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ABSTRACT 

In the context of panel ordered-response structures, the current paper compares the performance 

of the maximum-simulated likelihood (MSL) inference approach and the composite marginal 

likelihood (CML) inference approach. The panel structures considered include the pure random 

coefficients (RC) model with no autoregressive error component, as well as the more general 

case of random coefficients combined with an autoregressive error component. The ability of the 

MSL and CML approaches to recover the true parameters is examined using simulated datasets. 

The results indicate that the performances of the MSL approach (with 150 scrambled and 

randomized Halton draws) and the simulation-free CML approach are of about the same order in 

all panel structures in terms of the absolute percentage bias (APB) of the parameters and 

econometric efficiency. However, the simulation-free CML approach exhibits no convergence 

problems of the type that affect the MSL approach. At the same time, the CML approach is about 

6-8 times faster than the MSL approach for the simple random coefficients panel structure, and 

about 75 times faster than the MSL approach when an autoregressive error component is added. 

As the number of random coefficients increases, or if higher order autoregressive error structures 

are considered, one can expect even higher computational efficiency factors for the CML over 

the MSL approach. These results are promising for the use of the CML method for the quick, 

accurate, and practical estimation of panel ordered-response models with flexible and rich 

stochastic specifications. 
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1. INTRODUCTION 

Ordinal discrete data arise in several empirical contexts, including ratings data (of consumer 

products, bonds, credit evaluation, movies, etc.), or likert-scale type attitudinal/opinion data (of 

air pollution levels, traffic congestion levels, school academic curriculum satisfaction levels, 

teacher evaluations, etc.), or grouped data (such as bracketed income data in surveys or 

discretized rainfall data). The traditional “workhorse” multinomial logit (MNL) model is not 

very appropriate to characterize the data generating process for such ordinal discrete data 

because the MNL ignores the potential correlation in errors between proximal ordinal response 

categories (Train, 2003, page 163; Greene, 2000, page 875). While more advanced unordered-

response models (such as the ordered generalized extreme value logit or a mixed logit) may be 

considered to account for the proximal error correlation in alternatives, such models intrinsically 

assume that each ordinal category is assigned a utility, and the observed ordinal choice 

corresponds to the category with the highest utility (we will refer to this unordered decision 

process as a “vertical comparison” mechanism, where the latent utilities of the ordinal categories 

are arranged vertically and compared with one another, and the category with the highest utility 

is the observed outcome). While such unordered models may provide reasonable statistical fit 

and results, a more natural characterization of the generating mechanism is that the observed 

ordinal data correspond to a partitioning of a single latent continuous variable into mutually 

exclusive (non-overlapping) intervals (we will refer to this ordered decision process as a 

“horizontal partitioning” mechanism, where a single latent utility or propensity variable is 

horizontally partitioned by thresholds, and the observed ordinal category corresponds to the 

section of the real line in which the measure of the latent variable falls). The reader is referred to 

McKelvey and Zavoina (1975) and Winship and Mare (1984) for some early expositions of the 

ordered-response model formulation, and Liu and Agresti (2005) for a survey of recent 

developments. A recently published book by Greene and Hensher (2010) is another excellent and 

comprehensive resource on ordered-response models.  

The number of applications of the ordered-response model has been burgeoning in 

several fields, including sociology, education, biology, marketing, and transportation sciences. 

Several of these applications have modeled the case of either repeated ordinal choice data (such 

as would be obtained from a stated preference exercise in which each respondent is asked to 

provide, at the same cross-sectional point in time, her/his opinion of a product multiple times 
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based on varying the attributes of the product) or panel-based ordinal data (similar to repeated 

choice data, except that these are actual revealed choices made by individuals over a period of 

time). In this paper, the focus is on the latter case because restricted versions of the models for 

panel data may be applied to repeated choice data. Within this panel context, the norm in the 

literature is to introduce random effects and/or random parameter heterogeneity to accommodate 

panel effects. Such terms lead to integration in the likelihood function during estimation, 

resulting, in general, in the need to use numerical simulation techniques based on a maximum 

simulated likelihood (MSL) approach (for example, see Bhat and Zhao, 2002, Greene, 2005, 

Greene and Hensher, 2009) or a Bayesian inference approach (for example, see Müller and 

Czado, 2005, Girard and Parent, 2001). However, such simulation-based approaches can become 

infeasible for some panel model specifications and for long panel data.  Even if feasible, the 

numerical simulation methods can be time-consuming and can lead to convergence problems 

during estimation. For instance, Bhat et al., (2010a) find that standard classical MSL approaches 

can be imprecise and have poor convergence properties, and Müller and Czado (2005) find that 

standard Bayesian MCMC approaches can be useless for panel ordered response model 

estimations due to bad convergence properties. As a consequence, another inference approach 

that has seen some use recently is the simulation-free composite marginal likelihood (CML) 

approach. This is an estimation technique that is gaining substantial attention in the statistics 

field, though there has relatively little coverage of this method in econometrics and other fields. 

The CML method, which belongs to the more general class of composite likelihood function 

approaches, is based on forming a surrogate likelihood function that compounds much easier-to-

compute, lower-dimensional, marginal likelihoods. Under usual regularity assumptions, and 

based on the theory of estimating equations (see Lindsay, 1988, Cox and Reid, 2004), the CML 

estimator is consistent and asymptotically normal distributed (this is because of the unbiasedness 

of the CML score function, which is a linear combination of proper score functions associated 

with the marginal event probabilities forming the composite likelihood). The maximum CML 

estimator should lose some efficiency from a theoretical perspective relative to a full likelihood 

estimator (if this is feasible), but this efficiency loss appears to be empirically small (see Zhao 

and Joe, 2005, Lele, 2006, and Joe and Lee, 2009).1 Besides, the MSL approach also loses 

                                                 
1 A handful of studies (see Hjort and Varin, 2008; Mardia et al., 2009; Cox and Reid, 2004) have also theoretically 
examined the limiting normality properties of the CML approach, and compared the asymptotic variance matrices 



3 

efficiency since it involves simulation of the true analytically intractable likelihood function (see 

McFadden and Train, 2000). The CML approach also represents a conceptually, pedagogically, 

and implementationally simpler procedure relative to simulation techniques, and also has the 

advantage of reproducibility of results. 

The focus of this paper is on comparing the performance of the maximum-simulated 

likelihood (MSL) approach with the composite marginal likelihood (CML) approach in panel 

ordered-response situations when the MSL approach is feasible.2 We use simulated data sets with 

known underlying model parameters to evaluate the two estimation approaches. The ability of 

the two approaches to recover model parameters is examined, as is the sampling variance and the 

simulation variance of parameters in the MSL approach relative to the sampling variance in the 

CML approach. The computational costs of the two approaches are also presented.  

The rest of this paper is structured as follows. In the next section, we present alternative 

model structures for panel ordered-response models, and discuss the maximum simulated 

likelihood (MSL) estimation method and the maximum CML estimation methods in the context 

of each of the alternative panel structures. Section 3 presents the experimental design for the 

simulation experiments. Section 4 presents the performance measures used for the comparison of 

the MSL and CML approaches, while Section 5 discusses the results. Section 6 concludes the 

paper by highlighting the important findings. 

 

2. MODEL STRUCTURE 

Let q be an index for individuals (q = 1, 2, …, Q), and let j be an index for the jth observation 

(say at time qit ) on individual q (j = 1, 2, …, J, where J denotes the total number of observations 

on individual q).3 Let the observed discrete (ordinal) level for individual q at the jth observation 

be mqj (mqj may take one of K values; i.e., mqi ∈{1, 2, …, K}). In the usual random-effects 

                                                                                                                                                             
from this approach with the maximum likelihood approach. However, such a precise theoretical analysis is possible 
only for very simple models, and becomes much harder for models such as a panel ordered-response system.  
2 Note that our discussions in the paper for the panel ordered-response situation are immediately applicable to the 
panel binary response situation, because the latter is but a special case of the former. 
3 We assume here that the number of panel observations is the same across individuals. Extension to the case of 
different numbers of panel observations across individuals does not pose any substantial challenges, and will be 
discussed later.  
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ordered response framework notation, we write the latent variable ( *
qjy ) as a function of relevant 

covariates as: 

qjqjqjqj myy =+= ,* εqj
'
q xβ  if  qjqj m

qj
m y ψψ <<− *1 ,                                                            (1)  

where qjx  is a (H×1)-vector of exogenous variables (including a constant), qβ  is an individual-

specific (H×1)-vector of coefficients to be estimated that is a function of unobserved individual 

attributes, qjε  is a standard normal (or logistic) error term uncorrelated across individuals q (but 

it may be correlated across observations j (j = 1, 2, …, J) of the same individual, depending upon 

the analyst’s specification) , and qjmψ  is the upper bound threshold for discrete level mqj 

( +∞==−∞=<<<< − KKK ψψψψψψψψ  0, ,  ;... 101210 ). 4   Assume that the qβ  vector in 

Equation (1) is a realization from a multivariate normal distribution )(βφ  with a mean vector b 

and covariance matrix ,LL ′=Ω where L is the lower-triangular Choleski factor of Ω.  Also, 

assume that the qjε  term, which captures the idiosyncratic effect of all omitted variables for 

individual q at the jth choice occasion, is independent of the elements of the qβ  and qjx  vectors. 

We now discuss four different model structures, based on different assumptions about the qβ  

vector. 

 

2.1 Random-Effects Model 

The simplest panel model is one that includes an individual-specific constant term, but does not 

consider heterogeneity in other parameters in qβ across individuals q. Thus, we write 

,qqjq zγxβ ′+=′ qα where the vector qz  now includes all the variables but no constant, and γ  is a 

                                                 
4 The model can be generalized in many ways, though the model as written is the most familiar and common panel 
version of the ordered-response model. For instance, the mean vector b of βq can be a function of observed 
individual attributes. However, this can be accommodated without any complications by redefining xqj to include 
interaction terms. Also, one can label the coefficient vector on the  xqj variable vector as βqj (rather than βq) to allow 
for fixed or random elements of response specific to period j, and to capture random heterogeneity in response 
across individuals and choice occasions (see Bhat and Sardesai, 2006). This relabeling also then allows observed 
individual and choice occasion specific variable effects to be introduced in the covariance matrix of βqj. Finally, one 
can also include heterogeneity in the variance of εqj and accommodate heterogeneity in the thresholds ψ2,ψ3,…< ψK-1 

through careful parameterizations to ensure the ordinality conditions on the thresholds (see Eluru et al., 2008). 
However, all these generalizations cause an explosion in parameters, and need very rich data sets to estimate 
parameters.  
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fixed coefficient vector to be estimated. Substituting this expression in Equation (1), and writing 

qα  in random effects form as ,qq ηαα += we get the following equation: 

qjqjqjqqj myy =++′+= ,* εηα qjzγ  if  qjqj m
qj

m y ψψ <<− *1         (2) 

qη  in the above equation is an individual-specific random term that generates a correlation in the 

propensity across all of individuals q’s J observed choice occasions. It is typical to consider the 

heterogeneity term qη  to be normally distributed, since the central limit theorem can be invoked 

assuming the term is the sum of several small influences. However, other distributions may also 

be empirically tested, such as the logistic distribution with fatter tails. But the consideration of a 

normally distributed qη  with a standard normally distributed qjε  is natural and convenient here, 

which is what we will assume. The result is the standard textbook random-effects ordered-

response model, which takes the same form as the random-effects binary choice model proposed 

by Butler and Moffitt (1982).  

 

2.1.1 Maximum Simulated Likelihood (MSL) Estimation of Random-Effects Model 

The MSL estimation of the random-effects model is relatively straightforward. The probability 

of the observed vector qm of the sequence of ordinal choices ),...,,,( 321 qJqqq mmmm  for 

individual q, conditional on the heterogeneity term qη , can be written as: 

{ }∏
=

− −−−Φ−−−−Φ=
J

j
q

m
q

m
qq

qjqjm
1

1 )()()(Prob ηαψηαψη qj
'

qj
' zγzγ         (3) 

The unconditional likelihood of the observed choice sequence is obtained by integrating out the 

term qη : 

{ }∫ ∏
∞

−∞= =

−
⎥
⎦

⎤
⎢
⎣

⎡
−−−Φ−−−−Φ=

v

J

j

mm
q νdvvvL qjqj )()()(),,,(

1

1 φσαψσαψσα qj
'

qj
' zγzγγψ  (4) 

where 
σ
ηqν = , ),0(~ 2ση Nq , ψ  is the vector of all threshold bounds, )(⋅Φ is the univariate 

standard normal cumulative distribution, and )(⋅φ is the corresponding univariate standard 

normal density function. Finally, the log-likelihood function may be written as: 
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∑=
q

qLL ),,,(log),,,(log σασα γψγψ  (5) 

The log-likelihood function above can be maximized using Gauss-Hermite Quadrature or 

using a simulation method. Since, the function entails only a one dimensional integral, estimation 

is generally very fast and there is no convergence-related problems.  

 

2.1.2 Composite Marginal Likelihood (CML) Estimation of Random-Effects Model 

The composite marginal likelihood (CML) estimation approach (see Varin, 2008 and Varin et al., 

2010 for good reviews) is a relatively simple approach that can be used when the full likelihood 

function is cumbersome or plain infeasible to evaluate due to the underlying complex 

dependencies, as is the case with certain specifications of panel models that entail high 

dimensional integration in the likelihood function. While there have been recent advances in 

simulation techniques within a classical or Bayesian framework that assist with such model 

estimation situations (see Bhat, 2003, Beron and Vijverberg, 2004, and LeSage, 2000), these 

techniques are impractical and/or infeasible in situations in some panel ordered-response 

situations (see, for example, Varin and Czado, 2010). Further, even when the integration is of 

low dimension, the CML method may have a substantial edge in terms of computation speed. 

The CML method, which belongs to the more general class of composite likelihood function 

approaches (see Lindsay, 1988), is based on forming a surrogate likelihood function that 

compounds easier-to-compute, lower-dimensional, marginal likelihoods. In panel data, the 

simplest CML, formed by assuming independence across observations from the same individual, 

entails the product of univariate densities (for continuous data) or probability mass functions (for 

discrete data). However, this approach does not provide estimates of dependence among the 

individual observations. Another approach is the pairwise likelihood function formed by the 

product of power-weighted likelihood contributions of all or a selected subset of couplets (i.e., 

pairs of observations). This pairwise method corresponds to a composite marginal approach 

based on bivariate marginals. For individual q, the pairwise likelihood function is: 

( )[ ] ,,Pr),,,(
1

1 1
,

qw
J

j

J

jg
qgqgqjqjqCML mymyL ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=== ∏∏

−

= +=

σα γψ                     (6)  

where qw  is a power weight to be chosen based on efficiency considerations (see Kuk and Nott, 

2000; Zhao and Joe, 2005; Joe and Lee, 2009). When the number of choice occasions are the 
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same across individuals, as we assume in the current paper, this power weight term may be 

ignored and arbitrarily set to one for each individual. However in the more general case when the 

number of observations from individual q is qJ , setting qw  to be one for all individuals will give 

more weight to individuals who have more choice occasions than to individuals who have fewer 

choice occasions. Le Cessie and Van Houwelingen (1994) suggest, based on their correlated 

binary model analysis, that each individual should contribute about equally to the CML function. 

This may be achieved by power-weighting each individual’s likelihood contribution by a factor 

that is the inverse of the number of choice occasions minus one (in our context, this is 

.]1[ 1−−qJ ). The net result is that the composite likelihood contribution of individual q collapses 

to the likelihood contribution of the individual under the case of independence across choice 

occasions. In a recent paper, Joe and Lee (2009) theoretically studied the issue of efficiency in 

the context of a simple random-effects binary choice model. They indicate that the weights 

suggested by Le Cessie and Van Houwelingen (1994) can provide poor efficiency when the 

correlation between pairs of the underlying latent variables for the repeated binary choices over 

time is moderate to high. Intuitively, Joe and Lee’s discussion is based on the concept that, when 

there is perfect dependence between each pair of inter-temporal binary choices, each pairing 

should contribute the same amount of information to the CML function. While Joe and Lee’s 

theoretical analysis is confined to a simple random-effects binary model, it may be extended to 

the random-effects ordered panel case (and also to other ordered-response panel models 

discussed later). Joe and Lee (2009) proposed the optimal power weight for individual q in the 

unbalanced panel case as .)]1(5.01[)1( 11 −− −+−= qqq JJw  In the rest of this paper, we will 

ignore the weight term, since we are focusing our simulation experiments on the case of the same 

number of choice occasions from each individual.5  

To write the pairwise likelihood function in terms of the parameters to be estimated in the 

simple random-effects model, note that the joint distribution of the latent variables 

) ..., , ,( **
2

*
1 qJqq yyy  for the qth individual is multivariate normal with standardized mean vector 

                                                 
5 The focus in the current paper is on comparing the performance of the maximum simulated likelihood approach 
with the CML approach, so we steer clear of issues related to optimal weights for the CML approach by considering 
the “equal observations across individuals” case.  
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μ
α

μ
α

μ
α qJ

'
q2

'
q1

' zγzγzγ +++
,....., and a correlation matrix with constant non-diagonal entries 

2

2

μ
σ , where 21 σμ += . Then, we can write  

,
),,(),,(

),,(),,(
),,,(

1

1 1
11

2
1

2

1
22

, ∏∏
−

= +=
−−−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Φ+Φ−

Φ−Φ
=

J

j

J

jg jg
mm

jg
mm

jg
mm

jg
mm

qCML
qgqjqgqj

qgqjqgqj

L
ρδδρδδ

ρδδρδδ
σα γψ        (7) 

where 
2

2
2 ,1,

μ
σρσμ

μ
αψ

δ =+=
−−

= jg

m
m

qj

qj qj
' zγ

 

The logarithm of the pairwise likelihood function is: 

∑=
q

qCMLCML LL ),,,(log),,,(log , σασα γψγψ       (8)  

The CML estimator ),,,(ˆ ′′= σα γψθ obtained by maximizing the above function is 

consistent and asymptotically normally distributed with the asymptotic variance matrix vector 

given by the inverse of the Godambe’s (1960) sandwich information matrix: 

( ) ( )[ ] ( )[ ] ( ) ( )[ ] 111 −−− == θHθJθHθGθV , (9) 

where  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
∂∂

∂−
= '

2

θθ
θEθH )(log CMLL and ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

′∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
θ

θ
θ

θEθJ )(log )(log CMLCML LL  

The above matrices can be estimated at the CML estimate θ̂  in the sample as follows: 

( ) ( )
,

Prloglogˆˆ
ˆ1

1

1 1ˆ1 θ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′∂∂

==∂
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′∂∂

∂−
= ∑∑ ∑∑

=

−

= +==

Q

q

J

j

J

jg

qgqgqjqj
Q

q

qCML, my,my|L
θθθθ

θ
θH

2

θ

2

 

( )
θ̂1

,, )(log)(logˆˆ ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
= ∑

=

Q

q

qCMLqCML LL
θ

θ
θ

θ
θJ         (10) 

 

2.2 Random Coefficients Model 

In this model, the coefficients on the exogenous variables are also considered to be randomly 

distributed. Going back to Equation (1), assume that qβ  is multivariate normal distributed with 
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mean vector b and covariance 'LL=Ω . Note that it is not necessary that all elements of the qβ  

be random. That is, the analyst may specify fixed coefficients on some exogenous variables in 

the model, though it will be convenient in presentation to assume that all elements of qβ  are 

random. 

 

2.2.1 Maximum Simulated Likelihood Estimation 

The likelihood function contribution of individual q for the random coefficients model is: 

{ }∫ ∏
∞

−∞= =

−
⎥
⎦

⎤
⎢
⎣

⎡
−Φ−−Φ=

β
qj

'
qj

' βb,βxβxβbψ d)|()()(),,(
1

1 ΩΩ fL
J

j

mm
q

qjqj ψψ   (11) 

where ( ).f is multivariate normal density function with mean vector b and covariance Ω  

The log-likelihood function is: 

∑=
q

qLL ),,(log),,(log ΩΩ bψbψ    (12) 

The expression ∑
q

qL ),,(log Ωbψ
 
entails integration of dimension equal to the number of 

elements of qβ . The estimation of the log-likelihood function cannot, in general, be pursued 

using quadrature techniques due to the curse of dimensionality. Instead, it is typical to use quasi-

Monte Carlo (QMC) techniques for simulation estimation (Bhat, 2001, 2003). To ensure the 

positive definiteness of the covariance matrix Ω , the likelihood function contribution of 

individual q of Equation (11) is rewritten in terms of the Cholesky-decomposed matrix L of Ω . 

The maximum simulated likelihood approach then proceeds by optimizing with respect to the 

elements of L rather than Ω . Once convergence is achieved, the implied covariance matrix Ω  

may be reconstructed from the estimated matrix L. 

While there have been important advances in terms of the QMC based simulation of the 

mixed panel models for random coefficients, these QMC methods continue to be quite expensive 

for the usual sample sizes encountered in practice. Besides, even for low to moderate dimensions 

of integration (of the order of four to seven), the numerical simulators can lead to numerical 

instability, non-convergence, and imprecision problems as the number of dimensions increases. 

Bhat et al., 2010a find another bothersome issue with these MSL simulation methods even for 
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low to moderate dimensions in that even if the log-likelihood function is computed with good 

precision, so that the simulation error in the estimated parameters is small, the computation of 

the numerical Hessian is not very reliable. But a good estimate the Hessian is needed for the 

sandwich estimator of the covariance matrix in the MSL method (the alternative of using the 

inverse of the cross product of the first derivatives is not appropriate in the MSL because of 

simulation noise introduced when using a finite number of draws per individual, see McFadden 

and Train, 2000). The only way out of the problem is to compute the log likelihood function with 

a very high level of precision, which can lead to high computational times even at low 

dimensions. 

 

2.2.2 CML Estimation 

The pairwise marginal likelihood function for the random coefficients panel ordered-response 

model is much simpler than the full likelihood function in Equation (11), as also suggested by 

Renard et al., (2004) in the context of a panel binary choice model. In particular, based on the 

joint distribution of the latent variables ) ..., , ,( **
2

*
1 qJqq yyy  for the qth individual, one can write the 

contribution of the qth individual to the pairwise-likelihood function as: 

,
),,(),,(

),,(),,(
),,(

1

1 1
11

2
1

2

1
22

,

q

qgqjqgqj

qgqjqgqj
w

J

j

J

jg qjg
mm

qjg
mm

qjg
mm

qjg
mm

qCMLL
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Φ+Φ−

Φ−Φ
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−

= +=
−−−

−

ρδδρδδ

ρδδρδδ
Ωbψ                   (13) 

where 
( )

( )
( ) ( )**

**

* VarVar

,Cov
and

Var qgqj

qgqj
qjg

qj

m
m

yy

yy

y

qj

qj =
−

= ρ
ψ

δ qj
' xb

   

In the above expression, the ( )*Var qjy , ( )*Var qgy  and qjgρ  terms are obtained by picking 

off the appropriate 22× sub-matrix of the covariance matrix of ) ..., , ,( **
2

*
1 qJqq yyy  given by 

)( JIxx qq +′Ω where qx  is a KJ ×  matrix corresponding to the J choice occasions and K 

exogenous variables (including the constant) obtained by vertically concatenating the transpose 

of the 1×K  vector ) ..., ,2 ,1( Jj =qjx , and JI  is the identity matrix of size J. The logarithm of 

the pairwise likelihood function is: 

,),,(log),,( ,∑=
q

qCMLCML LL ΩΩ βψβψ   (14) 
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The asymptotic variance expression is given by the sandwich estimator, as discussed earlier in 

Section 2.1.2. 

The random coefficients model is commonly referred to as the mixed model in the 

literature, and the CML approach above is an alternative to the commonly used MSL approach. 

As in the MSL case, one can ensure the positive-definiteness of Ω  in the CML method by 

writing the logarithm of the pairwise-likelihood in terms of the Cholesky-decomposed elements 

of Ω  and maximizing with respect to these elements of the Cholesky factor. Essentially, this 

entails passing the Cholesky elements as parameters to the optimization routine, constructing the 

Ω  matrix internal to the optimization routine, and then picking off the appropriate sub-matrix for 

the pairwise likelihood components.  

 

2.3 Random Effects Autoregressive Structure 

The standard random-effects ordered-response model of Equation (1) allows easy estimation, 

since there is only a one-dimensional integral for each individual. However, the assumption of 

equal correlation across the multiple observations on the same individual is questionable, 

especially for medium-to-long panels. An alternative would be to allow a time-stationary error 

component, but also allow serial correlation within each subject-specific series of observations 

(see Varin and Czado (2010) and Bhat et al. 2010a). For instance, one may adopt an 

autoregressive structure of order one for the error terms of the same individual, so that 

qgqj tt
qgqjcorr −= ρεε ),(  ( )10 << ρ , where qjt  is the measurement time of observation qjy . This is 

in addition to the equal correlation across observations of the same individual, due to the 

individual specific random term qη  in the Equation (2). The autoregressive error structure 

specification results in a joint multivariate distribution of the latent variables ) ..., , ,( **
2

*
1 qJqq yyy  

for the qth individual with standardized mean vector 
μ

α
μ

α
μ

α qJ
'

q2
'

q1
' zγzγzγ +++

,.....,  and a 

correlation matrix Σ  with entries such that ,/)(),( 22** μρσ qgqj tt
qgqj yycorr −+=  where 

21 σμ += . 
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2.3.1 Maximum Simulated Likelihood Estimation 

The random effects autoregressive model structure, while much more realistic than the simple 

random effects, also costs dearly in terms of computational time. In particular, rather than a 

single dimension of integration, we now have an integral of dimension J for individual q. The 

likelihood function for individual q is: 

) ..., , ,Pr(),,,,( 2211 JJ qqqqqqq mymymyL ====ρσα γψ  

JJJ

www

q dwdwdwwwwL
J

J

qm

qm
J

qm

qm

qm

qm

...)|..., ,,(   ),,,,( 2121
11

2

1

11
1

2

2

Σφρσα
δ

δ

δ

δ

δ

δ
∫∫∫

−−−
===

=γψ             (15) 

where ,1,
)( 2σμ

μ
αψ

δ +=
−−

= qj
' zγqj

qj

m
m  and Jφ is the J-variate standard multivariate 

normal density function. The integral above may be evaluated using the Geweke-Hajivassililiou-

Keane (GHK) simulator (see Geweke, 1991, Hajivassiliou and McFadden, 1998, and Keane, 

1994) or the Genz-Bretz (GB) simulator (Genz and Bretz, 1999; 2002, and Mi et al., 2009), 

which are among the most effective simulators for evaluating rectangular multivariate normal 

probabilities (i.e., bounded as opposed to unbounded limits of integration). Positive definiteness 

of the correlation matrix is guaranteed as long as 0>σ , and 10 << ρ , which can be easily 

imposed through appropriate parameterizations. 

The problems with the MSL approach for the random-effects autoregressive model are 

similar to the ones discussed earlier in the context of the random coefficients model. However, 

while the dimension of random coefficients and therefore the dimensionality of the integration 

may be relatively low for the random coefficients model, the number of observations per 

individual, and therefore the dimensionality of integration, can be very high for the random-

effects autoregressive model. For instance, in Varin and Czado (2010), the authors examine the 

headache pain intensity of patients at different points of time during the day and across several 

consecutive days. In this study, the full information likelihood estimation has of the order of 800 

dimensions of integration for some of the individual-specific likelihood contributions, an 

infeasible proposition for model parameter estimation using any computer intensive simulation 

procedure. 
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2.3.2 Composite Marginal Likelihood Estimator 

The pairwise marginal likelihood function for individual q in the random-effects autoregressive 

structure is: 

( ) ( )
( ) ( )∏∏

+=
−−−

−

= ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

Φ+Φ−

Φ−Φ
=

−J

jg jg
mm

jg
mm

jg
mm

jg
mmJ

j
qCML

qgqjqgqj

qgqjqgqj

L
1

11
2

1
2

22
1

1
, , 

 , ,   , ,

 , ,   , ,   
),,,,(

1

ρδδρδδ

ρδδρδδ
ρσα γψ       (16) 

where ,/)( μαψδ qj
' zγ−−= qjqj mm  21 σμ += , and ./)( 22 μρσρ qgqj tt

jg
−+=    

The logarithm of the likelihood function is: 

 ∑=
q

qCMLCML LLL ),,,,(log),,,,( , ρσαρσα γψγψ . (17) 

Compared to the MSL technique, the pairwise approach only entails bivariate normal 

distributions, which can be evaluated rapidly. The asymptotic covariance matrix may be obtained 

as the inverse of the Godambe sandwich information estimator, as in Section 2.1.2.  

 

2.4 Random Coefficients Autoregressive Structure 

This general structure combines the random coefficient structure with the autoregressive 

structure. The form of the model is as follows (using the same notations as earlier): 

qjqjqjqj myy =+= ,* εqj
'
q xβ  if  qjqj m

qj
m y ψψ <<− *1   (18) 

with ( ) ( ),1,0~,,~ NN qjεΩbβq and 10,),( || <<= − ρρεε qgqj tt
qgqjcorr     

 

2.4.1 Maximum Simulated Likelihood Estimation 
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δ  and qΣ is a correlation matrix with entries such that 
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2
*
1 qJqq yyy  dependent 
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variables is given by )( qqq Rxx +′Ω  where qR  is a JJ ×  matrix with the entry ( || qgqj tt −ρ ) for the 

jgth element of the matrix (j = 1, 2,…, J; g = 1, 2,…, J). This covariance matrix is positive 

definite as long as Ω  can be written as LL ′  (where L is the lower triangular Cholesky factor of 

Ω ) and  10 << ρ . The log-likelihood function is finally computed as:  

 ∑
q

qCMLL ),,,(log , ρΩbψ   (20) 

The MSL estimation of the random coefficients autoregressive model is particularly 

cumbersome, and we are not aware of any earlier literature considering such a model, even 

though it naturally arises as a combination of random coefficients and a first-order 

autocorrelation process. 

 

2.4.2 Composite Marginal Likelihood Estimation 

The pairwise function for individual q in the random coefficients autoregressive structure takes 

the same form as for the random coefficients structure (see Equation 13), but with the important 

difference that the ( )*Var qjy , ( )*Var qgy and qjgρ are obtained by picking off the appropriate 

)22( × sub-matrix of the covariance matrix of ) ..., , ,( **
2

*
1 qJqq yyy  given by )( qqq Rxx +′Ω  (rather 

than )( Jqq Ixx +′Ω in the random coefficients models). The logarithm of the pairwise likelihood 

function and the asymptotic variance expression of the estimator are obtained in the usual way. 

 

3. SIMULATION STUDY 

In the current paper, we assess the performance of the CML technique for panel ordered response 

models in the context of the random coefficients structure and the random coefficients 

autoregressive structure. This is because of three reasons. First, the random coefficients structure 

subsumes the random effects structure as a special case. Second, the random coefficients 

structure (without autoregressive error terms) has been extensively used in binary and ordered 

response modeling (for example, see Bhat and Zhao, 2002, Greene, 2000). The use of the CML 

technique can lead to a reduction in computational time for these mixed models, and may be the 

only practical approach if there are numerous random coefficients. Third, the random 

coefficients autoregressive structure subsumes all other structures as special cases, and is a 

general panel specification that, to our knowledge, has not been considered in the literature. 
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3.1 Experimental Set-up 

In the simulation set-up, we consider five choice occasions )5( =J  per individual and 500 

individuals, with five independent variables per choice occasion. While the number of choice 

occasions per individual and the number of independent variables per choice occasion can be 

much larger, we use five choice occasions and five independent variables so that the MSL 

estimation (which entails a five dimensional integral) is manageable in the context of the many 

MSL runs we undertake in the paper, while also being reasonably realistic of the kinds of panel 

setting encountered in practice. The intent is to compare the MSL estimation results and the 

CML results in terms of the ability to recover parameters as well as computational time. For all 

the datasets generated in the experimental design, the values of each of the five independent 

variables are drawn from a standard univariate normal distribution. In the subsequent two 

sections, we discuss the set-up for each of the random coefficients (RC) and the random 

coefficients autoregressive (RCA) structures in detail. 

 

3.1.1 The RC Structure 

In the RC structure, a coefficient vector qβ  (specific to each individual) is assumed and is drawn 

from a multivariate normal distribution with a mean vector of b (= 1.5, 1, 2, 1, 2). We then 

consider both independent realizations as well as correlated realizations for the coefficient vector 

qβ  (across exogenous variables for each individual q): 
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⎥
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2Ω           (21) 

For each of the above two positive-definite covariance matrices, the random vector 

realization of qβ  is applied to the qth individual’s choice occasions, and is linearly combined 

with the corresponding vector of independent variables ( qj
'
q xβ ). The result is added to an 

independent standard normal error term draw ( qjε ) as in Equation (1) to obtain a value of *
qjy . 

This is then translated to “observed” values of qjy  based on the following pre-specified threshold 
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values: 0.2 ,0.1  ,0 321 === ψψψ  (thus we assume four outcome levels for the ordinal variable). 

The above data generation process is undertaken 50 times with different realizations of the qβ  

vector and the error term qjε  to generate 50 different data sets (for each of the 1Ω  and 2Ω   

specifications).   

The MSL and CML estimation procedures are applied to each data set to estimate data 

specific values of b, )(or  )( 22221111 ΩΩ LLLLLL ′=′= (as appropriate), and the threshold vector 

( )'321 ,, ψψψ=ψ .6 Note that 1L  and 2L  are the lower Cholesky decompositions of the covariance 

matrices 1Ω  and 2Ω , respectively. We estimate the Choleski parameters to ensure the positive 

definiteness of the variance-covariance matrices 1Ω  and 2Ω . For the MSL estimation, we use 

draws from the randomized Halton sequence for the random coefficients vector qβ , because it is 

the most commonly used QMC sequence in the literature (Halton, 1960; see Bhat, 2003 for a 

discussion). Within the context of the Halton draws, we experimented with different kinds of 

scramblings and randomizations of the Halton sequence. This included the following: (a) 

scrambling the Halton draws for different dimensions using the Bratten-Weller approach to break 

correlations across dimensions arising from the periodic cycling of the Halton draws, (b) 

scrambling the Halton draws using a randomization approach to break correlations across 

dimensions, (c) randomizing the Halton draws along each dimension by adding a uniform 

random number that still preserves the uniformly distributed and equi-distribution properties of 

the underlying Halton sequence (referred to as the Tuffin-randomization in the literature; see 

Tuffin, 1996), and (d) randomizing the assignment of Halton dimensions to the random 

coefficients (so that, for example, the Halton dimension that is based off the prime number two is 

assigned to say the first random coefficient in one of the simulation runs, while the same Halton 

dimension is assigned to a different random coefficient in another simulation run). Our 

experiments suggested that the best performance was obtained using a procedure that combined 

Bratten-Weller scrambling with the Tuffin randomization as well as the random assignment of 

Halton dimensions to coefficients. Finally, while a higher number of draws per individual (based 

on the combination scrambling/randomization discussed above) generally provided improved 

results, we used 150 draws per individual, which is about what is typically used in most 
                                                 
6 Since the vector qjx

 
does not include a constant in the simulation set-up, the first threshold 1ψ  is estimable.  
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applications of the MSL procedure for ordered-response models. As we will indicate later, we 

also undertook the MSL estimation with 250 draws per individual, and the results were not 

substantially different. To assess and quantify simulation variance, the randomized and 

scrambled Halton-based simulation procedure is applied to each dataset 10 times with different 

(independent) randomized Halton draw sequences. 

 

3.1.2 The RCA Structure 

For the RCA structure, we generate qβ  vectors for each individual q based on the mean vector b 

(= 1.5, 1, 2, 1, 1) and a covariance matrix given by 2Ω  (we use the more general non-diagonal 

covariance matrix used in the RC structure for the RCA structure). The rest of the procedure is 

the same as the RC structure, except for the generation of the standard normal error terms )( qjε . 

Specifically, these error terms are now serially correlated for each individual q. We assume that 

this serial correlation gets manifested in the last four of the five observations for each individual, 

with the first observation error term 1qε  for each individual randomly drawn from a standard 

normal distribution. That is, qjε  (j = 1, 2 …J) is generated for each individual q as follows: 

( )⎪⎩

⎪
⎨

⎧

≥−+

=
=

− .2for  )1 ,0(~   , 1

1for  )1 ,0(~

2
1

1
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jN
iid

qjqjqj

iid

q
qj

ηηρρε

η
ε                 (22) 

The resulting correlation matrix of qjε  is qR  which is a JJ ×  dimension matrix with its jgth 

element being gj−ρ , g, . ..., ,2 ,1 Jj = 7 In the current paper, we undertake the simulation exercise 

for low autocorrelation )3.0( =ρ and high autocorrelation . )7.0( =ρ  For each of these 

correlation values, error term realizations of '
21 ) ..., , ,( qJqq εεε=qε are drawn and used to generate 

data for the RCA structure. To examine the impact of different magnitudes of the autoregressive 

correlation parameter, the process is undertaken 20 times with different realizations of the qβ  

and qε  vectors to generate 20 different data sets (for each value of ρ  of 0.3 and 0.7). We used 

                                                 
7 Note that this is the autoregressive structure of order 1. One can also use more complicated autoregressive 
structures of order p for the error terms, or use more general structures for the error correlation. For instance, while 
we focus on a time series context, in spatial contexts related to ordered-response modeling, Bhat et al. (2010b) 
developed a specification where the correlation in physical activity between two individuals may be a function of 
several measures of spatial proximity and adjacency. 
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fewer data sets for the RCA case compared to the RC case because of the substantially increased 

computational cost for the RCA case with the MSL method. Further, for the MSL approach, it 

was too expensive to run estimations multiple times with the same data using 150 Halton draws 

per individual. At the same time, the results from the RA non-diagonal structure (to be discussed 

later) clearly indicate that one cannot ignore away the simulation error, because it is a sizeable 

fraction of the asymptotic error in the RA case. Thus, for the two non-diagonal RCA structures 

(with low and high autocorrelation), we applied the average magnitude of simulation standard 

error (as a percentage of the asymptotic standard error) as obtained from the non-diagonal RA 

structure to the asymptotic standard errors of the RCA non-diagonal structures to estimate the 

mean simulation standard error for each parameter. The simulation errors estimated in this way 

for the RCA non-diagonal cases may be regarded as lower bounds of the true simulation errors, 

since the simulation errors are expected to be higher for the case with autocorrelation than 

without autocorrelation  

The MSL and CML estimation procedures are applied to each data set to estimate data-

specific values of b, ,2L ,ψ and ρ . To ensure that  10 << ρ  , we re-parameterized ρ  as follows: 

)]exp(1/[1 Δ−+=ρ . The MSL estimation procedure uses the GHK simulation procedure using 

150 draws per individual of the randomized and scrambled Halton sequence (see Bhat et al., 

2010a for a discussion of the GHK simulator in the context of ordered response models). 

 

4.  PERFORMANCE COMPARISON BETWEEN THE MSL AND CML APPROACHES 

In this section, we first identify a number of performance measures and discuss how these are 

computed for the MSL approach and the CML approach. The subsequent sections present the 

simulation and computational results. 

 

4.1 Performance Measures 

The steps discussed below for computing performance measures are for a specific covariance 

matrix pattern. For the RC model, we consider zero covariance across the random coefficients 

(diagonal covariance specification) and non-zero covariance across the random coefficients (non-

diagonal covariance specification). For the RCA structure, we retain the non-diagonal covariance 

matrix specification of the RC structure and then consider two correlation patterns, 

corresponding to the autoregressive correlation parameter values of 0.3 and 0.7.    
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MSL Approach 

(1) Estimate the MSL parameters for each data set s )50 ..., ,2 ,1( =s  and for each of 10 

independent draws, and obtain the time to get the convergent values and the standard errors. 

Note combinations for which convergence is not achieved. Everything below refers to 

cases when convergence is achieved. Obtain the mean time for convergence (TMSL) and 

standard deviation of convergence time across the converged runs and across all data sets 

(the time to convergence includes the time to compute the covariance matrix of parameters 

and the corresponding parameter standard errors). All estimations are started with the true 

parameter values as the starting values. While multiple computers had to be used for the 

many different runs undertaken in this paper, all the run times were carefully scaled to the 

equivalent time on a desktop computer with 2.66GHz Core2Duo processor and 3.25GB of 

RAM. The scaling was based on extensive experimentation on different computers. 

(2) For each data set s and draw combination, estimate the standard errors (s.e.) of parameters 

(using the sandwich estimator).  

(3) For each data set s, compute the mean estimate for each model parameter across the draws. 

Label this as MED, and then take the mean of the MED values across the data sets to obtain 

a mean estimate. Compute the finite sample absolute percentage bias (APB) as: 

100
 valuetrue

 valuetrue-estimatemean APB ×=  8 

(4) For each data set s, compute the median standard error for each model parameter across the 

draws. Call this MSED, and then take the mean of the MSED values across the data sets 

and label this as the asymptotic standard error (essentially this is the standard error of 

the distribution of the estimator as the sample size gets large). Next, for each data set s, 

compute the simulation standard deviation for each parameter as the standard deviation in 

the estimated values across the independent draws (about the MED value). Call this 

standard deviation as SIMMED. For each parameter, take the mean of SIMMED across 

the different data sets. Label this as the simulation standard error for each parameter. 

The above procedure is used to obtain the simulation standard error values for the two RC 

                                                 
8 If the true parameter value is zero, the APB value is computed by dividing the mean estimate by the value of 1in 
the denominator, and multiplying by 100. 



20 

cases. For the two RCA cases, the simulation standard error values are estimated as 

discussed in the previous section.   

(5) For each parameter, compute a simulation adjusted standard error as follows: 

22 )error standard simulation()error standard asymptotic( +   

 

CML Approach 

(1) Estimate the CML parameters for each data set s and obtain the time to get the convergent 

values (including the time to obtain the Godambe matrix-computed covariance matrix and 

corresponding standard errors). Determine the mean time for convergence (TCML) across 

the S data sets.9 

(2) For each data set s, estimate the standard errors (s.e.) (using the Godambe estimator).  

(3) Compute the mean estimate for each model parameter across the R data sets. Compute 

absolute percentage bias as in the MSL case. 

(4) Compute the median standard error for each model parameter across the R data sets and 

label this as the asymptotic standard error.  

 

5.  RESULTS 

5.1 RC Structure 

Tables 1a and 1b provide the results of the RC structure for the diagonal and non-diagonal cases, 

respectively. The tables provide the true value of the parameters (second column), followed by 

the maximum simulated likelihood (MSL) estimation results and the composite marginal 

likelihood (CML) estimation results.  

 

The Diagonal Covariance Matrix Case 

The columns under “parameter estimates” in Table 1a provides the mean parameter estimates 

across data sets and runs, as well as the absolute percentage bias (APB) values. These results 

indicate that both the MSL and CML methods perform reasonably well in recovering parameters. 

Specifically, the APB values for the parameters range from 1.05% to 16.08 % for the MSL 

method and 0.71% to 10.38 % for the CML method. The mean APB using 150 Halton draws per 

individual in the MSL case is 7.55% (see the row of the table labeled “Overall mean value across 
                                                 
9 The CML estimator always converged in our simulations, unlike the MSL estimator. 
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parameters” and the column titled “absolute percentage bias”), while the mean APB from the 

CML approach is lower at 5.51%. There are two interesting observations from the mean estimate 

and APB values. First, the MSL estimation underestimates parameter values (note that the mean 

estimate values from the MSL are consistently lower than the true values), while the CML 

estimation overestimates parameter values (except, for the first parameter). This behavior, even 

if very small in magnitude based on the APB values, is worthy of further study. Second, the APB 

values for the Choleski parameters (i.e., the l values in the table, which in this diagonal case are 

the standard deviations of the distributions of each of the five random coefficients) are generally 

somewhat higher relative to the threshold parameters (i.e., the ψ  values in the table) and the 

mean values of the distributions of the β  parameter vector (i.e., the b values in the table), 

especially so in the MSL estimation. Also, there is more variation in the APB values among the 

Cholesky parameters than among the b and ψ  values in both the MSL and CML estimations. 

This is perhaps because the Choleski parameters enter the likelihood function in a more complex 

non-linear fashion than other parameters, leading to a relatively flat log-likelihood function for 

different values of standard deviations of the random coefficients and more difficulty in 

accurately recovering these standard deviation parameters.  

  The sampling standard error values of the parameters indicate good efficiency of both the 

MSL and CML estimators, with the asymptotic standard error ranging from 7-20% of the mean 

values of the MSL estimator and from 10-22% of the mean values of the CML estimator.10 The 

magnitudes of the asymptotic standard error values are certainly lower in the MSL (mean 

asymptotic standard error of 0.11) compared to the CML (mean asymptotic standard error of 

0.16). However, note also that this direct comparison of the asymptotic standard error values is 

somewhat deceptive, because of the underestimation (overestimation) in recovering the true 

values of the parameters in the MSL (CML). This translates to consistently lower values of the 

asymptotic standard error estimates from the MSL approach relative to the CML approach. 

Further, one also needs to consider simulation error in the MSL estimation. These simulation 

standard errors for the MSL method are lower than the asymptotic standard errors, but not an 

insignificant fraction of the asymptotic standard errors. In particular, the simulation standard 

                                                 
10 We do not include the first parameter 1ψ  in computing these ranges, because the true value of this parameter is 
zero, and the mean estimate is also very close to zero. Thus, percentages taken with respect to the mean estimate will 
be very high.  
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errors vary from 39%-58% of the asymptotic standard errors. Of course, even though the 

simulation errors are quite high as a percentage of asymptotic standard errors, the simulation 

adjusted standard errors in the table do not increase too much relative to the asymptotic standard 

errors because of the higher values of the asymptotic standard errors. Another observation from 

the standard error estimates is that these estimates (as a percentage of the mean estimates) are 

generally higher for the Cholesky parameters relative to the other parameters, reinforcing the 

finding earlier that the Choleski parameters are more difficult to recover than other parameters.  

The final column of Table 1a provides a relative efficiency factor between the MSL and 

CML approaches. In particular, this column provides the ratio of the simulation-adjusted 

standard error of parameters from the MSL approach and the asymptotic standard error of 

parameters from the CML approach. As indicated earlier, the CML approach should lose some 

efficiency relative to the full maximum likelihood (ML) approach, because the CML approach 

compounds pairs of observations from the same individual, and does not consider all the panel 

observations from the same individual simultaneously. Theoretically speaking, therefore, the 

difference between the asymptotic covariance matrix of the CML estimator (obtained as the 

inverse of the Godambe matrix) and of the ML estimator (obtained as the inverse of the cross-

product matrix of derivatives) should be positive semi-definite. However, note that the procedure 

being used in the current paper is the maximum simulated likelihood (MSL) approach, not the 

ML approach. In the MSL approach, the asymptotic covariance is computed as the inverse of the 

sandwich information matrix.11 Basically, the presence of simulation noise, even if very small in 

the estimates of the parameters as in our case, can lead to a significant drop in the amount of 

information available in the sandwich matrix, resulting in increased standard errors of parameters 

when using MSL. Besides, one has to contend with the simulation error too introduced by the 

MSL, while the CML is simulation-free. Thus, one does not know a priori whether the MSL 

estimator will be more efficient than the CML estimator, and, if so, by how much. No theoretical 

results are derivable, and one has to consider this as an empirical issue.  The ratio of the 

                                                 
11 McFadden and Train (2000) indicate, in their use of independent number of random draws across observations, 
that the difference between the asymptotic covariance matrix of the MSL estimator obtained as the inverse of the 
sandwich information matrix and the asymptotic covariance matrix of the MSL estimator obtained as the inverse of 
the cross-product of first derivatives should be positive definite for finite number of draws per observation. 
Consequently, for the case of independent random draws across observations, the relationship between the MSL 
sandwich covariance matrix estimator and the CML Godambe covariance matrix is unclear. The situation gets even 
more unclear in our case because of the use of Halton or Lattice point draws that are not based on independent 
random draws across observations. 
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simulation adjusted standard errors from the MSL and the asymptotic standard errors from the 

CML (i.e., the values in the last columns of the tables) provide an empirical estimate of the 

relative efficiency of the CML compared to the MSL. Relative efficiency values lower than one 

indicate a lower CML efficiency relative to the MSL, while values higher than one indicate that 

the CML is more efficient than the MSL. The results in the final column do indicate that the 

efficiency of the CML approach is about 63-87% (mean of 73%) of the MSL approach for this 

simple random coefficients case with a diagonal covariance matrix and no autoregressive error.  

The time to convergence for the MSL estimation has a mean value of 7.55 minutes with a 

standard deviation of about 3 minutes. On the other hand, the time to convergence for the CML 

estimation has a mean value of 0.88 minutes with a standard deviation of about 0.1 minutes. This 

indicates that the CML method is about six times faster than the MSL estimation. Further, note 

that the CML method is actually more effective than suggested by this factor of six, because it 

produces more accurate estimates than the MSL estimates. In fact, it took about 250 Halton 

draws per individual to reach about the same level of mean APB value as for the CML approach, 

and the mean time for convergence with 250 Halton draws is about 7.25 minutes, suggesting a 

time efficiency factor of over 8 for the CML method relative to the MSL method. Also, while the 

APB improved as we moved from 150 Halton draws to 250 Halton draws in the MSL approach, 

there was surprisingly little change in the simulation error. Further, with 250 draws, the 

asymptotic standard errors increased because there was less underestimation in recovering 

parameters, with the net result that the relative efficiency of the CML actually marginally 

improved relative to the MSL method. One other problem we found even in this simple random 

coefficients MSL estimation was that 62 of the 500 runs did not converge (that is, 11.6% of total 

runs did not converge). This confirms that, even for the low to moderate dimensions of 

integration, numerical simulators can lead to numerical instability and convergence problems.  

On the other hand, no convergence issues whatsoever were encountered with the CML 

estimation.  

Overall, for the specific case of the panel random-coefficients ordered-response model 

(with no autoregressive error structure), the results here indicate that the MSL estimator is more 

efficient than the CML estimator, but also that the CML estimator has a computational cost 

efficiency gain by a factor of about 8. Of course, the CML has the advantage of reproducibility 

of results, since it is simulation-free (and, as indicated earlier, the simulation errors are not 
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insignificant). It may be expected that, as the number of random coefficients increase, the 

econometric efficiency gains of the MSL will slip and the computational efficiency gains of the 

CML will increase. Besides, with large data sets and several specifications to potentially test, 

even a computational efficiency gain of 8 can be quite substantial. Of course, as we will see in 

the rest of this paper, as soon as one introduces more realistic and flexible specifications (such as 

non-diagonal random coefficients and autoregressive error structures,), the MSL estimation 

approach shows little to no econometric efficiency gains over the CML approach and/or literally 

become infeasible in practice from a computation cost standpoint.  

 

The Non-Diagonal Covariance Matrix Case 

The results in Table 1b provide information on the true values, the  mean estimates, and the 

standard errors for the threshold parameters (the ψ  parameters), the mean values of the 

distribution of the β  parameter vector (i.e., the b values in the table) and the Cholesky-

decomposed parameters characterizing the covariance matrix of the β  parameter vector (i.e., the 

l values in the table).  

As in the diagonal case, both the MSL and CML approaches do very well in recovering 

the parameters, with the APB values ranging from 0.2% to 30.5% (mean of 5.33%) for the MSL 

and from 0.12% to 29% (mean of 5.83%) for the CML approach. Though these are very good 

recovery statistics, the MSL method, in general, continues to under-estimate the magnitudes of 

parameters, while the CML method over-estimates the magnitudes of parameters. Also, similar 

to the diagonal case, there is more stability in the APB values across the ψ  and b parameters 

than for the Choleski parameters (the l values), with the APB values for some of the Choleski 

elements being rather high. However, these high APB values are also somewhat deceptive, 

because the estimated values of the Choleski parameters are not too far away from the true 

values. But the small magnitudes of the true Choleski parameter values tend to inflate the APB 

values. For instance, the highest APB of 29% for the CML method is for the 42l  parameter, even 

though the estimated value of -0.1862 is not far from the true value of -0.1443. Also, with a 

limited sample size and several Cholesky parameters to estimate, one would only expect a little 

more difficulty in accurately and precisely recovering the Cholesky parameters with finite 

samples. This is also noticeable in the asymptotic standard errors that are in the order of about 
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10% of the mean estimates for the ψ  and b parameters (in both the MSL and CML cases), but 

much higher for the l parameters. Between the MSL and the CML estimators, the asymptotic 

standard errors are more similar in this non-diagonal case, with the mean standard error being 

0.14 in the MSL case and 0.17 in the CML case. This is because the MSL provides estimates that 

are closer to the true values, and to the values from the CML estimation. However, the MSL 

estimator has very large simulation errors in this non-diagonal case, especially for the Cholesky 

elements, with one of these simulation standard errors being as high as 110% of the asymptotic 

standard error. The mean simulation standard error as a percentage of the asymptotic standard 

error is 67%. The net result is that the simulation-adjusted standard errors from the MSL 

approach are about the same magnitude as the CML standard errors. This is also reflected in the 

final column, where the relative efficiency values are close to 1, with some values being higher 

than 1. The mean relative efficiency value is 1.00, indicating that the CML estimator is as 

efficient as the MSL estimator.12  

The mean computational time for the MSL method is about 18 minutes (with a standard 

deviation of 9.53 minutes) compared to 2.96 minutes (with a standard deviation of 0.88 minutes) 

for the CML method. So, the CML method is again about 6 times faster compared to the MSL 

method, for about the same level of accuracy in recovering parameters. At the same time, the 

econometric efficiency of the CML estimator is as good as the MSL estimator. Besides, 76 of the 

500 runs did not converge in the MSL approach, with no such problems with the CML approach.  

 

5.2 RCA Structure 

As discussed earlier, the simulations for the case of random coefficients with an autoregressive 

error structure (i.e., the RCA structure) is undertaken with only 20 datasets. Further, we did not 

undertake multiple runs for each of the 20 datasets because of the extremely high computational 

costs of doing so. The simulation errors were estimated based on those obtained from the RC 

structure.  Tables 2a and 2b provide the results for the RCA non-diagonal case with low and high 

auto-correlations respectively. 

                                                 
12 We also examined the results with 250 Halton draws per individual. However, there was little reduction in the 
simulation errors. To be specific, the mean simulation error as a percentage of the asymptotic standard error was still 
about 57% with 250 draws compared to 67% with 150 draws. The mean relative efficiency turned out to be 0.97 
with 250 draws, indicating that the CML is pretty much as efficient as the MSL even if the number of draws is 
increased. Further, the APB values did not improve very substantially -- the mean APB value turned out to be 3.28% 
with 250 draws compared to 5.33% with 150 draws.  
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Low Autoregressive Correlation Case 

The mean APB values are about the same in the MSL and the CML methods, with the  APB 

ranging from 0.16% to 19.74% (mean of 5.47%) for the MSL and ranging from 0.17% to 23.3% 

(mean of 6.85%) for the CML. The parameters, including the ρ  correlation parameter, are 

recovered well in both the MSL and CML cases. The autoregressive correlation parameter ρ  is 

estimated reasonably well both in MSL and CML methods with APB values of 4.67% and 7.21%, 

respectively.    

The estimated simulation-adjusted standard error for the MSL approach (mean value of 

0.18) and the asymptotic standard errors from the CML approach (mean value of 0.21) are quite 

close to one another. The relative efficiency values (last column of table) range from 80% to 

118%, with a mean value of 91%. This indicates relatively little overall econometric efficiency 

loss in using the CML approach relative to the MSL. Note also that because we had to estimate 

the simulation errors based on the results from the random coefficients (RC) case, the relative 

efficiency values in Table 2 may be considered as lower bounds, implying that the mean relative 

efficiency value is 91% or higher. At the same time, the mean time to convergence is 286.4 

minutes or about 5 hours (standard deviation of 34.7 minutes) for the MSL compared to only 

about 3.80 minutes for the CML method (with a standard deviation of 1.24 minutes). This is a 

phenomenal computation efficiency leap, with the CML method being about 75 times faster than 

the MSL method. Moreover, only 90% of the MSL runs converged compared to a 100% 

convergence rate for the CML method. 

 

High Autoregressive Correlation Case 

The APB for the MSL approach ranges from 0.48% to 8.52% (mean of 3.82%), while the CML 

APB ranges from 0.93% to 17.95% (mean of 6.75%). While both of these APBs are of about the 

same order, the MSL approach does provide a marginally better APB in this high correlation 

case. However, in general, the ability to recover parameters does not seem to be affected at all by 

whether there is low correlation or high correlation. With specific regard to the autoregressive 

correlation parameter )(ρ , the result indicates that the CML approach (but not the MSL 

approach) recovers this parameter very well in the high correlation case relative to the low 

correlation case (a difference of 0.0065 between the mean estimate of the correlation and the true 

value with an associated APB of 0.93% in the high correlation case, compared to a 
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corresponding difference of 0.1140 and an associated 7.21% in the low correlation case). This is 

perhaps because the correlation parameter needs to be particularly strong before it starts having 

any substantial effects on the log-likelihood function value. Essentially, the log-likelihood 

function can be relatively flat at low correlation, leading to more difficulty in accurately 

recovering the low correlation parameter. But, at a high correlation level, the log-likelihood 

function shifts considerably in value with small shifts in the correlation value, allowing it to be 

recovered accurately. Why this does not play out in the MSL case is an open question. It is 

possible that, at high correlations, there is considerable instability in the search direction and the 

convergence process in the MSL approach. This is reinforced by the fact that, while 18 of the 20 

runs converged (90% convergence rate) in the MSL approach in the low correlation case, only 11 

of the 20 runs converged (55% convergence rate) in the MSL approach in the high correlation 

case.13 

The relative efficiency values in the last column reveal that there is an even lower 

efficiency loss with the CML approach relative to the MSL approach in this high correlation case 

compared to the low correlation case. The MSL runs that converged have a mean time to 

convergence of 252.71 minutes (more than 4.5 hours) relative to only 3.55 minutes for the CML 

method; that is, the CML method is about 71 times faster than the MSL method. Note also that 

there is a huge standard deviation in the time to convergence of the MSL method, which is 

consistent with the convergence-related instability problems discussed earlier. In cases with more 

than five random coefficients and more general auto-regressive structures than the simple first 

order structure considered in this study, the convergence problems and the high computational 

times of the MSL make it literally infeasible. The CML method, on the other hand, should be 

able to accommodate such panel structures with relative ease.   

 

6.  SUMMARY AND CONCLUSIONS 

This paper focuses on panel ordered-response model structures, and compares the performance 

of the maximum simulated likelihood (MSL) estimation approach with that of the composite 

marginal likelihood (CML) estimation approach. The panel structures considered in the paper 
                                                 
13 We undertook an independent simulation exercise to see if the same convergence problems held up with a 
diagonal instead of a non-diagonal covariance structure for the random coefficients in this RCA case. The results 
showed the same trend as in the non-diagonal case discussed here, with the convergence rates being 95% for the low 
correlation case compared to only 65% for the high correlation case. Thus, the convergence problem seems quite 
definitely associated with the correlation level.  
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include the pure random coefficients (RC) model with no autoregressive error component, as 

well as the more general case of random coefficients combined with an autoregressive error 

component. The ability of the MSL and CML approaches to recover the true parameters is 

examined using simulated datasets. 

 Overall, the results suggest that the CML method is able to recover the true parameters in 

all the cases considered in the paper, irrespective of the type of covariance matrix (diagonal 

versus non-diagonal) of the random coefficients and the level of the autoregressive correlation 

(low versus high). In fact, the performance of the MSL approach with 150 randomized and 

scrambled Halton draws and the simulation-free CML approach are about the same order in all 

cases in terms of the absolute percentage bias (APB) of the parameters estimated. The MSL 

approach has an edge in terms of econometric efficiency in the context of the pure RC model 

with a diagonal covariance matrix for the random coefficients, but is also riddled with 

convergence problems even in this simple panel case. The CML approach does not exhibit any 

convergence problems, and is about eight times faster. Any econometric efficiency gains of the 

MSL approach vanishes as soon as a non-diagonal covariance matrix of the random coefficients 

is introduced, due to the presence of large simulation noise in the MSL runs. This continues to 

hold when an autoregressive error structure is added to the non-diagonal random coefficients 

structure. Increasing the number of randomized/scrambled Halton draws from 150 per individual 

to 250 per individual has little impact on these results. Further, when an autoregressive error 

structure is added, the convergence times of the MSL runs start getting very high, while there is 

little to no effect on the convergence times for the CML runs. In fact, the CML method is about 

70-75 times faster than the MSL method when there is an autoregressive error component. The 

MSL approach breaks down in particular when the autoregressive error correlation magnitude is 

high, with a substantial number of runs failing to converge. At the same time, there is literally no 

loss in econometric efficiency of the CML estimator compared to the MSL estimator. 

Future research efforts should consider varying numbers of random coefficients, 

autoregressive error structures of order higher than one, and varying numbers of observations per 

individual. However, the results in this paper paint a very encouraging picture for the use of the 

CML pairwise likelihood method for the quick, accurate, and practical estimation of panel 

ordered-response models with flexible and rich stochastic specifications.  
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Table 1a Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches –Diagonal Case without Auto-Correlation 

Random Coefficients (RC) Structure 

Parameter True 
Value 

MSL CML Approach Relative 
Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates 
 

Asymptotic 
Standard 

Error 
( CMLMASE ) 

CMLMASE

MSLSASE
 Mean 

Estimate 

Absolute 
Percentage 

Bias  
(APB)* 

Asymptotic 
Standard 

Error 
( MSLMASE ) 

Simulation 
Standard 

Error 

Simulation 
Adjusted 
Standard 

Error 
( MSLSASE ) 

Mean 
Estimate 

Absolute 
Percentage 

Bias  
(APB)*  

ψ1 0.0000 -0.0105 1.05 0.0562 0.0086 0.0569 -0.0071 0.71 0.0651 0.87 
ψ2 1.0000 0.9305 6.95 0.0790 0.0308 0.0848 1.0522 5.22 0.1217 0.70 
ψ3 2.0000 1.8716 6.42 0.1228 0.0601 0.1367 2.1123 5.62 0.2153 0.63 
b1 1.5000 1.3970 6.87 0.1109 0.0506 0.1219 1.5949 6.33 0.1811 0.67 
b2 1.0000 0.9338 6.62 0.0899 0.0388 0.0979 1.0683 6.83 0.1345 0.73 
b3 2.0000 1.8484 7.58 0.1309 0.0664 0.1468 2.1096 5.48 0.2287 0.64 
b4 1.0000 0.9360 6.40 0.0844 0.0339 0.0909 1.0671 6.71 0.1294 0.70 
b5 2.0000 1.8430 7.85 0.1350 0.0647 0.1497 2.0889 4.45 0.2291 0.65 
l11 1.0000 0.9247 7.53 0.1125 0.0520 0.1239 1.0705 7.05 0.1641 0.76 
l22 1.0000 0.9164 8.36 0.1107 0.0467 0.1201 1.0587 5.87 0.1649 0.73 
l33 0.7071 0.5934 16.08 0.1209 0.0708 0.1401 0.7151 1.13 0.1616 0.87 
l44 0.7071 0.6440 8.93 0.1067 0.0453 0.1159 0.7799 10.30 0.1469 0.79 
l55 1.0000 0.9252 7.48 0.1166 0.0534 0.1282 1.0596 5.96 0.1694 0.76 

Overall mean value 
across parameters  7.55      0.11     0.05      0.12  5.51      0.16 0.73 

Mean Time 5.46 0.88 

 Std. Dev. Of Time 2.79 0.11 

% of Runs Converged 87.6% 100% 
* If the true parameter value is zero, the APB value is computed by dividing the mean estimate by the value of 1in the denominator, and multiplying by 100. 
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Table 1b Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches –Non-Diagonal Case without Auto-Correlation 

Random Coefficients (RC) Structure 

Parameter True 
Value 

MSL CML Approach Relative 
Efficiency Parameter Estimates Standard Error Estimates Parameter Estimates 

Asymptotic 
standard error 
( CMLMASE ) 

Mean 
Estimate 

Absolute 
Percentage 

Bias (APB)* 

Asymptotic 
Standard 

Error 
( MSLMASE ) 

Simulation 
Standard 

Error 

Simulation 
Adjusted 

Standard Error 
( MSLSASE ) 

Mean 
Estimate 

Absolute 
percentage 

bias (APB)* CMLMASE

MSLSASE
 

ψ1 0.0000 -0.0020 0.20 0.0583 0.0103 0.0592 -0.0044 0.44 0.0646 0.92 
ψ2 1.0000 0.9771 2.28 0.0896 0.0336 0.0957 1.0582 5.82 0.1176 0.81 
ψ3 2.0000 1.9521 2.39 0.1473 0.0656 0.1613 2.1142 5.71 0.2118 0.76 
b1 1.5000 1.4598 2.68 0.1318 0.0593 0.1445 1.5948 6.32 0.1749 0.83 
b2 1.0000 0.9917 0.83 0.1068 0.0455 0.1161 1.0817 8.17 0.1372 0.84 
b3 2.0000 1.9456 2.72 0.1666 0.0739 0.1822 2.1153 5.77 0.2251 0.81 
b4 1.0000 0.9690 3.10 0.1065 0.0411 0.1141 1.0563 5.63 0.1331 0.86 
b5 2.0000 1.9385 3.07 0.1688 0.0738 0.1843 2.0897 4.49 0.2257 0.82 
l11 1.0000 0.9798 2.02 0.1317 0.0615 0.1453 1.0867 8.67 0.1594 0.91 
l21 -0.5000 -0.4860 2.79 0.1275 0.0914 0.1568 -0.4987 0.27 0.1452 1.08 
l22 0.8660 0.8176 5.58 0.1442 0.0995 0.1752 0.9265 6.98 0.1754 0.99 
l31 0.2500 0.2543 1.72 0.1280 0.0934 0.1585 0.2219 11.24 0.1488 1.06 
l32 0.4330 0.4829 11.52 0.1484 0.1209 0.1915 0.4497 3.85 0.1769 1.08 
l33 0.8660 0.7423 14.29 0.1491 0.1272 0.1960 0.8812 1.75 0.1746 1.12 
l41 0.7500 0.7298 2.69 0.1172 0.0707 0.1369 0.7503 0.04 0.1391 0.98 
l42 -0.1443 -0.1298 10.09 0.1325 0.1142 0.1749 -0.1862 28.98 0.1724 1.01 
l43 0.2367 0.2446 3.35 0.1405 0.1296 0.1912 0.2692 13.73 0.1674 1.14 
l44 0.6005 0.4174 30.50 0.1610 0.1768 0.2391 0.5851 2.56 0.1914 1.24 
l51 0.0000 0.0251 2.51 0.1275 0.0893 0.1556 -0.0013 0.19 0.1444 1.08 
l52 0.0000 0.0087 0.87 0.1444 0.1232 0.1898 -0.0129 1.29 0.1728 1.10 
l53 0.0000 -0.0012 0.12 0.1564 0.1546 0.2199 -0.0159 1.59 0.1986 1.11 
l54 0.0000 0.0206 2.06 0.1857 0.2848 0.3400 0.0153 1.53 0.2663 1.28 
l55 1.0000 0.8477 15.22 0.1580 0.1674 0.2302 0.9088 9.12 0.2068 1.11 

Overall mean value 
across parameters     5.33        0.14 0.10   0.17  5.83 0.17 1.00 

Mean Time 18.09 2.96 
 Std. Dev. Of Time 9.53 0.88 

% of Runs Converged 84.8% 100% 
*If the true parameter value is zero, the APB value is computed by dividing the mean estimate by the value of 1in the denominator, and multiplying by 100. 
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Table 2a Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches –Non-Diagonal Case with Low Auto-Correlation 

Random Coefficients Autoregressive (RCA) Structure 

Parameter 
Value 

True 
Value 

MSL Approach CML Approach Relative 
Efficiency Parameter Estimates Standard Error Estimates Parameter Estimates 

Asymptotic 
Standard 

Error 
( CMLMASE ) 

Mean 
Estimate 

Absolute 
Percentage 

Bias (APB)* 

Asymptotic 
Standard 

Error 
( MSLMASE ) 

Estimated 
Simulation 

Error 

Simulation 
Adjusted 

Standard Error 
( MSLSASE ) 

Mean 
Estimate 

Absolute 
Percentage 
Bias (APB)* CMLMASE

MSLSASE
 

ψ1 0.0000 0.0016 0.16 0.0631 0.0440 0.0769 -0.0017 0.17 0.0669 1.15 
ψ2 1.0000 1.0435 4.35 0.0972 0.0678 0.1185 1.0639 6.39 0.1290 0.92 
ψ3 2.0000 2.0628 3.14 0.1580 0.1102 0.1926 2.1092 5.46 0.2282 0.84 
b1 1.5000 1.5276 1.84 0.1399 0.0975 0.1706 1.5649 4.33 0.1908 0.89 
b2 1.0000 1.0657 6.57 0.1141 0.0795 0.1391 1.0813 8.13 0.1487 0.93 
b3 2.0000 2.0568 2.84 0.1811 0.1262 0.2208 2.1047 5.23 0.2466 0.90 
b4 1.0000 1.0369 3.69 0.1118 0.0779 0.1362 1.0555 5.55 0.1470 0.93 
b5 2.0000 2.0581 2.90 0.1791 0.1248 0.2183 2.0794 3.97 0.2482 0.88 
l11 1.0000 1.0487 4.87 0.1281 0.0893 0.1561 1.0945 9.45 0.1734 0.90 
l21 -0.5000 -0.5314 6.27 0.1315 0.0917 0.1603 -0.5555 11.10 0.1550 1.03 
l22 0.8660 0.9250 6.80 0.1428 0.0995 0.1741 0.9205 6.29 0.2097 0.83 
l31 0.2500 0.2084 16.63 0.1283 0.0894 0.1564 0.2186 12.54 0.1508 1.04 
l32 0.4330 0.5117 18.16 0.1478 0.1030 0.1801 0.5340 23.33 0.2263 0.80 
l33 0.8660 0.8704 0.50 0.1494 0.1041 0.1821 0.8912 2.91 0.2517 0.72 
l41 0.7500 0.7482 0.25 0.1165 0.0812 0.1420 0.7421 1.05 0.1444 0.98 
l42 -0.1443 -0.1159 19.74 0.1446 0.1008 0.1762 -0.1336 7.45 0.1713 1.03 
l43 0.2367 0.2446 3.34 0.1409 0.0982 0.1717 0.2536 7.13 0.1797 0.96 
l44 0.6005 0.5507 8.30 0.1475 0.1028 0.1798 0.5371 10.56 0.1950 0.92 
l51 0.0000 0.0189 1.89 0.1459 0.1017 0.1778 0.0139 1.39 0.1505 1.18 
l52 0.0000 0.0366 3.66 0.1857 0.1294 0.2264 0.0230 2.30 0.2321 0.98 
l53 0.0000 -0.0460 4.60 0.2411 0.1680 0.2939 0.0022 0.22 0.3648 0.81 
l54 0.0000 0.0568 5.68 0.2708 0.1888 0.3302 0.0408 4.08 0.3520 0.94 
l55 1.0000 0.9958 0.42 0.1628 0.1135 0.1984 0.8187 18.13 0.5906 0.34 
ρ  0.3000 0.2860 4.67 0.1117 0.0779 0.1362 0.2784 7.21 0.1308 1.04 

Overall mean value 
across parameters  5.47     0.15   0.10     0.18  6.85 0.21 0.91 

Mean Time 286.40 3.80 
  Std. Dev. Of Time 34.73 1.24 

% of Runs Converged 90% 100% 
*If the true parameter value is zero, the APB value is computed by dividing the mean estimate by the value of 1in the denominator, and multiplying by 100. 
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Table 2b Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches –Non-Diagonal Case with High Auto-Correlation 

Random Coefficients Autoregressive (RCA) Structure 

Parameter 
Value True Value 

MSL Approach CML Approach Relative 
Efficiency Parameter Estimates Standard Error Estimates Parameter Estimates 

Asymptotic 
standard 

error 
( CMLMASE ) 

Mean 
Estimate 

Absolute 
percentage 

bias (APB)* 

Asymptotic 
standard error 
( MSLMASE ) 

Estimated 
Simulation 

error 

Simulation 
Adjusted 

standard error 
( MSLSASE ) 

Mean 
Estimate 

Absolute 
percentage 

bias (APB)* CMLMASE

MSLSASE
 

ψ1 0.0000 0.0382 3.82 0.0676 0.0471 0.0824 0.0130 1.30 0.0722 1.14 
ψ2 1.0000 1.0627 6.27 0.0990 0.0690 0.1206 1.0704 7.04 0.1212 1.00 
ψ3 2.0000 2.0861 4.30 0.1569 0.1094 0.1913 2.1011 5.06 0.2054 0.93 
b1 1.5000 1.5535 3.57 0.1394 0.0972 0.1700 1.5819 5.46 0.1764 0.96 
b2 1.0000 1.0659 6.59 0.1095 0.0763 0.1335 1.0724 7.24 0.1334 1.00 
b3 2.0000 2.0482 2.41 0.1741 0.1214 0.2122 2.0963 4.82 0.2243 0.95 
b4 1.0000 1.0386 3.86 0.1103 0.0769 0.1345 1.0644 6.44 0.1356 0.99 
b5 2.0000 2.0582 2.91 0.1764 0.1229 0.2150 2.0914 4.57 0.2263 0.95 
l11 1.0000 1.0752 7.52 0.1269 0.0885 0.1547 1.1077 10.77 0.1611 0.96 
l21 -0.5000 -0.4739 5.23 0.1225 0.0854 0.1494 -0.5528 10.55 0.1484 1.01 
l22 0.8660 0.8983 3.73 0.1287 0.0897 0.1569 0.9058 4.60 0.1713 0.92 
l31 0.2500 0.2462 1.52 0.1238 0.0863 0.1509 0.2239 10.44 0.1479 1.02 
l32 0.4330 0.4556 5.20 0.1417 0.0988 0.1727 0.5076 17.24 0.1809 0.95 
l33 0.8660 0.8767 1.23 0.1350 0.0941 0.1646 0.8812 1.76 0.1810 0.91 
l41 0.7500 0.7536 0.48 0.1137 0.0792 0.1385 0.7588 1.18 0.1375 1.01 
l42 -0.1443 -0.1320 8.52 0.1312 0.0914 0.1599 -0.1203 16.64 0.1699 0.94 
l43 0.2367 0.2469 4.28 0.1302 0.0908 0.1588 0.2792 17.95 0.1696 0.94 
l44 0.6005 0.5770 3.92 0.1384 0.0965 0.1687 0.5504 8.35 0.1900 0.89 
l51 0.0000 0.0740 3.70 0.1254 0.0874 0.1528 0.0546 5.46 0.1478 1.03 
l52 0.0000 0.0412 2.06 0.1567 0.1092 0.1910 0.0059 0.59 0.1859 1.03 
l53 0.0000 -0.0448 2.24 0.1673 0.1166 0.2039 -0.0467 4.67 0.2092 0.97 
l54 0.0000 0.0323 1.62 0.2427 0.1692 0.2958 0.0209 2.09 0.3239 0.91 
l55 1.0000 0.9932 0.68 0.1522 0.1061 0.1855 0.9299 7.01 0.2812 0.66 
ρ  0.7000 0.6577 6.05 0.0769 0.0536 0.0937 0.7065 0.93 0.0959 0.98 

Overall mean value 
across parameters  3.82 0.14  0.09   0.16   6.75 0.17 0.96 

Mean Time 252.71 3.55 
 Std. Dev. Of Time 54.43 1.61 

% of Runs Converged 55% 100% 
*If the true parameter value is zero, the APB value is computed by dividing the mean estimate by the value of 1in the denominator, and multiplying by 100. 


