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Statistical Extrapolation Methods for Estimating 
Wind Turbine Extreme Loads 
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With the introduction of the 3rd edition of the International Electrotechnical Commission 
(IEC) Standard 61400-1, designers of wind turbines are now explicitly required, in one of the 
prescribed load cases, to use statistical extrapolation techniques to determine nominal design 
loads.  In this study, we use field data from a utility-scale 1.5MW turbine sited in Lamar, 
Colorado to compare the performance of several alternative techniques for statistical 
extrapolation of rotor and tower loads—these include the method of global maxima, the 
peak-over-threshold method, and a four-moment process model approach.  Using each of 
these three options, fifty-year return loads are estimated for the selected wind turbine.  We 
conclude that the peak-over-threshold method is the superior approach, and we examine 
important details intrinsic to this method, including selection of the level of the threshold to 
be employed, the parametric distribution used in fitting, and the assumption of statistical 
independence between successive peaks.  While we are primarily interested in the prediction 
of extreme loads, we are also interested in assessing the uncertainty in our predictions as a 
function of the amount of data used.  Towards this end, we first obtain estimates of extreme 
loads associated with target reliability levels by making use of all of the data available, and 
then we obtain similar estimates using only subsets of the data.  From these separate 
estimates, conclusions are made regarding what constitutes a sufficient amount of data upon 
which to base a statistical extrapolation.  While this study makes use of field data in 
addressing statistical load extrapolation issues, the findings should also be useful in 
simulation-based attempts at deriving wind turbine design load levels where similar 
questions regarding extrapolation techniques, distribution choices, and amount of data 
needed are just as relevant. 

I. Introduction 
iven a limited amount of field data, our goal is to use statistical extrapolation techniques to predict 50-year 
return levels of wind turbine rotor and tower loads.  This is essentially the same task that is currently being 

required of turbine designers in Design Load Case 1.1 of IEC Standard 61400-1, 3rd edition1, where extrapolation is 
to be applied with simulated loads data.  Although Annex F of the IEC guidelines makes reference to the study by 
Moriarty et al2, where peak-over-threshold extrapolations are demonstrated using several different distributions, 
details of the extrapolation procedure are left to the designer’s discretion.  In this study, we compare results obtained 
using several different extrapolation procedures, with the goal of recommending which procedure might best be 
suited in a given application. 
 Our first objective is to compare three fundamentally different approaches for extracting the information to be 
used in loads extrapolation from raw time-series data.  In order of increasing use of data, they are: 

• Method of Global Maxima - In this method, only the single largest data point (load) from each ten-minute 
file is used, and statistical distributions for these ten-minute maxima are estimated directly. 

• Peak-Over-Threshold (POT) Method - Multiple peaks are extracted from each file.  Specifically, the largest 
value between each successive upcrossing of the threshold is extracted.  Distributions are fit to load 
exceedances over the selected threshold. 

• Process Model Approach - The entire time history is modeled as a random process, using the first four 
statistical moments and the mean crossing rate of the observed time series.  Unlike the other methods, this 
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approach does not explicitly discard any of the data in the time series, although it has the disadvantage of 
not directly modeling the largest peaks. 

Refer to the simulation study by Fitzwater and Winterstein3 for further discussion on these three approaches. 
 After a comparison between these three methods is made, specifics of the peak-over-threshold method are 
examined in greater detail.  The selection of the threshold level to be employed is discussed at length, and a 
procedure is described by which this selection may be optimized.  The question of which parametric distribution 
may be most appropriate is also explored, both on theoretical and practical grounds.  Finally, we discuss the effect of 
implementing a minimum time separation on load peaks over the selected threshold for the purpose of ensuring 
greater statistical independence between successive peaks, and we examine the implications of neglecting this issue. 
 After discussing all of these details regarding the peak-over-threshold method, it is then used in a study of the 
variability of long-term load predictions as a function of the amount of data included in the analyses.  Standard 
errors on long-term loads predicted using subsets of the data are calculated and compared with predictions made 
using the entire dataset.  Then, conclusions are made about the size of dataset needed to produce reliable statistical 
extrapolation of loads for design. 
 Importantly, this study uses rarely available field data on loads from a utility-scale 1.5MW turbine to 
demonstrate various loads extrapolation techniques.  Since field measurement campaigns are expensive, it is more 
common that simulation studies are employed in load extrapolation in practice.  Insights related to statistical 
extrapolation provided by our analyses using field data are however still relevant in situations where such loads data 
are obtained from simulation, though some differences may be expected.  For instance, inflow turbulence character 
is likely to be more variable in field measurements and simplifying assumptions (in stationarity and coherence, for 
example) are generally made in spectral models for turbulence used in simulation.  Also, load control algorithms 
may be quite differently represented in the field than in models used in simulation.  Notwithstanding these 
differences, a critical study of load extrapolation techniques is of interest to analysts and the availability of useful 
field data motivates the present study. 

II. Experimental Data 
The subject of this study is a utility-scale 1.5MW wind turbine located 

at a Great Plains site near Lamar, Colorado (see Fig. 1).  The turbine has a 
hub height of 80 meters, and a rotor diameter of 70.5 meters.  
Approximately 17,000 ten-minute records were taken over a period of 
roughly four months between September 2004 and January 2005 (Zayas et 
al4).  A total of 67 channels at a sampling rate of 40 Hz provided various 
measurements of the turbine’s inflow, control state, and structural response.  
For the purposes of this study, the following three measurements will be the 
subject of the extreme loads estimation: 

• Edge bending moment at the blade root (EBM) 
• Flap bending moment at the blade root (FBM)  
• Resultant bending moment at the tower base (TBM). 

For various reasons, much of the original time series data was unusable for 
our purposes.  Of the original dataset of roughly 17,000 ten-minute records, 
a total of 2,485 were used in this study.  Figure 2 shows the distribution of 
this available data binned according to hub-height ten-minute mean wind 
speed.  Extreme load distributions will be estimated both for data in 
individual wind speed bins as well as for the aggregated data resulting from 

integrating the bin-specific distributions.  The dataset is unfortunately missing a large proportion of files around the 
rated wind speed (12 m/s), which means that estimated long-term load distributions will not be as heavily influenced 
by the near-rated wind speed bins as one might expect if a full dataset were available. 

III. The Method of Global Maxima 

A. The Generalized Extreme Value Distribution 
We begin by demonstrating statistical extrapolation using the simplest approach—the method of global 

maxima—in which the Generalized Extreme Value (GEV) distribution is fit to the single largest load value from 
each ten-minute file.  First, the theoretical background of the GEV is discussed briefly. 

 
Figure 1.  The Instrumented 

1.5MW Wind Turbine. 
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We seek a statistical distribution for a random 
variable which is defined as the maximum of the 
n (equal to 24,000 here) random variables that 
make up a ten-minute time series for data 
sampled at 40 Hz.  It may be shown (see 
Gumbel5) that as n approaches infinity, the 
maximum of the n random variables follows one 
of three Extreme Value distributions.  The GEV 
distribution comprises these three Extreme Value 
distributions; so one can say that the maximum of 
n random variables follows the GEV distribution.  
Since this is only strictly true as n approaches 
infinity, we say the GEV is the correct 
distribution in an asymptotic sense.  A commonly 
made analogy to this result is with the more 

familiar Central Limit Theorem which states that the sum of n random variables (under certain conditions) follows a 
normal distribution in an asymptotic sense. 

Mathematically, the Generalized Extreme Value Distribution is defined as follows: 
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where u, a, and k are location, scale, and shape parameters, respectively, of the distribution such that ∞<<∞− u , 
∞<< a0 , and ∞<<∞− k .  The shape factor, k, is of particular importance as its value defines the GEV 

distribution to be of Type 1, Type 2, or Type 3 (see Table 1).  The distribution for k = 0 is the well-known Gumbel 
distribution, and it is easily shown that its formula results from a limiting argument with the formula for the case 
when k ≠ 0. 

Table 1.  Properties of the GEV distribution Types 1, 2, and 3. 
GEV Distribution Type Name Shape Factor Lower Bound Upper Bound 

1 Gumbel Distribution k=0 None None 
2 Frechet Family k< 0 a/k + u None 
3 Weibull Family k> 0 None a/k + u 

 
 The use of the GEV distribution is well-established for modeling extremes of natural phenomena such as wind 
speeds and flood levels.  In particular, the Gumbel distribution (Type 1 GEV, k = 0) is commonly used in various 
applications; for example, it was recommended in 1975 by the British National Environmental Research Council for 
use in extreme value problems in hydrology.  Maximum values for random variables describing many physical 
processes, however, are likely to have upper bounds and may be more accurately represented by the generic GEV 
distribution which does not force k to be equal to zero.  This is the argument made by Holmes and Moriarty6 for 
models of extreme wind gusts.  It could similarly be argued that an upper-bound model is even more appropriate for 
wind turbine loads because of the limiting influence that modern wind turbine control systems are generally 
designed to have on loads.  In one wind turbine-related study, Pandey and Sutherland7 showed that the Gumbel 
model was consistently conservative in predicting extreme loads using extrapolation. 
 Following the work of Hosking et al8, the Method of Probability Weighted Moments (or, equivalently, the 
Method of L-Moments) has become the most common approach used for GEV distribution parameter estimation.  
Using this procedure, GEV distribution fits were attempted to the binned load extremes data for EBM, FBM, and 
TBM (see Fig. 3).  The distribution functions for all the wind speed bins have been plotted on a Gumbel scale which 
means that the case for k = 0 will appear linear, k < 0 shows negative curvature, and k > 0 shows positive curvature.  
Note that when a k > 0 fit is found, an upper bound represented by the light vertical dashed lines is indicated (as, for 
example, with the FBM load in the 13-15 m/s bin).  Note that all values of the loads (bending moments here) have 
been normalized with respect to the largest value observed during the measurement campaign. 

B.  Integration of Conditional Load Distributions for Long-Term Loads 
 The individual GEV load distributions, conditional on wind speed, are used to estimate the overall probability 
that a random ten-minute maximum load, M10 min, is greater than any specified load level, x.  This probability of 
exceedance is calculated as follows: 
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Figure 2.  Distribution of the Available Ten-Minute Data 

Records, Binned by Hub-Height Mean Wind Speed. 
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Figure 3.  GEV distribution fits to global maxima for different wind speed bins. 



 
American Institute of Aeronautics and Astronautics 

 

5

dVVfVxFxMPxF
V
∫ −=>=− )())|(1()()(1 min10

         (2) 

where )|( VxF  is the cumulative conditional GEV distribution for the wind speed V, and f(V) is the probability 
density function for V.  Practically speaking, since we have discretized V into 2 m/s wind speed bins, this integral 
reduces to: 

∑ −=>=−
V

VpVxFxMPxF )())|(1()()(1 min10
          (3) 

where p(V) is the probability associated with the relevant wind 
speed bin.  Values of p(V) were calculated based on a Rayleigh 
distribution of ten-minute mean wind speeds with a mean value 
of 9.71 m/s (see Table 2).  It is assumed, for the purposes of 
this study, that only extreme loads during operation are of 
interest.  Equivalently, we assume here that extreme loads 
cannot occur at wind speeds below cut-in (5 m/s) or above cut-
out (25 m/s), so that )5|( ≤VxF  and )25|( ≥VxF  are each 
taken to be equal to unity.  Results of the integration of the 
conditional load distributions for all three load types are 
summarized in Fig. 4. 
It is assumed, for the purposes of this study, that only extreme 
loads during operation are of interest.  Equivalently, we assume 
here that extreme loads cannot occur at wind speeds below cut-

in (5 m/s) or above cut-out (25 m/s), so that )5|( ≤VxF  and )25|( ≥VxF  are each taken to be equal to unity.  
Results of the integration of the conditional load distributions for all three load types are summarized in Fig. 4. 
 Equation (3) may also be used to calculate any R-year return load, which is the load that is exceeded, on average, 
once every R years.  Assuming that the occurrence of these large, rarely occurring loads is governed by a Poisson 
process, the waiting time between occurrences is exponentially distributed with mean R, so that the probability that 
the R-year return load is exceeded in a period of duration, t, is [1–exp(-t/R)].  If t is very much smaller than R, this 
probability is very nearly equal to t/R, so that the probability that the 50-year return load is exceeded in a period of 
10 minutes is 10/(50 × 365.25 × 24 × 60) = 3.8×10-7.  Substituting this value in the left hand side of Eq. (3) yields 
the 50-year return load as the value of x. 

 Table 3 shows results of return load 
calculations at the 17-day, 1-year, 10-year, and 50-
year levels.  The 50-year load is of interest 
because it is used as the nominal design load in the 
IEC guidelines1; the 17-day load has been 
included because our 2,485 ten-minute records are 
roughly equivalent to 17 days of continuous data, 
so we would expect the extrapolated load at the 
17-day level to be close to the maximum observed 
normalized load, 1.0. 

Table 3.  Loads associated with different return 
periods based on the method of global maxima. 

Load Type L17 day L1 yr L10 yr L50 yr 
FBM 0.95 1.02 1.08 1.13 
EBM 0.97 1.02 1.04 1.05 
TBM 0.99 1.26 1.59 1.83  

C. Discussion of Results 
 Examining first the long-term results in Fig. 4 and Table 3, our initial impression is that the extrapolated tower 
bending loads are unrealistically high, while the flap and edge loads on the blade are somewhat lower than we would 
expect.  What is most objectionable about these results, however, is that the lower wind speed bins are dominating 
the extrapolation, which is physically unrealistic.  Table 4 demonstrates this best by displaying the relative 
contributions from each wind speed bin to the summation in Eq. (3) at the 5-year level.  Referring back to Fig. 3, 
some of the unexpected behavior indicated above can be attributed to overestimation of long-term loads in the lower 

Table 2.  Relative likelihoods of different wind 
speed bins based on a Rayleigh distribution.  

Wind Speed Bin, V (m/s) p(V) 
<5 0.178 
5-7 0.141 
7-9 0.151 
9-11 0.143 

11-13 0.121 
13-15 0.094 
15-17 0.068 
17-19 0.045 
19-25 0.051 
>25 0.007 
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Figure 4.  Probability of load exceedances (integrated over 

all wind speeds) based on the method of global maxima. 
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wind speeds (5-7 and 7-9 m/s bins) at least for FBM and TBM, and systematic underestimation of long-term loads 
for the higher wind speed bins. 

The distributions for FBM and TBM in the two 
lowest wind speed bins appear much flatter than the 
others; this might also suggests that the observed loads 
data for these bins were perhaps not large enough to be 
affected by the limiting influence of the turbine’s 
controller.  Information about the way in which the 
controller might prevent excessive loads on the turbine 
is not included in these distributions, and the 
extrapolations overestimate long term-loads as a result. 
 Loads data for the higher wind speed bins, on the 
other hand, appear to have been affected a great deal 
by the controller, as evidenced by the strong positive 
curvatures of the distributions in Fig. 3.  These 
distributions have the opposite problem to those for the 

lower wind speed bins, as they consistently underestimate long-term loads.  This underestimation is painfully 
obvious in some cases—for example, in some bins, the predicted upper bound by the model (shown by the light 
vertical dashed line) is actually lower than several observed values for that bin, which means that such fitted GEV 
distributions based on the global maxima have a zero probability of being correct.  Closer inspection revealed that 
these large observed loads that exceed the GEV-predicted upper bounds occurred in rare, but real, conditions, 
usually accompanied by particularly strong wind gusts which the controller is unable to respond to quickly enough.  
Also, these large loads occurred too infrequently in the sample to influence the fitted distributions in a marked way 
so as to raise the return load predictions to higher, more appropriate levels. 
 The short story, though, is that the method of global maxima did not perform well with these loads data.  We 
could point to the GEV distributions as the source of the problem, and seek other distribution types or parameter 
estimation methods that might improve the results.  Parameter estimation via maximum likelihood methods, for 
instance, might at least prevent fitted distributions from having upper bounds below an observed data point.  
However, we do not pursue such options here because we believe that a more significant drawback to the global 
maximum method described here lies more likely in the fundamental inefficiency of employing only one peak load 
value from each ten-minute segment of data and attempting to use that to gain long-term load information. 

IV. Peak-Over-Threshold Method 
 The peak-over-threshold method has an advantage over the global maximum method of being able to make use 
of multiple peaks from some ten-minute time series files—those with higher loads—and perhaps none from other 
files during which lower, less relevant loads were recorded.  By choosing a load threshold level that is sufficiently 
high, the method selectively extracts the largest, most important peaks from the dataset, allowing extrapolation to be 
based on a relevant and homogeneous sample of data points. 

A. Choice of Statistical Distribution 
 The Generalized Pareto distribution (GPD) was introduced by Pickands8, who demonstrated that it is the 
appropriate distribution for exceedances over a threshold under the same basic conditions for which the GEV is the 
appropriate distribution for global maxima.  The only additional assumptions are that upcrossings of the threshold 
are Poisson and, thus, the exceedances themselves are independent.  Provided that these conditions are true, the GPD 
and GEV are intimately related, and even share the same shape factor, k. 

Mathematically, the Generalized Pareto distribution is defined by 
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where x is the amount of load exceedance over a chosen threshold, u.  The parameters a and k are the scale factor 
and the shape factor, respectively, with ∞<< a0  and ∞<<∞− k .  The shape factor, k, carries the same importance 
as with the GEV distribution; its value defines the nature of the upper tail and the existence or not of an upper 
bound.  The case with k = 0 is the exponential distribution with mean value, a, and the distribution formula then 
follows from a limiting argument applied to the k ≠ 0 case.  In all cases, the distribution has a lower bound of zero 

Table 4.  Probability that the derived 50-yr load arises 
from different wind speed bins given that  
this load occurs (global maxima method). 

Wind Speed Bin (m/s) FBM EBM TBM 
5-7 0.0653 0.0000 0.0004 
7-9 0.8218 0.0000 0.9996 
9-11 0.1130 0.5525 0.0000 

11-13 0.0000 0.0000 0.0000 
13-15 0.0000 0.4475 0.0000 
15-17 0.0000 0.0000 0.0000 
17-19 0.0000 0.0000 0.0000 
19+ 0.0000 0.0000 0.0000  
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since any value that does not exceed the threshold, u, is by definition excluded from the distribution.  The properties 
of all 3 GPD types are summarized in Table 5. 

 Parameter estimation for 
the GPD has been discussed in 
detail by Hosking et al9, where 
the method of probability-
weighted moments is 
compared to the conventional 
method of moments as well as 

to the method of maximum likelihood.  The conventional method of moments is the simplest to apply and is shown 
to outperform the other methods for distributions whose shape factor, k, is near or slightly above zero, as is the case 
for most of the fits associated with our data. 
 The GPD is the standard for POT analysis in many applications such as for the prediction of flood levels and 
wind gusts.  See, for instance, Davison and Smith10, Holmes and Moriarty6, Brabson and Palutikof11, or Ryden12.  
Despite this as well as its strong theoretical foundation, it has not been systematically employed to extrapolate 
structural loads on a wind turbine from POT data. 
 The Weibull 3-Parameter distribution (W3P) is another option for use with POT data, and was one of several 
employed in the study by Moriarty et al2.  The W3P distribution is given as follows: 
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It is important that the location parameter, u0, in Eq. (5) is not confused with the selected threshold, u.  Although 
there is no theoretical justification for using the W3P for peak-over-threshold data, it does have the advantage of 
offering greater flexibility than the GPD, since it has three parameters instead of two.  (Specifically, with the method 
of moments, for example, this enables the sample skewness of the data to influence the shape of the fitted 
distribution.)  A detailed comparison of long-term load predictions based on the GPD and the W3P will be presented 
in a subsequent section.  The results shown in the remainder of this section are based on the W3P, with parameter 
estimation using the method of moments (see Moriarty et al2 for details). 

B. Return Loads and Integration of Long-Term Distributions 
 Once a distribution has been fit to the peaks above a selected threshold within a wind speed bin, a bin-specific R-
year return load can be found by using Eq. (5) to solve for the excess over the threshold, x for the desired 
probability.  This requires setting the fractile level, F = 1 - 1/(λR), where λ is the crossing rate of the chosen 
threshold so that λR is the number of peaks above the threshold expected in R years.  The desired load level itself, 
xR, is the excess added back to the original threshold, 

[ ] uuRax k
R ++= 0

/1)ln(λ              (6) 
A bin-specific return load is the load that would be expected to occur at an average rate of once every R years if the 
wind conditions in that given wind speed bin remained constant at all times.  Despite this awkward physical 
interpretation, such values can be useful in comparing extrapolated results from different bins.  Of course, what we 
are ultimately interested in is the long-term distribution integrated over all bins and the overall return loads derived 
from this integrated load distribution.  For this, we use a calculation similar to Eq. (3), yielding 

∑ ∑ −−=>=>=−
V V

t
VVtt VpuxFVpVxMPxMPxF v )()))((1()()|()()(1 λ       (7) 

where the random variable Mt is the maximum load in time t (equal to 10 minutes here), FV is the (conditional) 
distribution function for POT loads in bin V, uV is the threshold chosen for bin V, and λV  is the crossing rate of uV in 
bin V. 

C. Choice of Threshold 
 Before we begin the peak-over-threshold analysis, an obvious and important question relates to how the 
threshold level should be chosen.  Figure 5 shows a sample flap bending moment (FBM) time series that has been 
reproduced three times.  In each case, peaks have been extracted according to a different threshold; the total number 
of peaks, n, extracted in each case is shown above each plot.  The top plot uses a threshold which is simply the mean 
value of the time series; the second plot uses a threshold at the level of the mean plus 1.4 times the standard 
deviation, and the bottom plot uses a threshold at the level of the mean plus 1.9 standard deviations. 

Table 5.  Properties of the Generalized Pareto Distribution Types 1, 2, and 3. 
GPD Type Name Shape Factor Lower Bound Upper Bound 

1 Gumbel k=0 0 None 
2 Frechet Family k< 0 0 None 
3 Weibull Family k> 0 0 a/k   
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 The first threshold (i.e., the mean value) 
is clearly below what may be considered an 
ideal level for POT analysis.  The most 
obvious problem is that many of the largest 
peaks in the time series—between around 
the 200 and 300 second marks—are not 
extracted and hence not retained as POT 
data.  This is because the floor (troughs) of 
the time series over this period of time is 
above the threshold, which in turn means 
that there are no upcrossings of the 
threshold over this time segment (recall 
that only the largest value between 
successive upcrossings is defined as a peak 
over the threshold and hence extracted for 
further statistical analysis).  In addition, 
between the 300 and 450 second marks, 
there are many peaks extracted that are not 
very near to the top of the time series 
(where we would expect important peaks to 
be) but are instead close to the bottom; 
these are the result of successive 
upcrossings of the threshold in the times 
series that are extremely close together, and 
are associated with minor peaks that we 
would prefer to omit from our 
extrapolation.  Both of these problems 

highlight the danger of choosing a threshold level that is too low—namely, the largest peaks, which we intuitively 
would like to retain for use in our extrapolation, are not all included, while many minor peaks, which we may not 
want to retain, are included.  This results in a grossly heterogeneous dataset that makes fits to statistical distributions 
very difficult. 
 The bottom two plots in Fig. 5 do a much better job of retaining all of the largest peak load values, although the 
middle plot does pick up a few of the undesirable minor peaks around the 275 and 500 second marks.  The threshold 
level in the bottom plot appears to be the most successful in terms of retaining only the most important largest peaks.  
Of course, if we use a threshold level that is too high, our sample of peaks might end up being too small and our 
extrapolation might become susceptible to sampling errors due to small POT sample size. 
 Still, based on our studies to date, we believe that it is important to use relatively high thresholds in order for 
distribution fits to avoid modeling errors associated with heterogeneous sets of peaks.  But how high is high enough?  
Moriarty et al2 suggest the µ + 1.4σ  level (corresponding to the middle plot in Fig. 5), reasoning that this is just 
below the level of peaks for a signal that is a deterministic sine wave, whose amplitude is exactly 2  (1.414) 
standard deviations above its mean.  One would expect this threshold to work quite well for edge bending moment, 
which is affected most by the periodic influence of gravity loading.  In some cases though, such as for the flap 
bending moment time series in Fig. 5, the process bears little resemblance to a deterministic sine wave, and there are 
perhaps more ideal threshold levels that can be chosen. 
 An often missed point related to the use of POT data in extrapolation is that it is necessary to choose a single 
threshold level that must be used for all the time series in a given wind speed bin because all of the peaks from these 
time series in the bin will be fit to the same distribution, which models the exceedance of peaks over that single 
selected threshold level.  If we speak of thresholds in terms of the sample mean and standard deviation from an 
entire bin’s data, the most appropriate threshold is even more likely to be greater than 1.4 standard deviations above 
the mean, because the larger peaks will likely come from time series (in the bin) whose ten-minute mean is higher 
than the mean for the entire bin.  As an example, for the time series in Fig. 5 that comes from the 9-11 m/s wind 
speed bin, the ten-minute mean and standard deviation values are 0.427 and 0.111, respectively.  For the entire 9-11 
m/s bin (475 ten-minute files), the mean and standard deviation values are 0.391 and 0.100, respectively.  So what 
we referred to as the µ + 1.4σ level for the threshold in Fig. 5 is actually, in the context of the entire bin, 1.91 
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Figure 5.  Sample peak-over-threshold data for FBM in the  

9-11 m/s bin: three alternative threshold levels. 



 
American Institute of Aeronautics and Astronautics 

 

9

standard deviations above the mean: 0.427 + 1.4×0.11 = 0.391 + 1.91×0.100.  Similarly, what we referred to as the µ 
+ 1.9σ level in Fig. 5 is actually, in the context of the entire bin, 2.46 standard deviations above the mean. 
 In any case, it is not obvious in advance which threshold should be chosen in order to extract a homogeneous set 
of the most relevant peaks that one might like to use in statistical extrapolation.  For this reason, we do not select the 
threshold a priori.  Instead, we search for an “optimal threshold,” using the following procedure: 
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Figure 6.  Comparison of distribution fits for various thresholds for FBM in the 9-11 m/s bin. 

 

0.5 0.6 0.7 0.8 0.9
10

0

10
2

10
4

10
6

Threshold Moment (Normalized)

Number of Peaks over Threshold

0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Threshold Moment (Normalized)

Shape Factor, k

0.5 0.6 0.7 0.8 0.9
10

−6

10
−5

10
−4

Threshold Moment (Normalized)

Mean Squared Error

0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

Threshold Moment (Normalized)

50−year Return Load

 
Figure 7.  Summary of distribution results for various thresholds for FBM in the 9-11 m/s bin. 
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1. Choose a range of possible thresholds for each bin.  We use 20 equally spaced thresholds between the 0.5 
and 1.0 load levels; another option would be to use equally spaced thresholds between the µ + 1.4σ level 
and the maximum observed load value (or simulated value, if one is using simulations) for the bin. 

2. For each threshold choice, peaks are extracted from all the time series in the bin and a distribution is fit.  
As discussed earlier, we use the Weibull 3-parameter distribution. 

3. Use some goodness-of-fit criterion to determine the optimal threshold for the bin.  In our case, we select 
the threshold for which the loads from the fitted distribution have the lowest mean square error with 
respect to the observed loads data at the same fractiles.  To avoid making conclusions based on too small 
a dataset (sampling errors), threshold levels for which fewer than 10 peaks result are excluded from 
consideration. 

This procedure is illustrated in Figs. 6 and 7 for flap bending moment in the 9-11 m/s bin.  For this bin, the threshold 
level of 0.71 has the lowest mean squared error; hence, it is considered to be the optimal threshold.  This threshold is 
3.2 standard deviations above the bin mean of 0.39 and, interestingly, is so high that none of the peaks from the 
sample time series of Fig. 5 are extracted for this bin (implying only that the sample series that was shown in Fig. 5 
had peak load levels that are not high enough to merit including them as representative of the bin in long-term load 
extrapolation; this is indeed the way less important data can and should be systematically omitted).  The 0.53 
threshold level corresponds to the µ + 1.4σ level and its use leads to a mean squared error that is roughly 10 times 
greater than that with the optimal threshold; moreover, it predicts a bin-specific 50-year return load of 1.29 versus 
1.05 predicted by a fit using the optimal threshold. 

D. Discussion of Results 
Using the procedure described, optimal thresholds are algorithmically found for each of the eight wind speed bins 
and for each of the three load types resulting in the load distributions shown in Fig. 8.  A quick visual scan of the 
plots gives the impression that the distributions generally fit the observed peaks very well, with the possible 
exception of the edge bending moment for the 7-9 m/s bin.  An investigation into the various threshold levels 
attempted for this bin (i.e., viewing plots similar to Figs. 6 and 7) reveals that there are higher thresholds that appear 
to fit the data better but these thresholds have mean squared errors that are slightly higher than that for the optimal 
threshold used in the fit for Fig. 8.  This suggests that a simple mean squared error may not always be the best 
measure of the goodness of fit for a distribution.  An evaluation procedure that weights errors in the upper tail more 
heavily may be one alternative for a goodness-of-fit criterion; the Kolmogorov-Smirnov test, which focuses on the 
worst fit of any of the data points, is another.  In our case, though, the repercussions of the one poor fit with the 7-9 
m/s bin for edge bending moment are quite small—we do not expect the 7-9 m/s bin to influence the overall results 
very much, especially when the conditional load distributions for each bin are integrated by the relative likelihood of 
the bin in order to yield overall long-term loads. 
 Figure 9 along with Tables 6 and 7 summarize the final results from the peak-over-threshold analysis, and are 
analogous to Figure 4 and Tables 3 and 4, respectively, that summarized results from the global maxima analysis.  
The 50-year return loads from the POT approach appear to be at far more reasonable levels than were seen with the 
GEV distribution fits seen in the global maxima method, and the wind speed bins that contribute most to the target 
exceedance probability for the long-term 50-year loads are correctly determined to be the bins for which many of the 
largest observed loads did in fact occur.  In short, the peak-over-threshold method with Weibull 3-parameter fits and 
optimal thresholds selected as described earlier, appears to show considerable promise as a reliable method to 
extrapolate long-term wind turbine loads. 

V.  Process Model Approach 
 For a Gaussian random process, X(t), with zero mean, unit variance, and mean upcrossing rate ν, the maximum 
load in time T is a random variable with the following cumulative distribution function (representing the probability 
of non-exceedance of any specified level, x, of the process: 

( ))2/exp(exp)( 2xTxF −−= ν              (8) 
For physical processes that are non-Gaussian, such as would be the case for the blade or tower bending moments on 
a wind turbine in general, the maximum load may be found by relating the non-Gaussian process to an associated 
Gaussian process using Hermite polynomials (and moments of the process that are of higher than second order).  
Following the work of Winterstein13,14, we use a four-moment Hermite transformation, which allows us to estimate 
the distribution of a ten-minute maximum load given the first four moments and the mean upcrossing rate of the load 
process.  See the cited references13,14 for further details. 
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Figure 8.  Weibull 3-parameter fits to peak-over threshold data with optimal thresholds. 
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 Figure 10 shows an example of this method 
applied to a sample flap bending moment time 
series in the 15-17 m/s bin.  Given the time series, 
we estimate the mean (µ), standard deviation (σ), 
skewness (α3), kurtosis (α4), and mean upcrossing 
rate (ν).  As the histogram in Fig. 10 shows, this 
time series is not exactly Gaussian but neither is it 
dramatically different from a Gaussian process; its 
skewness and kurtosis values are -0.112 and 
2.625, respectively, in comparison to 0 and 3.0 for 
a Gaussian process.  Based on the four-moment 
Hermite transformation model, the distribution 
function for the ten-minute maximum of this 
process is obtained, as shown in the bottom plot of 
Fig. 10.  The median (0.5 fractile) of the 
maximum distribution, 0.84, is very close to the 

observed ten-minute maximum, 0.86, and the 50-year level (fractile level of 3.8×10-7) is 1.01.  This means that if the 
process remained stationary with the observed four moments and crossing rate, a load of only 1.01 would be 
expected to occur, on average, once every 50 years.   

 Although the results for this example time series seem 
reasonable, when the results over all of the observed time 
series are integrated, long-term load predictions are found 
to be overly conservative (see Table 8 which can be 
directly compared to Tables 3 and 6 from the global 
maximum and the POT methods, respectively).  There are 
a number of problems that contribute to these conservative 
predictions, some of which are enumerated briefly below: 

• Highly non-Gaussian processes (such as the EBM process) cannot be effectively represented by this method, 
which is intended to be used mainly for mild perturbations to Gaussian processes. 

• There is a sizable region of skewness and kurtosis combinations (many of which occurred in our data sets) 
for which the Hermite transformation is non-monotonic (or nearly so), and cannot be used. 

• The model is highly sensitive to non-stationarity (the wind turbine loads data often do not display desirable 
stationary characteristics). 

• The statistical moments are highly variable, particularly so for the higher moments (skewness and kurtosis), 
and this is especially true since we are using field data.  Large skewness and kurtosis values are often 
associated with unrealistically large load predictions. 

For these various reasons, the process model approach is not recommended for the extrapolation of long-term wind 
turbine loads. 

VI. Investigation of Details related to the Peak-
Over-Threshold Method 

 Of the three methods presented, the peak-over-
threshold method has been found to be the superior 
choice for conducting statistical loads extrapolations.  
Therefore, we return to the subject of peak-over-
threshold modeling to further investigate several of the 
details associated with this procedure. 

A. Choice of Threshold Level 
 Justification for a procedure that uses an optimal 
threshold was presented earlier (in Section IV), as 

were the overall results based on this procedure for the field data considered here.  We now investigate how these 
results would change if a constant threshold of µ + 1.4σ were used instead, as suggested by Moriarty et al2 and in 
Annex F of the IEC Standard 61400-1, Ed. 31. 
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Figure 9.  Probability of load exceedances (integrated over 
all wind speeds) based on the peak-over-threshold method. 

Table 6.  Loads associated with different return 
periods based on the peak-over-threshold method. 

Load Type L17 day L1 yr L10 yr L50 yr 
FBM 0.99 1.07 1.14 1.18 
EBM 1.01 1.09 1.15 1.19 
TBM 1.01 1.10 1.18 1.24  

Table 7.  Probability that the derived 50-yr load arises 
from different wind speed bins given that  

this load occurs (peak-over-threshold method). 
Wind Speed Bin (m/s) FBM EBM TBM 

5-7 0.0000 0.0000 0.0000 
7-9 0.0000 0.0000 0.0000 
9-11 0.0001 0.0075 0.0001 

11-13 0.0000 0.0002 0.0002 
13-15 0.0000 0.0140 0.8358 
15-17 0.0007 0.0008 0.0000 
17-19 0.7073 0.0246 0.0130 
19+ 0.2919 0.9529 0.1509  
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 Figures 11 and 12 demonstrate the 
difference in distribution fits for the 9-11 m/s 
and the 19+ m/s bins, respectively.  Note first 
that the distributions for edge bending moment 
are reasonably similar with either threshold 
choice, which is not surprising given that the µ 
+ 1.4σ  threshold was originally proposed with 
a deterministic sine wave in mind.  For the 
FBM and TBM loads, however, the differences 
in fits due to the two thresholds are sometimes 
rather large, especially for the lower wind 
speed bin.  The 9-11 m/s bin is intended to be 
representative of such lower wind speed bins 
while the 19+ m/s bin is intended to be 
representative of the higher wind speed bins, 
where the differences in fits are much smaller.  
Difference in the nature of the loads 
distributions for the low and high wind speed 
bins are also highlighted by studying Table 9 
which shows that the optimal thresholds tend to 
be closer to the µ + 1.4σ level (though usually 
somewhat higher) for the higher wind speed 
bins while at lower wind speeds, the optimal 
threshold is at significantly higher levels.  The 
results in Table 9 suggest that the optimal 
threshold for good fits is almost always greater 
than 1.4 standard deviations above the mean. 
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Figure 11.  POT distribution fits based on an optimal threshold versus  

a µ + 1.4σ threshold for the 9-11 m/s bin. 
 As a final comparison between fits based on use of an optimal threshold versus the constant µ + 1.4σ  threshold, 
Table 10 shows overall return loads (integrated over all wind speeds) calculated using both approaches.  The 
differences in the results for the FBM and EBM loads are not dramatic; the slightly larger FBM loads for the µ + 
1.4σ threshold choice are associated with the over-predicting of loads for the 5-7 and 7-9 m/s bins.  The 
overestimation of TBM in these bins is more severe, though, and the overall return loads for TBM with the µ + 1.4σ 
threshold are, as a result, overly conservative especially at the longer return periods. 

0 100 200 300 400 500 600
0

0.5

1
Flap Bending Moment, 10 Minute Time Series

time, s

N
or

m
al

iz
ed

 M
om

en
t

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

Normalized Moment

N
um

be
r 

O
bs

er
ve

d

Flap Bending Moment Distribution
µ=0.527; σ=0.104; α

3
=−0.112; α

4
=2.625; Max=0.863

0 0.2 0.4 0.6 0.8 1

0

10

20

−
lo

g(
−

lo
g(

F
(x

))
)

1−yr level
10−yr level
50−yr level

Process Model Distribution Function for 10−Minute Maxima
Median=0.84; L

50
=1.01

Normalized Moment  
Figure 10.  Distribution function based on the four-moment 

process model (sample FBM time series in the 15-17 m/s bin). 

Table 8.  Loads associated with different return  
periods based on the process model approach. 

Load Type L17 day L1 yr L10 yr L50 yr 
FBM 1.06 1.26 1.42 1.52 
EBM 1.42 1.50 1.56 1.59 
TBM 1.15 1.31 1.46 1.57  
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Figure 12.  POT distribution fits based on an optimal threshold versus  

a µ + 1.4σ threshold for the 19+ m/s bin. 

B. Choice of Distribution 
 In Section IV, we described how the Generalized Pareto Distribution (GPD) should theoretically be the preferred 
model for peak-over-threshold (POT) data, and we referenced several studies where the GPD has been applied with 
such data.  However, all the results that were presented for the POT analyses were based on fitting a Weibull 3-
parameter (W3P) model to the data.  We now revisit this choice of distribution to see how the results would change 
if the GPD had been used instead.  Figure 13 shows such a comparison of fitted loads distributions for the 13-15 m/s 
bin.  Parameter estimates for both two distribution model choices were obtained using the method of moments. 

 In each case, optimal threshold levels 
were found separately for the two 
distributions so that associated datasets of 
peaks over the selected threshold are not 
necessarily the same in the top and 
bottom plots (corresponding to the W3P 
and the GPD, respectively) for each load 
type.  (The threshold level that is optimal 

for a W3P fit is not always the same threshold level that is optimal for a GPD fit.)  Also, recall that the GPD has an 
upper bound when the shape factor, k, is greater than zero.  This upper bound is represented in Fig. 13 by the vertical 
dashed lines seen at the right end of the distributions for FBM and EBM.  The GPD fit to the TBM data has a 
negative k value and, hence, has no upper bound.  

A visual comparison between the two 
distribution fits gives the impression that 
the Weibull 3-parameter is the more 
“neutral” choice.  That is, when the data at 
this scale appear to be close to linear, the 
distribution follows this near-linear trend 
quite well.  On the other hand, the 
Generalized Pareto Distribution fits exhibit 
larger curvatures and, thus, more dramatic 
behavior.  In the case of flap bending 
moment loads, the GPD fit predicts an 

upper bound for the load that is only slightly higher than the maximum observed load (during the field measurement 
campaign), which is a result we cannot have great confidence in.  At the other end of the spectrum, if one studies the 
tower bending moment data, the GPD fit shows an extreme negative curvature and, as a result, predicts 
unrealistically large long-term loads.  This striking difference in the behavior of the GPD fits for the FBM and TBM 
loads is especially disconcerting since the data for these two load types do not visually appear to be dramatically 
different. 
 Table 11 summarizes overall return loads (integrated over all wind speeds) calculated using the two distribution 
models.  The predictions with the Weibull 3-parameter model are slightly more conservative for the FBM and EBM 
loads because W3P distribution fits are unbounded while the GPD fits are bounded from above.  For the TBM loads, 

Table 9.  Optimal Thresholds: Number of  
Standard Deviations above the Mean 

  5-7 7-9 9-11 11-13 13-15 15-17 17-19 19+ 
FBM 5.55 4.72 3.19 2.16 2.07 1.99 2.01 2.41 
EBM 1.43 1.31 1.53 1.45 1.33 1.75 1.58 1.57 
TBM 6.50 5.10 2.96 1.71 0.97 1.83 2.30 2.26  

Table 10.  Loads associated with different return periods based 
on the POT method: optimal threshold versus µ + 1.4σ threshold. 

Load Type Threshold L17 day L1 yr L10 yr L50 yr 
Optimal 0.99 1.07 1.14 1.18 FBM 
µ + 1.4σ 1.01 1.11 1.18 1.24 
Optimal 1.01 1.09 1.15 1.19 EBM 
µ + 1.4σ 1.00 1.07 1.12 1.15 
Optimal 1.01 1.10 1.18 1.24 TBM 
µ + 1.4σ 1.04 1.28 1.56 1.81 
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on the other hand, the GPD results are overly conservative because the fitted distributions are all unbounded and, as 
was seen in the plots for the 13-15 m/s bin (Fig. 13), the negative curvature can sometimes be very severe and the 
fitted GPD distribution can be wildly unbounded then. 
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Figure 13.  Weibull 3-parameter vs. Generalized Pareto distribution fits for loads in the 13-15 m/s bin. 

 In summary, the GPD model has the advantage of having a strong theoretical basis but, in practice, the fitted 
distributions are rather erratic yielding very low upper bounds in some cases, and explosive unboundedness in 
others.  So while the model is the theoretically appropriate one to use with peak-over-threshold data, its use can 
occasionally lead to large errors.  On the other hand, the Weibull 3-parameter model appears to be more robust in 
the face of sampling variability (as was seen with the field data analyzed here).  Hence, despite the lack of 
mathematical justification for applying this model to peak-over-threshold data, doing so appears to lead only to 
small, conservative errors, and the use of this W3P model is recommended for wind turbine load extrapolation 
studies. 

C. Statistical Independence between Peaks in 
POT Data 
 When peak-over-threshold data are extracted so 
that distribution fits to them can be sought, it is 
assumed that the retained peaks from the underlying 
load process are statistically independent.  One of 
the advantages of choosing a threshold that is 
sufficiently high is that the peaks over that selected 
threshold indeed do tend to be less correlated with 
other peaks including ones nearby.  However, the 
clustering of peaks may still be observed.  If the 

correlation between successive peaks is positive (and large), the indication is that the assumption of independence 
required by our statistical models may not be strictly valid. 
 It has been suggested that a minimum time separation between successive peaks should be enforced when 
carrying out POT data analysis (see, for example, Brabson and Palutikof11).  For wind turbine loads, this minimum 
time separation could be based, say, on an assumed wind gust duration or on any important/dominant natural periods 
of vibration associated with relevant turbine components and the load in question.  Regardless of how such a time 
separation is selected, imposing such a requirement has the advantage of increasing the likelihood of having 
independence between peaks, at the expense of possibly losing some data. 
 To implement a time separation (of, say, t seconds) on an existing peak-over-threshold dataset, the following two 
steps can be applied: first, identify clusters of peaks—i.e., any two peaks that occur within t seconds of each other 
are considered to be part of the same cluster; then, discard all of the peaks except the largest in the cluster. 
 Figure 14 demonstrates the results of this procedure applied to the FBM time series data with the µ + 1.4σ 
threshold that were presented in Fig. 5.  For both cases (with and without any enforced time separation), the 
correlation coefficient between successive peaks was calculated.  Before any time separation requirement between 
peaks was enforced, there were 63 extracted peaks (see middle plot of Fig. 5) for which the correlation coefficient 
between successive peaks was 0.212; with an enforced time separation of 10 seconds (see Fig. 14), there were just 
four peaks remaining, for which the correlation coefficient was -0.850.  (Large negative correlation between peaks is 

Table 11.  Loads associated with different return periods 
based on the POT method: Weibull 3-parameter  

versus Generalized Pareto distributions. 
Load Type Distribution L17 day L1 yr L10 yr L50 yr 

Weibull 3-P 0.99 1.07 1.14 1.18 FBM GPD 0.98 1.04 1.08 1.11 
Weibull 3-P 1.01 1.09 1.15 1.19 EBM GPD 1.00 1.07 1.11 1.14 
Weibull 3-P 1.01 1.10 1.18 1.24 TBM GPD 1.04 1.30 1.93 2.80  
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purely coincidental and has little physical significance; the main goal is to reduce large positive correlations, 
because these are associated with dependence between the peaks.)  The implication of this example is that it is 
possible to reduce the dependence between peaks, but this comes at a large cost in terms of the reduction of the size 
of the dataset. 

 The relationship between the 
correlation of successive peaks and 
different choices for enforced time 
separations between peaks as well as 
different threshold levels is shown in 
Fig. 15 for flap bending moment loads 
in the 17-19 m/s bin.  With low 
threshold levels, correlation between 
peaks is generally quite high and 
positive, but it reduces noticeably by 
imposing a minimum time separation.  
At high threshold levels, correlations are 
quite low and insensitive to time 

separation.  Similar plots for lower wind speed bins (not shown) show correlations between successive peaks that 
are higher across the board, and do not approach zero even for time separations as large as 20 seconds.  For FBM 
and EBM in both low and high wind speed bins, the largest drop in correlation occurs between the 2- and 4-second 
separation levels indicating that, if a time separation is to be enforced, 4 seconds may be an appropriate choice for 
such a separation. 

 An important final question 
regarding the imposition of a 
minimum time separation with 
POT data is obviously related to 
whether or not final results on long-
term loads are influenced or not by 
it.  Fifty-year return loads have 
been computed for ten different 
imposed time separations varying 
between 2 and 20 seconds (in 
increments of 2 seconds) and the 
results are summarized in Table 12.  
In each case, the calculations were 
performed in the same manner as in 
Section IV—namely, by using an 
optimal threshold level together 
with the Weibull 3-parameter 
distribution—so that the results 
may be fairly compared.  (Note that 
the results for a zero time 

separation are the same as those presented in Table 6 earlier.)  Overall, the variation in predicted 50-year return 
loads with choice of time separation is seen to be quite small.  In fact, comparing the results based on a 20-second 
time separation with those based on no enforced separation at all reveals adjustments to the 50-year loads of only -
4.2%, -1.5%, and +2.4% for the FBM, EBM, and TBM, respectively. 
 In summary, although the imposition of a minimum time separation does reduce dependence between successive 
peaks, this comes at some cost in terms of the associated reduction in the size of the dataset which, for the purposes 
of extrapolation, would require that more data be collected.  Importantly, though, neglecting to force a minimum 
time separation or, equivalently, the use of ordinary peak-over-threshold data, does not appear to seriously bias 
predictions of long-term loads.  This suggests that any requirement of a minimum time separation between peaks in 
POT data on loads may very well be an unnecessary complication to the procedure. 
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Figure 14.  Peak-over-threshold data for FBM in the 9-11 m/s bin 

(circled peaks satisfy a minimum time separation of  
10 seconds—compare with Fig. 5). 
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Figure 15.  Correlation between successive peaks over a threshold  

versus time separation and threshold level for FBM in the 17-19 m/s bin. 



 
American Institute of Aeronautics and Astronautics 

 

17

VII. Extrapolations based on Limited Data 
 Finally, we address how load predictions based on 
statistical extrapolation are influenced by the size of the 
dataset.  Obviously, a larger dataset can be expected to yield 
more reliable results than a smaller dataset.  Here, we seek to 
quantify the degree to which an increase in the dataset size 
dataset is accompanied by a corresponding decrease in the 
statistical uncertainty of the resulting extrapolation.  
Interestingly, the 3rd edition of the IEC 61400-1 guidelines1 
only requires that the equivalent of six ten-minute 
simulations be run per wind speed bin in extrapolation for 
load extremes.  It is not surprising that some have found this 
number to be insufficient to ensure convergence to a stable 
long-term distribution for some wind turbine loads, but how 
much data is really necessary to provide an acceptable 
amount of stability in such load predictions? 

 In this study, we use varying sized subsets of the overall Lamar dataset to extrapolate long-term loads (using the 
peak-over-threshold method with optimal thresholds and the Weibull 3-parameter distributions), and long-term load 
predictions are then compared to those based on use of the entire dataset (these were summarized in Table 6).  
Specifically, subsets of 50, 100, 500, and 1,000 files are selected randomly, without replacement, from the overall 
dataset of 2,485 files.  This is repeated 100 times for each of the four subset sizes and, in each case, the final result—
i.e., the 50-year return load—is recorded.  Results presented in Fig. 16 show, for each data subset size, the range of 
predictions that result from the 100 repetitions, as well as standard error bars on both sides of the mean value.  The 
horizontal dashed line is the 50-year return load predicted with the overall dataset.  Table 13 shows the standard 
errors on predicted loads arising from the 100 repetitions for each data subset size.  As expected, the standard errors 
trend downwards with increasing sample size, but this trend is fairly gradual. 

 Although all of the results presented in this 
paper are based on field data, in practice the vast 
majority of statistical extrapolations are performed 
using simulated loads data.  When simulated loads 
data are used, one can choose how the data are 
distributed among the various wind speed bins, and 
a logical choice would be to simulate an equal 
number of datasets in each wind speed bin.  To be 
consistent with such choices and to address the 
question of what might constitute an appropriate 
number of simulations to perform, we repeat the 
calculations described above varying the number of 
data used in long-term load prediction but, this time, 
we randomly draw an equal number of files from 
each wind speed bin, again repeating our draws 100 
times. 
 Standard errors on 50-year load predictions 
based on various subsets of data with equal 
distributions over all bins are presented in Table 14.  
Again, convergence is not extremely fast and, in 
general, the standard errors are slightly smaller but 
on the same order as those in Table 13.  In both 
cases, there is no simple answer to the question of 
how much data is necessary to ensure that the 
extrapolated load predictions will have indeed 
converged; standard errors in Tables 13 and 14 are 
intended merely to quantify the manner in which 
uncertainty in extrapolated load predictions are 
affected by the size of the dataset.  When simulation 

Table 12.  Fifty-year return loads, using  
peak-over-threshold data with various  

imposed time separations between peaks. 
Time separation (s) FBM EBM TBM 

0 1.18 1.19 1.24 
2 1.17 1.19 1.25 
4 1.15 1.17 1.35 
6 1.15 1.18 1.33 
8 1.14 1.18 1.32 

10 1.14 1.19 1.31 
12 1.14 1.19 1.30 
14 1.13 1.18 1.29 
16 1.13 1.18 1.28 
18 1.14 1.18 1.28 
20 1.14 1.17 1.27  
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Figure 16.  Fifty-year return loads: range of predictions, 
mean and standard error bars resulting from subsets of 
various sizes, based on 100 repetitions.  (The horizontal 

dashed line is the prediction based on the entire dataset.) 
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studies are undertaken, it may be more meaningful to assess convergence of extrapolated load distributions for one 
wind speed bin at a time.  Thus, one might consider varying the number of simulated data sets to assure convergence 
of conditional distributions (such as in Fig. 8) first rather than examine overall (integrated) long-term loads as was 
done here. 

VIII. Conclusions 
 Field data on flap, edge, and tower bending loads 
from a utility-scale wind turbine were used to perform 
statistical extrapolation of long-term wind turbine loads 
using three alternative procedures: the method of global 
maxima, the peak-over-threshold method, and a process 
model approach.  For the peak-over threshold method, 
issues of threshold choice, distribution model, and 
independence of peaks were explored in detail.  Finally, 
the uncertainty in long-term loads was studied as a 
function of the quantity of data used in the extrapolation.  
General conclusions and recommendations are as 
follows: 

• The peak-over-threshold method yields far 
superior results in comparison to the other 
methods. 

• The use of an “optimal” threshold leads to 
better fits of the distributions to data in comparison to choosing a threshold such as µ + 1.4σ beforehand. 

• The Weibull 3-parameter distribution performs consistently well for peak-over-threshold (POT) data, 
although it is unsupported by theory.  The Generalized Pareto distribution has a stronger theoretical basis 
for use with POT data, but performs erratically in some cases, particularly for tower bending moment. 

• The requirement of a minimum time separation between peaks in the peak-over threshold method has a 
very slight impact on extrapolated long-term load predictions, and has the disadvantage of significantly 
reducing the available amount of data.  Such a requirement may thus be an unnecessary complication. 

• Uncertainties on extrapolated results decrease gradually with increasing size of dataset. 
Additional studies with different field datasets and/or using simulated loads data are necessary to corroborate the 
conclusions reached here which were all based on limited field data.  Especially if a similar study is conducted with 
simulated loads data, useful insights can be gained that can help in evaluating design load cases that deal with 
statistical loads extrapolation. 
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