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ABSTRACT 
Many multivariate modeling systems require a correlation matrix to be estimated. A requirement 
for these correlation matrices is that they be positive-definite, which is commonly achieved 
through a Cholesky parameterization of the correlation matrix. However, to conform to the unit 
diagonal vector in the correlation matrix, an additional unconstrained parameterization of the 
Cholesky elements itself is needed. The most common and well-established procedure is to use a 
spherical parameterization. More recently, van Oest (2021) suggested an alternative radial 
parameterization, suggesting that the radial parameterization may be more effective than the 
spherical parameterization. In this paper, we show that the two parameterization, radial and 
spherical, are very closely related, and, in fact, collapse to effectively the same parameterization 
after the adjustment of a scale parameter embedded in a logit function of both parameterizations. 
We confirm our theoretical position through a simulation experiment with a five-variate binary 
model system, and suggest that the optimal scale (from a convergence and computation speed 
standpoint) appears to be between the implicit scales embedded in the radial and spherical 
parameterizations.  
 
Keywords: Correlation matrix, unconstrained optimization, spherical parameterization, radial 
parameterization, Cholesky decomposition, simulation.   
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1. INTRODUCTION 
An important consideration in multivariate models (or even in univariate models with multiple 
random coefficients on exogenous variables with correlations across the coefficients) is the 
estimation of a positive-definite covariance matrix. This covariance matrix, along with other model 
parameters, are estimated using Bayesian or frequentist methods, and will generally involve 
optimization methods that extensively search over a large parameter space. While the constraints 
imposed by the need for positive-definiteness may be implemented using a constrained 
optimization procedure, such procedures become very cumbersome, unwieldy, and can often lead 
to numerical convergence problems (Pinheiro and Bates, 1996; Ferdous et al., 2010). Thus, it is 
almost universal practice to adopt unconstrained parameterizations of the Cholesky matrix for 
econometric and statistical model estimation. Unfortunately, while many such unconstrained 
parameterizations have been suggested and implemented for the estimation of covariance matrices 
(see, for example, Pinheiro and Bates, 1996 and McNeish and Bauer, 2020 for reviews), these do 
not immediately extend to the case of an unconstrained parameterization for the correlation matrix 
(because the procedures for the covariance matrix guarantee positive definiteness, but do not 
recognize the need for unit diagonal elements of the correlation matrix). At the same time, there 
are many situations where a correlation matrix needs to be estimated, such as in the estimation of 
a multivariate binary choice model system or a multivariate ordered response system (Dias et al., 
2020; Mondal et al., 2020), where the scales of the latent variables underlying the discrete 
outcomes have to be normalized.1 Besides, as highlighted by Barnard et al. (2000) and McNeish 
and Bauer (2020), even if the focus is on estimating a covariance matrix, there may be many 
contexts where breaking down the covariance matrix into a scale matrix and a correlation matrix 
may be advantageous from a conceptual, specification, and computational standpoint.  

The unconstrained estimation of correlation matrices has seen renewed attention recently 
(see, for example, Bhat and Lavieri, 2018, Forrester and Zhang, 2020, and van Oest, 2021). The 
precise unconstrained parameterization adopted to ensure that the correlation matrix is positive 
definite in such applications has varied from simple one-level Cholesky decomposition schemes 
that write the Cholesky elements in a form conforming to the unit diagonal vector in the correlation 
matrix to specific multi-level Cholesky parameterization schemes. The problem with the first one-
level decomposition scheme (see Srinivasan and Bhat, 2005) is that the estimation can break down, 
unless the code imposes a steep penalty if any of the diagonal Cholesky elements turn out to be 
complex (imaginary) during the search process. While a reasonable strategy, such estimations also 
require a good bit of hand-holding during estimation to construct a “nearest” valid correlation 
matrix (for example, by replacing the negative eigenvalue components in the correlation matrix 
                                                 
1Admittedly, the scale normalization itself in such models can be undertaken in one of two ways. The first is to 
normalize the error term scale (leading to the case of correlation matrices being estimated rather than covariance 
matrices), and the second is to normalize a coefficient affecting the latent variable while estimating a covariance 
matrix. The second approach may seem more attractive, because it does not involve additional restrictions on the 
covariance matrix, but for many multivariate applications that we have encountered, the first approach leads to far 
fewer cases of numerical instability than the latter, because it directly fixes the overall scale of the conditional 
unobserved error terms to be congruent across the dependent outcomes. The effectiveness of such scale congruency 
has been discussed in other model estimation contexts too (see Kohli et al., 2019 and McNeish and Bauer, 2020). 
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with a small positive value, or by adding a sufficiently high positive value to the diagonals of a 
matrix and normalizing to obtain a correlation matrix; see Rebonato and Jäckel, 2000, Higham, 
2002, and Schöttle and Werner, 2004 for detailed discussions of these and other adjusting schemes; 
a review of these techniques is beyond the scope of this paper). And even then, there is no 
guarantee that the correlation matrix at “convergence” will be positive definite.  

In the second set of multi-level decomposition schemes, three methods have been proposed 
in the literature, all of which have a common second-level parameterization for the Cholesky 
elements but differ in the third-level of parameterization. These three methods are (1) the partial 
correlations method (Joe, 2006), (2) the spherical parameterization method (Pinheiro and Bates, 
1996 and Rebonato and Jäckel, 2000), and (3) the radial parameterization method (van Oest, 2021). 
Of these three methods, the second spherical parameterization method has seen the most use 
because of its ease and interpretability (see Madar, 2015, Pourahmadi and Wang, 2015, and Tsay 
and Pourahmadi, 2017). Besides, Forrester and Zhang (2020) have recently shown how the partial 
and the spherical parameterization methods are closely related. Thus, we will focus on the spherical 
parameterization method and not the partial correlation method in this paper. The third radial 
parameterization method was recently suggested and documented by van Oest (2021), and is 
presented as an easy and convenient alternative to the spherical parameterization method. 
However, as we show in this paper, the spherical and radial parameterizations are literally (even if 
not exactly) identical to each other, except for a scaling that effectively gets applied in 
implementation. Based on this insight, rather than focusing on the spherical and the radial 
parameterizations as distinct methods per se, we submit that the real question is whether scaling 
can improve the performance of the parameterization (whether based on the spherical or based on 
the radial parameterization) in terms of convergence stability and computational speed.  

In this paper, we discuss the basics of the spherical parameterization scheme and the radial 
parameterization scheme, clearly laying out the common aspects of these parameterizations. We 
then demonstrate the essential similarity of these two parameterization schemes subject to a scaling 
factor, and compare the performance of using alternative scaling factors in a simulation study of a 
multivariate binary response model. Issues of convergence (or not), computation time, as well as 
accuracy and precision in recovering parameters are examined.  

 
2. ALTERNATIVE DECOMPOSITION PROCEDURES 
Consider an M × M correlation matrix R as follows, with , , ,and 1 1i j j i i jr r r i j= − < < ∀ ≠ : 
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The conditions on ,i jr  described above ensures that matrix R is a valid correlation matrix. The 

Cholesky decomposition of the above matrix L such that R LL′=  is given by: 
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Estimating the elements above for L directly may work, but can run into problems as the diagonal 
gets into imaginary space when the quantity within the square root goes to a value of zero or less. 
Thus, it is desirable to further parameterize the Cholesky elements ,i jl  to adhere to a positive value 

for the diagonal quantities throughout the iterative estimation process. Note that it is sufficient to 
keep the diagonal entries real and positive to ensure that the corresponding matrix is positive 
definite and has a unique Cholesky decomposition (Martin et al., 1965, Hingham, 2009). We now 
discuss the spherical and radial parameterizations identified earlier. 
 
2.1 The Spherical and Radial Parameterizations 

Consider the parameterization of each element ( )
1

2
, , ,
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1
j

i j i j i k
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l h h
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, ,1 1 ( ) , 1 ,i j i ih i j h i− < < ≠ = ∀  and ,1 ,1i il h i= ∀ (because the Cholesky refers to the lower diagonal 

matrix, the entries correspond to ,i jl  such that i j≥ , a point we will not belabor over in all 

following notations). The values for each column j for the ,i jh  values are built up successively 

from the corresponding row values for the previous j-1 columns. Thus, the parameterization looks 
like the below: 
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It is easy to see that the parameterization above satisfies the condition for the diagonals in Equation 

(2) that 
,

1
2

,
1

1
i k

i

i i
k

l l
−

=

= −∑ . For example, 
3,1 3,2 3,1 3,2 3,1

2 2 2 2 2
3,3 (1 )(1 ) 1 (1 )l h h h h h= − − = − − −  

3,1 3,2

2 21 l l= − − , as required.2 The additional condition that all diagonal terms , 0i il >  is also 

satisfied as long as the condition ,1 1 ( )i jh i j− < < ≠  holds. Indeed, the spherical and radial 

parameterizations both begin with this initial parameterization of the Cholesky elements, followed 
by a variation in the next level parameterization for ,i jh  to keep it within the (–1,1) bound. In the 

spherical parameterization, the requirement for ,i jh  to be within the (–1,1) bound is achieved using 

the following parameterization to move from ,i jh  to unconstrained space: 

 ( ), , , , ,
,

cos , ; 1 and 1.
1 expi j i j i j i j i j

i j

h i j h hπ θ θ
θ

 
 = ≠ = −∞ ⇒ = + = +∞ ⇒ = −
 + − 

3                  (4) 

Important to note is that the above transformation may be re-written using the logistic distribution 
function as: 

( ), ,cos ,i j i jh F i jπ θ = ≠  , with ,
,

1( )
1 exp( )i j

i j

F θ
θ

=
+ −

                                                            (5) 

More recently, van Oest (2021) suggested an alternative radial parameterization for ,i jh .  

,
,

,

exp( ) 1
exp( ) 1

i j
i j

i j

h
θ
θ

−
=

+





 , , , ,( ) ; 1 and 1i j i j i j i ji j h hθ θ≠ = −∞ ⇒ = − = +∞ ⇒ = +  .4                             (6) 

The reader will note that the above transformation may also be re-written in terms of the logistic 
distribution function as follows: 

, , , ,
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                                                                    (7) 
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In Figure 1, we plot both the spherical (Equation 5) and radial (Equation 7) transformations from 
the unconstrained real line to the constrained (–1,1) range, after applying a negative sign to the 
spherical parameterization to put both parameterizations in the same increasing mode for ,i jh  as  a 

function of , ,/i j i jθ θ  ( , ,andi j i jθ θ increase from −∞  to ).+∞  As the plot indicates, the second radial 

parameterization shows a more gradual saturation to the (–1,1) bounds, which may aid better 
search abilities in the optimization process during estimation. In simulations with a Gaussian 
copula, van Oest indeed report better convergence properties with the radial parameterization than 
the spherical parameterization, though whether this extends more generally is an open question. 
Further, any differences in the two parameterizations may be attributable to scale effects in the 
embedded logistic distribution component than a function of the parameterizations themselves, as 
we discuss in the next section.  
 
2.2 Estimating the Appropriate Scale Factors 
This section shows that the radial and spherical parameterizations are effectively a scaled version 
of one another – an important observation that we have not seen reported in the literature so far. 
To demonstrate this, we first formulate a minimization problem to estimate the appropriate scale 
factor between the two parameterizations. Specifically, we minimize the root mean squared 
deviation between the two functional forms given by Equations (5) and (7). For ease of 
presentation, let us define ,i jθ  (from Equation 5) as , , /i j i j spθ θ σ=



 where, spσ  is the scale relevant 

to the spherical parameterization, and ,i jθ  (from Equation 7) as , , /i j i j rpθ θ σ=


  where, rpσ  is the 

scale relevant to the radial parameterization. ,i jθ


 refers to the parameter space on the entire real 

line. Therefore, the spherical parameterization can be re-written as (following Equation 5): 

( ),cos / ,sp
ij i j sph F i jπ θ σ = ≠ 



                                                                                                   (8) 

And, the radial parameterization can be re-written as (following Equation 7): 

, ,( / ) ( / ),rp
ij i j rp i j rph F F i jθ σ θ σ= − − ≠

 

                                                                                                  (9) 

The minimization objective function can be developed by considering the point-wise 
differences between the two functional forms ( sp

ijh  and rp
ijh ) at very fine points along the real line. 

In particular, we measure the pointwise differences between the two parameterization curves at 
every 1/1000th point along the real line and consider the root mean squared deviation as the 
objective function to be minimized. Also, as evident from the parameterization formulas as well 
as Figure 1, the parameterization values tend to –1 or 1 (depending on the direction of the 
extremity) as we move away from the center and toward the extremes; therefore, beyond a certain 
point, the differences between both the curves practically cease to exist and they are almost 
coincidental. Hence, to keep our minimization problem tractable, we consider a truncated range 
on the real line, say from lowb  to highb . In our case, we consider the range from –20 to 20 in 
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developing the objective function (note that even for more extreme ranges, the minimization 
problem yielded identical results).  

In the formulation, we consider the radial parameterization scale (i.e., rpσ ) to be a fixed 

value and minimize the objective function with respect to the spherical parameterization scale (i.e., 
spσ ) as the argument (of course, the minimization problem can also be developed in the exact same 

manner to estimate the radial parameterization scale when the scale of the spherical 
parameterization is fixed). With the above definitions, the root mean squared deviation can be 
defined as below (note that a negative sign to the spherical parameterization is inserted to put both 
parameterizations in the same increasing mode). 
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ϒ = − −∑




                                                        (10) 

Then, we estimate the spherical scaling corresponding to a specific fixed radial scale parameter as: 

arg minspσ = ϒ                                                                                                                              (11) 

This minimization effort leads to a scale in the logit function embedded in the spherical 
parameterization as 1.6130, which provides an almost identical profile to the traditional radial 
parameterization (with 1).rpσ =  Alternatively, a similar minimization effort leads to a scale 

estimate of 0.6253 embedded in the radial parameterization, which provides an almost identical 
profile to the traditional spherical parameterization (with 1).spσ =  This close tracking is shown in 

Figure 2, where we plot the ijh  profiles for both the traditional spherical parameterization ( spσ =1) 

as well as the radial parameterization with the embedded scale of 0.6253 (that is, rpσ =0.6253).  

To supplement Figure 2 to ensure that the range of , ,/i j i jθ θ  plotted and/or the scale used 

in the figures is not simply giving a visual illusion of closeness of the two parameterization 
distributions for ijh  (after appropriate scaling), we also numerically evaluate the point-wise 

differences between the two curves at every 1/1000th point. The regions for least differences 
between the two profiles, as can also be discerned from Figure 2, are the extreme ends where the 
curves are effectively coincidental. Therefore, we partition the real line of , ,/i j i jθ θ  into three 

segments (since the distribution is symmetric, we focus on one side of the zero center): –20 to        
–10, –10 to –5, and –5 to 0. Then, we measure the point-wise differences and compute the root 
mean squared deviation (RMSD) separately for each of these three segments (–20 to –10, –10 to 
–5, and –5 to 0) and for a range of combinations of a specific radial scale and the corresponding 
appropriately scaled spherical scale.  The results are presented in Table 1. The RMSD values for 
all entries are literally close to zero. For the extreme segment (–20 to –10), the differences are 
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effectively zero, especially for lower scale values which has a steeper slope (see the first column 
of Table 1). Even for the other two segments, the difference is at least beyond the third decimal 
place. This once again reinforces the identicality of the two distributions across all the considered 
scales when one of the parameterizations is appropriately scaled.  

That both the parametrizations are near-equivalent in functional form should be clear from 
the above discussion. We next investigate, in the context of a multivariate binary response model, 
whether (and how) the level of scaling itself (within each parameterization) affects numerical 
performance (convergence rates and convergence times) and small-sample statistics performance 
(parameter bias, precision, coverage probability, and overall model fit) when embedded within a 
standard BFGS optimization method. In this first simulation experiment, we use the radial 
parameterization with different scale values. Also, to examine if the functional form equivalence 
(after appropriate scaling) between the radial and spherical parameterization carries forward to 
numerical performance (convergence rates and convergence times) and small-sample statistics 
performance (parameter bias, precision, coverage probability, and overall model fit) when the two 
parameterizations are embedded within the standard BFGS algorithm to estimate econometric 
model parameters, in a second simulation experiment, we also compare the performance of the 
radial parameterization with the appropriately scaled version of the spherical parameterization. 
Based on these experiments, we further investigate whether there is a scaling of the logistic 
function (as embedded in the parameterizations) that offers superior numerical and small sample 
statistics performances relative to the traditional spherical ( spσ =1) and traditional radial ( rpσ =1) 

parameterizations.  
 
3. DESIGN OF THE SIMULATION STUDY 
Multivariate binary response models are becoming increasingly commonplace in a variety of 
fields, including biology, developmental toxicology, finance, economics, epidemiology, social 
science, and transportation (see Bhat, 2015, Visaya et al., 2015, Davenport et al., 2018, Spearing 
et al., 2021, Lin and Chaganty, 2021). The model structure for this model is presented next.  
 
3.1 Model Structure 
Consider an individual with I binary outcome choices to make. Let i be the index for a binary 
outcome (i = 1, 2, …, I, where I is the total number of binary outcomes for each individual; in the 
current simulation study, we consider five binary outcomes so that I = 5). In the usual latent 
variable representation for binary outcomes, we write the underlying latent propensity for binary 
outcome i, *

iy , as a function of a (Ci×1) column vector of exogenous variables ix  (including a 

constant) and a stochastic error term  vector .iε This latent propensity is mapped to the observed 
binary outcome as follows:  

*
*

*

0 if 0
,

1 if 0
i

i i i i i
i

y
y ε y

y
≤

′= + =
 >


β x  (12) 
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where iβ  is a (Ci×1) vector of coefficients to be estimated. iε  is assumed to be a standard normal 
error term.  More generally, in a multivariate case, we can stack all the error terms of an individual 
into a single vector, 1 2 3( , , , , ) ,I= 'ε ε ε ε…ε  assumed to be jointly distributed according to a 
multivariate standard normal distribution with a mean vector of zeros and a correlation matrix Σ 
(a generalization of this model would be to allow the univariate distributions to be a non-normal 
distribution, which then may be tied together using a Gaussian copula to once again create a 
multivariate standard normal distribution; see, for example, Bhat and Lavieri, 2018). 
Mathematically, 

[ ]
12 13 1

21 23 2

1 2 3

10
10

~ , , ,~ or 

10

I

I

I I I

MMVN NV

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

   
   
   
   
   
     

ε ε 0 Σ





    



 (13) 

The following additional vectors are defined:  

2

1 3

1 2

1 3

3

2

1

2

3
=1

( × matrix) ,     = ,

I

I

I

C C C

C C C
I

iC C C
i

C C C I

I C C C

′ ′ ′ ′ 
 ′ ′ ′ ′ 
 ′ ′ ′ ′=  
 
 
′ ′ ′ ′  

∑

x 0 0 0

0 x 0 0

x 0 0 x 0

0 0 0 x







    



 (14) 

* * *
1 2 1 2( , ,..., ) ( ×1 vector) and ( , ,..., ) ( ×1 vector),I Iy y y I C′ ′= =*y β β β β  (15) 

where 
iC0  is a (Ci×1) column-vector of zeroes. Then, in vector form, we may write Equation (12) 

as: *y = xβ + ε . The parameter vector of the multivariate binary probit model (to be estimated) is 

( )= , Vech( ) ,
′ ′′  

δ β Σ  where Vech( )Σ  refers to the vector of non-diagonal elements of Σ .  

 

3.2 Model Estimation 
Let the actual observed outcome for individual binary outcome i be im  ( im  takes the value of either 

zero or one). Define a vector 1 2 3( , , ,..., )  ( 1 vector),Im m m m I′= ×m  and let ( )1 ( ),= − ∗b xβm
.  

where ( )1− m  refers to the exponentiation of the value ‘–1’ by each element of m to create an 

1 vectorI × , and the “.*” operator refers to element-by-element multiplication; so the vector b is 

also an 1 vectorI × ). Finally, define ( )( )1 .*q q′+ = −  
Ψ Σm m  (an ( )×I I  matrix). Then, exploiting 
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the radially symmetric nature of the multivariate normal density function, the likelihood function 
for the individual is: 

1 1 2 2( ) Pr( ,  ,  ...,  ) ( ; )I I IL y m y m y m= = = = = Φδ b Ψ  (16) 

where ( ; )IΦ b Ψ  represents the standard multivariate normal cumulative distribution (MVNCD) 
function of dimension I, with the upper truncation points given by the vector b and the correlation 
matrix given by Ψ . Since a closed form expression does not exist for the MVNCD function, and 
evaluation using simulation techniques can be time consuming, we use the Two-Variate Bivariate 
Screening (TVBS) technique proposed by Bhat (2018) for approximating this integral (this 
approach provides an efficient and tractable formulation to approximate high dimensional 
MVNCD integrals). Of course, during estimation, we parameterize the correlation matrix Σ in 
terms of the ,i jθ  or the ,i jθ  parameters, and first estimate these parameters. Since the spherical, 

and radial parameterizations are essentially the same except for scaling, in a first experiment, we 
arbitrarily use the radial parameterization and write: 

,
,

1( )
1 exp

i j
i j

rp

F θ
θ
σ

=
 

+ −  
 





                                                                                                               (17) 

We then undertake the estimation for different values of the scale factor rpσ  to examine the effect 

of varying this scale factor. Once convergence has been achieved, we reconstruct the implied Σ 
correlation matrix (from the estimated ,i jθ  parameters) and run one last iteration to get the 

correlation parameters and their standard errors. In the estimations, we use a quasi-Newton 
algorithm based on the standard BFGS update method. The line search method for step length 
determination is one developed by Dennis and Schnabnel (1981), labeled STEPBT. The 
convergence criteria used is a gradient tolerance level of 1e-4.5   
                                                 
5 Please note that the scaling introduced through rpσ in Equation (17) is embedded within the logistic function of , ,i jh
which itself represents a parameterization of the Cholesky of the correlation matrix. This scaling, deeply embedded in 
the parameterization, is not the same as self-scaling BFGS approaches that have been suggested in the optimization 
process itself to limit the adverse effects of an initial poor approximate of the Hessian matrix or to overcome the ill-
conditioning of the approximate Hessian at subsequent iterations. Many such self-scaling BFGS approaches have been 
proposed, originating first in the contribution of Oren and Luenberger, 1974), to identify efficient search directions 
through the scaling of the update formula of the BFGS method (see good reviews in Nocedal and Yuan, 1993, Al-
Baali et al., 2014, Gao and Goldfarb, 2019, and Andrei, 2018). This scaling, undertaken so that the range of the 
eigenvalues of the approximate Hessian update after any iteration is dampened from those of the approximate Hessian 
at the end of the earlier iteration (or the initial approximate Hessian at the end of the first iteration), itself may be 
through scaling the approximate Hessian before use in the update formula, or by scaling/shifting the gradient change 
vector during the update. While some of these scaling approaches have been shown to have theoretically better 
superlinear convergence properties than the standard BFGS used here, such theoretical results do not always carry 
over to numerical performance in actual empirical contexts. In large part, this is because it is difficult to obtain a good 
step length in such self-scaling methods, resulting in the standard BFGS generally being superior (in terms of the 
number of function evaluations and overall CPU time) relative to self-scaling methods (see, for example, Al-Baali et 
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As discussed in the earlier section, in addition to examining the role of the scale for the 
radial parameterization, in a second experiment, we also undertake another set of estimations using 
the spherical parameterization but with the scale set at the comparable scale for the radial 
parameterization.  
 
3.3 Experimental Design 
To compare and evaluate the performance of different scales in the embedded logistic function, 
we undertake a simulation exercise for a multivariate binary choice system with five endogenous 
outcomes. Further, to examine the potential impact of different correlation structures, we undertake 
the simulation exercise for a correlation structure with low correlations and another with high 
correlations. For each correlation structure, the experiment is carried out for 500 independent data 
sets with 2000 data points each (for a total of 1000 data sets). Pre-specified values for the δ vector 
are used to generate the samples, as discussed below.  

In the set-up, we use a constant and an exogenous variable in each latent equation (that is, 
as elements of the ix  vector). The constants are set to 1 0.25cβ = − , 2 0.5cβ = − , 3 0.75cβ = − , 

4 1cβ = − , and 5 1.25cβ = − , starting from the first outcome to the last. The exogenous variable for 
each of the first, second, and third binary outcomes is included as a continuous variable, while the 
exogenous variable for each of the last two binary outcomes is included as a dummy (binary) 
variable. The values for the continuous variables are drawn from standard univariate normal 
distributions. The parameters on the continuous variables (say 1vβ , 2vβ , and 3vβ ) are specified to 
be one across the first three outcomes. For the dummy variable in the last two binary outcomes, 
we draw 2000 independent values for each outcome from the standard uniform distribution. For 
the penultimate outcome, if the value drawn is less than 0.5, the value of ‘0’ is assigned for the 
dummy variable. Otherwise, the value of ‘1’ is assigned. The coefficient on this dummy variable 
(say 4vβ ) is specified to be +0.5. A similar procedure is used to construct the dummy variable for 
the final outcome, except that the threshold is increased to 0.7 (to create an asymmetry with more 
values of the dummy variable toward the value of zero than the value of one). The coefficient on 
this dummy variable ( 5vβ ) is specified to be –0.5. Once generated, the exogenous variables are 
held fixed for the rest of the simulation exercise (that is, across all the 1000 data samples, the same 
exogenous variable values are used).  

Next, we generate, for each of the 2000 observations in each of the 1000 data samples, a 
five-variate realization of the error term vector 1 2 3 4 5( , , , , )ε ε ε ε ε  

with predefined positive-definite 

                                                 
al., 2014, Gao and Goldfarb, 2019, Lv et al. 2020, and Runnoe, 2020).  Even theoretically speaking, new results by 
Rodomanov and Nesterov (2021) establish that the local superlinear convergence rates from the classical BFGS 
method for unconstrained optimization (as is made possible by the parameterizations in our current paper) are much 
better than originally thought. Add to this the remarkable simplicity of the classical BFGS in practice, it is generally 
recognized that the BFGS method is “best” in practice (Runnoe, 2020). As Andrei (2018) also exclaims “…the BFGS 
method has very interesting properties and remains one of the most respectable quasi-Newton methods for 
unconstrained optimization”. Thus, we use the same standard BFGS method for both the radial and spherical 
parameterization-based estimations.  
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low error correlation structure ( lowΣ ) and high error correlation structure ( highΣ ) such that both 

positive and negative elements are represented in the correlation structures. A positive-definite 
low error correlation structure with positive and negative correlation elements is easy to create. 
For the high correlation structure, we use a Toeplitz matrix that enables the creation of positive-
definite correlation matrices even with high positive and negative correlations. Specifically, as 
indicated in Bogoya et al. (2018), if a linearly decreasing sequence (of positive and negative 
values) is used to create a Toeplitz matrix, the matrix will remain a positive-definite matrix as long 
as the sum of the values in the sequence is positive. Using this result, we create a positive-definite 
matrix and then make small adjustments to increase the correlation magnitudes so that the resulting 
correlation matrix remains positive definite. The final correlation matrices used are presented 
below: 

    

1.00 0.30 0.20 0.20 0.15
0.30 1.00 0.25 0.30 0.10
0.20 0.25 1.00 0.25 0.20
0.20 0.30 0.25 1.00 0.25
0.15 0.10 0.20 0.25 1.00

low

− − 
 − 
 = − −
 − − − 
 − − 

Σ , 

1.00 0.60 0.20 0.50 0.80
0.60 1.00 0.60 0.20 0.50
0.20 0.60 1.00 0.60 0.20
0.50 0.20 0.60 1.00 0.60
0.80 0.50 0.20 0.60 1.00

high

− − 
 − 
 =
 − 
 − − 

Σ    (18) 

The error term realization for each observation and each binary variable is then added to 
the systematic component ( )i i′β x  as in Equation (12) and then translated to “observed” values of 

iy . As mentioned earlier, the above data generation process is undertaken 1000 times with 
different realizations of the random error vector to generate 1000 different data sets. The estimation 
is undertaken for each data set with seven different values of the scale σ (σ = 0.2, 0.6, 0.8, 1, 1.2, 
1.4, 2) in the embedded logistic function of the radial parameterization (Equation 17). Another set 
of estimations are then undertaken with the corresponding equivalent scale in the embedded 
logistic function of the spherical parameterization: Thus, we have a total of 14,000 multivariate 
binary model estimations.  

 
3.4 Performance Evaluation 
The performance of the models with different scales, for each of the low correlation and high 
correlation cases, is evaluated using multiple metrics for recovering model parameters as well as 
for the actual predictions. The procedure is as follows: 
(1) Estimate the parameters for each of the 500 datasets for the low correlation case and 500 

datasets for the high correlation case, using each of the scale values of σ. Estimate the 
standard errors. For each correlation case and each σ value, do the following: 

(2) Compute the percentage of non-convergence estimations among the 500 datasets. Among 
those datasets in which convergence was achieved, undertake the following: 

(3) Compute the mean estimate for each model parameter across the 500 data sets. Compute the 
absolute percentage (finite sample) bias (APB) as: 
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 mean estimate true value 100
true value

APB −
= ×  

(4) Compute the standard deviation of each parameter estimate across the 500 datasets, and label 
this as the finite sample standard deviation or FSSD (essentially, this is the empirical 
standard error). Compute the FSSD as a percentage of the true value of each parameter. 

(5) Compute the mean standard error for each model parameter across the 500 datasets, and label 
this as the asymptotic standard error or ASE (essentially this is the standard error of the 
distribution of the estimator as the sample size gets large, and is a theoretical approximation 
to the FSSD).  

(6) Next, to evaluate the accuracy of the asymptotic standard error formula for the finite sample 
size used, compute the absolute percentage bias of the asymptotic standard error 
(APBASE) for each parameter relative to the corresponding finite sample standard deviation. 

ASE FSSD 100
FSSD

APBASE −
= ×  

(7) For each parameter, compute the coverage probability (CP) as below:  

[ ]∑
=

+≤≤−=
N

r

r
X

r
XX

r
X

r
X ttI

N 1
)ˆ(se*ˆ)ˆ(se*ˆ1CP βββββ αα , 

where, CP is the coverage probability, r
Xβ̂  is the estimated value of the parameter in dataset 

r, Xβ  is the true value of the parameter, )ˆ(se r
Xβ  is the asymptotic standard error (ASE) of 

the parameter in the dataset r, [.]I  is an indicator function which takes a value of 1 if the 
argument in the bracket is true (otherwise 0), N is the number of datasets (500), and αt  is the 
t-statistic value for a given confidence level .100)1( ×−α  We compute CP values for 80% 
nominal coverage probability (i.e., 20.0=α ). CP is the empirical probability that a 
confidence interval contains the true parameter (i.e., the proportion of confidence intervals 
across the 500 datasets that contain the true parameter). CP values smaller than the nominal 
confidence level (80% in our study) suggest that the confidence intervals do not provide 
sufficient empirical coverage of the true parameter. 

(8) Examine the data fit at a disaggregate level by comparing the log-likelihood values at 
convergence of the models. The model with the higher log-likelihood value is to be preferred, 
because all the models have the same number of estimated parameters. Based on the log-
likelihood values for each of the 500 runs (corresponding to the 500 datasets), compute a 
mean log-likelihood value. In addition, also compute the average probability of correct 
prediction for the discrete consumption across the 500 datasets. That is, for each of the 500 
datasets, compute the predicted multivariate probability of the observed discrete choice for 
each observation, and then compute an average across individuals. This average probability 
of correct prediction at a dataset-level is then averaged across the 500 datasets to obtain a 
single average probability of correct prediction. 
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(9) Finally, at the aggregate level, for each dataset, predict the aggregate share of individuals 
participating in each of the 52 32=  possible multivariate discrete outcomes, and compare 
these predicted shares with the actual percentages of observations in each multivariate 
combination (using the weighted MAPE statistic, which is the MAPE for each combination 
weighted by the actual percentage shares of observations participating in each combination). 
Next, compute the average of the weighted MAPE statistic across the 500 datasets.  

(10) Store the run time for estimation for each data set, and compute the mean, median, and 
standard deviation of the run times across the 500 data sets.  
 

4. PERFORMANCE EVALUATION RESULTS 
Table 2 presents an overall summary of the small sample statistics performance and numerical 
performance for the seven different scaling values in the radial parameterization, and for each of 
the low and high correlation cases.6 For each scaling factor, the first panel of rows presents the 
average APB values (across all parameters), as well as the average APB values computed 
separately for the mean parameters (the β vector) and the correlation matrix (the upper diagonal Σ 
matrix or Vech( )Σ ) elements. The second through fifth panels provide the corresponding average 
FSSD, ASE values, APBASE, CP, and data fit measures. The final block provides information on 
the numerical performance for the different radial scaling values (convergence rates, and the mean, 
median, and standard deviations of the model estimation run times across all the converged 
estimations from the 500 datasets). 
 
4.1 Accuracy of Parameter Recovery and Precision in Estimation 
The APB values pretty consistently indicate the superior ability to recover the mean parameters 
(the β vector) relative to the correlation parameters; this is because the correlation parameters 
enter the likelihood function in a more complex non-linear fashion compared to the mean 
parameters, and thus are more difficult to accurately recover.  However, for each of the mean and 
correlation parameters, the APB values do not vary by much across different scaling values and 
lie in the tight (and small magnitude) range of 0.675%-1.61% across all parameters. There is also 
no specific discernible pattern in the accuracy, even if the APB is the lowest for a scale of 1.4 in 
the low correlation case. Overall, for the datasets that converged, all the scaled parameterizations 
were able to quite accurately recover the true parameter for both the low and high correlation 
cases. 

The values in the second, third and fourth blocks, corresponding to the FSSD, ASE and 
APBASE, relate to the precision in estimation. The FSSD values are useful for assessing the 
empirical (finite-sample) efficiency (or precision) of the different estimators, while the ASE values 
provide efficiency results as the sample size gets very large. The ASE values essentially provide 
an approximation to the FSSD values for finite samples. The APBASE values as obtained in Table 

                                                 
6 The detailed results for all the cases are available in an online supplement at 
https://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Cholesky/OnlineSupp.pdf.  

https://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Cholesky/OnlineSupp.pdf
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2 indicate that there is no significant difference between the precision levels of the estimates across 
different scale factors, for both the low and high correlation categories. Remarkably, all the 
APBASE values are lower than 5%. Again, similar to the parameter recovery case, the scale factor 
does not appear to impact the accuracy or the precision of the estimates, even though it does appear 
that a scale of 1.0-1.2 provides APBASE values at the lowest end of the spectrum. 

  
4.2 Coverage Probability (CP) and Data Fit Measures 
The fifth block of Table 2 provides the coverage probability (CP) values for all the cases. The CP 
values help assess the distribution of the parameter estimates about the true parameter in terms of 
the empirical probability that a confidence level contains the true parameter. As one may observe 
from Table 2, all scale values provide good empirical coverage of the 80% nominal confidence 
interval, with little to no effective difference in these empirical coverages (all the values are above 
80%).  
 The sixth block presents the data fit measures at disagreggate as well as aggregate levels.  
Again, the consistency in all these data fit measures across all the scale values for each of the low 
and high correlation cases is remarkable, with little difference across the scales. For the low  
correlation case, a scale of 0.8 seems to work best across all the data fit measures, while, for the 
high correlation case, a scale of 1.2 appears to work best. But, in general, the performance of all 
the models are commendable with the weighted MAPE values all being below 6% and sandwiched 
tightly between the 5.50%-5.82% range. The average probability of correct prediction (APCP) 
values are in the order of 0.19 for the low correlation case and 0.23 for the high correlation case. 
These average probabilities may appear low, but considering that the five outcome variables can 
produce a total of 52 32=  outcome combinations, these values are much higher than the 
probability of correct prediction in the case of a random chance assignment (=1/32=0.03125). 
  
4.3 Computation Time and Convergence Rate 
The last block in Table 2 provides the numerical performance measures (convergence rates and 
computation times) for the different models. All estimations were undertaken using Intel(R) 
Xeon(R) CPU E5-1680 v4 @3.40GHz, Windows 10 Enterprise (64 bit), 192.0 GB RAM machine. 
The virtue of having a gradual transformation from the real line to the {–1,1} region for the 
parameterizing curve is reflected in the convergence success rates. Specifically, the danger of 
having too low a scale factor (that is a sharp rise from –1 to +1 within a very narrow real line 
spectrum) is obvious, particularly for the high correlation case. For instance, only about 86% of 
the runs converge when a scale of 0.2 is used for the high correlation case. Having a steep 
transformative curve can lead to oscillations between two sub-optimal points, causing convergence 
to be unattainable. However, this does not imply that convergence rates will improve by 
unilaterally increasing the scale factor. In particular, there is little benefits to increasing the scale 
beyond 0.8; in fact, for the high correlation case, there is a pretty sharp degradation in the 
convergence rates beyond the scale of 1.0. This may be because, for some specific estimation 
contexts, line-search algorithms find it difficult to navigate the optimization pathway space 
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regardless of the flatness of the presented log-likelihood surface, especially in high-correlation 
cases which have higher degree of non-linearity in the parameter-to-likelihood function 
translation.  

In terms of convergence times across converged estimations, it is not surprising that the 
mean and median computation times increase with the flatness of the surface introduced through 
higher scale factor values. The flatter the transformation curve, the slower the movement of the 
likelihood function toward the optimal value. Also, the computation time is higher in the case of 
high correlation relative to low correlation for a given scale value. This is because of two reasons. 
The first is the higher degree of non-linearity in the parameter-to-likelihood function translation in 
the high correlation case relative to the low correlation case, as mentioned in the last paragraph. 
The second is the more mechanical issue that the optimizing process is typically started with values 
of zero correlation in multivariate models, and thus reaching to the low correlations takes lesser 
time. In our experience, the first issue dominates the second, given the nature of the non-linear 
search in the maximum likelihood optimization.  

In summary, good convergence rates, fast computational speed, and good data fit suggest 
using a scale in the radial parameterization in the 0.6-0.8 scale range. While a scale of 0.8 increases 
the computation time relative to the scale of 0.6, it also seems to provide better data fit measures. 
Overall, a scale of 0.8 is a good scale value to settle for. Interestingly, this scale value is somewhere 
between the implied scale of the standardized spherical parameterization in the radial 
parameterization (scale of 0.6253) and the standardized scale of the radial parameterization (scale 
of 1.0). Thus, our results point to the use of a radial parameterization with a scale of 0.80 (or the 
spherical parameterization with a scale of 1.2904).   

 
4.4 Comparison of the Radial and Equivalent Spherical Parameterization 
To further investigate whether the differences in the radial and spherical parameterizations are 
based on the embedded scale rather than on the specific parameterization per se, in a second 
experiment, we estimated the same models as above but now using the spherical parameterization 
with the scales set such that the spherical parameterization mimics the radial parameterization. 
This mapping of scales (approximated to two decimal places) between the scale of the radial and 
spherical parameterizations is as follows: 0.2 in radial is 0.32 in the spherical, 0.60 is 0.97, 0.80 is 
1.29, 1.00 is 1.61, 1.20 is 1.93, 1.40 is 2.26, and 2.00 is 3.22.  
 The results of the spherical paramerizations using the appropriate scales indicated that, 
when convergence was achieved in both cases, the spherical parameterization returned the same 
parameters and standard errors as the radial parameterization (upto the third or fourth decimal 
place). These results reinforce our point that it is not the specific parameterization as much as it is 
the scale embedded in the logistic function that matters. Because the small sample statistics results 
(parameter recovery, precision, and data fit) are almost exactly identical between the radial and 
equivalent spherical parameterizations (that is, after appropriate scaling), we do not present the 
detailed small sample results for the spherical parameterization here. However, in Table 3, we do 
show a numerical performance comparison of the results for the radial and equivalent spherical 



16 

parameterizations in terms of convergence rates and computation time (when convergence was 
achieved). The row labeled “% of runs converged” for both the low and high correlation cases 
indicates almost literally the same convergence rates for the radial and equivalent spherical 
parameterizations (except for those rare instances in the order of two to twelve cases of the 500 
data runs where one converged but not the other). And the mean run times and the median run 
times among converged runs are about the same across both the parameterizations after controlling 
for the scale. The standard deviation appears a little higher for the spherical parameterization 
relative to its corresponding radial parameterization at low scale values, especially for the high 
correlation case. Overall, though, our results clearly demonstrate the near-equivalence of the radial 
and spherical parameterizations when embedded within the standard BFGS algorithm, and suggest 
the use of a scaling factor (in the embedded logistic function) of 0.8 if the radial parameterization 
is used, or a scaling factor of 1.2904 if the spherical parameterization is used. 
   
5. SUMMARY AND CONCLUSIONS 
Many multivariate modeling systems require a correlation matrix to be estimated. A requirement 
for these correlation matrices is that they be positive-definite. While constrained optimization 
methods may be used during estimation to ensure this condition, such methods require some level 
of trial-and-error, and lead to difficulties in convergence. Thus, it is almost always the case that a 
reparameterization of the correlation matrix is undertaken to ensure positive-definiteness, while 
also allowing for unconstrained optimization. 
 In addition to maintaining positive-definiteness, the reparameterization of the correlation 
matrix also needs to conform to the unit diagonal vector in the correlation matrix. In this regard, 
the usual Cholesky decomposition applied to the covariance matrix does not immediately work for 
correlation matrices, because the diagonal elements of the Cholesky of a correlation matrix involve 
the square root of one minus the linear sum of the Cholesky elements in previous columns of the 
same row. During estimation, there is nothing to prevent the term within the square root of these 
diagonal elements to take a value of zero or even a negative number. This breaks down the 
estimation process. To resolve this issue, a further parameterization of the Cholesky matrix itself 
is undertaken. The most common and well-established procedure is to use a spherical 
parameterization. More recently, van Oest (2021) suggested an alternative radial parameterization, 
suggesting that the radial parameterization may be more effective than the spherical 
parameterization.  

In this paper, we show that the two parameterizations, radial and spherical, have a very 
close relation. Both of these parameterizations involve a first parameterization (of the Cholesky) 
such that the off-diagonal elements are between –1 and +1. The difference between the two 
parameterizations is in the second level of mapping from the real line to the –1-to-+1 off-diagonal 
elements of the first level parameterization. We identify a logit function that is embedded within 
each of the two different ways of parameterizing at this second-level, and demonstrate that both 
parameterizations are near-identical based on the scaling used in this embedded logit function. We 
also show that any difference between the two parameterizations in terms of numerical 
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performance and small sample statistics is simply a result of the different implicit scales used in 
the embedded logit function, and not a function of the parameterizations themselves, at least when 
considered in the context of the popular standard BFGS algorithm. We further show that the 
optimal scale (in terms of convergence rates and computational time) of the embedded logit link 
is between the implicit scales of the radial and spherical parameterizations. Both the 
parameterizations have been coded (along with their gradient functions) in the GAUSS matrix 
programming language (Aptech GAUSS version 21), and are available for free download from 
https://www.caee.utexas.edu/prof/bhat/CodeRepository/Cholesky.html. In our experience, both 
parameterizations are equally easy to code and implement, and the choice of one over the other 
appears to be purely an issue of preference. If the radial parameterization is used, the optimal scale 
value in our analysis is 0.8, and if the spherical parameterization is used, the optimal scale is 1.29.  

 Of course, the current results for the optimal scale are based on a five-dimensional binary 
model system. Additional explorations in the context of other types of models may be useful, 
though the result from our study that there is little difference in the radial and spherical 
parameterizations after a scale adjustment should always hold -- there is no clear reason to believe 
dissimilar results would be obtained with other types of model systems when the parameters are 
estimated using a standard BFGS optimization method. 
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Figure 1. Traditional spherical and radial parameterization plots on the real line 

 
 
 
 
 

 
Figure 2. Scaling the radial parameterization to show its equivalence with the spherical 

parameterization 
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Table 1. Root mean squared deviation (RMSD) for pointwise comparison 

Scale 
RMSD 

Segment 1 
(–20.0 to –10.0) 

Segment 2 
(–10.0 to –5.0) 

Segment 3 
(–5.0 to 0.0) 

Radial scale = 0.20, 
Spherical scale = 0.32  0 3.98E-12 2.60E-03 

Radial scale = 0.60, 
Spherical scale = 0.97 1.93E-08 8.36E-05 4.50E-03 

Radial scale = 0.80, 
Spherical scale = 1.29 1.33E-06 5.76E-04 5.17E-03 

Radial scale = 1.00, 
Spherical scale = 1.61 1.63E-05 1.62E-04 5.57E-03 

Radial scale = 1.20, 
Spherical scale = 1.93 8.32E-05 2.96E-03 5.62E-03 

Radial scale = 1.40, 
Spherical scale = 2.26 2.56E-04 4.23E-03 5.39E-03 

Radial scale = 2.00, 
Spherical scale = 3.22 1.62E-03 6.18E-03 4.89E3-03 
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Table 2. Performance evaluation results for the simulation experiment 

 
Low Correlation High Correlation 

Scale = 
0.2 

Scale = 
0.6 

Scale = 
0.8 

Scale = 
1.0 

Scale = 
1.2 

Scale = 
1.4 

Scale = 
2.0 

Scale = 
0.2 

Scale = 
0.6 

Scale = 
0.8 

Scale = 
1.0 

Scale = 
1.2 

Scale = 
1.4 

Scale = 
2.0 

Absolute Percentage Bias (APB) 

All parameters 1.172 0.858 0.960 1.104 0.930 0.675 0.839 1.230 1.367 1.406 1.436 1.318 1.325 1.610 

Mean parameters 0.565 0.410 0.343 0.590 0.475 0.353 0.494 1.161 1.086 1.139 1.114 1.022 0.910 1.148 

Correlation 
parameters  1.779 1.307 1.577 1.618 1.385 0.996 1.185 1.298 1.649 1.672 1.758 1.614 1.741 2.072 

Finite Sample Standard Deviation (FSSD) 

All parameters 0.050 0.050 0.050 0.051 0.050 0.050 0.050 0.044 0.043 0.045 0.044 0.044 0.044 0.044 

Mean parameters 0.049 0.050 0.050 0.050 0.050 0.050 0.050 0.047 0.045 0.047 0.045 0.046 0.046 0.046 

Correlation 
parameters  0.050 0.050 0.050 0.051 0.050 0.050 0.050 0.041 0.042 0.043 0.042 0.043 0.043 0.042 

Asymptotic Standard Error (ASE) 

All parameters 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.045 0.045 0.044 0.045 0.045 0.045 0.045 

Mean parameters 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.047 0.047 0.045 0.047 0.046 0.046 0.047 

Correlation 
parameters  0.052 0.051 0.052 0.052 0.051 0.052 0.051 0.043 0.044 0.042 0.043 0.044 0.044 0.044 

Absolute Percentage Bias of the Asymptotic Standard Error (APBASE) 

All parameters 2.902 3.261 3.276 2.479 3.168 3.185 3.181 3.952 4.938 3.882 3.806 2.929 3.299 3.879 

Mean parameters 2.078 2.414 2.497 2.490 2.275 2.885 2.358 2.386 4.604 3.472 3.787 2.001 2.516 3.103 

Correlation 
parameters  3.726 4.108 4.055 2.469 4.060 3.486 4.005 5.517 5.272 4.292 3.825 3.856 4.083 4.655 

Coverage Probability (CP) 

CP80% 81.84% 81.26% 81.28% 81.40% 81.40% 81.30% 81.48% 81.74% 81.50% 81.68% 81.24% 81.62% 81.84% 81.60% 
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Low Correlation High Correlation 

Scale = 
0.2 

Scale = 
0.6 

Scale = 
0.8 

Scale = 
1.0 

Scale = 
1.2 

Scale = 
1.4 

Scale = 
2.0 

Scale = 
0.2 

Scale = 
0.6 

Scale = 
0.8 

Scale = 
1.0 

Scale = 
1.2 

Scale = 
1.4 

Scale = 
2.0 

Data Fit Measures 

Mean likelihood 
(across all datasets) -4341.31 -4350.59 -4328.52 -4321.82 -4350.26 -4334.91 -4350.18 -3903.72 -3891.16 -3895.22 -3895.52 -3871.01 -3871.89 -3880.45 

Average prob. of 
correct prediction 0.187 0.187 0.189 0.190 0.187 0.188 0.187 0.229 0.231 0.231 0.231 0.232 0.232 0.232 

Weighted mean 
absolute percentage 
error (%) 

5.649 5.741 5.579 5.708 5.730 5.510 5.737 5.696 5.751 5.708 5.680 5.621 5.820 5.725 

Convergence Success Rate and Computation Time (Seconds) 

 % of runs 
converged  96.2 96.4 97.0 97.2 98.4 98.4 98.4 86.4 91.8 94.4 94.0 91.4 86.2 83.4 

 Mean run time  119.8 137.9 140.4 169.1 179.1 206.5 217.8 184.1 215.5 259.7 299.8 329.9 351.2 401.4 

 Median run time  119.0 135.0 137.5 168.5 178.0 208.0 218.0 183.0 208.0 257.0 294.5 327.0 351.0 392.0 

 Standard deviation 
of run time  4.0 8.6 7.5 10.7 10.6 17.4 15.3 34.5 30.7 24.5 46.1 45.8 55.6 74.2 
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Table 3. Comparison of convergence rate and convergence time between radial and spherical parameterizations  

Computation Time (Seconds) and Convergence Success Rate 
Low Correlation 

 Radial Parameterization Equivalent Spherical Parameterization 

Scales 0.20 0.60 0.80 1.00 1.20 1.40 2.00 0.32 0.97 1.29 1.61 1.93 2.26 3.22 

% of runs converged  96.2 96.4 97.0 97.2 98.4 98.4 98.4 96.0 96.2 96.2 97.2 98.0 97.6 99.0 

Mean run time  119.8 137.9 140.4 169.1 179.1 206.5 217.8 121.2 136.5 143.5 170.5 183.7 206 219.4 

Median run time  119.0 135.0 137.5 168.5 178.0 208.0 218.0 121.5 133.5 145.0 169.0 181.5 208.0 218.0 

Standard deviation of 
run time  4.0 8.6 7.5 10.7 10.6 17.4 15.3 4.3 8.9 6.6 11.7 11.3 16.2 15.5 

Computation Time (Seconds) and Convergence Success Rate 
High Correlation 

  Radial Parameterization Equivalent Spherical Parameterization 

Scales 0.20 0.60 0.80 1.00 1.20 1.40 2.00 0.32 0.97 1.29 1.61 1.93 2.26 3.22 

% of runs converged  86.4 91.8 94.4 94.0 91.4 86.2 83.4 86.4 93.2 94.6 95.4 88.8 84.2 81.8 

Mean run time  184.1 215.5 259.7 299.8 329.9 351.2 401.4 187.5 213.7 261.7 298.1 325.2 351.6 386.2 

Median run time  183.0 208.0 257.0 294.5 327.0 351.0 392.0 184.0 202.0 256.0 290.5 323.0 350.5 385.0 

Standard deviation of 
run time  34.5 30.7 24.5 46.1 45.8 55.6 74.2 46.3 39.2 31.6 48.8 42.9 61.5 66.9 

 
 


	ABSTRACT
	1. INTRODUCTION
	2. ALTERNATIVE DECOMPOSITION PROCEDURES
	2.1 The Spherical and Radial Parameterizations
	3. DESIGN OF THE SIMULATION STUDY
	3.1 Model Structure
	3.2 Model Estimation
	3.3 Experimental Design

	4. PERFORMANCE EVALUATION RESULTS
	4.1 Accuracy of Parameter Recovery and Precision in Estimation
	4.2 Coverage Probability (CP) and Data Fit Measures
	4.3 Computation Time and Convergence Rate

	5. SUMMARY AND CONCLUSIONS
	References

