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Abstract

When stochastic simulation of inflow turbulence random fields is employed in the analysis or

design of wind turbines in normal operating states, it is common to use well-established standard

spectral models represented in terms of parameters that are usually treated as fixed or deterministic

values. Studies have suggested, though, that many of these spectral parameters can exhibit some

degree of variability. It is not unreasonable to expect, then, that derived flow fields based on

simulation with such spectral models can be in turn highly variable for different realizations. Turbine

load and performance variability would also be expected to result if response simulations are carried

out with these variable flow fields. The aim here is to assess the extent of variability in derived inflow

turbulence fields that arises from the noted variability in spectral model parameters. Simulation of

these parameters as random variables forms the basis of this study. A commercial-sized 1.5MW

concept wind turbine is considered in the numerical studies. Variability in turbulence power

spectra at field points on the rotor plane and in turbulence coherence functions for separations

on the order of a rotor diameter and smaller is studied. Using time domain simulations, variability

in various wind turbine response measures is also studied where the focus is on statistics

such as response root-mean-square and 10-min extreme estimates. It is seen that while variability

in inflow turbulence spectra can be great, the variability in turbine loads is generally considerably

lower. One exception is for turbine yaw loads whose larger variability arises due to sensitivity

to a coherence decay parameter that is itself highly variable. Finally, because reduced-order

representations of turbulence random fields using empirical orthogonal decomposition techniques

allow useful physical insights into spatial patterns of flow, variability in the energy distribution

and the shapes of such empirical eigenmodes is studied and a simplified model is proposed that
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retains key variability sources in a limited number of modes and that accurately preserves overall

inflow turbulence field uncertainty.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

When stochastic approaches are used in the analysis or design of wind turbines, one
routinely generates a wind velocity field over spatial dimensions on the scale of the turbine
rotor diameter in accordance with a prescribed spectral turbulence model. Employing such
a simulated wind velocity field, one can then perform wind turbine response calculations,
collect turbine load statistics, and finally extrapolate them to yield long-term loads that can
be evaluated against ultimate and fatigue limit states. It is clear that the choice of spectral
turbulence model and associated parameters used in generation of the inflow turbulence
field can greatly influence predicted wind turbine design loads.
In the International Electrotechnical Commission guidelines (IEC, 1998) for wind

turbine design, the normal turbulence model assumes fixed spectral inflow parameters as a
basis for stochastic simulation of the inflow turbulence field. Neutrally stable conditions
are also usually assumed in such simulations. The expectation is that most critical wind
turbine loads occur during wind speeds at or above the rated wind speed (for pitch-
regulated turbines); in this study, near-neutral atmospheric conditions are assumed during
these winds. However, significant turbulent energy may also occur over many hours each
day under stable and unstable conditions; these conditions could then lead to large turbine
loads. Especially over the planned service life of a wind turbine, consideration of these
various atmospheric conditions can be important. Indeed, recent studies by Kelley et al.
(2004, 2005) have demonstrated that significant fatigue damage can occur from coherent
turbulence structures that develop in the stable, nocturnal atmospheric boundary layer.
Kelley et al. (2005) also point out that the lack of stationarity in inflow wind velocity
processes, which are not represented in the IEC turbulence models, can be another
important factor in predicting wind turbine loads. Notwithstanding these limitations of
doing so, we restrict our study of wind turbine loads here to neutral atmospheric
conditions and to the use of normal turbulence models (similar to those prescribed in the
IEC guidelines) and implied stationary flow fields. Our justification is that we wish to focus
primarily on variability in the derived turbulence fields and in turbine loads in these
conditions.
The IEC guidelines recommend the use of inflow turbulence models with prescribed

(deterministic) spectral parameters. As a result, these models do not account for the
inherent variability likely to be present in the spectral parameters. Evidence of this
variability is seen in the large uncertainty in parameters estimated for turbulence field
spectral and coherence models based on experimental measurements. Exponential
coherence decay parameters reported in the literature, for instance, vary quite
substantially, indicating uncertainty in describing the coherence structure of turbulence
random fields at different frequencies and spatial separations. The variability in such
inflow turbulence parameters is the subject of a review paper by Solari and Piccardo (2001)
that summarizes the findings from numerous experimental studies carried out over more
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than two decades. We believe that it is of interest to study the extent to which the
variability of the spectral parameters propagates to variability in turbulence spectra
and in turbine response statistics. It is also useful to develop a simplified and efficient
approach for describing the variability in the inflow turbulence random field. We attempt
to do this by employing empirically developed low-dimensional representations of this full
turbulence field.

Based on the foregoing discussions, we devote the first part of this study to a review of
the uncertainty in the spectral parameters that appear in the turbulence model of Solari
and Piccardo (2001). Conveniently, estimates of statistical moments for all the parameters
have been obtained from a large set of experimental measurements and are available for
the present study. These parameter uncertainties lead to significant variability in cross-
power spectral density (CPSD) functions as well as in covariance matrices for the
atmospheric turbulence field. Using simulated turbulence spectra on a vertical plane with
dimensions representing a commercial-sized 1.5MW wind turbine, we will show first that a
considerable amount of variability in inflow turbulence spectra and coherence can indeed
exist. Next, we evaluate the impact of the inflow spectral model parameter uncertainty on
wind turbine structural response. Time-domain simulations of the wind turbine response of
a model of the virtual variable-speed 1.5MW turbine developed as part of the WindPACT
study (Malcolm and Hansen, 2002) are performed where the rotor is assumed to experience
full-field wind velocity processes simulated based on the unified turbulence model of Solari
and Piccardo (2001). The turbine response time histories are post-processed and variability
in statistics (root-mean-square (RMS) levels and 10-min extremes) of various turbine
loads, including out-of-plane bending moment at the blade root, fore-aft tower bending
moment (TBM) at the base, and yaw moment (YM) at the tower top, are compared with
the variability in inflow model parameters used in the simulations.

In the latter part of this study, we develop a simplified approach that attempts
to account for important flow variations by means of an efficient approach that uses low-
dimensional representations of the turbulence random field. It has been demonstrated
elsewhere by the authors (Saranyasoontorn and Manuel, 2005) that turbine loads can often
be accurately predicted by including only a small number of energetic ‘‘modes’’ empirically
derived using proper orthogonal decomposition (POD). Accordingly, we seek here to
assess the variability in the energy and spatial distribution among the most important POD
modes that results from variability in spectral model parameters. The use of POD in wind
turbine applications is of particular interest because it can help in making physical
interpretations of inflow patterns and in relating these to turbine loads. Additionally and
importantly, POD has the desired property of optimality over alternative schemes for
decomposition of spatio-temporal random fields, and can thus yield highly efficient
low-dimensional field representations for three-dimensional inflow turbulence for wind
turbines. In recent studies, Spitler et al. (2004), Lindberg et al. (2005), and Saranya-
soontorn and Manuel (2005) have applied POD techniques to identify, characterize, and
model energetic coherent patterns in turbulence fields. Results have confirmed the
efficiency of the procedure for use over spatial scales of interest in wind turbine
applications. However, the variability in the orthogonal eigenmodes (shapes) and in their
associated kinetic energy contributions (or eigenvalues) has not been studied in any
systematic manner. A preliminary investigation of this variability is the focus of this study;
POD procedures permit easy separation of the variability from these two sources and thus
make the modeling of uncertainties convenient.
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2. Variability in inflow parameters, turbulence spectra, and turbine loads

2.1. Unified turbulence model of Solari and Piccardo

In a recent study, Solari and Piccardo (2001) published a critical review on the selection
of and variability in parameters that appear in spectral models used to represent three-
dimensional atmospheric turbulence structure. Data from numerous reliable experimental
measurements of turbulence in flat homogeneous terrain and near-neutral atmospheric
conditions were utilized to estimate the first two marginal statistical moments of each
spectral model parameter and in some cases correlation coefficients among pairs of
parameters. In terms of � used to represent a single turbulence component in the along-
wind ðuÞ, across-wind ðvÞ, or vertical ðwÞ direction, and r used to indicate the Cartesian
coordinate (x, y, or z) in which a separation distance is expressed, the various spectral
model parameters studied by Solari and Piccardo (2001) included (i) turbulence intensity
factors, b�, (ii) parameters related to the integral length scales of the turbulence, x�, (iii)
exponential decay coefficients, Cr�, of coherence functions based on the Davenport (1961)
model, and (iv) a point cross-coherence scaling factor between u and w, kuw. The available
data revealed large variability in some of these estimated parameters; for instance,
estimates of the coefficient of variation (COV) of the exponential decay parameter Cr� was
found to be as high as 60%. Based upon the reliable data sets, Solari and Piccardo
expressed the first two marginal statistical moments of most of these parameters as
functions of only one (assumed) deterministic input: the roughness length, z0. The
correlation coefficient between distinct turbulence intensity factors, b� (namely rðb�;b�0 Þ)
was found to be around 0.75. In the same manner, rðx�; x�0 Þ and rðCr�;Cr0�0 Þ are 0.65 and
0.50, respectively.
Using two deterministic inputs—the roughness length, z0, and the friction velocity, u%—

together with the random variables, b� and x�, the power spectral density (PSD) function of
turbulent flow in the three directions can be expressed as a function of height and
frequency. The random variables, Cr� and kuw, are utilized to compute coherence and
CPSD functions. This, then, forms a complete second-order statistical description of the
multi-dimensional atmospheric turbulence random field that will be used extensively in the
following. For the sake of brevity, detailed summaries of all the statistics and mathematical
expressions for the turbulence model parameters are not included here but are summarized
in the Appendix.
We demonstrate next, by using a wind turbine example, how uncertainty in the flow

parameters (i.e., in b�, Cr�, kuw, and x�) affects uncertainty in estimates of turbulence power
and coherence spectra. Later, we discuss the propagation of this uncertainty to the
variability in wind turbine load statistics.

2.2. Variability of the inflow spectral model parameters

We take advantage of available results from the statistical studies by Solari and Piccardo
(2001) to study the variability of the different inflow spectral model parameters. The
roughness length, z0, considered deterministic, is assumed to be 0.05m. For illustration
purposes, 20 different sets of the model parameters are randomly generated. These
simulations are carried out using the latin hypercube sampling (LHS) technique (McKay
et al., 1979) rather than the more conventional Monte Carlo simulation (MCS) technique
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since a reasonably representative distribution can be obtained even when only a limited
number of data sets are sampled (20, in this particular case). Given the first two statistical
moments of each parameter and, in some cases, correlation coefficients among pairs of
parameters, these model parameters are assumed to follow a multivariate lognormal
probability distribution. The lognormal model guarantees positive values for all of the
sampled parameters. Table 1 lists the set of 20 LHS samples of the 13 inflow parameters
along with estimates of the sample means and COV. Also shown are sample mean and
COV estimates if the 20 samples were obtained using MCS. To highlight the efficiency of
the LHS over the MCS technique for the limited number of simulations used here, target
mean and COV values are included in Table 1. It can be seen that, by using the LHS
scheme, the estimated mean and COV of each model parameter is fairly close to the target
value even though only 20 simulations are performed. The turbulence intensity factor for
Table 1

Twenty simulated sets of inflow spectral model parameters based on latin hypercube sampling (LHS) along with

estimates of their means and coefficients of variation (COV)

Run bu bv bw xu xv xw kuw Cyu Cyv Cyw Czu Czv Czw

1 6.67 4.90 1.16 1.38 0.34 0.15 2.03 11.60 5.45 5.23 9.74 6.79 2.49

2 5.07 3.09 1.85 1.07 0.22 0.07 1.54 5.31 2.78 3.38 8.08 4.90 2.87

3 5.65 3.21 1.08 1.24 0.38 0.13 1.79 8.43 3.58 5.17 9.07 5.64 2.74

4 8.26 3.64 1.60 0.93 0.31 0.08 3.22 12.58 8.76 4.80 7.00 5.45 2.50

5 5.28 3.26 1.31 1.00 0.18 0.07 3.85 14.92 10.26 7.40 12.78 8.83 3.04

6 10.17 5.46 2.69 0.84 0.25 0.08 1.90 9.48 9.03 5.61 8.72 7.09 2.38

7 7.23 2.67 1.98 0.82 0.15 0.11 2.22 19.98 5.66 10.66 13.71 9.17 4.61

8 4.27 2.11 0.94 0.40 0.13 0.06 2.43 7.84 3.14 4.37 9.83 6.37 2.88

9 6.23 2.85 1.47 0.67 0.11 0.05 2.12 13.81 12.18 11.93 7.92 6.46 3.39

10 7.57 3.88 2.17 1.01 0.19 0.12 3.41 10.07 17.82 6.04 10.62 8.14 3.25

11 6.12 4.64 1.38 0.89 0.19 0.10 2.69 5.68 7.24 3.97 9.51 5.08 2.98

12 8.61 4.45 1.23 0.76 0.29 0.09 1.93 16.00 6.42 6.84 11.72 6.91 3.78

13 5.95 3.49 1.69 1.25 0.33 0.14 1.75 10.36 7.52 8.33 11.22 5.77 3.59

14 8.00 4.27 2.06 1.13 0.26 0.07 2.58 6.42 4.78 8.50 10.20 7.29 2.65

15 8.75 6.78 3.37 0.86 0.21 0.10 2.48 6.84 2.63 4.10 8.53 5.94 2.15

16 6.40 3.78 1.75 1.17 0.22 0.09 1.69 11.27 5.11 9.39 11.07 7.74 3.88

17 7.04 4.11 1.95 0.73 0.17 0.06 2.87 8.25 4.11 6.61 12.22 6.19 3.15

18 9.35 5.78 2.40 1.47 0.47 0.21 2.36 9.25 6.26 7.08 10.45 6.55 3.29

19 4.90 2.36 1.59 0.96 0.27 0.12 3.10 7.21 4.37 5.91 9.23 5.32 2.71

20 6.97 2.60 1.51 1.07 0.24 0.09 2.16 3.70 1.76 3.10 7.34 4.57 2.07

LHS-mean 6.92 3.87 1.76 0.98 0.25 0.10 2.41 9.95 6.44 6.42 9.95 6.51 3.02

LHS-COV 22.8 31.4 33.4 25.9 35.8 38.7 26.0 40.4 59.1 37.4 18.2 19.5 20.7

MCS-mean 6.31 3.40 1.64 0.97 0.26 0.10 2.34 9.34 5.83 5.75 9.46 6.21 2.72

MCS-COV 21.4 20.2 22.8 23.6 43.0 37.6 24.7 36.2 43.5 38.4 19.1 16.7 17.8

Target mean (Solari

and Piccardo, 2001)

6.98 3.84 1.75 1.00 0.25 0.10 2.44 10.00 6.50 6.50 10.00 6.50 3.00

Target COV (Solari

and Piccardo, 2001)

25.0 32.8 32.2 25.0 39.0 38.7 30.0 40.0 60.0 40.0 20.0 20.0 20.0

The roughness length, z0, is 0.05m. COV values are expressed in percentage. Monte Carlo Simulation (MCS)

statistics for 20 simulations are shown only for comparison. Target mean and COV values based on Solari and

Piccardo (2001) are also included.
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the along-wind component, bu, for example, has target mean and COV values of 6.98 and
0.25, respectively, while the LHS sample mean and COV estimates found in Table 1 are
6.92 and 0.23, respectively.

2.3. Variability of the inflow turbulence spectra

We now investigate the uncertainty of the inflow turbulence spectra that results
from the use of the spectral model and associated parameter variability as presented
by Solari and Piccardo (2001) with details summarized in the Appendix. For the 20
sets of LHS-simulated spectral model parameters presented in Table 1, PSD functions
and coherence functions of the inflow turbulence are computed. A roughness length,
z0, of 0.05m and a friction velocity, u�, of 1.0m/s are assumed. In order to have an
illustrative example and scale that are representative of a commercial wind turbine, we
compute PSD and coherence functions at an elevation of 84m above the ground. This
elevation is consistent with the hub height of the wind turbine that will be studied later.
Fig. 1 shows the variations in 20 sample normalized PSD functions, fS��, for the
along-wind ðuÞ, across-wind ðvÞ, and vertical ðwÞ turbulence components. In the same
fashion, Fig. 2(a–c) shows the variations in ‘‘space’’ coherence functions, O��, for each of
the three turbulence components at a lateral separation of 80m, which is close to the
diameter of the wind turbine mentioned. Finally, the ‘‘point’’ coherence function between
the u and w turbulence components, Guw, at the same elevation is shown in Fig. 2(d). It is
apparent from these figures that the sample PSD and coherence functions exhibit
significant variability that arises from the variability in the spectral model parameters. For
example, peaks in the normalized PSD of the along-wind (u) turbulence component vary
from about 0.9 to 2:2 ðm=sÞ2. Uncertainty in coherence function estimates at the 80-m
lateral separation is also significant especially for the across-wind ðvÞ component. The
relative variability in these coherence spectra for the different turbulence components is
consistent with the variability or COV values of Cyu, Cyv, Cyw as can be confirmed from
Table 1.
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Fig. 1. Sample normalized power spectral density functions of the three turbulence components (u, v, and w) at an

elevation of 84m above the ground derived using the 20 sets of simulated spectral model parameters in Table 1.
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simulated spectral model parameters in Table 1. (a–c) ‘‘Space’’ coherence functions for a lateral separation of

80m, (d) ‘‘point’’ coherence functions between u and w components.
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2.4. Variability of the wind turbine load statistics

We turn next to a case study of the impacts of variability in inflow spectral model
parameters on wind turbine structural response or loads. The wind turbine loads we focus on
are the out-of-plane bending moment at the root of a blade (BBM), the fore-aft tower
bending moment (TBM) at the base, and the yaw moment (YM) at the tower top for a model
of a turbine that was developed as part of the WindPACT (Wind Partnerships for Advanced
Component Technology) study (Malcolm and Hansen, 2002). This ‘‘virtual’’ turbine is a
1.5MW, variable-speed, 3-bladed, upwind, horizontal-axis turbine with a hub height of about
84m and a rotor diameter of approximately 70m. A sketch of this turbine is shown in Fig. 3.

Based upon the Veers (1988) approach, a MATLAB computer code was written for the
generation of full-field, multivariate wind velocity processes on a 7� 7 square grid that
covers the entire rotor plane of the WindPACT turbine as shown in Fig. 3. To reflect the
variability in inflow turbulence spectral parameters, 20 CPSD matrices associated with the
20 sets of simulated inflow parameters discussed earlier are computed. For each CPSD
matrix, 15 separate 10-min wind velocity time series are first simulated, and then utilized
for turbine response calculations made possible using the turbine simulator software FAST
(Fatigue, Aerodynamics, Structures, and Turbulence) (see Jonkman and Buhl, 2005). This
procedure therefore leads to a total of 20� 15 ¼ 300 10-min inflow/turbine response
simulations.
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Fig. 4 shows typical time histories of the wind velocities at hub center in the along-wind
ðūþ uÞ, across-wind ðvÞ, and vertical ðwÞ directions. Also shown are time histories for
various wind turbine response measures including the out-of-plane blade root bending
moment (BBM), fore-aft TBM at the base, YM at the tower top, blade tip displacement
(BTD), and tower top displacement (TTD). Only a 100-s time segment is shown so
as to focus on differences in the nature of the different time-varying quantities.
As one might anticipate, the out-of-plane blade bending loads are strongly correlated
with blade tip deflections while the fore-aft TBM is strongly correlated with tower
top deflections. Further study of the various turbine load time series suggests that
the relatively larger high frequency content in YM relative to that in BBM and TBM
as can be verified in Fig. 4 arises from rotational sampling at the 3P frequency (where P is
the rotational frequency of the rotor) which is not a dominant frequency for BBM
and TBM.
To investigate the variability in statistics of turbine loads (BBM, TBM, and YM),

simulation-based mean estimates of the RMS value, and of the 10-min extreme turbine
loads ðext10Þ, are obtained from 15 10-min turbine response time histories, for each
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K. Saranyasoontorn, L. Manuel / J. Wind Eng. Ind. Aerodyn. 96 (2008) 503–523 511
of the 20 LHS-simulated input parameter sets. These estimates are summarized in Table 2
along with corresponding values of a few selected inflow parameters (bu, xu, kuw, and Cyu).
The selected inflow parameters represent a single one (the most important) from among the
four sets of random parameters discussed in the Appendix. Mean and COV estimates of
these parameters as well as those of turbine load statistics are given in the table for
comparison. From the table, it is clear that the variability in turbine load statistics is
considerably smaller than that of the inflow parameters. For instance, the COV of the
estimate of the RMS of BBM is only 1.2% while the COV of each of the inflow parameters
in Table 2 is greater than 20%. In fact, for the two loads, BBM and TBM, COV estimates
for RMS and extremes are never greater than 7%. In contrast, yaw load (YM) statistics
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Table 2

Mean estimates of the root-mean-square (RMS) and 10-min extreme ðext10Þ of turbine loads (BBM, TBM, and

YM) based on 15 wind turbine response simulations carried out for each of the 20 sets of LHS-simulated inflow

parameters in Table 1

Run Inflow parameters RMS (kNm) ext10 (kNm)

bu xu kuw Cyu BBM TBM YM BBM TBM YM

1 6.67 1.38 2.03 11.60 574 8086 238 1230 14219 894

2 5.07 1.07 1.54 5.31 566 8091 196 1149 14137 742

3 5.65 1.24 1.79 8.43 567 8062 212 1193 13680 747

4 8.26 0.93 3.22 12.58 578 8115 277 1336 15923 1015

5 5.28 1.00 3.85 14.92 566 8030 223 1162 13056 810

6 10.17 0.84 1.90 9.48 589 8175 297 1422 16139 1161

7 7.23 0.82 2.22 19.98 573 8033 274 1262 14297 1013

8 4.27 0.40 2.43 7.84 562 8044 210 1142 13762 773

9 6.23 0.67 2.12 13.81 571 8078 257 1239 14489 960

10 7.57 1.01 3.41 10.07 576 8087 251 1337 14605 909

11 6.12 0.89 2.69 5.68 571 8109 215 1212 14469 816

12 8.61 0.76 1.93 16.00 579 8077 294 1371 14652 1070

13 5.95 1.25 1.75 10.36 569 8051 221 1185 13400 835

14 8.00 1.13 2.58 6.42 578 8142 236 1303 15579 903

15 8.75 0.86 2.48 6.84 582 8176 263 1378 16051 1002

16 6.40 1.17 1.69 11.27 571 8059 230 1296 14091 867

17 7.04 0.73 2.87 8.25 573 8086 241 1307 15095 911

18 9.35 1.47 2.36 9.25 583 8139 258 1392 15907 965

19 4.90 0.96 3.10 7.21 565 8051 203 1185 13565 736

20 6.97 1.07 2.16 3.70 573 8181 206 1258 15543 758

Mean 6.92 0.98 2.41 9.95 573 8094 240 1268 14633 894

COV (%) 22.8 25.9 26.0 40.4 1.2 0.6 12.7 6.8 6.5 13.4

The mean and coefficient of variation (COV) values based on the 20 sets of simulations are also shown. Inflow

parameters bu, xu, kuw, and Cyu are included for comparison.
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are more variable with COV values for RMS and ext10 equal to 12.7% and 13.4%,
respectively. These results suggest that turbine load statistics variability depends
on the load type being considered. Yaw loads are introduced by the imbalance of
aerodynamic forces on the turbine rotor (Hansen, 1992) and thus are more sensitive to
inflow coherence decay parameters, Cr�. Larger variability in Cr� (for example, the 40%
COV in the decay parameter related to Cyu, which is associated with coherence in along-
wind turbulence, u, for different lateral separations, y) than in other inflow parameters
(such as the three shown in Table 2) might explain why YM statistics exhibit greater
variability than the out-of-plane bending moment at the blade root (BBM) and the fore-aft
TBM at the base.
In summary, the variability in wind turbine load statistics is rather insignificant

compared to the considerably larger variability in some inflow parameters as suggested
by Solari and Piccardo (2001) and based on turbulence field measurements. Nevertheless,
some load types, such as turbine yaw loads that depend on inflow parameters
with especially large uncertainty, are relatively more variable than others. As a
consequence, in the derivation of design loads for wind turbine components, at least
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for some load types, it might be important in probabilistic approaches to carefully account
for inflow parameter variability in simulation of inflow turbulence and turbine loads.

3. Modeling uncertainties in the inflow turbulence field using POD

We have thus far demonstrated that there can be significant variations in the flow
characteristics over the rotor plane of the 70-m diameter WindPACT machine by using
second-moment statistics of the inflow turbulence field, i.e., the PSD and coherence
functions. Such variability may need to be accounted for if one employs a stochastic
approach for design of a wind turbine. In the following, we illustrate such variations of the
flow in a more physically interpretable fashion. Here the variability in flow characteristics
is described through the variability that propagates to specific derived inflow ‘‘patterns’’ or
‘‘modes’’ and kinetic energies associated with such patterns. This will be achieved through
the use of POD techniques. Only the key concepts of POD will be briefly discussed in this
paper; the theoretical background related to POD techniques and their use can be readily
found in the literature (Lumley, 1970; Holmes et al., 1996; Jolliffe, 2002).

3.1. Proper orthogonal decomposition

In one form of POD, called in some places covariance proper transformation (CPT),
assume that one is given N weakly stationary zero-mean correlated random processes
VðtÞ ¼ fV 1ðtÞ;V2ðtÞ; . . . ;V NðtÞg

T and a corresponding N �N covariance matrix, CV. It is
possible to diagonalize CV so as to obtain the (diagonal) matrix, K:

UT � CV �U ¼ K; CV �U ¼ U � K; K ¼ diagfl1; l2; . . . ; lNg. (1)

The eigenvectors, U ¼ ½/1;/2; . . . ;/N � of CV describe orthogonal basis functions in a
principal space. It is then possible to rewrite the original N correlated processes, VðtÞ, in
terms of N uncorrelated scalar processes, ZðtÞ ¼ fZ1ðtÞ;Z2ðtÞ; . . . ;ZNðtÞg

T such that

VðtÞ ¼ U � ZðtÞ ¼
XN

j¼1

/jZjðtÞ, (2)

where the uncorrelated scalar processes can be derived by employing the orthogonality
property,

ZðtÞ ¼ UT � VðtÞ. (3)

Note that both VðtÞ and ZðtÞ are N � 1 column vectors comprised of time-varying scalar
processes.

The covariance matrix for ZðtÞ, namely CZ, is equal to the diagonal matrix, K, and an
energy measure associated with each ZjðtÞ can be given in terms of its variance, lj. The
original random processes are conveniently decomposed into N uncorrelated random
processes. If the eigenvalues, K, are sorted in decreasing order, a reduced-order
representation, V̂ðtÞ, is obtained by retaining only the first M covariance-based POD
modes as follows:

V̂ðtÞ ¼
XM
j¼1

/jZjðtÞ where MoN. (4)
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Two attractive features of the POD procedure for used in wind turbine applications are
that (i) it provides physical interpretations for the spatial modes (inflow turbulence
patterns) and (ii) the derived low-dimensional representation of the turbulence field is
optimal compared to any other linear orthogonal decomposition (Lumley, 1970; Holmes
et al., 1996; Jolliffe, 2002).

3.2. Uncertainty in POD mode shapes and associated kinetic energy

We investigate next the uncertainty in eigenmodes /j and eigenvalues lj derived based
on CPT. The procedure and results discussed below can be extended in a straightforward
manner to applications involving frequency-dependent eigenmodes derived using a CPSD
matrix (this type of POD is sometimes termed spectral proper transformation).
For each inflow turbulence component, we first define the total kinetic energy of the field

as E ¼ traceðCVÞ. Because of the invariance property of the covariance matrix trace upon
linear transformation, E is equal to

XN

j¼1

lj,

where N is the total number of POD modes. The kinetic energy is non-negative and hence
EX0. Also, because the covariance matrix is positive definite, ljX0, for all j. If we define
the proportion of the total kinetic energy carried by each POD mode (effectively, the
dimensionless eigenvalue) as aj ¼ lj=E, for j ¼ 1; 2; . . . ;N, these modal energy propor-
tions, aj, are subject to the constraints ajX0, for all j and

XN

j¼1

aj ¼ 1.

Normalizing the eigenvalues in this manner helps to simplify the procedure for modeling
them as random variables. The decomposition of the covariance matrix of the inflow
turbulence field shown in Eq. (1) can now be rewritten as

CV ¼
XN

j¼1

lj/j/
T
j ¼ E

XN

j¼1

aj/j/
T
j . (5)

As a consequence of the above definitions, it is clear that turbulence field variability
as reflected in second-moment statistics (i.e., in the covariance matrix) can be also
understood in terms of variability from three sources. These include (i) the individual mode
shapes, /j, (ii) the proportion of the kinetic energy, aj, in each mode, and (iii) the total
kinetic energy in the entire turbulence field, E. To accurately describe the overall
uncertainty in the inflow turbulence field, the variability from all three of these sources
needs to be accounted for. However, because of the desirable optimality properties of POD
schemes discussed earlier, some modes may be disregarded thus yielding a simplified model
without introducing significant error. This will be illustrated next.
To demonstrate the variability of the POD quantities discussed, i.e., /j, aj, and E,

the 20 sample CPSD matrices that were used earlier for inflow simulations over the rotor
plane of the WindPACT turbine are again used to derive sample covariance matrices.
Recall that these CPSD matrices are based on the turbulence model of Solari and Piccardo



ARTICLE IN PRESS
K. Saranyasoontorn, L. Manuel / J. Wind Eng. Ind. Aerodyn. 96 (2008) 503–523 515
and were computed using the spectral parameter estimates shown in Table 1. For
illustration purposes, the covariance matrices associated only with the along-wind ðuÞ
turbulence component are considered. Using the 20 sample 49� 49 covariance matrices,
POD eigenmodes and eigenvalues are computed. Thus, 20 sets of 49 eigenmodes, /j, 49
normalized eigenvalues, aj, and the total kinetic energy, E, are obtained along with their
corresponding mean values, /̄j ; āj, and Ē. For the first four POD modes, sample mode
shapes from 20 simulations are shown in Fig. 5 along with the mean percentage of energy
in each mode. It can be seen that the most energetic POD mode (Mode 1 in the figure) has
an almost uniform shape. The next two modes exhibit roughly vertical and lateral sheared
patterns, respectively, with about the same levels of kinetic energy, while the fourth mode
is more complex. As can be verified upon studying the figure, the first four eigenmode
shapes do not vary significantly with spectral model parameter variability. Higher mode
shapes will generally exhibit greater variability but these higher modes will also contribute
less towards the total energy. Hence, as an approximation, it may be acceptable to treat
the random eigenmodes, /j, as fixed (non-varying) by using their mean shapes, /̄j, to
represent them.

The uncertainty in the non-dimensional kinetic energies, aj, of the first 20 energetic
modes from 20 realizations is studied in Fig. 6. The mean values of aj based directly on the
model proposed by Solari and Piccardo are shown as circles. Also shown are the maximum
and minimum values of aj from the simulations. It is clear that a1 has considerable
variability—in this case, it varies from approximately 43–68% of the total energy of the
entire along-wind turbulence field. Note that the aj values exhibit considerably smaller
variability for all but the first mode (i.e., j41). We will use this fact later to propose an
approximate model to represent uncertainties in the inflow field.

The total kinetic energy, E, is found to be quite variable, with an average energy
(at each grid point) of about 6:9 ðm=sÞ2 and a COV of 23%. By comparing with
Table 1, it can be seen that these estimates are consistent with the statistics of bu

which is a parameter that is directly related to the variance of the along-wind turbulence
field.

From the preceding discussions, it is clear that uncertainties in E and aj need to be
incorporated in any model that aims to accurately reflect the true variability in the overall
turbulence field. This variability in E and aj should probably be represented jointly;
however, this is not discussed here. Additionally, because of the efficiency inherent in the
POD procedure, higher POD modes are less energetic and therefore become less significant
in terms of energy contributions. As such, large errors are not introduced if fixed
(non-random) values based on the ‘‘mean’’ energy proportion, āj, are assigned instead of
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the actual energy, aj, for any higher (and less energetic) mode, j. We propose next a
simplified model for the turbulence field variability that is developed based on the
preceding discussions.

3.3. An approximate model for uncertainties in the inflow turbulence field

We have seen that the variability in the first few energetic POD mode shapes may be
considered small (see Fig. 5). As a consequence, the ‘‘mean’’ mode shapes, /̄j, that could be
derived from field measurements, may be considered good representations for the true
generally variable shapes if one wishes to construct a simplified model for the inflow
turbulence field. Then, the variability in the flow characteristics would arise entirely from
uncertainties in the kinetic energy (E and aj). A further simplification can be made to the
model by recognizing, based on Fig. 6, that (i) higher POD modes are in general less
important to the turbulence field in terms of their kinetic energy contribution and (ii) the
variability of the energy proportion, aj, in these higher modes is relatively small. Then,
probability distributions for the total energy, E, and the normalized eigenvalues, aj, of only
the first few POD modes (say j ¼ 1; 2; . . . ;M, where MoN) would be needed for the
simplified model. In establishing such probability distributions, one should recall that these
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random variables are subject to the constraints: EX0, ajX0 for all j, and

XM
j¼1

ajo1.

For the higher POD modes, j (where j4M), as an approximation, the actual proportion of
kinetic energy, aj, may be replaced by the ‘‘mean’’ proportion of energy in such modes, āj .
Finally, then, these various approximations allow a rewriting of Eq. (5) as the following
simpler mathematical expression:

CV ¼ E
XM
j¼1

aj/̄j/̄
T
j þ

XN

j¼Mþ1

āj/̄j/̄
T
j

 !
. (6)

Small discrepancies may be expected between the mean level of the reconstructed
covariance matrix based on the reduced-order POD representation with the other
approximations implied by Eq. (6) and the target covariance matrix derived directly from
simulated data (i.e., simulated values of the spectral model parameters here). We are more
interested, however, in the variability of the covariance matrices that results from the use
of Eq. (6). Fig. 7 shows the efficiency of the proposed simplified model in recovering the
variability in the covariance matrix of the along-wind turbulence field for the 7� 7 square
grid in Fig. 3. The figure on the left shows ‘‘target’’ COV estimates, c̄ij, at grid point ði; jÞ of
Fig. 3, based on the 20 sample covariance matrices from simulations. These estimates
represent the propagation of uncertainty from spectral model parameter simulations to
joint second-moment statistics of the turbulence field. The figure in the middle shows
corresponding COV estimates, cij , based on the model described by Eq. (6) which uses a
reduced-order three-POD mode representation (i.e., M ¼ 3). No variability in the fourth
and higher modes (of the 49 modes in total) nor in any of the mode shapes is modeled. On
comparing the two figures, only slight differences between the target and the approximate
COV estimates are seen (Fig. 7(c)). This serves to verify the assumption of lack of
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grid point ði; jÞ of Fig. 3. The difference between the two covariance matrices is represented in (c).
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importance in mode shape variability as well as in the POD energy proportions in the
higher modes.
Fig. 8 shows the rate of convergence to the target COV estimates based on reconstructed

covariance matrices that are based on Eq. (6) using M ¼ 1; 2; . . . ; 20. The L2 norm used to
quantify the error in the lower triangular portion of the covariance matrix is defined as

L2 ¼
1

n

XN

i¼1

Xi

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cij � c̄ij

c̄ij

� �2
s

,

where N is the number of grid points (49, here), while n is the total number of elements in
the lower triangular portion of the covariance matrix (which is equal to 49� ð49þ 1Þ=2 ¼
1225 here). Note, from Fig. 8, that the L2 error norm is less than 2% with as few as three
modes. (The error norm stays at this level even when a large number of modes are included
because of the ‘‘mean’’ mode shape assumption.) Even with a single mode (i.e., M ¼ 1),
the L2 error norm is less than 5%. These results are encouraging and suggest that the
variability in second-moment statistics as evidenced by estimates of variability in the
covariance matrix for the along-wind turbulence field can be approximated fairly
accurately by correctly including the variability in the energy contributions of the first
few POD modes only. They also confirm that by disregarding variability in all mode shapes
and in the energy from higher modes, no large errors are introduced. This is especially
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important since eigenmode variability, if it were significant, would have been more
cumbersome to model since this variability is associated with a vector (a mode shape), not
a scalar random variable which is easier to represent in any simplified scheme. In summary,
then, it is sufficient to only estimate the ‘‘mean’’ mode shapes, /̄j, the distribution of the
total kinetic energy, E, and the proportion of energy in the first few normalized
eigenvalues, aj, in order to accurately represent along-wind inflow turbulence field with
inherent variability arising from uncertainties in inflow spectral model parameters.

An implication of the findings in this section is that the uncertainty in parameters of the
model by Solari and Piccardo (2001) might, in general, influence only portions of a
reduced-order POD representation—namely, the lower mode energy contributions. We
also saw earlier that turbine load variability is in general reduced relative to the variability
in the spectral model parameters. The connection between the reduced load variability and
the adequacy of simplified reduced-order POD representations needs to be studied further
by examining variability in loads derived using a model such as is suggested by Eq. (6) for
simulating inflow turbulence. Such a simplified model might possibly be useful in efficient
simulation of appropriate inflow turbulence (with considerations for variability in spectral
model parameters, when appropriate) that can then be used to estimate turbine loads.

4. Conclusions

Variability in turbulence characteristics on a vertical plane with spatial dimensions
corresponding to that of the 70-m diameter rotor of the 1.5MW WindPACT (Malcolm
and Hansen, 2002) turbine model was investigated. When uncertainty in parameters of the
unified turbulence model of Solari and Piccardo (2001) was included, significant variability
in CPSD matrices and corresponding covariance matrices was found to result. Also
investigated was the influence of these flow uncertainties on statistics of turbine loads
including the out-of-plane bending moment at the blade root, the fore-aft tower bending
moment at the base, and the yaw bending moment at the tower top of the WindPACT
turbine. It was found that variability in turbine load statistics was generally smaller than
the variability in the inflow parameters. Of the various loads studied, yaw loads exhibited
greater variability which was due to the dependence of these loads on inflow parameters
with especially high variability (i.e., a 40% COV).

In a separate but related study, proper orthogonal decomposition (POD) techniques
were adopted to help characterize the variability in the covariance matrix of the turbulence
random field. The POD analyses indicated very small variations in the mode shapes of the
most dominant eigenmodes when simulation studies were carried out. On the other hand,
POD eigenvalues, related to the kinetic energy contributions from the different
eigenmodes, exhibited relatively greater variability especially for the first few modes. By
taking advantage of efficiencies inherent in the POD procedure, a simplified approach was
developed for modeling the uncertainties in the inflow turbulence field. Variability in mode
shapes as well as in the (normalized) kinetic energy of higher, less energetic POD modes
was ignored by employing only ‘‘mean’’ estimates in each case. Full variability in the total
kinetic energy and in the energy proportions (normalized eigenvalues) of the first few
dominant POD modes was modeled. The efficiency and simplicity of the proposed model
in accurately accounting for variability in the along-wind turbulence field that arises from
uncertainty in spectral model parameters was illustrated using simulations over the
WindPACT turbine rotor plane again. Results showed that by including variability in the
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total kinetic energy and in the proportion of energy carried by the first three modes (out of
a total of 49), while completely ignoring the variability in all mode shapes, an error norm
defined in terms of COV estimates for the reconstructed and the target covariance matrix
could be reduced to approximately 2%. Reduced-order POD representations were shown
to be useful in retaining the variability in inflow turbulence fields that arises from
uncertainty in parameters used to define power spectra and coherence functions. It is
hoped that, with additional studies, an inflow turbulence simulation procedure based on
POD techniques might be possible since such a procedure would be able to reasonably
accurately represent the influence of such model parameter uncertainty.
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Appendix A

Mathematical expressions of the CPSD functions that describe second-order statistics of
the three-dimensional atmospheric turbulence field based on the unified turbulence model
(Solari and Piccardo, 2001) employed in the numerical examples are summarized here.
More complete derivations and detailed summaries on the statistics for all the inflow
turbulence model parameters may be found in the study of Solari and Piccardo (2001).

A.1. PSD function

The PSD function, S��, for any turbulence component, �, is modeled as

fS��ðz; f Þ

s2�
¼

d�fL�ðzÞ=ūðzÞ

½1þ 1:5d�fL�ðzÞ=ūðzÞ�5=3
ð� ¼ u; v; or wÞ, (A.1)

where f is the frequency; z is the elevation above the ground. Also, d� is treated as a
constant for each turbulence component, i.e., du ¼ 6:868, dv ¼ dw ¼ 9:434. The mean wind
velocity, ūðzÞ, at elevation, z, is assumed to follow a logarithmic profile; thus, ūðzÞ ¼

2:5u% lnðz=z0Þ where u% and z0 are fixed (deterministic) values of the friction velocity and
the roughness length, respectively. The variance, s2� , of each turbulence component, �, is
expressed in terms of a random variable, b�, and the friction velocity, i.e., s2� ¼ b�u

2
%
.

Similarly, L�ðzÞ, the integral length scale at elevation z for each turbulence component, �, is
expressed as a function of a random variable, x�, and the friction velocity, i.e.,
L�ðzÞ ¼ 300x�ðz=200Þ

ð0:67þ0:05 lnðz0ÞÞ, where z, z0, and L�ðzÞ are all expressed in meters.

A.2. Space coherence function

The space coherence function, O��, describes the frequency-dependent cross-correlation
of a single turbulence components, �, at different arbitrary points in three-dimensional
space. If these two points, A and A0, are located at elevations, z and z0, respectively,
and have Cartesian coordinates, r and r0, respectively, relative to a fixed reference point,
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the space coherence function for turbulence component, �, may be expressed as

O��ðA;A
0; f Þ ¼ exp �

2fCr�jr� r0j

ūðzÞ þ ūðz0Þ

� �
ð� ¼ u; v; or w; r ¼ x; y; or zÞ, (A.2)

where Cr� is an exponential decay coefficient for the turbulence component, �, in the
direction, r. Note that Cr� is treated as a random variable.
A.3. Point coherence function

The point coherence function, G�Z, describes the frequency-dependent cross-correlation
between two different turbulence components, � and Z ð�aZÞ, at the same point in space
and at a specified elevation, z:

Guwðz; f Þ ¼ �
1

kuw

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:4½fLuðzÞ=ūðzÞ�2

q , (A.3)

Guvðz; f Þ ¼ Gvwðz; f Þ ¼ 0, (A.4)

where, as an approximation, it is reasonable to assume that

kuwðzÞ ¼ 1:11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
buðzÞbwðzÞ

p
½LwðzÞ=LuðzÞ�

0:21. (A.5)

Also, b�, kuw, and L� are treated as random variables.
A.4. CPSD function

Solari and Piccardo (2001) assumed that the coherence function, coh�Z, between two
dissimilar turbulence components, � and Z, at two distinct locations, A and A0, can be
expressed as

coh�ZðA;A
0; f Þ ¼ sgnðG�ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�Zðz; f ÞG�Zðz0; f Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O��ðA;A

0; f ÞOZZðA;A
0; f Þ

q
�ð�; Z ¼ u; v; or w; �aZÞ. (A.6)

The CPSD function, S�Z, can now be generally written using the following relationship:

S�ZðA;A
0; f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S��ðz; f ÞSZZðz0; f Þ

p
coh�ZðA;A

0; f Þ. (A.7)
A.5. Statistics of model parameters

Employing experimental data, Solari and Piccardo (2001) provided expressions for
the mathematical expectation, E½ �, the variance, Var½ �, and, where appropriate, the
covariance matrix, C½ �, of various model parameters as follows.
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A.5.1. Turbulence intensity factors, b�
Let b be fbu; bv; bwg

T:

E½b� ¼ ð6� 1:1 arctan½lnðz0Þ þ 1:75�Þ

1:00

0:55

0:25

0
B@

1
CA, (A.8)

C½b� ¼ E2½bu�

0:0625 0:0350 0:0155

0:0350 0:0325 0:0105

0:0155 0:0105 0:0065

2
64

3
75. (A.9)

A.5.2. Integral length scale parameters, x�
Let n be fxu; xv; xwg

T:

E½n� ¼

1:00

0:25

0:10

0
B@

1
CA, (A.10)

C½n� ¼

0:0625 0:0155 0:0060

0:0155 0:0095 0:0025

0:0060 0:0025 0:0015

2
64

3
75. (A.11)

A.5.3. Point cross-coherence scaling factor, kuw

E½kuw� ’ 0:35E½bu�, (A.12)

Var½kuw� ’ 0:01E2½bu�. (A.13)

A.5.4. Exponential decay coefficients, Cr�

Note that COV refers to the coefficient of variation. The covariance between Cr� and CsZ

may be expressed as C½Cr�;CsZ� ¼ r½Cr�;CsZ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Cr�� � Var½CsZ�

p
where Var½Cr�� ¼

½COV½Cr�� � E½Cr���
2 and the correlation coefficient, r½Cr�;CsZ�, is assumed to be 0.5 in the

model (Table A1).
In summary, the CPSD function based on the model by Solari and Piccardo (2001) is a

function of two (assumed) deterministic inputs—the friction velocity, u%, and the
roughness length, z0. Additionally, b�, x�, kuw, and Cr� are all treated as random variables
and generally require at least the roughness length, z0, in order to obtain their first two
statistical moments.
Table A1

Mean and COV estimates of Cr� (r ¼ x; y; z; � ¼ u; v;w)

Cxu Cxv Cxw Cyu Cyv Cyw Czu Czv Czw

Mean, E½ � 3.0 3.0 0.5 10.0 6.5 6.5 10.0 6.5 3.0

COV 0.4 0.6 0.4 0.4 0.6 0.4 0.2 0.2 0.2



ARTICLE IN PRESS
K. Saranyasoontorn, L. Manuel / J. Wind Eng. Ind. Aerodyn. 96 (2008) 503–523 523
References

Davenport, A.G., 1961. The spectrum of horizontal gustiness near the ground in high winds. Q. J. R. Met. Soc.

87, 194–211.

Hansen, A.C., 1992. Yaw dynamics of horizontal axis wind turbines. NREL/TP-442-4822. National Renewable

Energy Laboratory, Golden, CO.

Holmes, P., Lumley, J.L., Berkooz, G., 1996. Turbulence, Coherent Structures, Dynamical Systems and

Symmetry. Cambridge Monograph on Mechanics. Cambridge University Press, Cambridge.

IEC, 1998. Wind turbine generator system. Part 1: Safety requirements. IEC/TC-88-61400-1.

Jolliffe, I.T., 2002. Principal Component Analysis, second ed. Springer, New York.

Jonkman, J.M., Buhl, M.L., Jr., 2005. Fast user’s guide. NREL/EL-500-38230. National Renewable Energy

Laboratory, Golden, CO.

Kelley, N., Shirazi, M., Jager, D., Wilde, S., Adams, J., Buhl, M., Sullivan, P., Patton, E., 2004. Lamar low-level

jet program—interim report. NREL/TP-500-34593. National Renewable Energy Laboratory, Golden, CO.

Kelley, N., Bonnie, J., Scott, G.N., Bialasiewicz, J.T., Redmond, L.S., 2005. The impact of coherent turbulence on

wind turbine aeroelastic response and its simulation. NREL/CP-500-38074. National Renewable Energy

Laboratory, Golden, CO.

Lindberg, W.R., Spitler, J.E., Naughton, J.W., 2005. Modal structure of surface turbulence using low-order

turbulence modeling. In: Proceedings of the ASMEWind Energy Symposium. AIAA, Reno, NV, pp. 499–509.

Lumley, J.L., 1970. Stochastic Tools in Turbulence. Academic Press, New York.

Malcolm, D.J., Hansen, A.C., 2002. WindPACT turbine rotor design study. NREL/SR-500-32495, August.

McKay, M.D., Conover, W.J., Beckman, R.J., 1979. A comparison of three methods for selecting values of input

variables in the analysis of output from a computer code. Technometrics 21, 239–245.

Saranyasoontorn, K., Manuel, L., 2005. Low-dimensional representations of inflow turbulence and wind turbine

response using proper orthogonal decomposition. J. Solar Energy Eng. 127 (4).

Solari, G., Piccardo, G., 2001. Probabilistic 3-d turbulence modeling for gust buffeting of structures. Prob. Eng.

Mech. 16 (1), 73–86.

Spitler, J.E., Morton, S.A., Naughton, J.W., Lindberg, W.R., 2004. Initial studies of low-order turbulence

modeling of the wind turbine in-flow environment. In: Proceedings of the ASME Wind Energy Symposium.

AIAA, Reno, NV, pp. 442–451.

Veers, P.S., 1988. Three-dimensional wind simulation. SANDIA-80-0512. Sandia National Laboratory,

Albuquerque, New Mexico.


	On the propagation of uncertainty in inflow turbulence to wind turbine loads
	Introduction
	Variability in inflow parameters, turbulence spectra, and turbine loads
	Unified turbulence model of Solari and Piccardo
	Variability of the inflow spectral model parameters
	Variability of the inflow turbulence spectra
	Variability of the wind turbine load statistics

	Modeling uncertainties in the inflow turbulence field using POD
	Proper orthogonal decomposition
	Uncertainty in POD mode shapes and associated kinetic energy
	An approximate model for uncertainties in the inflow turbulence field

	Conclusions
	Acknowledgments
	PSD function
	Space coherence function
	Point coherence function
	CPSD function
	Statistics of model parameters
	Turbulence intensity factors,   
	Integral length scale parameters,   
	Point cross-coherence scaling factor,  uw
	Exponential decay coefficients, Cr 


	References


