also referred to as the environmental
contour or EC method) and compared with direct integration. The
following are general conclusions for the offshore wind turbine
studied:

• The EC method is efficient compared to direct integration but
long-term load predictions are based on limited consideration
for turbine response variability and can be inaccurate and
unconservative.
• The variability in turbine loads for a given environmental state
is found to be significant. Due to this, long-term loads based
on median values (2-D EC method) of loads given mean wind
speed and significant wave height are smaller than those based
on higher-than-median fractiles (3-D inverse FORM). The 3-
D inverse FORM approach is found to be as accurate as the
direct integration approach and is far more efficient; it is
recommended for practical wind turbine design applications.
• Importantly,when load variability is considered, the controlling
wind speed that influences long-term (20-year) loads is not the
rated wind speed (as is often the case) but is somewhat higher
than the rated speed.
• A chief source of load variability results from blade-pitch
control actions that result in large loads such that the tails of
the short-term load distribution are not reliable unless a large
number of simulations are performed.

While the above results are based on the peak-over-threshold
(POT) method, a comparison of predictions based on the global
maxima and POT methods showed that derived long-term loads
from both methods were close as long as distribution tails are
reliable and well defined.
These conclusions, while particular to the turbine model

studied, are useful to consider for any simulation-based exercise
that seeks to predict long-term loads for extreme (ultimate) limit
states. This study also suggests that the effect of control actions
on extreme loads needs careful consideration; in particular it is of
interest to investigate methods to account for load variability that
arises due to control actions since such variability can alter the tails
of load distributions in different ways than loads that result from
uncontrolled turbine states.
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