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Abstract 

Highway accidents are complex events that involve a variety of human responses to external stimuli, 

as well as complex interactions between the vehicle, roadway features/condition, traffic-related 

factors, and environmental conditions. In addition, there are complexities involved in energy 

dissipation (once an accident has occurred) that relate to vehicle design, impact angles, the 

physiological characteristics of involved humans, and other factors. With such a complex process, it 

is impossible to have access to all of the data that could potentially determine the likelihood of a 

highway accident or its resulting injury severity. The absence of such important data can potentially 

present serious specification problems for traditional statistical analyses that can lead to biased and 

inconsistent parameter estimates, erroneous inferences and erroneous accident predictions. This 

paper presents a detailed discussion of this problem (typically referred to as unobserved 

heterogeneity) in the context of accident data and analysis. Various statistical approaches available 

to address this unobserved heterogeneity are presented along with their strengths and weaknesses. 

The paper concludes with a summary of the fundamental issues and directions for future 

methodological work that addresses unobserved heterogeneity.  

 

Keywords: Highway safety, unobserved heterogeneity, accident likelihood, accident severity, 

statistical and econometric methods; statistical methods; accident analysis 
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1. Introduction 

Accidents, and specifically highway-vehicle accidents, cost the lives of roughly one and a quarter 

million people worldwide every year. In addition, highway-traffic injuries are globally the leading 

cause of death among people 15 to 29 years old with over 300,000 deaths (World Health 

Organization, 2015). From a policy and engineering perspective, perhaps the most challenging 

element of these numbers is their persistence and the inability of advanced vehicle safety features, 

advances in highway design, and various safety-countermeasure policies to drastically lower these 

numbers. 

Without doubt, efforts to improve highway safety are complicated by the behavior of 

individual vehicle operators which can vary widely across the population and can be inherently 

difficult to predict and/or modify. This is in contrast to other transportation modes (such as air and 

water transport) where fewer operators mean the human element can be more tightly controlled 

through licensing standards and other safety protocols. On highways, individual vehicle operators 

have a wide range of physical and mental abilities, different perceptions of risk, different reactions 

to external stimuli, and their operating abilities may be further complicated by varying degrees of 

self-inflicted impaired driving (alcohol and drug consumption). Engineering a safe transportation 

system with this level of behavioral variance is virtually impossible. This safety problem is one of 

the leading factors in the current move toward autonomous (connected and automated) vehicles that 

can remove the human element, potentially leading to huge advances in safety by making safety 

largely a function of engineered systems (hardware and software) where variance in performance, 

and ultimately safety, can be more tightly controlled and predicted. 

But, even after the introduction of autonomous vehicles in mainstream traffic (which will 

likely take many years to achieve), which unquestionably has the potential to substantially reduce 

variation in human elements, there will still remain variations in the effects of many other factors 

that influence the likelihood and resulting injury severity of highway accidents. For example, on any 

highway in the world, one will find considerable variation in vehicle attributes including mass, 

occupant protection, safety features, vehicle accident-energy dissipation features, and so on. In 

addition, there are variations in roadway characteristics such as pavement friction, proximity and 

types of objects just off the roadway, median design, guardrail design, and other infrastructure related 

elements. Finally, there are variations in environmental conditions such as lighting, temperature, and 

precipitation, all of which will affect both the likelihood and resulting injury-severity of accidents. 
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The entire process is further complicated by the variance in individual vehicle operators’ 

physiologies and responses to vehicle characteristics, roadway characteristics and environmental 

conditions. 

Existing data bases, which typically extract data from police accident reports, local weather 

stations, and state highway-asset-management databases, contain a wealth of information, especially 

after an accident has occurred, when injury-severity levels, safety-feature deployment, and many 

other factors are reported.  However, these conventional databases only cover a small fraction of the 

large number of elements that define human behavior, vehicle and roadway characteristics, traffic 

characteristics, and environmental conditions that determine the likelihood of an accident and its 

resulting injury severity. Many other elements remain unobserved to the analyst. For example, 

weather and lighting conditions change continually over time as do the driver reactions to these 

conditions. In conventional databases, analysts will not have access to these data. Once an accident 

has occurred, the characteristics of energy dissipation through the vehicle structure and the resulting 

effect on individuals, which may vary widely based on which of the vehicle safety features deployed 

as well as bone mass, overall health, physical dimensions, and so on, will be largely unknown to the 

analyst.1 

In light of the inherent deficiencies of current data sources (and likely deficiencies in future 

data sources), statistical and econometric methods have been developed to address this issue as 

unobserved heterogeneity (variations in the effect of variables across the sample population that are 

unknown to the analyst). The intent of these “heterogeneity” models is to allow analysts to make 

more accurate inferences by explicitly accounting for observation-specific variations in the effects 

of influential factors (which we will refer to in this paper as unobserved heterogeneity).   

Our paper begins with a quick review of the statistical consequences of ignoring unobserved 

heterogeneity in highway accident data (Section 2). The paper then moves on to a presentation and 

discussion of various statistical/econometric methods (heterogeneity models) that have been applied 

in the accident analysis literature to date, including random parameter models (Section 3), latent 

class models (Section 4), joint latent-class/random-parameters models (Section 5), Markov-

switching models (Section 6), unobserved heterogeneity in multivariate models (Section 7), and 

                                                 
1 New data sources, such as those from naturalistic driving where many vehicle and human functions are monitored 

continuously, will help provide additional influential data but will still not approach the detail of data needed to fully 
model the likelihood and severity of accidents. 
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omitted variable and transferability issues relating to unobserved heterogeneity (Section 8). The 

paper concludes with a summary and insights for future work (Section 9). 

 

2. The Need to account for Unobserved Heterogeneity 

The statistical analysis of accident data typically addresses the likelihood of an accident and its 

resulting injury severity (see Lord and Mannering, 2010, Savolainen et al., 2011, and Mannering and 

Bhat, 2014 for reviews of studies that have addressed the likelihood and severity of an accident). 

The likelihood of an accident is often analyzed by considering the number of observed accidents 

occurring on a defined spatial entity over a specified time period; for example, the number of 

accidents per month occurring over a specified highway segment (of known distance) or at a highway 

intersection. Once an accident is observed, the injury severities of involved individuals are often 

modeled as discrete outcomes (for example, no injury, possible injury, evident injury, disabling injury, 

fatality). 

With commonly collected data, some of the many factors affecting the likelihood of an 

accident and the resulting injury severity are not likely to be available to the analyst.  These factors 

(which constitute unobserved heterogeneity) can introduce variation in the impact of the effect of 

observed variables on accident likelihood and injury severity. For example, consider gender as an 

observed human element that affects injury severity outcomes. While there are clearly physiological 

differences between men and women (justifying the use of an indicator variable such as 1 for male 

and 0 otherwise), there is also great variation across people of the same gender, including differences 

in height, weight, bone density and other factors that are generally unavailable to the analyst (and 

are not controlled for, even if other observed variables are included).  

As another example of unobserved variation, consider the effect of the nature of an accident 

on injury severity. Assume for now that all accidents are either angle accidents or head-on accidents 

(the same discussion extends in a straightforward way to the more realistic case that considers 

additional types of accidents). As suggested by Castro et al. (2013), some angle accidents may lead 

to injury severities of those involved that may be far more severe than head-on accidents, even if the 

majority of angle accidents lead to a lesser degree of injury severity. More generally, the vehicle-to-

vehicle kinematic interactions relating to vehicle speed differences, differences in vehicle size, 

variations in vehicle impact locations, variations in structural integrity of the vehicles, and variations 
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in angle of impact all comprise a significant portion of heterogeneity in collision-type effects. Such 

interactions are impossible to measure in a comprehensive manner.   

As a third example, consider the effect of an observed binary roadway lighting indicator 

variable (one if roadway lighting is present and zero otherwise). Unobserved factors are likely to 

influence the impact of this indicator due to variations across roadway segments in lighting type, the 

ambient lighting from land uses nearby, as well as the light-output and types of lighting used.  Recent 

studies have demonstrated such heterogeneous effects (Venkataraman et al., 2011; Venkataraman et 

al., 2013; Venkataraman et al., 2014).   

Table 1 provides a description of the potential heterogeneous effects of some other commonly 

available explanatory variables for modeling the likelihood and injury severity of highway accidents.  

If unobserved heterogeneity is ignored, and the effects of observable variables is restricted 

to be the same across all observations, the model will be misspecified and the estimated parameters 

will, in general, be biased and inefficient, which could in turn lead to erroneous inferences and 

predictions. As an example, consider traffic volume and its effect on the likelihood of an accident. 

As discussed in Table 1, there are compelling reasons to believe that the effect of traffic volume on 

accident occurrences would vary from one roadway entity (highway segment or intersection) to the 

next as a result of unobserved time-varying environmental characteristics and unobserved variations 

in driver responses to traffic and these conditions. However, if the analyst were to ignore the 

possibility of a heterogeneous effect of this variable across roadway entities, multiple incorrect 

conclusions could be drawn from the resulting bias in parameter estimate such as believing that the 

effect of traffic volume on accident likelihood is non-linear (that is, increases in traffic volumes at 

higher levels of congestion do not increase accident likelihoods at the same rate as traffic-volume 

increases at lower levels of traffic congestion). However, without explicitly accounting for 

unobserved heterogeneity, it is impossible to discern whether the effect of traffic volume on accident 

likelihood is truly non-linear or if it just appears to be non-linear due to ignoring unobserved 

heterogeneity (that is, the apparent non-linearity is actually tracking unobserved heterogeneity in the 

data and not true non-linearities).2 

                                                 
2 It should be mentioned here that models that can account for unobserved heterogeneity can usually be compared 

statistically with those that do not (for example by using a likelihood ratio test). It is also true that the use of an 
inappropriate functional form for the effect of a variable can be picked up, incorrectly, as unobserved heterogeneity. 
So, if traffic volume actually were to have a non-linear effect on accident occurrence, and the analyst failed to capture 
this non-linearity, it can show up incorrectly as unobserved heterogeneity. In many safety applications, even after 
specifying the appropriate functional form for the effects of exogenous variables, there will very likely remain 
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Of the various approaches to account for unobserved heterogeneity, perhaps the so-called 

random parameters approach has been the most widely adopted. The idea with a traditional random 

parameters approach is that the heterogeneity from one data observation to the next is accounted for 

by allowing potentially every estimated parameter in the model to vary across observations 

according to an analyst-specified continuous distribution (such as the normal distribution used to 

illustrate the problems of ignoring unobserved heterogeneity earlier). The estimation of a traditional 

random parameters model thus requires a parametric assumption (assumed distribution for the 

variation in parameters across observations). While the individual parameters estimated in the model 

can have different distributions, and a variety of distributions can be tested to determine which 

provides the best overall statistical fit, there are still potential problems with adopting parametric 

assumptions. For example, it may be difficult for conventional distributions to track heterogeneity 

in the population if there are groups of observations with similar parameters, which may result in a 

complex multimodal distribution with varying skewness and kurtosis. 

Another popular approach for addressing heterogeneity is to assume finite mixtures (latent 

classes) where instead of having the heterogeneity vary across individual observations, the 

estimation approach seeks to identify groups of observations with homogeneous variable effects 

within each group.  This approach is semi-parametric because it does not impose a parametric 

assumption on the distribution of parameter heterogeneity (the approach still requires a parametric 

model structure such as a negative binomial, logit, and so on). The disadvantage of this approach is 

that identifying the many groups that may exist in the data can be computationally cumbersome3 and 

the procedure makes the assumption of parameter homogeneity within the identified groups. 

A combination of the two above approaches has also been considered in the literature where 

the number of latent classes (mass points) are specified and then the parameters are allowed to vary 

across observations within each identified latent class. This combined approach allows a more 

sophisticated representation of unobserved heterogeneity because it can track variations across 

groups of data and individual observations. 

There also exist temporal and spatial elements in accident data that are often overlooked in 

accident studies. That is, accidents are rare events and, to get a sufficient number of observations, 

                                                 
unobserved heterogeneity effects of the variable. Proper specification for the effects of observed explanatory variables 
and accounting for potential unobserved heterogeneity are both needed for a correct model specification. 

3 In most applications, after specifying more than 3 or 4 mass points (latent classes), the model can become extremely 
difficult to estimate and convergence may become very difficult. 
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they are often aggregated over time (for example, accidents per month) and/or space (accidents over 

a length of roadway segment).  This creates additional unobserved heterogeneity issues that may be 

time or space dependent. Methods such as Markov-switching models have been used to address the 

unobserved heterogeneity issue over time and more advanced correlation structures have been used 

to link accident observations spatially. 

Table 2 presents categorized common methodological approaches for addressing unobserved 

heterogeneity with regard to the likelihood of an accident, along with a list of research studies that 

have applied these approaches. Table 3 presents categorized common methodological approaches 

for addressing unobserved heterogeneity with regard to an accident’s resulting injury severity, along 

with a list of research studies that have applied these approaches.4 A brief presentation of the more 

common methodological approaches presented in Tables 2 and 3 is provided in the following 

sections. 

 

3. Random Parameters Formulations 

3.1. Random Effects versus Random Parameters 

Before proceeding to random parameters model formulations, we first clarify terminology issues 

related to “random effects” and “random parameters”. In many econometric treatments of the subject, 

the entry way to random parameters models is to first bring up panel data, discuss the so-called fixed-

effects and random-effects estimators, and then proceed to introduce random parameters models. 

However, while the fixed-effects and random-effects models typically necessitate panel data, this is 

not the case with random parameters models. In particular, the fixed-effects and random effects 

approaches are two different ways to introduce unobserved individual-specific heterogeneity in the 

constant terms with panel data. In a random-effects model, the unobserved individual-specific 

heterogeneity is assumed to be completely unrelated to the explanatory-variable vector, which is a 

rather strong assumption. In a fixed-effects model, this assumption is relaxed, but the fixed effects 

model poses the incidental parameters problem that renders the usual maximum likelihood estimator 

inconsistent because the number of observations generated by the same entity (for example, 

accidents per some time period for the same roadway entity) is fixed and very few in number (see 

                                                 
4 It is important to mention here that the various models listed in these tables (to address unobserved heterogeneity) often 

do not lend themselves to direct conventional statistical comparison. For example, random parameters and latent class 
approaches cannot be directly compared with a conventional method such as a likelihood ratio test. This can often 
complicate the selection of one approach over another. 
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Greene and Hensher, 2010, page 60 for a discussion of this issue). In contrast to the fixed and random 

effects models, random parameters models can be estimated even with cross-sectional data as well 

as panel data. With panel data, one can allow random parameters not only in the response to 

explanatory variables (as in cross-sectional data), but also incorporate the typical panel random 

effect. Other possibilities exist as well, such as the flexibility to estimate an individual-specific as 

well as an observation-specific random parameter vector on the explanatory variables (see, for 

example, Bhat and Sidharthan, 2011). In the rest of this paper, we will motivate much of the 

discussion on random parameters from the standpoint of a cross-sectional notation set-up, though 

the concepts are readily extendible to panel data.   

 

3.2 Random Parameters Accident Likelihood Models 

The likelihood of an accident can be studied using a number of statistical techniques including 

traditional count-data models, zero-inflated count data models (which consider the possibility of a 

two-state process, one a near safe zero-accident state and the other a normal count state with non-

negative integers), duration models (reframing observed accident counts into the time between 

accidents occurring on a specified roadway segment), generalized count models (through reframing 

count data as originating from a generalized ordered model set-up), or tobit regression models 

(arriving at a censored continuous variable by converting accident counts into accident rates by 

dividing observed accident counts over some time period by the traffic over that time period time 

the length of roadway being considered). 

The application of traditional count-data involves determining the number of accidents that 

occur over some predetermined space (a roadway entity such as an intersection or a segment of 

specified length) and time (such as a month or a year).5 This results in a non-negative integer that is 

well suited to traditional count-data models. The most popular count-data approach is based on 

Poisson regression or its derivatives which include the negative binomial and zero-inflated models 

(see Washington et al., 2011).  For the basic Poisson model, the probability P(ni) of road entity i (for 

example, and intersection or highway segment) having ni accidents is, 

 
!

)(Prob
i

n
i

i n

e
n

ii 

 ,                   (1) 

                                                 
5 Other methods consider the time between accidents instead of counts over some pre-specified time period (Mannering, 

1993). 
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where i  is the Poisson parameter for highway entity i.  The Poisson regression specifies the Poisson 

parameter i  (which is also the expected number of accidents for entity i) as a function of 

explanatory variables by typically using a log-linear function,  

)exp( ixbi  ,                   (2) 

where ix is a vector of explanatory variables (now including a constant) and b  is a vector of 

estimable parameters (Washington et al., 2011).  

Depending on the data, a Poisson model may not always be appropriate because the Poisson 

distribution restricts the mean and variance to be equal (E[ni] = VAR[ni]).  If this equality does not 

hold, the data are said to be underdispersed (E[ni] > VAR[ni]) or overdispersed (E[ni] < VAR[ni]), and 

the standard errors of the estimated parameter vector will be incorrect and incorrect inferences could 

be drawn.  To account for the possibility of overdispersion (which is more commonly encountered 

in accident count data), the negative binomial model is derived by rewriting,  

)exp( ii   ixb ,                  (3) 

where )exp( i is a Gamma-distributed error term with mean 1 and variance .6,7  The addition of the 

)exp( i  term allows the variance to differ from the mean as VAR[ni] = E[ni][1+ E[ni]] = E[ni]+ 

E[ni]2.  The negative binomial probability density is, 

 1/
(1/ )1/

( )
(1/ ) (1/ ) ! (1/ )

in

i i
i

i i i

n
P n

n


     

              
 ,             (4) 

where Γ(.) is a gamma function.  The Poisson regression is a limiting model of the negative binomial 

regression as  approaches zero.  Thus, if  is significantly different from zero, the negative binomial 

is appropriate and if it is not, the Poisson model is appropriate (Washington et al., 2011). 

To account for unobserved heterogeneity in response to the non-constant explanatory 

variables in count models, random parameters approaches have been developed and are available in 

                                                 
6 Although uncommon, it is possible for the data to be underdispersed in which case the negative binomial is not 

appropriate and other models must be used (see Lord and Mannering, 2010, for a full discussion of this point as well 
as methodological alternatives). 

7 Note that we are able to accommodate a random-effects type specification in a cross-sectional count data model because 
of the functional form adopted for count models. This is easiest seen in the reframing of a count model as a generalized 
ordered-response model, where the λi term (which includes the error term εi in the negative binomial model) appears 
in the threshold part, while the original error term leading to the probability expression in any count model originates 
in the typical latent regression part (see Bhat, 2015).  
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standard software packages (see, for example, Greene, 2012).8 To allow for such random parameters 

in count-data models, each estimable parameter on explanatory variable l in the vector ix  can be 

written as, 

il l ilb    ,                     (5) 

where il  is the parameter on the lth explanatory variable for observation i, lb  is the mean parameter 

estimate across all observations for the lth explanatory variable, and il  is a randomly distributed 

scalar term that captures unobserved heterogeneity across observations, and the term can assume an 

analyst-specified distribution (such as the normal distribution or others).   

With Equation (5), the analyst can test for random parameters, using a specified distribution, 

across all observations i for each included explanatory variable (various distributions can be 

specified to determine the best statistical fit such as normal, lognormal, triangular, uniform and 

Weibull distributions). If the variance of the chosen distribution is not significantly different from 

zero, it suggests that a conventional fixed parameter (one parameter estimate for all observations) is 

statistically appropriate. Thus the model is likely to consist of a combination of fixed and random 

parameters across the included explanatory variables. 

It is also important to note that random parameters models can be readily structured to 

account for heterogeneity among analyst-specified groups of observations instead of individual 

observations.9 For example, instead of estimating separate parameter vectors for accidents on the 

individual approaches to an intersection, a single parameter vector may be estimated for all 

approaches to a specific intersection (see Wu et al., 2013). This is done simply by re-writing Equation 

(5) as gib gllil group , where gl  is now the group-specific random term that generates 

unobserved heterogeneity across groups in response to the lth explanatory variable. These analyst 

specified groups can account for forms of both spatial and temporal effects. 

The estimation of random parameters models is typically achieved with maximum simulated 

likelihood (for more on this technique, see Bhat, 2001, 2003; Train, 2009). However, Bhat (2012) 

has more recently proposed a maximum approximate composite marginal likelihood approach that 

                                                 
8 An alternative to a random parameters approach in the negative-binomial case would be to allow the dispersion 

parameter α to vary as a function of the mean, λ (see Cameron and Trivedi, 1986).  However, this would be more 
restrictive in terms of its ability to account for heterogeneity across observations. 

9 Such grouping of observations often forms the basis of what are commonly called multilevel models in the literature. 
Multilevel model terminology simply refers to a modeling approach that partitions the data and potentially accounts 
for heterogeneity within these partitions. 
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he shows to be much more computationally efficient and even more accurate than traditional 

maximum simulated likelihood approaches for most random parameters models. Table 2 lists 

random parameters count models that have been successfully applied in accident studies. This basic 

random parameters formulation can be readily extended to other accident-likelihood modeling 

methods such as zero-inflated count models (Shankar et al., 1997), duration models (Mannering, 

1993), and tobit regressions (Anastasopoulos et al., 2012). A relatively recent development in count 

models that facilitates the introduction of unobserved heterogeneity and many other generalizations 

is the insight that any count data model structure can be recast as a restricted version of a generalized 

ordered-response model (see Castro el al, 2012, Bhat et al., 2014a,b).  

 

3.3 Random Parameters Injury Severity Models 

Along similar lines to those above, injury severity models (which seek to study the probability of 

discrete injury outcomes such as no injury, possible injury, evident injury, disabling injury and 

fatality) can address unobserved heterogeneity with parameters that vary across observations. A 

common example of such a model is the random parameters multinomial logit model (also referred 

to as the mixed logit model). To see this model, define a function ikS  that determines the probability 

that accident i will result in injury-severity level k as, 

iiiki βb  βxβ
~

;  ikkikS  ,                 (6) 

where k   is a constant specific to injury-severity level k (with one of them set to zero for 

identification), ikx  is an )1( L -column vector of exogenous attributes specific to accident i and 

injury-severity level k, iβ   is an accident-specific )1( L  -column vector of corresponding 

parameters that varies across accidents based on unobserved accident-specific attributes, and ik  is 

assumed to be an independently and identically distributed (across injury severity levels and 

accidents) standard extreme-value error term. If i bβ i  , this implies no accident-specific 

unobserved heterogeneity, and the resulting model form is the standard multinomial logit (McFadden, 

1981). However, if accident-specific unobserved heterogeneity is allowed, and the iβ  vector has a 

continuous density function    Prob f | iβ β β   , where φ   is a vector of parameters 

characterizing  the chosen density function (such as the location and scale).  The resulting random 
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parameters multinomial logit injury-severity probabilities are (see Bhat, 1998, McFadden and Train, 

2000; Train, 2009), 

   
k

mi

m

e
P k f | d

e

 

   
ik

im

β x

β x
β β ,               (7) 

where  iP k  is the probability of injury severity k.  As noted above with count-data models, if the 

elements related to scale in the vector φ  are determined to be significantly different from zero, there 

will be accident-specific variations of the effect of one or more elements of the explanatory variable 

vector ikx   on injury severity. As with other random parameters models, maximum simulated 

likelihood (MSL) is typically used to estimate mixed logit models.10  Bhat (2011) and Bhat and 

Sidharthan (2011) have shown how the maximum approximate composite marginal likelihood 

(MACML) estimation of a normally mixed multinomial probit model offers substantially more 

computational efficiency as well as superior accuracy in recovering parameters relative to the 

maximum simulated likelihood (MSL).  They demonstrate this through the estimation of a normally 

mixed multinomial logit model, and this opens up a new direction for estimating random parameters 

multinomial models in the safety area.  

In addition to the random parameters multinomial model discussed above, random 

parameters can be readily introduced in other models that have been historically used to analyze 

accident-injury severities, including ordered probability models (models that account for the 

ordering of severity levels from lower to higher injury levels). Further, in these ordered probability 

models, unobserved heterogeneity can be introduced in both the latent regression as well as in the 

thresholds, as in Eluru et al. (2008). Savolainen et al. (2011), Castro et al. (2013) and Mannering 

and Bhat (2014) are good sources of review of this literature. 

 

3.4 Random Parameters Models with Correlated Parameters  

Almost all research in the accident field to date has assumed that the unobserved heterogeneity 

captured by random parameters are independent. That is, there is no allowance for correlation among 

                                                 
10 In this case, logit probabilities shown in Equation (11) are approximated by drawing values of β from f(β|φ) for given 

values of φ.  Research by Bhat (2000) and Bhat (2001) has shown that an efficient way of drawing to compute logit 
probabilities is to use a Halton sequence approach (for more on the Halton sequence, see Halton, 1960)). As with 
count-data models, a variety of functional forms can be considered including normal, lognormal, triangular, uniform 
and Weibull distributions. 
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the distribution of two or more random parameters in the model. In reality, there may be correlation 

among random parameters. As an example, consider unobserved heterogeneity caused by weather 

events and drivers’ heterogeneous responses to these events. In this case, one might expect the effect 

of precipitation to influence the likelihood and severity of accidents differently across observations 

as drivers respond differently, and one might also expect the effect of pavement condition 

(coefficient of friction or roughness) to do the same. However, there is likely a correlation between 

these two sources of heterogeneity due to the interactive effects of precipitation and pavement 

condition. Accounting for correlation among random parameters can be achieved, for example, by 

assuming a multivariate normal distribution for iβ  and writing, 

iC bβ i ,                     (8) 

where iβ is a vector of random parameters corresponding to explanatory variables for observation i, 

b  is the mean parameter estimate across all observations, C is a lower triangular matrix that 

engenders correlation among the elements of the parameter vector iβ , and i is a randomly and 

independently distributed uncorrelated vector term. Allowing for correlation among random 

parameters can complicate the interpretation of results, but explicitly considering correlation among 

random parameters can provide additional insights.11  

 

3.5 Random Parameters Models with Means (and Variances) as Functions of Explanatory 

Variables  

As shown in Equations (5) and (8), the most common application of random parameters models is 

to assume that there is a single mean ( lb  in Equation (5) and b  in Equation (8)) across the population 

(but see later). Equation (8) can be generalized to allow for the possibility that the mean may vary 

from one observation to the next as a function of observed explanatory variables (we use Equation 

(8) instead of Equation (5) to continue to allow for the possibility of correlated random parameters). 

To allow the means of random parameters to vary as a function of explanatory variables, Equation 

(8) can be re-written as, 

                                                 
11 This issue is important in the case of multiple random parameters where the parameters are not all necessarily normally 

distributed.  It must be noted that empirically, it is rare to see a non-correlated model perform as well as a correlated-
parameters random parameters model in safety applications.  The correlated-parameters approach also has a high 
degree of sensitivity to the sparse indicator-variable problem (where indicator variables with low densities are used 
in the model).  However, this issue can be mitigated by omitting sparse indicators in order to make estimation and 
convergence feasible. 
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iCΘ  ii zbβ ,                 (9) 

where iz  is a )1
~

( L -vector of explanatory variables from observation i that influence the mean of 

the random parameter vector, Θ is an )
~

( LL matrix of estimable parameters (each row of Θ

corresponds to the loadings of a specific element of the iβ  vector on the iz  vector; if a specific 

column entry in a row of Θ is zero, it implies that there is no shift in the mean of the corresponding 

row element of the iβ  vector due to the row element of the iz  vector corresponding to the column 

under consideration). Note that such a specification is equivalent to simply including an appropriate 

interaction term within the systematic specification of the model. For example, in the injury severity 

model of Equation (6), substituting Equation (9) for iβ  is equivalent to having a random parameter 

vector with a fixed mean on the variable vector ikx  along with appropriate interactions of exogenous 

variables. In general, the analyst should always consider the variations in the effect of a variable due 

to observed factors before considering unobserved heterogeneity.  

There have been several empirical studies that have addressed this issue in the accident 

literature. For example,  Kim et al. (2013) found that, while newer vehicles reduced injury severity 

probabilities in single-vehicle crashes, this reduction was less for men than for women (they explain 

that this could be because men drive more aggressively). This is an example of the “newer vehicle” 

variable being interacted with the gender of the driver to shift the mean of the effect of a “newer 

vehicle” (relative to an “older vehicle”) on injury severity. However, doing so does not influence the 

level of variation in the amount of unobserved heterogeneity itself. This can be noted from the fact 

that the unobserved heterogeneity portion iC in Equation (9) remains unaffected when the mean is 

being shifted. But, in the example above, it is possible that when women drive newer vehicles, there 

is less variation (due to unobserved heterogeneity) in the injury severity sustained. In contrast, 

among men, this variation may be much higher because of a larger range of variance in 

aggressiveness. An approach to accommodate a shift in the variance (of unobserved heterogeneity) 

in responsiveness to “newer vehicles” across men and women is to write the standard deviation of 

the error terms in i corresponding to the “newer vehicle” variable as a function of gender.12  

                                                 
12 Such a varaince shift has seldom been pursued in the accident literature, though the concept has been applied in non-

accident contexts (see, for example, Bhat, 1997a and Bhat and Zhao, 2002). 
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In addition to injury-severity analysis, heterogeneity in the mean of a random parameter has 

also been explored in accident-likelihood contexts.  For example, Venkataraman et al. (2014) explore 

a multitude of heterogeneous mean effects on the likelihood of accident occurrence.  

 

4. Latent Class (Finite Mixture) Models 

As discussed in Section 2 of this paper, there are potential drawbacks of random parameters models 

in capturing unobserved heterogeneity in that the analyst must assume a distribution for the 

parameters across the population and the possibility that parameters may vary across unobserved 

groups of observations instead of across individual observations. The approach to latent class models 

is the same for models addressing the likelihood of an accident as well as its resulting severity. As 

an example, consider a model where the probability of belonging to a latent class is specified by a 

multinomial logit model with (Greene and Hensher, 2003), 

 i

g

e
P c

e






ic

ig

γ z

γ z ,                 (10) 

where  iP c is the probability of observation i belonging to latent class c, icz is a vector of 

explanatory variables specific to observation i and latent class c (including a constant for all latent 

classes except one) and γ  is a vector of estimable parameters. With Equation (10), models of both 

the likelihood of the accident and its resulting severity can readily be written and estimated.  For 

example, if an injury severity model is estimated as a multinomial logit model the conditional 

severity model would be, 

 
kc

mci

m

e
P k | c

e

 

 


c ik

c im

b x

b x
,                 (11) 

where  iP k | c  is the probability of an accident injury-severity level k for accident i if accident i 

were a member of unobserved class c, kc  is a constant specific to injury severity level k for latent 

class c (with kc  set to zero for one of the alternatives in each class c for identification), ikx  is as 

defined in the context of Equation (6), and cb   is a class-specific set of fixed parameters. The 

unconditional probability for a specific accident i resulting in injury severity k would then be, 

     i i i
c

P k P c P k |c    .               (12) 
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Estimation of latent class models generally require the analyst to specify the number of 

classes (mass points) so, much like explanatory variable selection, the appropriate number of classes 

needs to be determined as part of the model-estimation process. As shown in Tables 2 and 3, latent 

class models have become an increasingly popular method of accounting for unobserved 

heterogeneity the study of the likelihood and severity of an accident. 

 

5. Latent Class Models with Random Parameters within Classes 

Both latent class and random parameters models have their drawbacks. For example, random 

parameters models require distributional assumptions and may have difficulty tracking groups of 

observations with shared unobserved heterogeneity. Latent class models may have difficulty in 

accounting for unobserved heterogeneity within the identified latent classes. An approach that 

generalizes the latent class models to allow random parameters within each class can easily be 

envisioned. For example, in the case of injury severity, the multinomial logit model could readily be 

replaced with the random parameters logit model so Equation (11) becomes (with Equations (10) 

and (12) still applying as before), 

   
kc

mci c

m

e
P k | c f | d

e

 

   
c ik

c im

β x

c cβ x
β β ,               (13) 

where c  is a class-specific vector of moment parameters characterizing the chosen density 

function. From an estimation perspective, allowing for the possibility of random parameters within 

each latent classes can seriously complicate the estimation process. In fact, due to the complexity of 

the estimation process Bayesian methods are typically used requiring a Markov Chain Monte Carlo 

(MCMC) algorithm with sampling provisions for model identification (see Xiong and Mannering 

2013) for an application of this joint latent class/random parameters approach to accident injury 

severity).  Buddhavarapu et al (2016) demonstrate a similar application to the crash likelihood 

context accounting for spatial dependencies of crash counts.   

 

6. Temporal Heterogeneity and Markov Switching Models 

Highway accidents are relatively rare events and thus an accumulation over time is often used in 

analysis. For example, accident likelihoods on a specified segment of highway may be modeled as 

count data in the form of observed accidents per week or month. This introduces the potential for 

temporal heterogeneity where unobserved factors may vary from one time period to the next. This 
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unobserved temporal heterogeneity could include factors such as weather-related factors that may 

not be observable to the analyst. Statistically, the presence of time-varying unobserved heterogeneity 

could lead to biased parameter estimates and erroneous inferences when variability over time is 

present (Xiong et al., 2014). 

One way of addressing this temporal heterogeneity is using hidden-state Markov switching 

models which can account for unobserved heterogeneity across time periods by assuming that the 

likelihood of accident occurrence and the injury severities of observed accidents transition between 

two or more states over time. Theoretically, there are a number of reasons why multiple hidden states 

could exist and manifest itself as temporal unobserved heterogeneity, including variations in drivers’ 

responses to weather conditions (not necessarily observed by the analyst) that change over time. The 

transition from one state to the next is often assumed not to depend on explanatory variables, 

although the transition probabilities could theoretically be made to be some function of observable 

variables. 

Recently applied Markov-switching models in accident research (Malyshkina et al., 2009; 

Malyshkina and Mannering, 2009; Malyshkina and Mannering 2010; Xiong et al., 2014) assume 

that temporal heterogeneity follows a stationary multiple-state Markov chain process.  For example, 

if two hidden states are assumed to exist ( 0ts   and 1ts   ) the time-dependent transition 

probabilities can be written as, 

   1 0 1 1 1 01 0 and 0 1t t t tP s | s p  ,  P s | s p         ,            (14) 

where  1 1 0t tP s | s     is the conditional probability of 1 1ts     at time t+1 given that the 

observation is in state 0ts   at time t,  1 0 1t tP s | s    is the conditional probability of 1 0ts    at 

time t+1 given that the observation is in state 1ts   at time t, and the transition probabilities 0 1p   

and 1 0p   can be estimated from the accident data.13 Estimation of Markov-switching models can be 

complex, and typically requires Bayesian Markov Chain Monte Carlo (MCMC) methods to sample 

the hidden states. However, the potential to track temporal unobserved heterogeneity in data that are 

typically viewed as cross-sectional makes Markov-switching models a very powerful tool that can 

                                                 
13 As mentioned in the text and emphasized again here, existing applications of Markov switching models in accident 

analysis have not considered the transition probabilities as a function of explanatory variables. While the modeling 
approach can be readily extended to allow transition probabilities to be a function of explanatory variables, additional 
complexities in model estimation and identification can be problematic. 
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yield important new insights into the likelihood of accidents and their resulting injury severities. 

Markov switching models can also be combined with other methods of heterogeneity modeling to 

arrive at a more complete characterization of unobserved heterogeneity. For example, Xiong et al. 

(2014) estimate a Markov switching ordered probability model for accident injury severity with 

random parameters across observations. 

 

7. Unobserved Heterogeneity and Multivariate Models 

Multivariate models can be encountered when studying the likelihood of an accident and/or its 

resulting severity. Multivariate models can result from correlations that emerge from a variety of 

sources. For example, in considering the likelihood of accidents resulting in different injury-severity 

levels, one may speculate that the factors that affect the likelihood of accidents resulting in severe 

injuries are fundamentally different than those that generate the likelihood of accidents resulting in 

no injuries. This may be due to how specific roadway-design characteristics interact with the 

likelihoods of specific injury-severity levels. If this is the case, one may consider estimating separate 

accident likelihood models (such as separate count-data models) for each discrete severity outcome 

(such as no injury, possible injury, evident injury, disabling injury, fatality). However, estimation of 

separate models in this case can be problematic because unobserved factors are likely to impact 

multiple accident counts, of different severity levels, simultaneously for each roadway entity being 

considered (for example, counts by roadway segment or intersection). In addition, if accident count 

data are collected on specific roadway entities over multiple time periods (for example months or 

years), unobserved factors will result in a temporal correlation in the number of accidents at the 

roadway entity over time. This temporal dependency can be combined with spatial dependencies 

(correlation in observed factors among spatially adjacent roadway entities) to produce multivariate 

models of very large dimension (see, for example, Narayanamoorthy et al., 2013 and Bhat et al., 

2014). 

With regard to injury-severity data, multivariate issues can also arise with vehicle accidents 

that involve multiple occupant injuries from the same accident. In such cases, the different occupants 

may experience different levels of injury severity, but the unobserved factors influencing these injury 

levels (such as energy dissipated during the accident, structural features of the vehicle(s) involved, 

and so on) would be correlated (see, for example, Abay et al., 2013, Eluru et al., 2010, Yasmin et al., 

2014 and Russo et al., 2014).  
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Accounting for unobserved heterogeneity (such as using random parameters and potentially 

latent-class approaches) in a multivariate framework can complicate the error-term structure and 

estimation process. Still, as shown in Tables 2 and 3, a few studies have considered random 

parameters in multivariate models. A particularly appealing way to combine unobserved 

heterogeneity effects with a multivariate outcome context (with the outcomes being of different types, 

including continuous, count, nominal, ordered, and grouped outcomes) is based on identifying 

stochastic latent constructs (for example, unobserved driver-specific psychological factors).  These 

factors can be viewed as having an influence on multiple safety-related variables.  Bhat proposes 

such a formulation and refers to this as a generalized heterogeneous data model (GHDM). Recent 

applications of this approach to the accident literature include Bhat and Dubey (2014) and Lavieri 

et al. (2016). The approach also provides a convenient way to incorporate variable endogeneity in 

multivariate models with unobserved heterogeneity, offering the opportunity to extend earlier work 

in the field such as Abay et al. (2013) and Paleti et al. (2010).  

 

8. Unobserved Heterogeneity, Omitted Variables Bias and Transferability 

A major concern in safety analysis (and other fields as well) is that detailed data relating to the many 

factors that are likely to affect the likelihood and severity of an accident are often not available to 

the analyst.  In the absence of complete data the analyst may estimate models that obviously exclude 

important explanatory variables which will produce an omitted variables bias which is likely to result 

in biased and inconsistent parameter estimates. With statistical approaches that account for 

unobserved heterogeneity, these omitted explanatory variables become part of the unobserved 

heterogeneity. While random parameters, latent class, and other unobserved heterogeneity 

approaches will mitigate the adverse impacts of omitting significant explanatory variables, the 

resulting model estimates will not be able to track the unobserved heterogeneity as well as when 

having the significant omitted variables included in the specification. Thus leaving out important 

explanatory variables still remains a problem even with advanced approaches to account for 

unobserved heterogeneity. 

A criticism often leveled against the estimation of models that account for unobserved 

heterogeneity, such as random parameters models, is that the results will not be transferable to 

different locations since the individual parameter vector associated with each observation is unique 

to that observation. This is true, but finding significant random parameters (parameters that produce 
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statistically significant standard deviations for the analyst specified distributions) means that 

unobserved heterogeneity is present on individual observations. If a fixed-parameters model is used 

for such data, the unobserved heterogeneity does not simply disappear. In fact, the fixed-parameters 

model will be estimated with a persistent bias and transferability will be problematic since this bias 

will be a function of unobserved heterogeneity. Finding significant random parameters suggests 

spatial transferability problems regardless of the estimation method used. 

 

9. Summary and Conclusions 

Due to the complexity of highway accidents (which involve complex interactions among human, 

vehicle, roadway, traffic and environmental elements), it is impossible to have access to all of the 

data that could potentially determine the likelihood of a highway accident or its resulting injury 

severity. This presents a problem with the conventional statistical analyses of accident data that can 

result in bias and inefficient model estimation, and erroneous inferences and predictions. This in turn 

can lead to the implementation of ineffective and potentially counter-productive safety policies and 

countermeasures. 

As discussed at length in the current paper, relatively recent advances in statistical and 

econometric methods have allowed analysts to study conventional and emerging accident-data 

sources in new ways by addressing issues relating to unobserved heterogeneity. Table 4 summarizes 

the unobserved heterogeneity methods discussed in the current paper, along with a brief description 

of their strengths and weaknesses. As shown earlier in Tables 2 and 3, a number of recent accident-

analysis research efforts have applied these methods to address unobserved heterogeneity, thus 

allowing important new insights to be extracted from existing accident data.  

However, statistical approaches that address unobserved heterogeneity tend to be relatively 

more complex from a model-estimation perspective, though the recent maximum approximate 

composite marginal likelihood (MACML) approach proposed by Bhat (2011) should substantially 

alleviate this estimation burden. Also, the various models that address unobserved heterogeneity are 

often not nested, so direct conventional statistical comparison between models is often not possible 

(for example, random parameters and latent class approaches cannot be directly compared with a 

conventional method such as a likelihood ratio test). This often presents the analyst with difficult 

decisions that weigh model complexity and associated computational issues against the potential 

improvements in statistical fit.   
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As can be seen in Table 4, and from the discussions in this paper, no one approach to 

addressing unobserved heterogeneity is necessarily clearly superior. In addition, any rigorous 

comparison between two or more approaches is likely to be data-specific because different patterns 

of heterogeneity are captured better by different heterogeneity modeling approaches, and these 

heterogeneity patterns are likely to vary from one data set to the next. There are substantial 

opportunities for applying existing methods that address unobserved heterogeneity as well as 

developing new methods that may be combinations of random parameters, latent class, Markov-

switching, and possibly new approaches. Because complex approaches are needed to account for 

complex unobserved heterogeneity, which are often present in accident data bases, continuing 

advances in estimation techniques and computational power will be needed to continue empirical 

advances in addressing unobserved heterogeneity in accident data.  Since accident data are composed 

of both time varying and time invariant heterogeneity components, estimation techniques providing 

insights into the distinctive effects of these components will be required.   
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Table 1.  Examples of explanatory variables with possible heterogeneous effects. 
 

Possible Explanatory Variable 
Why unobserved heterogeneity may make the influence of the variable different from 

one observation to the next 

Human Elements  
(influencing injury severity)a 

Gender 

While there are clearly physiological differences between men and women (justifying the use 
of an indicator variable such as 1 for male and 0 otherwise), there is also great variation 
across people in the same gender including differences in height, weight, bone density and 
other factors that are generally unavailable to the analyst. 

Age 

Age is correlated with an individuals’ physical characteristics and also with their reaction 
times, risk-taking behavior, and so on, all of which may influence injury severity. However, 
age is just a proxy for these factors (which analysts do not observe and often cannot measure) 
so the effect of age on injury severities may vary among individuals of the same age. Because 
age is sometimes included as a grouped indicator variable (for example, 1 if age is between 16 
and 24 years old and 0 otherwise), the heterogeneous effects may be even more pronounced. 

Driver-passenger-related behavior 
variables 

The contributing cause of an accident can be a source of significant heterogeneity.  For 
example, failure to yield can be a cited cause, but the kinematics behind this type of cause can 
vary greatly from one accident to the next.  A behavioral variable that can cause substantial 
unobserved heterogeneity is the number of occupants in the vehicle.  Two accidents with 
identical numbers of occupants can be influenced by heterogeneity due to the relationship of 
occupants, their collective perceptions of risk, and how that influences the operation of the 
vehicle (Xiong and Mannering, 2013, estimate a model that addresses this type of unobserved 
heterogeneity). 
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Table 1 (continued).  Examples of explanatory variables with possible heterogeneous effects. 
 

Vehicle Characteristics  
(influencing injury severity)a 

Vehicle-type and model year 

Vehicle-type indicator variables (such as whether the accident-involved vehicle was a 
passenger car, truck, sport-utility vehicle, etc.) can be used as a proxy for vehicle mass and 
other design elements. However, there is great variability within the vehicle-type 
designations. Model year information can serve as a proxy for the safety features and design 
standards that may be incorporated in the vehicle, but once again there is great unobserved 
variability across vehicles in the same model year. In addition, human elements enter the mix 
since different types of people may choose certain vehicle types and model years. For 
example, the safest drivers may choose to own newer cars with the latest safety features. So 
the model-year variable may be capturing both vehicle characteristics and human 
characteristics, and again there would be unobserved heterogeneity in both of these across 
observations.b  

Safety-feature indicators 

Variables indicating whether air-bags deployed, safety belts were used by occupants, and so 
on may also be used to explain injury severity levels. However, these features may have 
different levels of effectiveness based on the physical characteristics of the occupants (height, 
weight, health conditions) which may not be known to the analyst (these are not available in 
typical databases). This would introduce considerable variability in the effectiveness of these 
features across observations. Human elements may also enter the influence of these variables 
since the most cautious drivers are more likely to own cars with airbags and use safety 
restraints. There is also the fact that airbags deploy when high decelerations are detected. 
Thus airbag deployment is only going to occur in accidents requiring significant energy 
dissipation (which is unobserved in typical databases) further adding to the heterogeneous 
effects of airbag deployment across observations.b 
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Table 1 (continued).  Examples of explanatory variables with possible heterogeneous effects. 
 

Roadway Characteristics  
(influencing the likelihood of accident and injury severity) 

Median barrier presence and 
type indicators and median 
width 

From an accident injury-severity perspective, the presence of a median barrier and/or the type 
of median will have considerably different effects depending on angle of impact, type of 
vehicle, speed at impact, and other factors that are not likely to be known to the analyst. In 
addition, the effects of median width may also vary depending on the soil types and 
conditions at the time of the accident which may affect vehicle speeds and vehicle recovery 
probabilities.c  The roadside variables in particular are usually included in statistical models in 
the form of indicator variables, while in reality, they are usually active over only some portion 
of the total highway-segment length.  This can result in a continuous measure that can have 
different slopes for variables that are active over different portions of the highway-segment 
length.  However, accounting for this in a continuous manner alone may not quantify the 
unobserved heterogeneity completely.  For example, the location by length of median barrier 
will also matter.  This type of information is not easy to assemble from conventional 
databases.  Roadside measurements in particular are viewed with high importance in modern 
safety databases, but their potential for capturing unobserved heterogeneity has not been fully 
explored.d  

Shoulder and lane widths 

The impact that varying lane and shoulder widths may have on the likelihood of an accident 
and its resulting injury severity could vary widely from one roadway segment to the next and 
be a function of time-varying traffic and weather conditions, as well as driver reactions to 
variations in these widths, which may not be known to the analyst. This in turn may cause the 
influence of these widths to vary across observations. 

Horizontal and vertical curves 
and their characteristics 

The presence of horizontal and vertical curves and their characteristics (such as radius, length 
and so on) may have heterogeneous effects across observations due to unobserved time-
varying traffic and weather conditions as well as heterogeneous reactions of drivers to these 
curves.  Such highway alignment variables have been found to be random parameters in 
recent studies.e   
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Table 1 (continued).  Examples of explanatory variables with possible heterogeneous effects. 
 

Number of ramps in a roadway 
segment 

The number of ramps can be used as a proxy for potential disruptions in the traffic stream 
caused by merging and diverging vehicles. The effect of an individual ramp is likely to be a 
function of a variety of traffic and environmental conditions that are unknown to the 
analysts, thus causing heterogeneous effects across observations.  Some studies have 
examined the effect of traffic disruptions by evaluating the heterogeneity of interchange and 
overpass parameters.e 

Pavement measurements 
(friction measurements, 
pavement conditions) 

A wide variety of physical pavement measurement may be available. However, there is a 
possibility of a variation in the effects of these variables across the population for a variety of 
reasons. For example, a poor pavement surface may cause a heterogeneous response in driver 
behavior (some drivers may slow down and other drivers may not) and this response 
(unobserved by the analyst) may vary from one roadway segment to the next. 

Traffic Characteristics  
(influencing the likelihood of accident) 

Traffic volume 

Traffic volume is a variable common to many models, particularly those attempting to model 
the likelihood of an accident. However, the effect of volume on accident likelihood can be 
influenced be a variety of time-varying environmental characteristics as well variations in 
driver behavior in response to traffic. If the unobserved heterogeneity associated with these 
variations is ignored it is possible the analyst could conclude that the relationship between 
traffic volume and accident likelihood is non-linear, but this may not be the case if 
unobserved heterogeneity were properly taken into account. 

Traffic vehicle mix 

The mix of trucks and passenger cars in the vehicle stream has been found in many studies to 
influence the likelihood of an accident. Still, there is a possibility of heterogeneous effects 
across observations in time-varying environmental characteristics and variations in human 
responses (in response to environmental variations or variations in vehicle mixes), which will 
not be observed by the analyst. 
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Table 1 (continued).  Examples of explanatory variables with possible heterogeneous effects. 
 

Speed-related measurements 

The speed limit is often used as an explanatory variable in accident-likelihood analyses.  
This measure is the posted speed limit on a particular highway segment, or the speed limit 
on adjacent segments if not immediately available for the highway segment in question.  
However, use of adjacent-segment information creates potential for unobserved 
heterogeneity, especially in speed-limit transition zones.  To avoid this, some studies have 
used the highway's design speed, but this too can introduce unobserved heterogeneity since 
actual vehicle operating speeds may differ substantially on highways with the same design 
speed. 

Naturalistic driving data 

Naturalistic driving data use in-vehicle instrumentation to more precisely capture 
information relating to the likelihood of an accident.  Instrumented vehicles collect vehicle 
kinematics data such as lane offsetting, pitch, yaw, and roll measurements at certain 
frequencies.  Matched with roadway-geometric data, one would expect that with these 
measurements, the unobserved heterogeneity effects would be minimized.  However, these 
vehicle-specific measurements can vary considerably from one vehicle to the next and thus 
the effect of vehicle-specific information can be heterogeneous across the vehicle 
population.f 

Environmental Characteristics  
(influencing the likelihood of accident and injury severity) 

Time of day, raining or 
snowing, lighting conditions 

A wide variety of environmental have been found to affect both the likelihood of an 
accident and the resulting injury severity once an accident has occurred. However, there is 
great potential for heterogeneous effects of such environmental conditions. For example, 
snow accumulations of the same amount may have much different impacts in different 
geographic areas due to different driver responses to adverse weather (the degree to which 
they adjust their speeds in response to inclement conditions) and this will affect individual 
injury severities as well. All of these are likely to be different in individual vehicle accidents 
as well, resulting in unobserved factors influencing the resulting injury severity in accidents.

 
a Typically observable only after an accident has occurred (these data are usually gathered from police accident reports). 
b As discussion indicates, there are also potential issue of endogeneity here. Please see Mannering and Bhat (2016) for a discussion of this point. 
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c In addition, from an accident frequency perspective, some caution should be exercised since median barriers, for example, may be more likely to be placed at 
high-accident locations. 

d Some work on using the actual length of features in roadway segments (instead of indicator variables) has been published in Venkataraman et al. (2011; 2013).  
The studies show that the use of these types of variables improves the statistical fit compared to the use of indicator variables, but that parameter heterogeneity 
do not necessarily disappear.    

e Venkataraman et al (2011; 2013; 2014) address alignment heterogeneity in a multitude of contexts including non-interchange and interchange segments in urban 
and rural contexts.   

f Studies by Shankar et al (2008) and Jovanis et al (2011) indicate the limited utility of the vehicle kinematics measurements in the development of rich accident 
prediction models.  The conclusion of these studies is that vehicle kinematics measurements contribute to a high degree of heterogeneity and maybe not be reliable 
in their raw form for the estimation of accident likelihood models.   
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Table 2. Summary of research accounting for unobserved heterogeneity in the analysis of accident-
likelihood data.a 
 

Methodological Approach Previous Research 

Random parameters count modelsb Anastasopoulos and Mannering (2009); El-Basyouny and 
Sayed (2009); Granowski and Manner 
(2011);Venkataraman et al. (2011); Ukkusuri et al. (2011); 
Mitra and Washington (2012); Wu et al. (2013); Bullough 
et al. (2013); Castro et al., 2012, Narayanamoorthy et al. 
(2013); Bhat et al. (2013); Venkataraman et al. (2013); 
Chen and Tarko (2014); Venkataraman et al. (2014); Barua 
et al., (2015); Coruh et al. (2015); Barua et al. (2016); 
Buddhavarapu (2016) 

Random parameters tobit model Anastasopoulos et al. (2012) 

Random parameters generalized count 
models 

Castro et al. (2012); Narayanamoorthy et al. (2013); Bhat 
et al. (2014a) 

Latent-class (finite mixture) models Park and Lord (2009); Park et al. (2010); Peng and Lord 
(2011); Zou et al. (2013); Zou et al. (2014); Yasmin et al. 
(2014); Buddhavarapu (2016) 

Markov switching count models Malyshkina et al. (2009); Malyshkina and Mannering 
(2010a) 

Bivariate/multivariate models with random 
parameters 

Dong et al. (2014); Barua et al. (2016) 

a It is important to mention here that the various models listed in this table (to address unobserved heterogeneity) often 
do not lend themselves to direct conventional statistical comparison (for example, random parameters and latent class 
approaches cannot be directly compared with a conventional method such as a likelihood ratio test). 

b There has been an abundance of work that has addressed spatial and temporal unobserved heterogeneity and random 
effects (as a special restrictive case of the random parameters formulation where only the constant term varies across 
alternatives). These include the studies of Shankar et al. (1998); Miaou and Lord (2003); Flahaut et al. (2003); MacNab 
(2004); Miaou et al. (2003); Miaou et al. (2005); Wang and Abdel-Aty (2006); Aguero-Valverde and Jovanis (2006); 
Kim et al. (2007); Aguero-Valverde and Jovanis (2008); Li et al. (2008); Sittikariya and Shankar (2009); Guo et al. 
(2010); Aguero-Valverde and Jovanis (2010); Ahmed et al. (2011); Usman et al. (2012); Mitra and Washington (2012); 
Yu et al. (2013); Deublein et al. (2013); Yu and Abdel-Aty (2013); Aguero-Valverde (2013); Mohammadi and 
Samaranayake (2014); and Xie et al. (2014). 
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Table 3. Summary of research accounting for unobserved heterogeneity in the analysis of accident 
injury-severity data.a 
 

Methodological Approach Previous Research 

Random parameters multinomial logit 
(mixed logit model) 

Milton et al. (2008); Kim et al. (2008); Kim et al. (2010); 
Malyshkina and Mannering (2010b); Kim et al. (2010); 
Altwaijri et al. (2011); Anastasopoulos and Mannering 
(2011); Moore et al. (2011); Ye and Lord (2011); Morgan 
and Mannering (2011); Chiou et al. (2013b); Kim et al. 
(2013); Aziz et al. (2013); Abbey (2013); Manner and 
Wunsch-Ziegler (2013); Yasmin and Eluru (2013); Ye and 
Lord (2014); Cerwick et al. (2014); Behnood and Mannering 
(2015); Behnood and Mannering (2016) 

Random parameters ordered probability 
models 

Eluru and Bhat (2007); Eluru et al. (2008); Zoi et al. (2010); 
Paleti et al. (2010); Xiong and Mannering (2013); Xiong et 
al. (2014); Yasmin et al. (2015); Eluru and Yasmin (2015)  

Latent-class (finite mixture) models Xie et al. (2012); Eluru et al. (2012); Xiong and Mannering 
(2013); Xiong et al. (2013); Yasmin et al. (2013); Yasmin et 
al. (2014); Cerwick et al. (2014); Shaheed and Gkritza 
(2014); Behnood et al. (2014); Behnood and Mannering 
(2016) 

Latent-class models with random 
parameters within class 

Xiong and Mannering (2013) 

Markov switching models Malyshkina and Mannering (2009); Xiong et al. (2014) 

Markov switching with random parameters Xiong et al. (2014) 

Bivariate/multivariate models with random 
parameters 

Abay et al., 2013, Russo et al. (2014) 

a It is important to mention here that the various models listed in this table (to address unobserved heterogeneity) often 
do not lend themselves to direct conventional statistical comparison (for example, random parameters and latent class 
approaches cannot be directly compared with a conventional method such as a likelihood ratio test). 
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Table 4. Summary of unobserved heterogeneity modeling approaches 

Methodological Approach Advantages Disadvantages 

Random parameters  Accounts for heterogeneity across individual 
observations or analyst specified groups of 
observations 

 Analyst must make a parametric assumption 
relating to the distribution of heterogeneity 
across observations 

 Does not address possible temporal heterogeneity 

 Can pose convergence problems in the presence 
of some indicator (zero or one) variables 

Latent-class (finite mixture) 
models 

 Accounts for the possibility of common 
parameters among unobserved groups (classes) 
of observations 

 Does not require a parametric assumption 
relating to the distribution of unobserved 
heterogeneity in the data 

 Can be difficult to extend beyond a few latent 
classes 

 Class membership specifications can be 
simplistic with few explanatory variables, 
providing little insight into class distinctions  

 Does not address possible heterogeneity within 
identified data classes 

Latent-class models with 
random parameters within class 

 Gives the advantage of both the semi-parametric 
latent classes and fully parametric random 
parameters 

 Estimation can be cumbersome 

 Does not address possible temporal heterogeneity

Markov switching models  Multi-state approach can account for time-
varying heterogeneity 

 Limited in accounting for heterogeneity across 
observations 

 Difficult to extend beyond two states 

 Restrictions may apply on state transition 
probabilities 

Markov switching models with 
random parameters/latent 
classes 

 Extremely flexible approach for accounting for 
unobserved heterogeneity 

 Very complex estimation process 

 Difficult to extend beyond two states 

 Restrictions may need to be placed on state 
transition probabilities 

 


