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ABSTRACT     
Travel model systems often adopt a single decision structure that links several activity-travel 
choices together. The single decision structure is then used to predict activity-travel choices, with 
those downstream in the decision-making chain influenced by those upstream in the sequence. The 
adoption of a singular sequential causal structure to depict relationships among activity-travel 
choices in travel demand model systems ignores the possibility that some choices are made jointly 
as a bundle as well as the possible presence of structural heterogeneity in the population with 
respect to decision-making processes. As different segments in the population may adopt and 
follow different causal decision-making mechanisms when making selected choices jointly, it 
would be of value to develop simultaneous equations model systems relating multiple endogenous 
choice variables that are able to identify population subgroups following alternative causal 
decision structures. Because the segments are not known a priori, they are considered latent and 
determined endogenously within a joint modeling framework proposed in this paper. The 
methodology is applied to a national mobility survey data set to identify population segments that 
follow different causal structures relating residential location choice, vehicle ownership, and car-
share and mobility service usage. It is found that the model revealing three distinct latent segments 
best describes the data, confirming the efficacy of the modeling approach and the existence of 
structural heterogeneity in decision-making in the population. Future versions of activity-travel 
model systems should strive to incorporate such structural heterogeneity to better reflect varying 
decision processes across population subgroups.   
    
Keywords: causal relationships, structural heterogeneity, simultaneous equations models, latent 
segmentation, joint estimation, vehicle ownership, residential location choice, mobility service 
usage.   
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1. INTRODUCTION 
The presence of heterogeneity in people’s activity-travel choice behavior is widely recognized in 
travel demand modeling systems (Krizek and Waddell, 2002; Johansson et al., 2006; Lavieri et al., 
2017). As people differ with respect to their tastes, preferences, priorities, perceptions, and 
attitudes/values, it is not surprising that travel model systems have increasingly moved towards 
explicitly capturing such heterogeneity. In particular, model systems attempt to account for 
observed heterogeneity by defining market segments using a number of observed socio-economic 
and demographic variables. Variables such as income, vehicle ownership, household structure and 
composition, employment status, and age are often used to define segments; separate choice 
models are then estimated for different segments to reflect the fact that sensitivity to different 
variables (say, travel time in a mode choice model) may vary across segments (Yarlagadda and  
Srinivasan, 2008; Silva et al., 2012). More recently, advanced discrete choice modeling methods 
have incorporated randomness in coefficient effects, thus capturing population variance in 
sensitivity (taste variations) to selected variables (e.g., Bhat et al., 2016a). Further advances in 
econometric approaches to travel behavior analysis have provided the ability to also account for 
unobserved heterogeneity that may arise due to differences among people with respect to 
unmeasured attributes, such as attitudes, values, and lifestyle preferences (Bhat, 2015). These 
methods often employ flexible, heteroskedastic, and correlated error structures to account for 
unobserved heterogeneity in behavior.  

While these advances have greatly aided in reflecting behavioral heterogeneity in travel 
demand model systems, there is a more fundamental structural heterogeneity in activity-travel 
behavior that continues to be ignored in operational activity-travel model systems despite the 
recognition of its existence (Pendyala, 1998; Waddell et al., 2007). While current methods reflect 
heterogeneity in tastes and preferences in relation to specific variables, they do not account for 
heterogeneity or jointness in structural relationships among multiple dependent (choice) variables 
of interest. In other words, current model systems assume that the same sequential causal structure 
among choice variables applies to all, only allowing model parameters on specific variables to 
vary across population segments. The structural or causal relationships embedded within the 
activity-travel model systems are assumed to hold true for everybody, and are often established on 
the basis of intuition, empirical observation, or computational feasibility considerations. Even in 
the context of traditional four-step travel demand models, the structure in which destination choice 
(trip distribution) precedes mode choice is widely used in practice and applied to an entire region 
– although there may be segments of the population for whom mode choice influences destination 
choice or the two choices are made jointly as a bundle. 

Thus, the motivation for this study stems from the desire to examine the recursive causal 
effects in a joint model with multiple limited-dependent endogenous variables. The modeling 
effort in this paper recognizes jointness in multiple choice variables due to unobserved factors that 
influence multiple choice dimensions at once, while also considering population heterogeneity in 
the directionality of the recursive causal effects among a multitude of endogenous variables of 
interest. This paper aims to make a significant contribution to the field by considering jointness in 
decision-making and recognizing that different segments of the population may be choosing a 
lifestyle bundle (of mobility options) using different underlying recursive causal structures.     

The importance of recognizing and accounting for the presence of structural or causal 
heterogeneity in the population is becoming increasingly apparent as emerging transportation 
technologies, the sharing economy, and mobility-on-demand services gain footholds in the 
transportation landscape. In addition, some suggest that there is a generational shift (particularly 
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among millennials) in preferences and attitudes that is fundamentally re-shaping how different 
segments make choices related to where they live and work, how – and how much – they travel, 
and how and with whom they spend time engaging in different activities (Garikapati et al., 2016). 
If travel demand model systems are to accurately forecast adoption and usage of autonomous 
vehicles, mobility-on-demand services, and shared vehicular systems (besides all of the other 
activity-travel choices), then alternative structural relationships that govern choice behaviors and 
jointness in decision-making need to be appropriately reflected for different segments in the 
population.  

This paper offers a methodology for identifying and reflecting different causal structures 
among multiple endogenous variables of interest that may be prevalent in a population. Because 
the choice variables of interest are discrete in nature, two-way causal relationships cannot be 
estimated (due to identification and logical inconsistency issues). Yet, the choice between 
alternative one-way relationships is rather arbitrary, thus calling for the adoption of a latent 
segmentation approach that can endogenously identify subgroups in the population that follow 
different decision structures while also accommodating jointness that may exist in the decision-
making process. Although the alternative causal structures that represent different decision-
making mechanisms can be specified a priori, group membership is unknown. The analyst does 
not know the decision-making structure that applies to various agents in the population, thus 
rendering segments latent or unobserved. In this paper, a latent segmentation modeling approach 
is proposed to probabilistically associate behavioral units (agents) to the causal structure that best 
fits or describes their behavior. The methodology offers the ability to identify and define segments 
in the population that follow alternative decision structures, and subsequently model their behavior 
appropriately in travel demand forecasting systems. In this paper, latent segments that follow 
different decision structures are identified in the context of three key choice variables of interest: 
residential location (area type) choice, vehicle ownership, and extent of usage of car-share and 
mobility-on-demand services. Data from a national mobility attitudes survey conducted in 2014 is 
used to estimate the model system and demonstrate the efficacy of the modeling methodology. 

The remainder of this paper is organized as follows. The next section provides a discussion 
of structural heterogeneity in activity-travel behaviors. The third section presents a data 
description, the fourth section offers an overview of the methodology, and the fifth section 
describes model estimation results. The sixth and final section provides a discussion of the 
disparate latent segments together with concluding thoughts.           
 
2. STRUCTURAL HETEROGENEITY IN RELATIONSHIPS AMONG CHOICES 
A number of studies have attempted to unravel causal relationships among multiple endogenous 
variables (e.g., Bagley and Mokhtarian, 2002; Ye et al., 2007; Bhat et al., 2016b; Mishra et al., 
2017). In most, if not all, of these studies, empirical data sets are used to estimate alternative causal 
structures and the specification that offers the best statistical fit is considered the dominant 
decision-making pattern prevailing in the population, although the existence of plausible 
alternative structures is readily acknowledged (e.g., Ye et al., 2007). In some instances, a two-way 
or bi-directional causal relationship may exist among dependent variables of interest. This has led 
to the estimation of structural equations models that are capable of capturing such multi-way 
relationships (e.g., Cao et al., 2007; Lu and Pas, 1999; Golob, 2000); appropriate restrictions may 
be imposed to ensure that the parameters in the model system are identified (i.e., can be estimated).  

Simultaneous equations models often include error covariance structures that account for 
the presence of correlated unobserved attributes that affect multiple endogenous variables. 
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However, model systems depicting bi-directional causal relationships between dependent 
variables can only be estimated when all endogenous variables are continuous (Pendyala and Bhat, 
2004). In situations where one or more of the endogenous variables is a discrete nominal, ordinal, 
or count variable, simultaneous equations model systems reflecting bi-directional causal relations 
are not logically consistent. To be logically consistent, restrictions that render the model systems 
recursive in structure must be imposed. In other words, simultaneous equation model systems that 
include non-continuous endogenous variables must be specified such that there is a recursive 
decision structure implied by the model system (Maddala, 1983). This has inevitably led to 
comparing alternative model structures with respect to goodness-of-fit measures and then using 
the one with the best fit as the single structure driving travel demand forecasts (Ye et al., 2007). 
As mentioned earlier, this ignores the existence of multiple plausible decision-making mechanisms 
that may be driving travel choices in the population.   

In this paper, a latent segmentation-based approach is adopted to accommodate the 
possibility that multiple decision structures may be prevalent in a population and to identify the 
population subgroups that follow each of the structures. Earlier work (Waddell et al., 2007) 
utilizing this approach examined the relationship between residential location choice and work 
location choice. It was posited that some may choose work location based on residential location 
while others may choose residential location based on work location. A latent segmentation 
approach was adopted to identify the prevalence of these causal structures in the population and 
identify the subgroups associated with each structure. However, in that study, the choice variable 
that appeared first in the decision hierarchy was treated as an exogenous or independent variable 
rather than an endogenous variable. In other words, each causal structure was depicted, for 
simplicity, as a single equation with one of the two choices appearing as an exogenous variable in 
the equation predicting the other choice. In this study, all choice variables are treated as 
endogenous variables, including the one that is not influenced by any of the other endogenous 
variables. Thus, the proposed model in this paper constitutes a true simultaneous equations model 
system that accounts for error covariances and reveals latent segments in the population following 
alternative decision-making structures. 

More recently, Angueira et al. (2017) adopted a latent segmentation-based modeling 
approach to study the two-way relationship between vehicle type choice and daily distance traveled 
using a discrete-continuous joint modeling framework. They report that the structure where vehicle 
type choice influences daily distance traveled explains the vehicle usage patterns of 89 percent of 
the individuals in the data set used for model estimation, leaving a minor but non-negligible portion 
(11 percent) of the sample’s vehicle usage behavior explained by the alternate causal structure 
(where distance traveled influences vehicle type choice).  

The empirical context considered in this paper includes three choice variables of interest: 
residential location (area type) choice, vehicle ownership choice, and frequency of mobility service 
usage. All three variables are treated as multinomial discrete choice variables, thus necessitating 
the use of recursive structures to depict relationships among them. In recent work, Mishra et al. 
(2017) analyzed the two-way relationship between vehicle ownership and frequency of car share 
usage using a structural equations modeling approach. Their model specification treated both 
endogenous variables as continuous variables, thus enabling the estimation of the bi-directional 
causal relationship. As a significant extension to that work, this paper adds a third choice 
dimension (residential location choice) and treats all endogenous variables as multinomial discrete 
choices. The latent segmentation based approach allows the identification of population subgroups 
that follow each of the different decision structures. 
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Our study attempts to unravel the presence of alternative causal relationships among the 
three endogenous choice variables of interest using a cross-sectional survey data set that provides 
measurements only at one point in time. However, the notion of causality is often associated with 
observations of change in behavior over time, followed by an attribution of those changes to 
temporal changes in exogenous variables that may have contributed to the temporal behavior 
changes. Longitudinal data that tracks behaviors and exogenous factors over a period of time is 
needed to identify such cause-and-effect relationships – where a behavior change precedes or 
occurs subsequent to a change in exogenous (or other endogenous) variables. In using a regular 
cross-sectional data set to identify alternative plausible causal structures prevalent in the 
population, this study focuses on the notion of contemporaneous causation. In other words, the 
modeling effort is applicable to situations where individuals are making choices at a specific point 
in time based on the context, situation, and circumstances that prevail at that instant in time. In our 
empirical context, while it may seem that the time-scales of residential location choice and vehicle 
ownership choice are different from the time-scale corresponding to the choice of the daily or 
weekly use of shared mobility services, we posit that these time-scales correspond more to the 
window in which a prior joint choice made for these three decisions is exercised, but that the three 
choices themselves define a mobility lifestyle choice bundle determined by the individual jointly 
and contemporaneously. In other words, an individual is determining the kind of lifestyle that he 
or she would like to lead, and that entails making choices about these three aspects simultaneously. 
There is no temporal lag in the choice of these three entities, and hence longitudinal data is not 
needed to identify the causal relationships that exist among these choice dimensions. For example, 
an individual may choose to live a car-free lifestyle in a dense multimodal urban environment and 
use ride-hailing services when needed, as a lifestyle (mobility bundle) choice. The choice 
dimensions are therefore modeled simultaneously while recognizing endogeneity that arises from 
the presence of error covariances due to common unobserved attributes that simultaneously affect 
all three dependent variables of interest. The relationships depicted in the causal structures do not 
constitute a sequential decision-making process; rather they depict a contemporaneous decision-
making process of a lifestyle bundle, albeit with distinct relationships among the choice 
dimensions. In other words, even within a contemporaneous causal context, it is entirely plausible 
to recognize the presence of different causal structures that lead to the chosen lifestyle bundle.   

In summary, this study treats mobility choices as the elements of a lifestyle, with 
individuals exercising choices about residential location, vehicle ownership, and ride-hailing 
service use as a joint and collective bundle. However, within this contemporaneous causation 
framework, there may be alternative decision structures in terms of how the different dimensions 
influence one another. Recognizing that there may be alternative decision structures adopted by 
different segments in the population, this study aims to utilize the latent segmentation approach to 
tease out and identify the latent market segments and the different causal decision structures that 
they follow. 

    
3. DATA AND SAMPLE DESCRIPTION 
The data for this study is derived from the 2014 Who’s On Board Mobility Attitudes Survey, an 
online survey conducted by Resource Systems Group, Inc. (Transit Center, 2017) in 46 
metropolitan areas across the country. A total of 11,842 individuals responded to the survey; after 
removing observations with extensive missing data, there were 11,428 observations remaining in 
the data set. Table 1 shows the socio-economic and demographic characteristics of the sample. In 
general, the sample shows a reasonable distribution of various characteristics. Among person 
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characteristics, the sample has a slightly larger proportion of females and a mix of different 
generations represented -- with millennials and baby boomers exhibiting larger shares, consistent 
with their prevalence in the general population.   
 
TABLE 1  Socio-Economic and Demographic Characteristics of the Sample 

Person Characteristics (N=11,275) Household Characteristics (N=11,275) 
Variable Value Variable Value 
Gender 

% Female 
 
53.6% 

Annual Household Income  
< $25K 10.7% 

Age Group 
Millennials (1980-1996) 
Generation X (1965-1979) 
Baby Boomers (1946-1964) 
Silent Generation (before 1946) 

 
36.9% 
13.8% 
38.8% 
10.5% 

$25K to < $35K   9.8% 
$35K to < $50K 14.2% 
$50K to < $75K 23.1% 
$75K to <$100K 18.4% 
$100K or more 23.8% 

Educational Attainment 
High School or Less 
Some College 
College Graduate 
Any Graduate School 

 
17.2% 
31.5% 
33.7% 
17.6% 

Presence of Children  
Child 0-4 years old 7.6% 
Child 5-15 years old 10.4% 

Geographical Region  
Northeast 15.4% 

Race/Ethnicity 
White 
Hispanic 
Other race/ethnicity 

 
84.7% 
  7.8% 
  7.5% 

South 19.9% 
      West/Southwest 19.7% 

West Coast 21.0% 
Midwest 24.0% 

Employment Status 
Full-time Employed 
Part-time Employed 
Not Employed 

 
38.7% 
12.3% 
51.0% 

Transit Richness  
      Transit Deficient City 39.8% 

Transit Progressive City 60.2% 
Residential Location Type   

Transit Use Frequency 
Frequent: ≥ Once per Week 
Infrequent: < Once per Week 
Never 

 
13.6% 
26.9% 
59.5% 

      Urban Mix/Residential 24.0% 
Suburban/Small Town Mix 32.3% 
Suburban/Small Town Residential 43.7% 

Vehicle Availability  
Time Spent Online 

Always Online (>8 hours/day) 
Often Online (4-8 hours/day) 
Sometimes Online (<4 hours/day) 

 
17.2% 
33.0% 
49.8% 

      Zero-vehicle or Vehicle-Deficient 13.4% 
Vehicle Sufficient 86.6% 

Note: 153 individuals residing in households with 
no drivers and no workers were removed from the 
sample. Shared Mobility Services refer to car-
share service and taxi-car (e.g., Uber/Lyft) 
services. 

Use of Shared Mobility Services 
Frequent (Multiple Times per Week) 
Rare (Sometimes per Year) 
Never 

 
13.7% 
25.3% 
61.0% 

 
About one-half of the sample is not employed and a large majority are white and non-

Hispanic. Nearly 60 percent of the sample indicated that they never use transit services and nearly 
one-half of the sample spends less than four hours per day online. Among household 
characteristics, nearly 24 percent earn $100,000 or more per year, indicating a high level of income 
among respondent households. Only 10 percent of respondents indicated that they resided in a 
household with a child between the ages of 5 and 15 years. Households are drawn from across the 
country and most respondents (60 percent) indicate that they reside in transit-progressive cities.  
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Three dependent variables are considered in this study. Residential location is categorized 
based on area type, with 43.7 percent of respondents indicating that they reside in suburban or 
small town residential neighborhoods. Another 32.3 percent of respondents reside in mixed 
neighborhoods in suburban or small town areas, while the remaining 24 percent are urban 
dwellers (mixed or purely residential neighborhoods). Vehicle availability is defined as the ratio 
of number of vehicles to number of workers (if number of workers is equal to zero, then number 
of drivers is used instead; 153 individuals residing in households with no workers and no drivers 
were excluded from the analysis). Due to the extremely small number of individuals in zero-
vehicle households, they had to be combined with individuals in vehicle-deficient households (less 
than one vehicle per worker or driver). The vast majority (86.6 percent) reside in households that 
are vehicle sufficient, i.e., there is at least one vehicle for every worker or driver. Finally, frequency 
of usage of shared mobility services depicts a distribution in which a majority (60 percent) never 
use car-share or taxi-car services. About one-quarter of respondents are occasional users while 
13.7 percent are reasonably frequent users of such services.   

In summary, the three dependent variables comprise a three-category residential location 
type choice (RLC), a binary vehicle availability choice (VEH), and a three-category shared 
mobility usage choice (SVC). These three variables may be related in six possible different 
recursive causal structures. While all six causal structures are plausible, the two structures in which 
shared mobility usage affects the other two endogenous choice variables are excluded from 
consideration in this paper. Although the causal decision processes in which ride-hailing service 
usage drives residential location and vehicle ownership choices are not completely unreasonable 
(and there is anecdotal evidence that the availability of and proclivity to use ride-hailing services 
is motivating certain residential location and vehicle ownership choices), it is rather unlikely that 
these types of decision structures are prevalent in the population to any substantial degree. In 
general, the mode share for and frequency of use of ride-hailing services is very small when 
compared with other more traditional modes of transportation, whereas if ride-hailing service 
usage were a driver of other choice dimensions (for a substantial portion of the population), then 
the mode share for this service would presumably be higher. With the passage of time and the 
maturation of these services, it is plausible that these decision processes will see greater prevalence 
– in which case the analysis would need to be revised to accommodate these two additional 
segments. However, another reason for excluding these causal structures from the analysis is the 
desire to reduce the computational complexity and burden associated with estimating latent 
segmentation models. As the number of segments increases, the computational complexity and 
burden increases as well. Inclusion of these two causal decision structures would have increased 
the number of possible segments to six, requiring additional step-wise estimation procedures. In 
the absence of any compelling evidence (in the literature) that these causal decision structures are 
prevalent to any significant degree, it was felt that these two causal decision structures could be 
eliminated from among the candidate in the interest of computational efficiency. 

The four structures considered in this paper may then be depicted as shown below.   
 
Structure 1: RLC 
  VEH  RLC 
  SVC  RLC + VEH 

Structure 3: VEH 
  RLC  VEH 
  SVC  RLC + VEH 

Structure 2: RLC 
  SVC  RLC 
  VEH  RLC + SVC 

Structure 4: VEH 
  SVC  VEH 
  RLC  VEH + SVC 



7 

 
The four structures have reasonably intuitive interpretations. Note that all structures represent 

joint model systems in that the three dependent variables are modeled as a choice bundle by 
appropriately considering utility error covariances among alternatives within each dimension as 
well as across dimensions. Thus, an environmentally conscious (say, an unobserved variable) 
individual may choose to live in an urban neighborhood, be car-free, and use shared mobility 
services frequently. These kinds of effects are considered in every structure, and hence all 
structures represent joint model systems in which choices are made as a package or bundle. The 
directionality of effects being tested correspond to those within the joint package, with all three 
variables being considered as endogenous variables. Thus, the first structure should not necessarily 
be misconstrued as a system in which residential choice (RLC) is determined first, then vehicle 
availability (VEH) is determined second, and finally shared mobility usage (SVC) is determined 
last. Rather, the system should be viewed as representing a choice bundle in which, in addition to 
(i.e., after controlling for) the error covariations across the many dimensions, RLC impacts VEH, 
and both impact SVC. The same holds for all other structures. In this paper, the terms “recursive” 
and “causal” are used to refer to these directional effects within a joint model, and should not be 
confused with the term “sequential” that has a connotation of one choice completely preceding the 
other. Models representing sequential decision-making structures do not account for error 
covariances that reflect the presence of common unobserved attributes that simultaneously affect 
multiple choice dimensions. Moreover, such sequential model systems are estimated one equation 
or choice dimension at a time. Thus, sequential model structures may be considered a special case 
of the more general simultaneous equations modeling approach adopted in this paper. Regardless 
of the desire to model multiple behavioral choices simultaneously or sequentially, the latent 
segmentation approach presented in this paper offers insights on the prevalence of multiple 
decision structures in the population of interest. 

 In this paper, the behavioral unit of analysis is the person. The survey data set comprises 
cases where only one (random) individual in a household participated in and responded to the 
survey. So, the data set does not include responses from multiple individuals in the same 
household.  As such, the unit of analysis is the person, and the model may be considered a person-
level model. While vehicle ownership and residential location largely constitute household-level 
choices, and ride-hailing service usage is largely an individual person-level choice, these choices 
are all considered as elements of an individual’s mobility lifestyle bundle. This is consistent with 
the notion that person-level choices are made within a larger and broader household context, with 
persons in the household interacting and negotiating with one another to make household level 
choices. In other words, household level choices are nothing but a reflection of the collective 
desires (and compromises and trade-offs) of individuals that reside in the household. So, if a 
household has chosen to reside in a dense urban built environment, then it may be surmised that 
all of the persons (adults) residing in the household have made that choice. In summary, the 
modeling exercise presented in this paper uses the individual as the behavioral unit of analysis, 
with the explicit recognition that household level choices are nothing but manifestations of the 
collective decisions of individuals within the household.   
 
4. MODELING METHODOLOGY 
This section presents a detailed description of the model formulation adopted in this paper. 
Consider an individual q (q=1, 2, 3,…, Q) facing a multi-dimensional array of nominal (unordered-
response) choices. Let the cardinality of the multi-dimensional array be G (that is, there are G 
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nominal (unordered-response) variables in the choice space), and let g be the index for the nominal 
variables (g = 1, 2, 3,…, G). In the empirical context of the current paper, G=3 (the nominal 
variables are residential location, vehicle availability, and extent of use of car-share service and 
taxi-car service). Also, let  Ig (Ig 2) be the number of alternatives corresponding to the gth nominal 
variable and let ig be the corresponding index (ig = 1, 2, 3,…, Ig). Using a typical utility maximizing 
framework for the nominal variables, the utility for alternative ig for the gth nominal variable, given 
that individual q belongs to segment h, can be written as:  

| (individual   segment ) ,
g g g gqhgi qgi hg qgi qhgiU U q h    β x  (1) 

where 
gqgix  is a (Kg×1)-column vector of exogenous attributes as well as possibly the observed 

values of other endogenous nominal variables (introduced as dummy variables). hgβ  is a (Kg×1)-

column vector of corresponding coefficients. Note that some elements of  hgβ  can be zero for some 

of the exogenous variables, indicating that the corresponding exogenous variables do not impact 
choice-making in segment h. Further, because latent segmentation is used as a way to introduce, 
across the segments, heterogeneity in the recursive effects among the endogenous variables, hgβ

will necessarily be zero on some of the endogenous variables within each segment.  
 For example, assume that the first latent segment corresponds to the situation where vehicle 
availability impacts the extent of use of car-share services, but not the other way around. And let 
the second latent segment correspond to the reverse situation where the extent of use of car-share 
services impacts vehicle availability (ownership). Then, in the first segment, the elements of hgβ  

corresponding to the vehicle availability dummy variables in the car-share alternative utilities will 
be non-zero, while, in the second segment, these same elements will be zero. 

gqhgi  in Equation 1 

is a segment-specific normal scalar error term. Let the variance-covariance matrix of the vertically 
stacked vector of errors ]) ..., , ,[( 21 

gqhgIqhgqhgqhg ε  be hgΛ . The size of qhgε  is ),1( gI  and the 

size of hgΛ is ).( gg II  The model above may be written in a more compact form by defining the 

following vectors and matrices: 1 2( , ,..., )
gqhg qhg qhg qhgIU U U U  1( gI  vector), 

),...,,,( 321


gqgIqgqgqgqg xxxxx gg KI (  matrix), and hgqgqhg βxV   1( gI  vector). Then, 

),(~ hgghgIqhg g
MVN ΛVU , where ),( hgqhgI g

MVN ΛV  is the multivariate normal distribution with 

mean vector qhgV  and covariance .hgΛ  For later use, define the stacked 1G


vectors: 

  qhGqhqhqh UUUU  ,...,, 21 ,  

  qhGqhqhqh VVVV , ,..., 21 , and   

  ,,...,, 21
 qhGqhqhqh εεεε   

where 



G

g
gIG

1


. Consider now that the individual q chooses alternative qgm  for the gth nominal 

variable. Under the utility maximization paradigm, given that hq segment   , ( )
g qgqhgi qhgmU U  

must be less than zero for all qgg mi  , since the individual chose alternative qgm . Let 
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 * ( )
g qg g qgqhgi m qhgi qhgm g qgu U U i m   ,  and stack the latent utility differentials into an ]1)1[( gI  

vector  * * *
1 2, ,..., ,

qg qg g qgqhg qhg m qhg m qhgI m g qgu u u i m
 

  
 

*u .  

Define 



G

g
gIG

1

)1(
~

. Further, let 

 2 1 3 1 1, ,..., [( 1) 1)
gqhg qhg qhg qhg qhg qhgI qhg gU U U U U U I


     *u vector], 

1 2, ,...,qh qh qh qhG

                
   * * * *u u u u )1

~
[( G vector],  and  

1 2, ,...,qh qh qh qhG

                
* * * *u u u u  )1

~
[( G vector]   

(so qh

*u  is the vector of utility differences taken with respect to the first alternative for each nominal 

variable, while qh
*u  is the vector of utility differences taken with respect to the chosen alternative 

for each nominal variable). Now, for any nominal variable, the full covariance matrix hgΛ  of the 

original error terms in the utilities is not identifiable.  
One approach to estimation, typically used in univariate multinomial probit models, is to 

take the difference of the utilities with respect to the first alternative, and estimate the covariance 
matrix of these differenced utilities after scaling the first diagonal term to zero. However, in the 
proposed estimation procedure, what is needed is the covariance matrix of the differenced utilities 
with respect to the chosen alternative. And it should be guaranteed that there is consistency 
between the above two differenced covariance matrices. The approach to do so is discussed in 
detail in Bhat (2015). Basically, it is necessary to ensure that the estimable covariance matrix of 

qh

*u  is consistent with the covariance matrix of qh
*u  used in estimation. This needs some additional 

notation and discussion, which are omitted in the interest of brevity. Essentially, it is possible to 
construct an estimable covariance matrix *Ωh  associated with the undifferenced utilities qhU , but 

in which only 












G

g

gg II

1

1
2

)1(*
 elements are identified (see Bhat, 2015).  

Let hθ  be the collection of parameters to be estimated within segment h: 

, ])(Vech ; ,...,[ 1
 *Ω hhGhh ββθ  where Vech( *Ω h ) represents the vector of upper triangle elements 

of the non-zero and non-fixed elements of .*Ω h  Construct a contrast matrix qM  that allows the 

translation of the mean and covariance of qhU  into the mean and covariance of qh
*u , as discussed 

in Bhat (2015). Then the likelihood function for the individual q given that he/she belongs to 
segment h may be written as: 

 qhqqhqGhq FhqL MΩMM *  ,)segment(|)( ~ Vθ , (2) 

where (.,.)~
G

F is the 

















 



G

g
gIG

1

)1(
~

-dimensional normal cumulative distribution function.  
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Of course, the actual assignment of individual q to a specific segment is not observed, but 
it is possible to attribute a probability ),,2 ,1( Hhqh   to individual q belonging to segment h. 

The conditions that 10  qh  and 1
1




H

h
qh  must be met. To enforce these restrictions, following 

Bhat (1997), the following logit link function is used: 







 H

j
qj

qh
qh

1

)exp(

)exp(

wμ

wμ
 ,   (3) 

where qw  is a vector of individual exogenous variables, and 01μ  serves as a vector 

identification condition ( hμ  for h = 2, 3,…, H is a vector of coefficients on qw  determining the 

probabilistic assignment of individuals to segments).  
Defining , ],...,;,...,[ 11  HH μμθθθ  then the likelihood function for individual q is: 

 , )segment|)()(
1

hqLL hqqh

H

h
q  



θθ    (4) 

and the likelihood function is then given as: 

. )()( 
q

qLL θθ    (5) 

Typical simulation-based methods to approximate the multivariate normal cumulative 
distribution function in Equation 2 can become inaccurate and time-consuming. As an alternative, 
the Maximum Approximate Composite Marginal Likelihood (MACML) approach (Bhat, 2011) is 
used, in which the multiple integrals are evaluated using a fast analytic approximation method. 
The MACML estimator is based solely on univariate and bivariate cumulative normal distribution 
evaluations, regardless of the dimensionality of integration, which considerably reduces 
computation time compared to other simulation techniques used to evaluate multidimensional 
integrals. 
 
5. MODEL ESTIMATION RESULTS 
The estimation of model systems that incorporate latent segments can prove to be challenging. To 
estimate models in this study, starting values for parameter estimates were first obtained by 
estimating the four different causal structures separately and independently on the sample data set. 
In other words, four different model systems – each corresponding to a different recursive structure 
– were first estimated with no latent segmentation. The model development and estimation process 
then proceeds sequentially, starting with a two-segment model. The starting values for each of the 
two segments are those derived from the separate model estimations. After the two-segment model 
is estimated, the three-segment and four-segment models are estimated. In each instance, 
parameter estimates from the separate model estimations are used as starting values. By estimating 
models with increasing numbers of segments, it is possible to perform a comparative evaluation 
of model fit and determine the number of segments that best describes behavioral patterns in the 
data. The evaluation of model fit was done using the Bayesian Information Criterion (BIC): 

)ln(5.0)(BIC QRLL  θ  (6) 

The first term on the right side is the negative of the log-likelihood value at convergence; 
R is the number of parameters estimated and Q is the number of observations (see Allenby, 1990; 



11 

Bhat, 1997). As the number of segments, H, increases, the BIC value keeps declining until a point 
is reached where an increase in H results in an increase in the BIC value. Estimation is terminated 
at this point and the number of segments corresponding to the lowest value of BIC is considered 
the appropriate number for H that best describes prevalent causal structures in the data. Based on 
the Bayesian Information Criterion (BIC), the three-segment model is found to offer the best fit. 
For this model, the log-likelihood value at convergence is -73,275.5 and, with 261 parameters, the 
BIC is 74,494.9; the corresponding values for the model with one segment, two segments, and four 
segments are 74,781.8, 74,585.4, and 74,512.1, respectively, indicating that the three-segment 
model provides a statistically significant improvement over model specifications with alternative 
numbers of latent segments.  Even though four structures were considered plausible, inclusion of 
the fourth segment reduced statistical fit; moreover, the expected number of cases in this segment 
comprised only a small fraction (less than five percent) of the sample. For these reasons, the three-
segment model was considered appropriate and the remainder of this section is devoted to a 
presentation of this model. The estimation results for the three-segment model are presented in 
Tables 2 through 6. Table 2 presents the results of the logit link function characterizing the 
probabilistic assignment of individuals to segments (see discussion in Section 5.1). Tables 3 
through 5 present the estimates of the independent variable effects and endogenous effects for the 
multi-dimensional array of endogenous choices, each table corresponding to the results for a 
specific segment (see discussion in Section 5.2). Table 6 presents the estimates of the variance-
covariance matrix of the error differences for each segment (see discussion in Section 5.3) 
 
5.1 Assignment of individuals to latent segments  
The model estimation results presented in Table 2 correspond to Equation (3) presented in the 
modeling methodology section. The key finding is that the first segment has a majority (expected) 
share of the cases (53.7 percent), as shown at the bottom of the table, which corresponds to a causal 
structure in which residential location choice affects vehicle availability, and both affect shared 
mobility service use. This is clearly the predominant pattern among the causal relationships that 
exist in the sample, and is actually quite consistent with travel demand model structures currently 
in use (although it should be noted that typical travel demand model structures represent this causal 
structure in a sequential paradigm, as opposed to within a joint system). In many travel models, 
land use choices (such as residential and workplace location choice) are treated as long term 
choices; these location choices influence more medium-term choices such as vehicle ownership 
and availability; and finally, location choices (built environment attributes) and vehicle availability 
influence short-term mode use choices (shared mobility service may be considered a mode). 

At the same time, the results show that there is considerable structural heterogeneity in the 
sample. It is found that the second segment accounts for an expected share of 12.3 percent of the 
sample, while a full third (34 percent) of the sample is expected to fall in the third segment. In 
other words, 46.3 percent of the sample does not follow the predominant causal structure. 
Assuming that the same causal structure applies to all individuals in the sample is clearly invalid 
and would lead to erroneous travel forecasts and inferences of policy impacts. The segmentation 
model shows that baby boomers are more likely to belong to the third segment, while the silent 
generation is more likely to belong to the first segment. Frequent transit users are more likely to 
belong to the second segment. A few geographic differences are discernible, with those in the 
northeast and south more likely to associate with the second and third segments. The bottom half 
of Table 2 provides additional insights into the composition of each of the three segments. It can 
be seen from the right half of the table that the majority of individuals in every demographic group 
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follow the conventional (from a travel demand modeling standpoint) causal structure of residential 
location choice affecting vehicle ownership, and both impacting shared mobility service use.  
 
TABLE 2  The Latent Segmentation Model and Characterization of the Three Segments  

Segmentation Variable 
Segment 1 

(base) 
Segment 2 Segment 3 

Coeff. t-stat Coeff. t-stat 

Segment specific constant - -1.158 -21.27 -0.619 -17.34 

Age group 
Millennial/GenX (base) - - - - - 
Baby boomer - -1.178 -10.46 0.292 7.66 
Silent generation - -1.159 -5.87 -0.091 -3.21 

Transit use 
frequency 

Infrequent/non-user (base) - -  -  
Frequent transit user - 0.304 1.87 -0.789 -1.90 

Geographic 
region 

West Coast/Midwest (base) - -  -  
Northeast - 0.237 1.99 0.113 1.97 
South - 0.203 2.05 0.416 1.99 
West/Southwest - -0.214 -1.95 0.146 2.04 

Characteristics of the Three Segments 

Attribute Category 
Percent Within Segment 

Falling into Subgroup 
Percent Within Attribute 
Belonging to Segment 

Overall 
Sample

Seg 1 Seg 2 Seg 3 Seg 1 Seg 2 Seg 3  

Age group 
Millennial/Gen X 50.0 77.5 42.1 52.9 18.9 28.2 50.7% 
Baby boomer 38.2 17.2 47.6 52.8 5.5 41.7 38.8% 
Silent generation 11.8 5.3 10.3 60.3 6.3 33.4 10.5% 

Transit use 
frequency 

Infrequent or non-user 85.0 73.9 93.1 52.8 10.5 36.7 86.4% 
Frequent transit user 15.0 26.1 6.9 59.2 23.6 17.2 13.6% 

Geographic 
region 

West Coast/Midwest 47.2 44.8 41.6 56.2 12.3 31.5 45.0% 
Northeast 15.3 19.3 14.0 53.4 15.5 31.1 15.4% 
South 17.5 20.6 23.6 47.1 12.8 40.1 19.9% 
West/Southwest 20.0 15.3 20.8 54.6 9.5 35.9 19.7% 

Residential 
location 
choice 

Suburban/small town 
residential 

43.3 37.3 46.6 53.2 10.5 36.3 43.7% 

Suburban/small town mix 32.4 32.0 32.4 53.7 12.2 34.1 32.3% 
Urban mix or residential 24.3 30.8 21.0 54.4 15.8 29.8 24.0% 

Vehicle 
availability 

Vehicle sufficient hhld 86.3 83.5 88.3 53.4 11.9 34.7 86.6% 
Zero/veh deficient hhld 13.7 16.5 11.7 55.1 15.2 29.7 13.4% 

Shared 
mobility 
service use 

Non-user 60.4 53.0 64.7 53.2 10.7 36.1 61.0% 
Rare user 25.4 25.0 25.3 53.8 12.2 34.0 25.3% 
Frequent user 14.2 22.0 10.0 55.3 19.8 24.9 13.7% 

Segment size 
53.7% 
(6,131)

12.3% 
(1,410) 

34.0%
(3,887)

100.0%
(11,428)

Notes:  
 Segment 1 Causal Structure: RLC  VEH; RLC + VEH  SVC 
 Segment 2 Causal Structure: RLC  SVC; RLC + SVC  VEH 
 Segment 3 Causal Structure: VEH  RLC; RLC + VEH  SVC 

 
However, some interesting differences emerge. Millennials and GenX individuals, for 

example, show a greater inclination to be associated with the second segment than other 
generations do. Specifically, 18.9 percent of millennials belong to the second segment, while only 
5.5 percent of baby boomers and 6.3 percent of the silent generation do. In the context of a cross-



13 

sectional data set, generational cohorts may be considered synonymous with corresponding age 
groups defined by range of birth year (for each generation). However, rather than use age as the 
descriptors or labels for the different groups, generational cohort names were used to reflect the 
possibility that there may be structural differences in choice behaviors and preferences between 
the generations. As millennials age, for example, they would not adopt the coefficient of baby 
boomers; rather they would continue to retain the coefficient that is specific to their cohort – 
recognizing that their causal decision structures may be fundamentally different from those of 
other generations (McDonald, 2015).     

Similarly, 23.6 percent of frequent transit users are expected to belong to the second 
segment, but only 10.5 percent of infrequent transit users are expected to belong to this segment.  
The same can be said for other choice variables that capture more active and alternative mode 
lifestyles. For example, 15.2 percent of individuals in zero-vehicle or vehicle-deficient households 
are expected to fall into the second segment, as opposed to 11.9 percent of individuals in vehicle-
sufficient households; and 19.8 percent of frequent shared mobility service users are expected to 
belong to the second segment, which is considerably higher than the percent of infrequent users or 
non-users who are expected to fall into this segment. 
 It is encouraging that the predominant causal structure revealed by the model is that which 
is commonly adopted in travel demand forecasting models, although systems in practice are based 
on specifications that estimate the structure sequentially and ignore error covariances. Sequential 
estimation procedures often lead to incorrect (inconsistent) estimates of the impacts of one 
endogenous variable on another, as discussed later. The second most predominant structure (third 
segment) is that corresponding to a pattern where vehicle ownership impacts residential location 
choice, and both of these affect shared mobility service use.  Individuals in this segment are likely 
to be choosing residential locations that are consistent with (and dependent on) their vehicle 
ownership proclivities. In particular, those who eschew vehicles in favor of a car-free lifestyle are 
likely to choose residential locations based on that preference, and use shared mobility services as 
needed to meet daily activity-travel needs. Thus, the two predominant causal structures 
(collectively accounting for 87.7 percent of the sample) correspond to those where longer term 
choices consistent with lifestyle preferences and household needs influence a (daily) mobility 
choice.   

The second segment, which is smaller but certainly not negligible, is one in which 
residential location choice impacts shared mobility service use, and both of these affect vehicle 
ownership or availability. This segment has a higher proportion of millennials, transit users, and 
shared mobility users than other segments. It appears that these individuals choose a residential 
location type based on their socio-economic and demographic characteristics (similar to the first 
segment), but the level of vehicle ownership is mediated by their ability to use alternative 
transportation modes in the location that they choose to live. The findings suggest that these 
individuals are more inclined to use alternative modes of transportation (than those in other 
segments), and vehicle ownership levels are based on the extent to which they are able to do so. If 
interest in urban living and use of shared mobility services continues to grow over time, it is 
possible that this segment will grow in size in the future – presenting greater levels of uncertainty 
in travel forecasts.   
 
5.2 Exogenous and endogenous effects within each segment 
Tables 3 through 5 present model estimation results corresponding to exogenous as well as 
endogenous effects embedded within each causal structure. The estimation results presented in 
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these tables correspond to the formulation presented in Equation (1) in the modeling methodology 
section. In general, it is found that a number of socio-economic and demographic variables affect 
all three choice variables of interest considered in this paper, namely, residential location choice, 
vehicle availability choice, and shared mobility use. However, the effects of exogenous variables 
on the three choice variables generally do not differ across causal structures (and there is no reason 
that they should). Exogenous variable effects across all three causal structures show that older 
individuals are less likely to reside in urban and mixed land use neighborhoods, those with lower 
levels of education are more likely to be in zero-car or vehicle deficient households, and those 
belonging to minority ethnic groups are more likely to reside in urban and mixed land use 
neighborhoods and in zero-car and vehicle deficient households. However, non-white individuals 
are more likely to report shared mobility service use. Income is a significant determinant of all 
three choice variables. Clear patterns are seen in the impacts of income; as income increases, 
individuals are more likely to reside in suburban and small town residential areas as opposed to 
urban and mixed use neighborhoods, reside in households that are vehicle-sufficient, and exhibit 
higher levels of shared mobility use. Individuals in households with children are more likely to be 
in suburban and small town residential neighborhoods, and those residing in transit progressive 
cities (as defined in the study design) are more likely to exhibit lower levels of vehicle ownership.  
All of these findings are consistent with expectations. 

As expected, the frequency of transit use is strongly associated with residential location, 
vehicle ownership, and ride-hailing service use. Individuals who are frequent transit users are more 
likely to reside in urban neighborhoods and own fewer vehicles than infrequent transit users, who 
themselves are more likely to reside in urban neighborhoods and own fewer vehicles than transit 
non-users. These results may be attributable to the good transit accessibility in urban areas relative 
to non-urban areas. Interestingly, our results also show a positive effect of the frequency of transit 
use and the frequency of shared mobility service use, perhaps because of complementary effects 
in the usage of these two modes (for example, using shared mobility service to more easily access 
fixed transit routes) or because both these modes are used as alternative options to increase access 
to activities by urban dwellers with few vehicles. In the latter context, the treatment of transit use 
frequency as an exogenous variable is not ideal when modeling a bundle of mobility choices. 
Transit use frequency is a mobility choice variable and should therefore be treated as an 
endogenous variable, similar to residential location choice, vehicle ownership choice, and ride-
hailing service usage. There may be cyclic or two-way causal relationships between transit use 
frequency and other choice dimensions of the model, including vehicle ownership choice and 
residential location choice. For this study, however, transit use frequency has been treated as an 
exogenous variable to capture the association between transit use and the endogenous choice 
dimensions considered in this paper. If transit use frequency were treated as an endogenous 
variable, the study would have entailed modeling causal structures that involve four endogenous 
variables (as opposed to three). With four endogenous variables, the number of plausible causal 
structures increases quite substantially; this means that the number of possible latent segments also 
increases dramatically, resulting in considerable computational complexity and burden. To keep 
the problem size manageable, the authors limited the model to three endogenous variables.  
Residential location choice and vehicle ownership choice are classic measures of behavior of great 
interest to the profession, while the third choice (ride-hail service usage) is of considerable interest 
in the current context of emerging mobility services. Hence, these three variables were treated as 
endogenous variables and transit use frequency was considered exogenous. Moreover, transit use 
frequency may be considered to some degree as an (exogenous) indicator of transit proclivity – 
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measuring the extent to which an individual is willing to use transit, which in turn affects the 
endogenous choice dimensions of interest.   
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TABLE 3  Model Estimation Results – Segment 1 (RLC  VEH; RLC + VEH  SVC) 

Variables 

Residential location choice  
(base: suburban and small town 

residential, or rural area) 

Vehicle availability 
(base: vehicle 
sufficient HH) 

Use of car-share service and taxi-
car service  

(base: non-user) 
Suburban and 
small town mix 

Urban mix or 
residential 

Zero car or vehicle 
deficient HH 

Rare user Frequent user 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Constant -0.435 -10.52 -0.547 -5.01 -1.645 -29.18 -0.883 -35.34 -1.501 -37.10 
Individual characteristics           
   Gender (base: male)           
        Female 0.074 5.71 -- -- -- -- -- -- -- -- 
   Age group (base: millennial)           
        Generation X -0.093 -4.06 -0.173 -6.67 -0.086 -4.77 -- -- -0.331 -12.23 
        Baby boomer -0.148 -6.07 -0.348 -8.72 -0.086 -4.77 -0.039 -2.35 -0.610 -26.79 
        Silent generation -0.148 -6.07 -0.376 -8.15 -- -- -- -- -0.733 -16.09 
   Educational Attainment (base:     

any degree) 
          

        High school or less -- -- -- -- 0.176 8.95 -0.208 -9.62 0.150 6.33 
        Some college -- -- -- -- -- -- -0.108 -6.76 -- -- 
   Race/ethnicity (base: white 
   and non-Hispanic) 

          

       Non-white 0.115 4.58 0.243 8.09 0.146 7.09 0.046 2.06 0.265 12.02 
       Hispanic -- -- 0.188 5.52 -- -- -- -- 0.191 6.71 

Work status (base: unemployed)           
       Part-time worker -- -- -- -- -- -- -- -- 0.196 7.05 
       Full-time worker -- -- -- -- -0.243 -13.43 -- -- 0.171 7.98 
   Transit use frequency (base: 
   transit non-user) 

          

       Infrequent transit user 0.259 11.09 0.421 10.09 0.183 9.63 1.068 29.34 0.786 17.12 
       Frequent transit user 0.350 6.43 0.770 9.49 0.715 21.22 0.708 13.19 1.644 27.18 
   Time spent online (base: 
   sometimes/often online) 

          

        Always online 0.097 5.22 0.148 7.26 -- -- -- -- 0.108 5.06 
Household demographics           
    Household income (base: 
    $100,000 or more) 

          

       Less than $25,000 0.434 14.25 0.509 11.99 0.493 19.05 -0.349 -12.61 -0.304 -12.61 
       $25,000-$34,999 0.302 10.27 0.414 10.71 0.285 10.52 -0.276 -9.85 -0.229 -7.03 
       $35,000-$49,999 0.328 12.84 0.402 11.48 0.274 11.43 -0.223 -9.36 -0.229 -7.03 
       $50,000-$74,999 0.222 11.71 0.222 11.71 0.200 9.43 -0.248 -12.20 -0.119 -4.71 
       $75,000-$99,999 0.135 7.69 0.135 7.69 -- -- -0.096 -4.63 -- -- 
   Presence of children (base: no 
   children 15 or younger) 

          

       Presence of children 0-4 y/o -- -- -0.072 -3.23 -- -- -- -- -- -- 
       Presence of children 5-15 y/o -0.113 -5.02 -0.126 -5.45 -- -- -- -- -- -- 
Location characteristics           
    Transit richness  
   (base: transit-deficient city)  

          

       Transit-progressive city -- -- -- -- 0.116 6.93 -- -- -- -- 

Endogenous effects           
Residential location choice 

 (base: suburban and small 
 town residential, or rural area) 

          

       Suburban and small town mix     0.177 9.27 0.177 10.74 0.197 7.03 
       Urban mix or residential     0.333 15.80 0.200 9.67 0.148 5.56 
Vehicle availability (base:  
vehicle sufficient HH)  

          

  Car-free or vehicle deficient HH       0.142 6.64 0.134 5.42 

 
 
 
   



 

17 

 
TABLE 4  Model Estimation Results –Segment 2 (RLC  SVC; RLC + SVC  VEH) 

Variables 

Residential location choice  
(base: suburban and small town 

residential, or rural area) 

Vehicle availability 
(base: vehicle 
sufficient HH) 

Use of car-share service and taxi-
car service  

(base: non-user) 
Suburban and 
small town mix 

Urban mix or 
residential 

Zero-car or vehicle 
deficient HH 

Rare user Frequent user 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Constant -0.440 -10.05 -0.677 -4.70 -1.677 29.20 -0.864 -23.94 -1.462 -26.12 
Individual characteristics           
   Gender (base: male)           
        Female 0.073 5.57 -- -- -- -- -- -- -- -- 
   Age group (base: millennial)           
        Generation X -0.095 -4.02 -0.198 -6.26 -0.082 -3.25 -- -- -0.332 -12.09 
        Baby boomer -0.151 -5.97 -0.431 -7.74 -0.082 -3.25 -0.040 -2.42 -0.603 -24.45 
        Silent generation -0.151 -5.97 -0.431 -7.74 -- -- -- -- -0.715 -15.12 

Educational Attainment (base:     
any degree) 

          

        High school or less -- -- -- -- 0.177 8.97 -0.190 -8.75 0.153 6.28 
        Some college -- -- -- -- -- -- -0.104 -6.58 -- -- 
   Race/ethnicity (base: white 
    and non-Hispanic) 

          

       Non-white 0.119 4.64 0.273 7.31 0.137 6.63 0.060 2.69 0.265 11.99 
       Hispanic -- -- 0.222 5.08 -- -- -- -- 0.189 6.62 

Work status (base: unemployed)           
       Part-time worker -- -- -- -- -- -- -- -- 0.201 7.26 
       Full-time worker -- -- -- -- -0.247 -13.62 -- -- 0.167 7.83 
   Transit use frequency (base: 
   transit non-user) 

          

       Infrequent transit user 0.265 10.81 0.477 8.83 0.127 6.19 1.090 22.17 0.839 20.57 
       Frequent transit user 0.357 6.26 0.882 8.21 0.641 24.95 0.797 15.00 1.688 22.29 
   Time spent online (base: 
   sometimes/often online) 

          

        Always online 0.099 5.19 0.165 6.79 -- -- -- -- 0.104 4.90 
Household demographics           
    Household income (base: 
    $100,000 or more) 

          

       Less than $25,000 0.445 14.28 0.558 11.07 0.508 19.54 -0.338 -12.43 -0.300 -9.31 
       $25,000-$34,999 0.310 10.35 0.442 9.84 0.298 10.97 -0.274 -9.84 -0.245 -7.30 
       $35,000-$49,999 0.337 12.94 0.442 9.84 0.298 10.97 -0.221 -9.36 -0.221 -9.36 
       $50,000-$74,999 0.234 12.14 0.234 12.14 0.209 9.83 -0.242 -12.00 -0.123 -4.98 
       $75,000-$99,999 0.141 7.78 0.141 7.78 -- -- -0.095 -4.62 -- -- 
   Presence of children (base: no 
   children 15 or younger) 

          

       Presence of children 0-4 y/o -- -- -0.085 -3.14 -- -- -- -- -- -- 
       Presence of children 5-15 y/o -0.115 -5.02 -0.142 -5.23 -- -- -- -- -- -- 
Location characteristics           
    Transit richness  
   (base: transit-deficient city)  

          

       Transit-progressive city -- -- -- -- 0.115 6.86 -- -- -- -- 

Endogenous effects           
   Residential location choice 
   (base: suburban/small town 
   residential or rural area) 

          

       Suburban and small town mix     0.169 8.81 0.168 10.30 0.196 7.06 
       Urban mix or residential     0.321 15.17 0.203 9.94 0.174 4.57 
  Use of car-share service and     
taxi-car service (base: non-user)  

          

       Rare user     0.137 6.56     
       Frequent user     0.137 6.56     
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TABLE 5  Model Estimation Results – Segment 3 (VEH  RLC; RLC + VEH  SVC) 

Variables 

Residential location choice  
(base: suburban and small town 

residential, or rural area) 

Vehicle availability 
(base: vehicle 
sufficient HH) 

Use of car-share service and taxi-
car service  

(base: non-user) 
Suburban and 
small town mix 

Urban mix or 
residential 

Zero-car or vehicle 
deficient HH 

Rare user Frequent user 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Constant -0.440 -10.50 -0.614 -4.85 -1.550 -29.83 -0.874 -25.36 -1.530 -23.70 
Individual characteristics           
    Gender (base: male)           
        Female 0.076 5.74 -- -- -- -- -- -- -- -- 
    Age group (base: millennial)           
        Generation X -0.096 -4.13 -0.184 -6.52 -0.102 -3.93 -- -- -0.353 -12.79 
        Baby boomer -0.155 -6.02 -0.376 -8.27 -0.102 -3.93 -0.042 -2.54 -0.622 -26.47 
        Silent generation -0.155 -6.02 -0.423 -7.97 -- -- -- -- -0.792 -17.22 
    Educational Attainment (base:     

any degree) 
          

        High school or less -- -- -- -- 0.178 9.02 -0.213 -9.89 0.164 6.79 
        Some college -- -- -- -- -- -- -0.110 -6.82 -- -- 
    Race/ethnicity (base: white 
    and non-Hispanic) 

          

       Non-white 0.108 4.33 0.245 7.52 0.168 8.16 -- -- 0.251 11.19 
       Hispanic -- -- 0.198 5.21 0.091 3.36 -- -- 0.186 6.37 
 Work status (base: unemployed)           

       Part-time worker -- -- -- -- -- -- -- -- 0.184 6.88 
       Full-time worker -- -- -- -- -- -- -- -- 0.184 6.88 
   Transit use frequency (base: 
   transit non-user) 

          

       Infrequent transit user 0.258 11.08 0.436 9.51 0.227 12.11 1.050 26.21 0.728 16.76 
       Frequent transit user 0.328 6.29 0.766 8.78 0.793 26.15 0.634 11.85 1.604 21.25 
    Time spent online (base: 
    sometimes/often online) 

          

        Always online 0.096 5.10 0.151 6.94 -- -- -- -- 0.100 4.59 
Household demographics           
    Household income (base: 
    $100,000 or more) 

          

       Less than $25,000 0.419 14.13 0.494 11.65 0.540 20.96 -0.337 -12.12 -0.276 -8.15 
       $25,000-$34,999 0.297 10.23 0.416 10.29 0.313 11.98 -0.269 -9.57 -0.210 -6.29 
       $35,000-$49,999 0.324 12.83 0.406 11.11 0.313 11.98 -0.217 -9.07 -0.210 -6.29 
       $50,000-$74,999 0.221 11.71 0.221 11.71 0.213 10.13 -0.248 -12.17 -0.094 -3.69 
       $75,000-$99,999 0.139 7.74 0.139 7.74 -- -- -0.104 -4.94 -- -- 
   Presence of children (base: no 
   children 15 or younger) 

          

       Presence of children 0-4 y/o -- -- -0.074 -3.07 -- -- -- -- -- -- 
       Presence of children 5-15 y/o -0.113 -4.99 -0.130 -5.27 -- -- -- -- -- -- 
Location characteristics           
    Transit richness  
   (base: transit-deficient city)  

          

       Transit-progressive city -- -- -- -- 0.123 7.37 -- -- -- -- 

Endogenous effects           
   Residential location choice 
   (base: suburban and small 
  town residential, or rural area) 

          

       Suburban and small town mix       0.163 9.88 0.189 6.88 
       Urban mix or residential       0.174 8.46 0.159 4.36 
  Vehicle availability (base:    
   vehicle sufficient HH)  

          

  Car-free or vehicle deficient HH 0.177 7.24 0.292 8.51   0.145 6.74 0.145 6.74 
Goodness-of-Fit Statistics for the Three-Segment Model: 

Log likelihood at convergence, L(θ) = -73,275.50 (261 parameters) 
Log likelihood with constants, L(c) = -93,691.20  
Log likelihood with no constants, L(0) = -101,529.66 
Adjusted 2(c) = 0.215524 
Adjusted 2(0) = 0.275857 
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With respect to endogenous effects (presented towards the end of Tables 3 through 5), it 
can be seen that model estimation results offer behaviorally intuitive interpretations. In the first 
segment (RLC  VEH; RLC + VEH  SVC), residing in denser, mixed, and urban 
neighborhoods contributes to lower levels of vehicle ownership and higher levels of shared 
mobility use. Lower levels of vehicle ownership contribute to higher levels of shared mobility use. 
In the second segment (RLC  SVC; RLC + SVC  VEH), residential location effects are similar 
to those in the first segment; and shared mobility usage is associated with residing in zero-car or 
vehicle-deficient households. In the third segment (VEH  RLC; RLC + VEH  SVC), a zero-
car or vehicle-deficient lifestyle choice is associated with living in urban and mixed neighborhoods 
and greater usage of shared mobility services. Residing in urban and mixed neighborhoods, in turn, 
contributes to higher level of shared mobility usage as well.   

An important note is that the endogenous effects in Tables 3 through 5 control for jointness 
through error covariations. For example, while the first latent segment may seem to be consistent 
with traditional travel demand modeling procedures, this is not actually so because traditional 
procedures consider the structure to be a sequential hierarchy of choices as opposed to a choice 
bundle with correlated unobserved attributes that influence all choice dimensions simultaneously. 
In many survey data sets that do not include information about individual attitudes or lifestyle 
preferences, there are common individual-specific unobserved factors (for example, being 
environmentally conscious) that simultaneously and intrinsically increase the likelihood of 
residing in mixed urban environments as well as being car-free or vehicle deficient and using 
shared-ride services frequently. If these unobserved error covariances are ignored, the positive 
effect that an urban mixed environment has on an individual being car-free gets over-estimated as 
does the positive effect on using car-sharing and taxi services frequently. This is the classic case 
of self-selection in residential choice, as discussed extensively in the literature (see, for example, 
Bhat and Guo, 2007).  
 
5.3 Error covariance matrix 
A number of error covariances are found to be statistically significant, suggesting that there are 
correlated unobserved attributes that simultaneously affect choice behaviors. The error covariance 
matrix, depicting statistically significant error correlations, is presented in Table 6. Significant 
error covariances are found between residential locations of urban mix/residential and 
suburban/small town mix, suggesting that there are correlated unobserved attributes (such as innate 
preferences for an active lifestyle) that simultaneously affect both of these choice alternatives.  
Similarly, a significant error covariance exists between rare and frequent usage of shared mobility 
services, potentially suggesting that there are other correlated factors, such as being comfortable 
with digital and mobile technology (Lavieri et al., 2017), that influence usage of such services. 
Another significant error covariance suggests that individuals with active lifestyle preferences 
(unobserved attributes) may be simultaneously inclined to reside in mixed and urban 
neighborhoods and use shared mobility services, reducing dependence on vehicles. An interesting 
finding is that the error covariance between residing in a zero-car or vehicle-deficient household 
and using shared mobility services is significant only for the third segment (VEH  RLC; RLC + 
VEH  SVC). This is consistent with the finding that individuals in this segment exhibit the 
lowest levels of transit use and highest levels of vehicle ownership. The unobserved attributes that 
contribute to their highly auto-oriented lifestyle are also likely to diminish their use of shared 
mobility services. 
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TABLE 6 Variance-Covariance Matrix of the Error Differences for Each Segment 

Error differences 

Residential location choice 
(base: suburban and small town 

residential, or rural area) 

Vehicle availability 
(base: vehicle 
sufficient HH) 

Use of car-share service 
and taxi-car service  

(base: non-user) 

Suburban and 
small town mix 

Urban mix or 
residential 

Zero-car or vehicle 
deficient HH 

Rare user Frequent user

F
ir

st
 s

eg
m

en
t 

Residential location choice 
(base: suburban and small 
  town residential, or rural area) 

     

     Suburban and small town mix 1.000* 0.496 0.000* 0.000* 0.000* 
     Urban mix or residential  0.747 0.000* 0.000* 0.241 
Vehicle availability  
(base: vehicle sufficient HH)  

     

     Car-free or vehicle deficient HH   1.000* 0.000* 0.000* 
Use of car-share service and taxi-
car service 

     

(base: Non-user)      
     Rare user    1.000* 0.152 
     Frequent user     1.000* 

S
ec

on
d

 s
eg

m
en

t 

Residential location choice 
(base: suburban and small 
  town residential, or rural area) 

     

     Suburban and small town mix 1.000* 0.494 0.000* 0.000* 0.000* 
     Urban mix or residential  0.926 0.000* 0.000* 0.245 
Vehicle availability  
(base: vehicle sufficient HH)  

     

     Zero-car or vehicle deficient    1.000* 0.000* 0.129 
Use of car-share service and taxi-
car service 

     

(base: Non-user)      
     Rare user    1.000* 0.213 
     Frequent user     1.000* 

T
h

ir
d

 s
eg

m
en

t 

Residential location choice 
(base: suburban and small 
  town residential, or rural area) 

     

     Suburban and small town mix 1.000* 0.508 0.000* 0.000* 0.000* 
     Urban mix or residential  0.808 0.000* 0.000* 0.252 
Vehicle availability  
(base: vehicle sufficient HH)  

     

     Zero-car or vehicle deficient    1.000* 0.000* 0.000* 
Use of car-share service and taxi-
car service 

     

(base: Non-user)      
     Rare user    1.000* -0.104 
     Frequent user     1.000* 

*matrix element was fixed during the estimation because it was not statistically significantly different from the fixed value at even 
the 30% confidence level, or it was fixed because of identification issues. 
Note: All matrix entries that were estimated are significant at the 5% level or better. 

 
6. DISCUSSION AND CONCLUSIONS 
This study is motivated by the increasing recognition that a single decision structure representing 
the nature of relationships among multiple activity-travel choice variables may not be appropriate 
for modeling and forecasting travel demand. The potential presence of structural heterogeneity, 
where a multiplicity of causal decision structures drive activity-travel choices for different 
subgroups of the population, calls for the development of models capable of accounting for such 
heterogeneity. Although it is possible to potentially enumerate plausible causal decision structures 
linking multiple endogenous variables a priori, the identity of population subgroups is not known 
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a priori. Moreover, two-way bi-directional relationships cannot be estimated (because of 
identification and logical consistency issues) when the dependent variables of interest are not 
continuous.   

This paper addresses this need by developing a simultaneous equations model system with 
latent segmentation such that distinct population subgroups following different causal structures 
can be explicitly identified. Using a large national mobility survey data set collected in the United 
States in 2014, the study develops a model system linking residential location (area type) choice, 
vehicle ownership choice, and shared mobility service (car-share and taxi-car services) use. All 
three variables are treated as discrete multinomial choice variables. Four distinct causal structures 
are considered within this study; two structures in which residential location choice impacts the 
other two choices, and two structures in which vehicle ownership impacts the other two choices, 
all within a joint modeling system. Model estimation results show that the data is best described 
by three latent segments.  It is found that just over one-half of the sample are expected to fall into 
the segment where the causal structure implies that residential location choice affects vehicle 
ownership, both of which then impact shared mobility service use. With just under one-half of the 
sample classified into two other structures, it is clear that the sample depicts significant structural 
heterogeneity in activity-travel decision-making. In addition, significant error covariances were 
found, suggesting that there are correlated unobserved attributes (such as attitudes) that 
simultaneously affect multiple choice behaviors.   

The causal decision structure that did not show substantial presence in the sample is the 
one where vehicle ownership impacts shared mobility service use, both of which then influence 
residential location choice. This is quite reasonable; residential location choice is generally a long 
term choice, entails considerable expense, and is influenced by a number of other considerations 
(such as pricing, building stock, parks and recreation, crime, school quality, and distance to work). 
Thus it is unlikely that a causal structure in which residential location choice does not influence 
either vehicle ownership or shared mobility usage would be present (to any substantial degree) in 
the population. The findings also reveal that residential self-selection effects are present and 
significant for a substantial fraction of the population; for one of the latent segments, vehicle 
ownership choice drives residential location choice, suggesting that these individuals choose a 
residential area type that is consistent with their auto ownership/use proclivities.   

The study results suggest that activity-travel demand model systems would benefit from 
the ability to reflect the presence of structural heterogeneity in causal decision structures prevalent 
in the population. The model system developed in this study offers a latent segmentation approach 
that allows the probabilistic allocation of individuals or households into distinct groups adopting 
alternative causal decision structures. The choice behaviors of agents can then be simulated using 
appropriate model structures depending on the group to which they belong. Through the 
incorporation of methods such as those offered in this paper, activity-based travel model systems 
can be enhanced to account for population heterogeneity in behavioral decision-making processes.   

Future research efforts could focus on exploring heterogeneity in relationships among 
different sets of choice variables and testing the stability of findings across geographic contexts. 
In addition, although this study is motivated by the identifiability restrictions entailed by non-
continuous endogenous variables, and the specific method adopted in this paper relies on this case, 
it should be noted that the need to address structural heterogeneity is also pertinent even when all 
endogenous variables are continuous and it is feasible to model two-way relationships. Future 
research should investigate approaches for dealing with structural heterogeneity in those cases as 
well. Another area of inquiry that merits additional research involves determining the extent to 
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which heterogeneity in decision-making structures is reduced when heterogeneity in behavior is 
accommodated through the use of random parameters or latent class approaches. Also, from an 
estimation perspective, latent segmentation models need a systematic way of building the model 
using converged parameters from simpler estimations as the starting point. Otherwise, there could 
be convergence problems because of computational instability in these mixture models (see, for 
example, a discussion of this issue by Bhat, 1997). Whether using converged values of simpler 
specifications to kick-start estimations in latent segmentation models puts this model at more or 
less risk of ending up with a local optimum remains an open question. 
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