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ABSTRACT: We discuss an application of Proper Orthogonal Decomposition (POD) to characterize the in-
flow turbulence random field experienced by a wind turbine.  A methodology is proposed that employs low-
dimensional POD models of the turbulence field to predict the wind turbine load statistics for the design pur-
poses.  The efficiency of the proposed strategy is assessed by evaluating rates of convergence of load statistics
derived based on different numbers of inflow POD modes.  Influence on convergence due to different spatial 
and temporal sampling resolutions of the inflow data is also investigated.  Results suggest that the appropriate 
number of POD modes needed to accurately describe wind turbine blade and tower loads depends primarily 
on the dynamic characteristics of the turbine loads under consideration as well as on the rotational sampling 
of the inflow turbulence.  In general, a small number of inflow POD modes can faithfully account for the low-
frequency energy in the turbine load measures studied.  At higher frequencies, where the inflow turbulence
field exhibits weak coherence at spatial separations on the order of rotor dimensions, a larger number of
modes may be required.  Based on this study limited to a single two-bladed 600 kW wind turbine, results 
from several spatial and temporal samplings of the inflow turbulence show that data from spatial grids with 
dimensions on the order of one-third the rotor diameter and sampling frequencies of 2.5-5 Hz or higher can 
yield adequate representations of important POD modes useful for establishing accurate turbine loads.  This 
was verified by comparing loads resulting from such efficient POD representations of inflow fields with those 
from sampled data on very fine grids and at high sampling rates. 

1 INTRODUCTION
Proper Orthogonal Decomposition (POD) is a pow-
erful numerical technique that can be used to effi-
ciently identify preferred patterns/modes of spatio-
temporal random fields and then employ low-
dimensional representations of such fields using the 
derived modes.  A limited number of POD modes is 
often sufficient to account for most of the energy of 
the entire random field.  Historically, POD tech-
niques were developed independently during the 
same period of time by several investigators includ-
ing Kosambi (1943), Karhunen (1946), and Loève 
(1948).  Mathematically, the POD procedure in-
volves a search for deterministic orthogonal basis 
functions for representations of complex spatio-
temporal fields and is optimal in the sense that it 
converges (in L2-norm) faster on average than any 
other linear decomposition technique.  Because of 
this optimality, the method has been employed in 
many science and engineering applications such as 
turbulent fluid flows (Lumley, 1970; Holmes et al, 
1997), wind engineering (Carassale & Solari, 2000; 
Chen & Kareem, 2003), turbulence and atmospheric 

stability (Spitler et al, 2004), etc.  Recently, Saran-
yasoontorn & Manuel (2005) demonstrated the use-
fulness of the POD procedure in describing domi-
nant features of the along-wind turbulence random 
field experienced by a typical wind turbine.  They 
showed that a small number of inflow POD modes 
was sufficient for use in deriving wind turbine load 
statistics.  In the present study, we extend that previ-
ous study and seek to examine in greater detail the 
efficiency of a POD in wind turbine load analysis.  
The varying turbine dynamic modes for the different 
turbine load measures (for the blade and the tower, 
for example) and the rotational sampling of the in-
flow turbulence are considered in discussions of the 
efficiency of low-dimensional POD representations 
for these loads. 

Having illustrated that low-dimensional represen-
tations are possible using POD and that such repre-
sentations can help establish accurate loads for de-
sign, an obvious next question is how should one 
efficiently collect the required data from which the 
POD modes can be derived.  Clearly, the few impor-
tant POD modes that are typically needed must be 
based on sampling of multiple inflow turbulence 
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streams.  Hence, another focus of the present study 
is on the selection from among several different spa-
tial distributions of sensors (anemometers, here) and 
associated temporal sampling that is adequate to 
yield the POD modes and retain the critical dynamic
features that influence each turbine load of interest.
Efficient spatial distribution of sensors and associ-
ated sampling in time of turbulence when derived in
this manner so as to allow accurate energy represen-
tation of the field can lead to economy in any 
planned experimental campaign that is focused on 
collecting spatio-temporal inflow data that directly
influences loads. 

Note that in the description above, V(t), can repre-
sent scalar turbulence random processes at N differ-
ent locations defined for a single direction, but it 
could also represent all three components of turbu-
lence at various locations. 

3 NUMERICAL EXAMPLES
In this section, we assess the efficiency of reduced-
order models of the inflow turbulence random field 
based on POD by studying the energy in such trun-
cated inflow fields as well as turbine load statistics
derived from them.  This is done by comparisons
with a full-field representation that involves no de-
composition.

We begin with a brief review of the theoretical
framework for POD analysis.  The accuracy of a 
POD-based reduced-order inflow representation to 
describe an inflow turbulence field and wind turbine
load statistics is discussed next. Finally, we discuss 
selection from among alternative spatial and tempo-
ral sampling schemes for inflow turbulence sensors. 

In the numerical studies, 10 ten-minute simula-
tions of an inflow turbulence random field were gen-
erated with a sampling frequency of 20 Hz over the 
rotor plane of the National Wind Technology Cen-
ter’s Advanced Research Turbine (ART).  This tur-
bine (Fig. 1(a)) is a 600-kW, upwind, two-bladed, 
teetered-hub turbine with a hub height of 36.6 m, a 
rotor diameter of about 42 m, and a constant rotor 
speed of 42 rpm.  The computer program, SNwind 
(Buhl, 2003) was used to carry out inflow field 
simulations.  The Kaimal spectral model and the ex-
ponential coherence model recommended in the IEC 
guidelines (IEC, 1998) for wind turbine design were
employed for the simulations.  A 10×10 square grid 
discretization of the rotor plane was used as shown
in Fig. 1(b).  This implies that a total of 100 inflow 
POD modes can be defined to represent this field, 
where our focus is on the along-wind (u) component
of the turbulence.  (We showed in Saranyasoontorn 
& Manuel (2005) that the across-wind (v) and verti-
cal (w) turbulence components have relatively far 
less influence on turbine loads.) 

2 PROPER ORTHOGONAL DECOMPOSITION
In the following, we present the key concepts upon 
which POD is based.  Several different formulations
are available in the literature (see, for example,
Holmes et al, 1996). 

In one form of Proper Orthogonal Decomposi-
tion, called in some places Covariance Proper Trans-
formation (CPT), assume that one is given N weakly
stationary zero-mean correlated random processes,
V(t) = {V1(t), V2(t), … VN(t)}T, and a corresponding 
N×N covariance matrix, CV.  It is possible to diago-
nalize CV so as to obtain the (diagonal) matrix, Λ.
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The eigenvectors, Φ = {φ1, φ2, … φN} of CV describe 
basis functions in a principal space.  It is now possi-
ble to rewrite the original N correlated processes,
V(t), in terms of N uncorrelated scalar sub-
processes, a(t) = {a1(t), a2(t), … aN(t)}T such that 
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Figure 1. (a) ART machine;
(b) Spatial grid for simulations of 
turbulence on the 42 m × 42 m rotor
plane.
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where the uncorrelated scalar sub-processes can be 
derived by employing the orthogonality property, 
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The covariance matrix for a(t), namely Ca, is equal 
to the diagonal matrix, Λ, and an energy measure as-
sociated with each aj(t) can be defined in terms of its 
variance, λj.  The original random processes are 
conveniently decomposed into N uncorrelated ran-
dom processes.  If the eigenvalues, λj, are sorted in
decreasing order, a reduced-order representation,

, is obtained by only retaining the first M co-
variance-based POD modes as follows: 

)(ˆ tV

2R
R = ART’s rotor radius = 21 m.

NMtat
M

j
jj <=�

=
  where,)()(ˆ

1
φV       (4)

1310 © 2005 Millpress, Rotterdam, ISBN 90 5966 040 4



3.1 POD representations of the inflow field 
Empirical orthogonal modes of the simulated inflow 
turbulence field were derived from the 100×100 
sample covariance matrix estimated from 10 ten-
minute simulations of the spatial inflow turbulence 
field.  The first nine eigenmodes φi are shown in Fig. 
2 along with the fraction of energy in each mode. 
Note that these first nine eigenmodes resemble low-
gradient functional shapes.  We shall see later that 
more complex higher modes may not be needed to 
obtain accurate wind turbine response statistics.  The
eigenvalues, λi, of the sample covariance matrix
(which describe the energy) of the first forty POD 
modes are shown in Fig. 3.  The first few modes 
carry a significant portion of the energy of the entire 
turbulence field.  Figure 4 shows power spectral 
density (PSD) function estimates of the orthogonal 
sub-processes ai(t) of the 1st, 2nd, 5th, and 100th

modes.  This illustrates how the energy of each sub-
process varies with frequency – at low frequencies, 
PSD estimates associated with the first few eigen-
modes are far more dominant than at higher fre-
quencies where PSDs of all the sub-processes con-
verge to the same level.  This suggests that a few 
POD modes are adequate to capture the low-
frequency characteristics of the inflow turbulence 

field but to obtain a correct representation of the 
high-frequency content, a larger number of modes
may be required.  More details related to the effi-
ciency of POD in describing inflow turbulence fields 
have been discussed in an earlier work of the authors 
(Saranyasoontorn & Manuel, 2005). 

3.2 Influence of POD inflow modes on turbine load
statistics

Having estimated inflow POD modes, it is of interest 
next to assess how many and which of these modes 
are needed to accurately obtain turbine load statis-
tics.  Here, we seek to estimate the variance and ten-
minute extremes of (i) the flapwise bending moment
(FBM) at the root of a turbine blade, (ii) the edge-
wise bending moment (EBM) also at the blade root,
and (iii) the fore-aft tower bending moment (TBM) 
at the base.  (FBM is the bending moment about the 
chord line of the blade airfoil while EBM is the
bending moment about an axis perpendicular to the 
pitch axis and the chord line.  With zero pitch and 
twist, FBM and EBM are the out-of-plane and in-
plane blade bending moments, respectively.)  The 
wind turbine simulation software, FAST (Fatigue,
Aerodynamics, Structures, and Turbulence) (Jonk-
man & Buhl, 2004), was employed for the turbine 
load calculations subjected to various inflow fields. 
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Figure 2.  First 9 (out of 100) eigenmodes of the simulated along-wind turbulence field over the 42 m × 42 m rotor plane of the
ART machine with the corresponding fraction of total energy .
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Figure 3.  First 40 (out of 100) eigenvalues, λi, of the covari-
ance matrix of the simulated along-wind turbulence field.

Figure 4.  PSD estimates of the 1st, 2nd, 5th, and 100th orthogo-
nal sub-processes ai along with the corresponding energy, λi.
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Figure 5.  Contribution of 1, 5, 10, and 20 inflow POD modes
to the PSD of the FBM at the blade root compared with the tar-
get PSD based on full-field inflow simulation.

Figure 6.  Contribution of 1, 5, 10, and 20 inflow POD modes
to the PSD of the EBM at the blade root compared with the 
target PSD based on full-field inflow simulation.

Figure 7.  Contribution of 1, 5, 10, and 20 inflow POD modes
to the PSD of the TBM at the base compared with the target
PSD based on full-field inflow simulation.

Figures 5, 6, and 7 show PSD estimates of the 
FBM, EBM, and TBM processes, respectively, de-
rived based on 1, 5, 10, and 20 inflow POD modes 
compared with target spectra (based on full-field
simulations, i.e., all 100 modes).  Rotational sam-
pling effects (i.e., sampling of the inflow turbulence 
by rotating blades of the turbine) are responsible for 
the presence of integer multiples of the rotational 
frequency (1P) of the turbine; this results in PSD 
peaks at 0.7 Hz (1P), 1.4 Hz (2P), 2.1 Hz (3P), etc. 
A resonance peak at the first TBM natural frequency 
(≈0.85 Hz) is also evident in both FBM and TBM 
spectra (Figs. 5 and 7).  Overall, we see that a small
number of inflow modes is sufficient to capture most
of the power at low frequencies.  As a result, low-
dimensional POD representations of the inflow may
be efficient for use in predicting second-order statis-
tics of turbine loads that have large energy at low 
frequencies.  Note that the dominant peak at 1P in
the EBM spectra (in Fig. 6) results from gravity
loading (i.e., due to the self weight of the blades), 
which explains why a single POD mode appears to 
capture virtually the entire energy content present at 
that at the rotational frequency.  Note, too, that an 
important peak at 1P in the FBM spectra in Fig. 5 is 
well resolved since this peak is driven mainly by the 
vertical wind shear over the rotor plane and is thus 
insensitive to the inflow turbulence. 

Figure 8 shows the ratio of the POD-based vari-
ance (averaged over 10 ten-minute simulations) to 
the variance based on full-field simulation for each 
of the turbine load measures.  The variance of the 
EBM process converges rapidly with increased 
number of POD modes due to the dominance of the 
gravitational loading.  For FBM and TBM, a larger 
number of inflow POD modes is needed to achieve
the same accuracy that is possible with a few modes
for EBM.  The variance of the FBM process ap-
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proaches the full-field value faster than does the 
TBM because, for the FBM, a proportionately larger 
amount of energy is concentrated at 1P and lower 
frequencies (see Fig. 5) where a small number of 
POD modes can accurately describe the inflow tur-
bulence field.  Note that a peak at the rotational fre-
quency (1P) in the TBM PSD is absent since at two
instants in each turbine rotation, the TBM resulting 
from shear forces at the blade roots is the same;
thus, for a two-bladed turbine, only 2P and higher 
even harmonics result. 

Convergence of the ten-minute peak factor and 
the mean ten-minute extreme of the load measures is
illustrated in Figs. 9 and 10, respectively.  Fast con-
vergence rates are found for FBM and TBM.  The 
slower rate of convergence for the ten-minute peak 
factor and extreme of the EBM is possibly due to the 
highly non-Gaussian (bimodal) characteristics of the 
EBM process which has significant probability mass
due to gravity cycles as well as turbulence.

4 EFFECT OF INFLOW TURBULENCE
SAMPLING ON LOADS 
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A POD analysis of an inflow turbulence field can be 
carried out at a site by employing a sample covari-
ance matrix estimated from measured inflow data 
there.  It is expected that a finer resolution in spatial
and temporal scales of the inflow data should pro-
vide a better estimates of the POD modes and thus 
of turbine loads.  It is well recognized that inflow in-
strumentation arrays at high elevations and over 
large spatial dimensions such as those needed for 
commercial wind turbine applications can be expen-
sive.  Hence, it may be worthwhile to assess what 
would be appropriate and efficient sampling resolu-
tions of inflow data to accurately predict turbine
loads.  We can do this by first assessing how such 
data should be sampled to determine the important
POD modes that drive these loads.  Accordingly,
next, we investigate (i) how spatially dense do we 
need to make our inflow spatial sensor arrays, and 
(ii) how fast a sampling rate do we need in order that 
a POD analysis can be performed which will lead to 
accurate wind turbine load predictions.
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Figure 8.  Ratio of variance of turbine load measures based on 
1, 5, 10, 20, and 50 POD modes to that based on full-field in-
flow simulation.

Figure 9.  Ratio of ten-minute peak factor of turbine load
measures based on 1, 5, 10, 20, and 50 POD modes to that
based on full-field inflow simulation.

Figure 10.  Ratio of mean ten-minute extreme turbine load
measures based on 1, 5, 10, 20, and 50 POD modes to that
based on full-field inflow simulation.

4.1 Spatial sampling issues
It was shown earlier that the first ten POD modes
extracted from the inflow data simulated on a 10×10
grid are sufficient for use in predicting the wind tur-
bine load statistics (FBM, EBM, and TBM variance 
and extremes, for example).  This suggests that the 
low-gradient spatial patterns of the inflow turbu-
lence field associated with the first modes (see Fig. 
2) are most important in establishing loads.  From a 
practical point of view, then, it may be unnecessary
to collect inflow data at very fine spatial resolutions
in order to estimate more complex POD modes.  To 
investigate this issue, we carried out a sensitivity
study of turbine load statistics to different spatial 
samplings of inflow data.  This was done by em-
ploying different spatial grids or sensor arrays on the 
rotor plane of Fig. 1(b). Table 1 summarizes turbine 
load statistics derived based on 10 inflow POD 
modes obtained from data on 4×4, 6×6, 8×8, and 
10×10 grids.  Note that the load statistics are pre-
sented as ratios to those obtained using a full-field 
inflow description on a 10×10 grid.  The full-field 
load statistics are included in the bottom row of Ta-
ble 1. 
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Table 1.  Turbine load statistics using 10 inflow POD modes derived from different spatial grid arrangements (expressed as a ratio
to statistics derived from full-field simulation on a 10×10 grid).  The actual values of the statistics for the full-field simulation are
shown in bold face in the last row of the table.

Variance 10-minute Peak factor Mean 10-minute ExtremeGrid
FBM EBM TBM FBM EBM TBM FBM EBM TBM

4×4 0.87 0.95 0.92 0.92 0.88 0.98 0.95 0.87 0.97
6×6 0.87 0.95 0.84 0.92 0.87 1.01 0.95 0.87 0.96
8×8 0.85 0.95 0.80 0.95 0.88 0.98 0.95 0.87 0.93

10×10 0.90 0.95 0.86 0.93 0.86 1.00 0.96 0.86 0.95

10×10
(full-field)

4.45×103

(kN-m)2
8.03×103

(kN-m)2
3.19×105

(kN-m)2 3.16 2.26 3.39 5.44×102

(kN-m)
2.30×102

(kN-m)
3.32×103

(kN-m)

Note that the load predictions in Table 1 have two 
sources of error: (i) due to truncation at the 10th POD
mode; and (ii) due to the spatial interpolation of
aerodynamic forces in the turbine response simula-
tions.  It is seen in Table 1 that load statistics of the 
EBM process are almost independent of the spatial 
resolution of the inflow data.  This is again because
EBM is driven mainly by gravity loading from the 
self weight of the blades, not by inflow turbulence. 
This is verified in Fig. 11 which shows the effect of
turbulence on PSD estimates of EBM.  Clearly, the 
dominant PSD peak at the rotational frequency of
0.7 Hz (1P) is well represented in both cases, lead-
ing to a small difference in the variance for the two
cases (as is indicated on the plots in Fig. 11). 
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Figure 11.  Comparison of the estimates of the EBM process
showing influence of aerodynamic forces.

Variance estimates of FBM and TBM are seen to 
depend on the resolution of the sampling sensor ar-
ray but variations are small and unsystematic.  Any 
large errors that result from interpolation of aerody-
namic forces on a coarse grid are offset by the fact 

that on a coarse grid, 10 POD modes retain a greater
percent of the overall energy in the inflow turbu-
lence field.  The ten-minute peak factors and ex-
tremes of these two turbine loads (FBM and TBM) 
are rather insensitive to the sensor distribution.  This 
is because the important low-gradient eigenmodes
that most influence turbine load statistics can be ex-
tracted reasonably well by employing a small num-
ber of inflow data streams.  In other words, the use 
of inflow sensor arrays with very fine spatial resolu-
tion may be unnecessary for establishing wind tur-
bine loads.  For this particular case, sampling of the 
inflow data on a sparse 4×4 grid, corresponding to a 
spatial resolution of about one-third the rotor diame-
ter, can lead to reasonable accuracy in wind turbine
load predictions. 

4.2 Temporal sampling issues 
In the interest of economy again, it is useful to study 
the influence of different temporal sampling rates for 
the inflow data on turbine load statistics predicted
based on a POD analysis.  Such a study amounts es-
sentially to assessing the importance of low and high 
frequencies in the various turbine loads.  We saw 
earlier that a 4×4 spatial grid (at a 20 Hz sampling
rate) was adequate for obtaining the first 10 POD 
modes and led to fairly accurate load statistics.  Ac-
cordingly, now we investigate estimates of turbine 
load statistics based on 10 POD modes derived from 
inflow data simulated on the same 4×4 grid but with 
slower sampling rates of 1.25, 2.5, 5, 10, and 20 Hz. 
The resulting load statistics are then compared with 
those derived based on full-field inflow simulation
on a 10×10 grid where a sampling rate of 20 Hz was 
used.  Results are tabulated in Table 2. 

Table 2.  Turbine load statistics using 10 inflow POD modes derived from inflow data measured on a 4×4 grid at different sampling
rates (expressed as a ratio to statistics derived from full-field simulation on a 10×10 grid with a rate of 20 Hz – see Table 1).

Variance 10-minute Peak factor Mean 10-minute ExtremeSampling rate 
(Hz) FBM EBM TBM FBM EBM TBM FBM EBM TBM
1.25 0.83 0.94 0.55 0.90 0.83 0.94 0.94 0.83 0.83
2.5 0.85 0.95 0.81 0.91 0.85 1.01 0.94 0.85 0.95
5.0 0.86 0.95 0.86 0.90 0.85 0.99 0.94 0.85 0.95

10.0 0.87 0.95 0.91 0.92 0.87 0.99 0.95 0.86 0.97
20.0 0.87 0.95 0.92 0.92 0.88 0.98 0.95 0.87 0.97
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The variance of the EBM process is seen to not 
be sensitive to the sampling rate of the inflow turbu-
lence data as should be expected.  This can be con-
firmed from Fig. 11 where it is clear that inflow tur-
bulence (and thus its sampling rate) are not 
important; only gravity loads matter.
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In the case of the FBM and TBM processes, it is 
worthwhile to study PSDs for different sampling
rates as is done for the two cases in Figs. 12 and 13, 
respectively, where estimates from sampling rates of 
1.25 and 20 Hz are compared.  It is seen that the en-
ergy content at low frequencies can be resolved al-
most perfectly regardless of sampling rate.  In the
case of FBM, most of the energy is concentrated in
such frequency regions (at and below 1P) leading to 
small changes in variance estimates as lower sam-
pling rates are employed to collect the inflow data. 
In contrast, for the TBM process, with the slowest
sampling rate of 1.25 Hz, the resonant peak of the 
first tower bending natural mode at around 0.85 Hz
cannot be recovered satisfactorily.  This explains 
why the accuracy of the variance estimates of the 
TBM decreases noticeably at this low sampling rate
of 1.25 Hz. 

The ten-minute peak factor estimates are  not
very sensitive to the sampling rate for all the load
measures.  Both variance and peak factors influence 
ten-minute extreme values; hence, TBM extremes
are somewhat affected by the sampling rate. 

These various results suggest that, at least in this 
particular case, inflow turbulence data may be sam-
pled at a fairly slow rate (even as slow as 1.25 Hz) 
without introducing significant error in estimates of 
turbine blade load statistics.  However, somewhat
faster rates (greater than 2.5-5 Hz) may be required 
to achieve accuracy in tower bending loads. 
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Figure 12.  PSD estimates of the FBM at the blade root based 
on 10 inflow POD modes extracted from inflow simulated on a 
4×4 grid at sampling frequencies, fs, of 20 Hz and 1.25 Hz.

5 CONCLUSIONS
The application of Proper Orthogonal Decomposi-
tion (POD) techniques has been presented for char-
acterization of the inflow turbulence random field 
experienced by a wind turbine.  We have evaluated

the efficiency of reduced-order POD models of the 
inflow turbulence field for use in predicting wind 
turbine loads.

Figure 13.  PSD estimates of the TBM at the base based on 10
inflow POD modes extracted from inflow simulated on a 4×4
grid at sampling frequencies, fs, of 20 Hz and 1.25 Hz.

Numerical examples presented involved POD 
analysis of along-wind turbulence data simulated for
a 10×10 square grid discretization over the rotor 
plane of a typical two-bladed wind turbine based on 
the Kaimal spectral model and an exponential coher-
ence model.  In general, a small number of POD 
modes could efficiently and accurately account for
the low-frequency energy in the turbine load meas-
ures studied.  At high frequencies, a larger number 
of modes was required. The appropriate number of 
inflow POD modes needed to adequately describe 
each load type also depends on the dynamical char-
acteristics of that load.  Integer multiples of the rota-
tional frequency (1P) of the turbine due to sampling
of the inflow turbulence by rotating blades of the 
turbine directly affect blade loads and the ability to
describe these harmonic modes affects the accuracy
of blade load statistics for any POD representation. 
For the fore-aft tower bending loads, the 1P peak is 
absent; therefore, accurate loads can be derived from
a limited number of inflow POD modes only if the 
resonant peak at the first tower natural frequency
could be recovered. 

Sensitivity of load statistics to different spatial
and temporal sampling resolutions of the inflow tur-
bulence data was investigated.  With respect to spa-
tial resolution, it was found that spatial sampling of 
inflow turbulence data on a sparse 4×4 grid, corre-
sponding to a spatial resolution of about one-third 
the rotor diameter, can lead to reasonable accuracy
in predictions of wind turbine blade and tower loads.
With respect to temporal sampling, it was found 
that, for the particular turbine studied, inflow turbu-
lence data could be sampled at a fairly slow rate
(even as slow as 1.25 Hz) without introducing sig-
nificant error in estimates of turbine blade load sta-
tistics.  However, somewhat faster rates (greater than 
2.5-5 Hz) are required to achieve similar accuracy in 
tower bending loads. 
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While the various results obtained were based on a 
single turbulence spectral and coherence model and 
apply to a specific wind turbine, useful insights can 
be gained from a POD analysis such as are discussed 
above.  The influence of the spectral character and 
coherence structure of the inflow turbulence random 
field, the rotor aerodynamics, and the structural dy-
namics of the turbine all have influence on the accu-
racy of any low-dimensional POD-based turbine 
load prediction.  Moreover, a given POD representa-
tion can lead to varying accuracy for different tur-
bine load types.  Similar POD-based studies on other 
turbines and for different inflow models can advance 
our understanding of the characteristics of inflow 
turbulence that most influence various wind turbine 
loads.
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