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ABSTRACT
In the current paper, we propose a new utility-consistent modeling framework to explicitly link a count data model with an event type multinomial choice model. The proposed framework uses a multinomial probit kernel for the event type choice model and introduces unobserved heterogeneity in both the count and discrete choice components. Additionally, this paper establishes important new results regarding the distribution of the maximum of multivariate normally distributed variables, which form the basis to embed the multinomial probit model within a joint modeling system for multivariate count data. The model is applied for analyzing out-of-home non-work episodes pursued by workers, using data from the National Household Travel Survey.
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1. INTRODUCTION
Count data models are used in several disciplines to analyze discrete and non-negative outcomes without an explicit upper limit. These models assume a discrete probability distribution for the count variables, followed by the parameterization of the mean of the discrete distribution as a function of explanatory variables. The two most commonly used discrete probability distributions are the Poisson and the negative binomial (NB) distributions, though other distributions such as the binomial and logarithmic distributions have also been occasionally considered. Several modifications and generalizations of the Poisson and NB distributions have also been used, including zero-inflated count models (see, for example, Naya et al., 2008 and Musio et al., 2010) and hurdle-count models (see, for example, Zhang et al., 2008 and Bethell et al., 2010). While these modifications and generalizations have been effective for use with univariate count models, they are difficult to implement in the case when there are inter-related multivariate counts at play (see Herriges et al., 2008). On the other hand, multivariate count data are ubiquitous in consumer choice situations. For instance, households may patronize different shopping destinations with different frequencies, or may participate in episodes of different activity purposes with different frequencies, or may purchase different counts of brands for frequently purchased grocery items (such as cookies, ready-to-eat cereals, soft drinks, and yoghurt). Such multivariate count data also naturally arise in non-consumer choice settings such as crash frequencies by severity level and crash type.
In the current paper, we propose a parametric utility-consistent framework for multivariate count data that is based on linking a univariate count model for the total count across all possible event states with a discrete choice model for the choice among the event states. For example, the total count may be the total number of grocery shopping occasions within say a month, and the event states may be some discrete representation of locations of participation. In the next section, we discuss closely related efforts in the econometric literature, and position the current paper in the context of earlier research.[footnoteRef:1]  [1:  There have been several studies in the literature that ignore the joint nature of multivariate count data, and model each count independently from the other (see Terza and Wilson, 1990 and Cameron and Trivedi, 2013). We do not discuss such studies in the next section.] 


1.1. Earlier Related Research
Three broad approaches have been used in the literature to model multivariate count data: (1) multivariate count models, (2) multiple discrete-continuous models, and (3) joint discrete choice and count models.

1.1.1. Multivariate count models
A multivariate count model may be developed using multivariate versions of the Poisson or negative binomial (NB) discrete distributions (see Buck et al., 2009 and Bermúdez and Karlis, 2011 for recent applications of these methods). These multivariate Poisson and NB models have the advantage of a closed form, but they become cumbersome as the number of events increases and can only accommodate a positive correlation in the counts. Alternatively, one may use a mixing structure, in which one or more random terms are introduced in the parameterization of the mean. The most common form of such a mixture is to include normally distributed terms within the exponentiated mean function, so that the probability of the multivariate counts then requires integration over these random terms (see, for example, Chib and Winkelman, 2001, Awondo et al., 2011 and Haque et al., 2010). The advantage of this method is that it permits both positive and negative dependency between the counts, but the limitations are that the approach gets quickly cumbersome in the presence of several mixing components. Recently, Bhat and colleagues (see Castro et al., 2012, Narayanamurthy et al., 2013, Bhat et al., 2013) have addressed this problem by recasting count models as a special case of generalized ordered-response models with underlying continuous latent variables, and introducing multivariateness through the specification of the error terms in the continuous latent variables (this approach also happens to nest the copula approach proposed by van Ophem, 1999 as a special case). These models allow for a more “linear” introduction of the dependencies and, in combination with a new estimation technique proposed by the authors, lead to a simple way to estimate correlated count data models. But these multivariate count approaches are not based on an underlying utility-maximizing framework; rather they represent a specification for the statistical expectation of demand, and then use relatively mechanical statistical “stitching” devices to accommodate correlations in the multivariate counts. Thus, these models are not of much use for economic welfare analysis, which can be very important in many recreational, cultural, and other empirical contexts. Further, the use of these models do not allow for potentially complex substitution and income effects that are likely to be present across event states in consumer choice decisions. For example, an increase in the price of groceries at one location (say A) may result in an increase in the attractiveness of other grocery locations due to a substitution effect, but also a decrease in total grocery shopping episodes because of an income effect. So, while the frequency of shopping instances to location A will reduce, the frequency of shopping instances to other locations may increase or decrease. The multivariate count models do not explicitly account for such substitution and income effects. Finally, such multivariate count models can be negatively affected by small sample sizes for each event count, and will, in general, necessitate the use of techniques to accommodate excess zeros in the count for each event category, which become difficult in a multivariate setting.

1.1.2. Multiple discrete-continuous models
Another approach that may be used for multivariate count data is to use an explicit utility maximizing framework based on the assumption that consumer preferences can be represented by a random utility function that is quasi-concave, increasing, and continuously differentiable with respect to the consumption quantity vector. Consumers maximize the stochastic utility function subject to one or more budget constraints. The use of a non-linear utility form that allows diminishing marginal utility (or satiation effects) with increasing consumption leads to the possibility of consumption of multiple alternatives and also provides the continuous quantity of the consumed alternatives. Bhat (2008) proposed a general Box-Cox transformation of the translated constant elasticity of substitution (or CES) additive utility function, and showed how the resulting constrained random utility maximization problem can be solved via standard Karush-Kuhn-Tucker (KKT) first order conditions of optimality (see Hanemann, 1978 and Wales and Woodland, 1983 for the initial conceptions of KKT-based  model systems, and Kim et al., 2002, von Haefen and Phaneuf, 2005, and Bhat, 2005 for specific implementations of the KKT framework in the past decade). The resulting multiple discrete-continuous (MDC) models have the advantage of being directly descendent from constrained utility maximizing principles, but fundamentally assume that alternatives can be consumed in non-negative and perfectly divisible (i.e., continuous) units. On the other hand, the situation of multivariate counts is truly a discrete-discrete situation, where the alternatives are discrete and the consumption quantity of the consumed alternatives is also discrete. While the MDC model may be a reasonable approximation when the observation period of consumption is long (such as say a year in the context of grocery shopping episodes), a utility-consistent formulation that explicitly recognizes the discrete nature of consumption quantity would be more desirable.[footnoteRef:2]  [2:  von Haefen and Phaneuf (2003) consider a slightly revised version of the KKT-based utility maximization approach for handling multivariate count data. Specifically, they assume a deterministic utility function (rather than a random utility function), derive the implied deterministic continuous consumption vector using KKT conditions, then consider these continuous consumptions as the expected demands, and finally treat the consumer’s observed demand for each alternative as an independent draw from a NB distribution with the expected demand function for the alternative as the mean. However, this method is a rather indirect way of accommodating discrete counts, and there is no guarantee that the predicted counts will satisfy the original budget constraint in the KKT framework. ] 


1.1.3. Combined discrete choice and count model
A third approach uses a combination of a total count model to analyze multivariate count data and a discrete choice model for event choice that allocates the total count to different events. This approach has been adopted quite extensively in the literature. Studies differ in whether or not there is a linkage between the total count model and the discrete event choice model. Thus, many studies essentially model the total count using a count model system in the first step, and then independently (and hierarchically, given the total count) develop a multinomial choice model for the choice of event type at each instance of the total number of choice instances (as given by the total count). Since the multivariate count setting does not provide any information on the ordering of the choice instances, the probability of the observed counts in each event type, given the total count, takes a multinomial distribution form (see Terza and Wilson, 1990). This structure, while easy to estimate and implement, does not explicitly consider the substitution and income effects that are likely to lead to a change in total count because of a change in a variable that impacts any event type choice. This is because there is no linkage of any kind from the event type choice model back to the total count model. The structure without this linkage is also not consistent with utility theory, as we show in Section 3. An alternate and more appealing structure is one that explicitly links the event discrete choice model with the total count model. In this structure, the expected value of the maximum utility from the event type multinomial model is used as an explanatory variable in the conditional expectation for the total count random variable (see Mannering and Hamed, 1990 and Hausman et al., 1995, and Rouwendall and Boter, 2009). But a problem with the way this structure has been implemented in the earlier studies is that the resulting model is inconsistent with utility theory (more on this later) and/or fails to recognize the effects of unobserved factors in the event type alternative utilities on the total count (because only the expected value of maximum utility enters the count model intensity, and not the full distribution of maximum utility, resulting in the absence of a mapping of the choice errors into the count intensity). On the other hand, the factors in the unobserved portions of utilities must also influence the count intensity just as the observed factors in the utilities do. This is essential to recognize the integrated nature of the event choice and the total count decisions. Unfortunately, if this were to be considered in the case when a generalized extreme value (GEV) model is used for the event choice (as has been done in the past), the maximum over the utilities is extreme-value distributed (see Choi and Moon, 1997), and including this maximum utility distribution form in the count model leads to difficult distributional mismatch issues in the count model component of the joint model (this is perhaps the reason that earlier models have not considered the full distribution of the maximum utility in the count model). As indicated by Burda et al. (2010), while the situation may be resolved by using Bayesian augmentation procedures, these tend to be difficult to implement, particularly when random taste variations across individuals are also present in the event choice model.

1.2. The Current Paper
In the current paper, we use the third approach discussed above, while also ensuring a utility-consistent model for multivariate counts that considers the linkage in the total count and event choice components of the model system by accommodating the complete distribution of maximum utility from the event type choice model to the total count model. To our knowledge, this is the first such joint model proposed in the literature. In this context, there are four aspects of the proposed model system that are novel in the literature. First, we use a multinomial probit (MNP) kernel for the event choice type model, rather than the traditional GEV-based kernels (dominantly the multinomial logit (MNL) or the nested logit (NL) kernel) used in earlier studies. The use of the MNP kernel has several advantages, including allowing a more flexible covariance structure for the event utilities relative to traditional GEV kernels, ensuring that the resulting model is utility-consistent based on separability of the direct utility function (Hausman et al.’s (1995) model, while stated by the authors as being utility-consistent, is actually not utility-consistent because they use a GEV kernel for the choice model, as discussed later), and also facilitating the linkage between the event choice and the total count components of our proposed model system (this is because the cumulative distribution of the maximum over a multivariate normally distributed vector takes back the form of a cumulative multivariate normal distribution, which we exploit in the way we introduce the linkage between the event type choice model and the total count model in our modeling approach).[footnoteRef:3] Second, and related to the first, we allow random taste variations (or unobserved heterogeneity) in the sensitivity to exogenous factors in both the event choice model as well as the total count components. This is accomplished by recasting the total count model as a special case of a generalized ordered-response model in which a single latent continuous variable is partitioned into mutually exclusive intervals (see Castro, Paleti, and Bhat, 2012 or CPB in the rest of this paper). The recasting facilitates the inclusion of the linkage as well as easily accommodates random taste variations, because of the conjugate nature of the multivariate normal distribution of the linkage parameter (that includes the random taste variations in the event type choice model) and the multivariate normal distribution for the random taste variations in the count model. Further, the recasting can easily accommodate high or low probability masses for specific count outcomes without the need for zero-inflated or hurdle approaches, and allows the use of a specific estimation approach that very quickly evaluates multivariate normal cumulative distribution functions. Third, we establish a few new results regarding the distribution of the maximum of multivariate normally distributed random variables (with a general covariance matrix). These results constitute another core element in our utility-consistent approach to link the event and total count components, in addition to being important in their own right. In particular, the use of GEV structures in the past for event choice in joint models has ostensibly been because the exact form of the maximum of GEV distributed variables is well known. We show that similar results do also exist for the maximum of normally distributed variables, though these have simply not been invoked in econometric models. In doing so, we bring recent developments in the statistical field into the economic field. Fourth, we propose the estimation of our joint model for multivariate count data using Bhat’s (2011) frequentist MACML (for maximum composite marginal likelihood) approach, which is easy to code and computationally time efficient. More broadly, the approach in this paper should open up a whole new set of applications in consumer choice modeling, because the analyst can now embed an MNP model within a modeling system for multivariate count data. In summary, it is the combination of multiple things that work in tandem that lead to our proposed new utility-consistent, flexible, and easy-to-estimate model, including the use of an MNP kernel for the event type choice, the recasting of traditional count models as generalized ordered-response models, the application of new statistical results for the maximum of multivariate normally distributed variables, and the use of the MACML estimation approach for estimation.  [3:  As a secondary contribution, the paper potentially opens up a whole new area of studies of welfare economics that use an MNP kernel for choice models, as opposed to the use of GEV-based models for welfare economics. Indeed, we have found no discussion in the literature on welfare economics of consumer surplus concepts in the context of MNP choice models, primarily because results regarding the distribution of the maximum of a multivariate normally distributed vector (with a general covariance matrix) have been recent and have been confined to the statistical literature. In this regard, the current paper brings these recent statistical results on the distribution of the maximum of multivariate normally distributed variables, along with new results that we establish, into the economic domain of utility-based models.] 

The rest of this paper is structured as follows. The next section presents the fundamental structure of the multivariate normal distribution and new results regarding the distribution of the maximum of normally distributed variables. Section 3 presents the model framework and estimation procedure for the proposed joint count and discrete choice model. Section 4 illustrates an application of the proposed model for analyzing out-of-home non-work episodes pursued by workers. Finally, Section 5 summarizes the key findings of the paper and identifies directions for further research.

2. THE JOINT EVENT TYPE-TOTAL COUNT MODEL SYSTEM










Let the total observed demand count over a certain period of interest for consumer   be . Also, let there be   event type possibilities (or alternatives) that the total count  may be allocated to (the number of event types may vary across decision agents; however, for ease in presentation and also because the case of varying number of event types does not pose any complications, we assume the same number of alternatives across all consumers). Each count unit contribution to the total count  corresponds to a choice occasion from among the  alternatives. Thus, one may view the choice situation as a case of repeated choice data, with  choice occasions and time-invarying independent variables.[footnoteRef:4] The “chosen” alternative at each choice occasion is developed such that the total number of times an alternative is “chosen” across the  choice occasions equals the actual count in that alternative (the order of the assignment of the “chosen” alternatives across choice occasions is immaterial, and does not affect the estimation in any way). The resulting repeated choice data allows the estimation of individual-specific unobserved factors that influence the intrinsic preference for each alternative as well as the responsiveness to independent variables.  [4:  In many situations, the count by event type is explicitly based on observation or reported decisions at a choice occasion level (such as individuals reporting all the activity episodes by type of participation over a day, or recalling each recreational trip participated in over a period of time).] 

The next section presents the econometric formulation for the event choice at each choice occasion, while the subsequent section develops the econometric formulation for the total count model (including the linkage between the event choice and the total count). In Section 3, we show that our proposed model system is consistent with two-stage budgeting. 

2.1. Event Type Choice Model

Consider the following random-coefficients formulation in which the utility  that an individual q associates with alternative i at choice occasion t is given by: 
	
,
	         (1)
























where  is a (D×1)-column vector of exogenous attributes (including a constant), and  is an individual-specific (D×1)-column vector of corresponding coefficients that is a realization from a multivariate normal density function with mean vector and covariance matrix  (this specification allows taste variation as well as generic preference variations due to unobserved individual attributes).  is assumed to be an independently and identically distributed (across choice occasions and across individuals) error term, but having a general covariance structure across alternatives at each choice occasion. Thus, consider the (I×1)-vector . We assume that , leading to a multinomial probit (MNP) model of event type choice (stands for the multivariate normal distribution of I dimensions with mean vector  and covariance matrix ). To accommodate the invariance in choice probabilities to utility function translations and scaling, appropriate identification considerations need to be imposed on . An appealing approach is to take the differences of the error terms with respect to the first error term (the designation of the first alternative is arbitrary). Let , and let . Then, up to a scaling factor, the covariance matrix of  (say ) is identifiable. Next, scale the top left diagonal element of this error-differenced covariance matrix to 1. Thus, there are  free covariance terms in the  matrix . Later on during estimation, we will take the difference of the utilities with respect to the chosen alternative (not the first alternative). But to ensure that, whenever differences are taken with respect to the chosen alternative, these differences are consistent with the same error covariance matrix  for the undifferenced error term vector ,  is effectively constructed from  by adding a top row of zeros and a first column of zeros (see Train, 2003; page 134). Also, in MNP models where the variables are all specific to individuals (and whose values do not vary across alternatives), empirical identification issues need to be considered. In particular, as discussed by Keane (1992) and Munkin and Trivedi (2008), identification is tenuous unless exclusion restrictions are placed in the form of at least one individual characteristic being excluded from each alternative’s utility in addition to being excluded from a base alternative (but appearing in the utilities of some other alternatives). In our application, this empirical identification issue does not arise because we do have alternative-specific variables in the event type choice model. 




We now set out some additional notation. Define  (I×1 vector),  (TI×1 vector),  (TI×1 vector), and  (I×D matrix). Then, we can write: 
	
,
	(2)













where  and . Also, assume that individual q chooses alternative  at the tth choice instance. Define  as an  block diagonal matrix, with each block diagonal having  rows and I columns corresponding to the qth individual’s tth choice instance. This  matrix for individual q and observation time period t corresponds to an  identity matrix with an extra column of ’s added as the  column. In the utility differential form (where the utility differentials are taken with respect to the chosen alternative  at each choice occasion), we may write Equation (2) as: 
	
.
	(3)









To determine the covariance matrix of , define  matrix) and  matrix). Let  and . Also, let . Finally, we obtain the result below: 
	
.
	(4)






























The parameters to be estimated in the event type model include the  vector, and the elements of the covariance matrices  To write this, as well as for future use, we define several key notations as follows:  for an identity matrix of dimension R,  for a column vector of ones of dimension R,  for a column vector of zeros of dimension R,  for a matrix of ones of dimension R×R,  for the univariate normal density function with mean  and variance  for the univariate standard normal density function,  for the multivariate normal density function of dimension R with mean vector  and covariance matrix ,  for the diagonal matrix of the standard deviations of , with its rth element being ,  for the multivariate standard normal density function of dimension R and correlation matrix ,  for the univariate normal cumulative distribution function with mean  and variance  for the univariate standard normal cumulative distribution function,  for the multivariate normal cumulative distribution function of dimension R with mean vector  and covariance matrix , and  for the multivariate standard normal cumulative distribution function of dimension R and correlation matrix (these notations will also be used in Appendix A). The likelihood contribution of individual q from the event type choice model is then -dimensional integral below:
	
.
	(5)



The above likelihood function has a high dimensionality of integration, especially when the total number of counts  and/or the number of alternatives I is high. To resolve this, we use the MACML approach proposed by Bhat (2011), which involves the evaluation of only univariate and bivariate cumulative normal distribution evaluations. However, note that the parameters from the event type model also appear in the total count model, and hence we discuss the overall estimation procedure for the total count-event type model in Section 2.3 after first discussing the total count model formulation in the next section.

2.2. Total Count Model
A key to linking the event type choice model to the total count model is our recasting of the count model as a generalized ordered-response model. Specifically, as discussed by CPB (2012), any count model may be reformulated as a special case of a generalized ordered-response model in which a single latent continuous variable is partitioned into mutually exclusive intervals. Using this equivalent latent variable-based generalized-ordered response framework for count data models, we are then able to gainfully and efficiently introduce the linkage from the event choice model to the count model through the latent continuous variable. The formulation also allows handling excess zeros in a straightforward manner.
We first provide a brief overview of CPB’s recasting of the count model as a special case of the generalized ordered-response probit model in Section 2.2.1, and then discuss the linkage with the event type model in Section 2.2.2.

2.2.1. The basic recasting





As earlier, let   be the index for the consumer and let   be the index to represent the count level (, the total observed count for consumer q, takes a specific value in the domain of k).  Consider the following form of the GORP model system:
	



,  if , ,
	(6)


















where is a scalar similar to the thresholds in a standard ordered-response model  for identification, and , and is a non-linear function of a vector of consumer-specific variables  that (a) ensures that the thresholds  satisfy the ordering conditions (;<  and (b) allows identification for any variables that are common in  and .[footnoteRef:5]  in Equation (6) corresponds to the latent propensity underlying the observed count variable ,  is an (L×1)-column vector of exogenous attributes (excluding a constant),  is a corresponding (L×1)-column vector of individual-specific variable effects, and  is an idiosyncratic random error term assumed to be identically and independently standard normal distributed across individuals q.  [5:  The use of functional form to achieve identification is sometimes viewed with skepticism. But there is nothing in the underlying theory of ordered-response models that requires the use of linear-in-parameters thresholds (see Greene and Hensher, 2010). The only requirement of the theory is the ordering of the thresholds, which, it so happens, requires some form of non-linear transformation to incorporate observed individual heterogeneity in the thresholds beyond the observed individual heterogeneity in the latent variable. 
] 







Several points about the GORP model of Equation (6) are noteworthy, as discussed by CPB. First, the model in Equation (6) can exactly reproduce any traditional count data model. For example, if =, ( is a parameter vector),  and , the result is the Poisson count model:

	(7)












Second, the analyst can accommodate high or low probability masses for specific count outcomes by estimating some of the  parameters in the threshold function. At the same time, the GORP model can estimate the probability for any arbitrary count value. All that needs to be done is to identify a count value K above which  is held fixed at ; that is,  for all . The analyst can empirically test different values of K and compare data fit to determine the optimal value of K to add flexibility over the traditional count specification (that constrains all  parameters to zero). Third, the interpretation of the generalized ordered-response recasting is that consumers have a latent “long-term” (and constant over a certain time period) propensity  associated with the demand for the product/service under consideration that is a linear function of a set of consumer-related attributes . On the other hand, there may be some specific consumer contexts and characteristics (embedded in ) that may dictate the likelihood of the long-term propensity getting translated into a manifested demand at any given instant of time (there may be common elements in  and ). Further, as will be clear in the next section, our implicit assumption in linking the total count model to the event type choice model is that the maximum utility (or a measure of per unit consumer surplus) from the event type choice model affects the “long-term” latent demand propensity , but does not play a role in the instantaneous translation of propensity to actual manifested demand. That is, the factors/constraints that are responsible for the instantaneous translation of propensity to manifested demand are not impacted by changes in the quality attributes of the consumer product alternatives (that is, of the event types), but the “long-term” demand propensity is.

2.2.2. Linkage with the event type choice model

To link the event type choice model with the count model, we need a measure of maximum utility from the event choice model in the count model. In this manner, an improvement in the quality or a reduction in price of any alternative in the choice model gets manifested as an increase in overall utility (or consumer surplus) per choice occasion, resulting in a higher propensity for the consumer product under consideration and an increase in the total count of units purchased. To develop this link, consider the utility expressions of each alternative in the event choice model at any choice occasion t . Since these expressions do not vary across choice occasions during the observation period, we can ignore the index t, as we now do. From Equation (1), the utility expression for alternative i at any choice occasion is then as follows:
	
.
	(8)






Define  ( vector) and  (vector). With other definitions as earlier, we may write: 
	
.
	(9)















This vector  is normally distributed as follows: , where  and . Let . , when divided by the marginal utility of income (assuming constant marginal utility of income), is a measure of per choice occasion consumer surplus for individual q. That is,  represents the utility that individual q receives from each choice occasion characterizing her/his total demand count (this is because the individual, at each choice occasion, chooses the alternative with the highest utility). Now, it is reasonable and natural to assume that the individual’s count choice is a function of the per-choice occasion utility accrued by the individual (as we will show later, and because of our use of an MNP kernel for the event type choice, this assumption also makes our joint model consistent with two-stage budgeting). As the per choice occasion utility for an individual increases, the individual will have a higher count. Equivalently, the introduction of the per-choice occasion consumer surplus or maximum utility measure  in the count model is equivalent to the introduction of a single (scalar) price index represented by  for the commodity group represented by the count. Note, however, that this is a stochastic variable to the analyst, because the analyst does not observe the utility vector .  Thus, it is important to consider the full distribution of   in the count model, as opposed to using simply the expected value of  (as has been done by earlier studies, including Hausman et al., 1995 and Rouwendall and Boter, 2009).  We introduce the  variable in the total count model of Equation (6) as follows:
	



,  if , ,



with , where , .
	(10)






 in the equation above is an individual-specific coefficient vector introduced to account for unobserved heterogeneity in the demand propensity, and is assumed to be distributed multivariate normal: . It is assumed that  is independent of . The long-term propensity in Equation (10) may be re-written as follows:
	

	(11)



To develop the likelihood function from the total count model, we need the cumulative distribution function of , which we obtain from the following theorem:






Theorem 1: The distribution of a stochastic transformation of as where  is a constant scalar parameter and  is a univariate normally distributed scalar  has a cumulative distribution function as below:

				     (12)
Appendix A provides the proof. 


Finally, the likelihood function from the total count model, given that the observed count level of consumer q is , may be written as:
	
.
	(13)


The likelihood function above involves the computation of an I-dimensional integral. 

2.3. Estimation Technique





As we show in the next section, the choice of the MNP model as the basis for the event type choice, combined with the use of the maximum utility measure  from the event type choice model in the count model, makes our overall model of total count and event type choice consistent with a two-stage budgeting approach within a direct utility maximizing planning framework. This allows us to write the count for event type i as the product of the total count observed (across all event types) and the probability of observing event type i (see Equation (19) later). The net econometric consequence for estimation purposes is that the total count model can be separately analyzed in a first stage (as long as  is introduced at this first stage), and the event type choice can be separately analyzed in a second stage independent of the choice of the total count. However,  is a random variable with a distribution (because of the presence of individual-level heterogeneity), and has a role in the count model estimation. Specifically,  serves as the vehicle that transmits the effect of event type choice determinants and modeling errors into the total count model. Thus, the appropriate likelihood function to maximize in the two-stage budgeting approach corresponds to the product of the likelihood function of the count model (considering the randomness in the  variable) and the likelihood of the MNP model. This overall likelihood function for our two-stage total count-event type model may be obtained from Equations (13) and (5) as follows:
	
.
	(14)


Note that the two components of the likelihood have common parameters. 







To address the issue of the high dimensionality of integration in  (of dimension  in Equation (14), we replace the log-likelihood from the event model with a composite marginal likelihood (CML),  (this CML is not an approximation of the true likelihood nor does it make any restrictive assumptions regarding the total count and event type models beyond the separability of the likelihood components made possible by two-stage budgeting; rather, the CML is simply a different inference approach that also leads to good asymptotic properties, as we discuss later). The CML approach has been proposed for and applied to various binary and ordered response model forms in the past (see Varin et al., 2011 for a recent extensive review of CML methods; Lindsay et al., 2011 and Yi et al., 2011 are also useful references), and Bhat (2011) extended it recently to unordered choice models. The CML approach, which belongs to the more general class of composite likelihood function approaches (see Lindsay, 1988), may be explained in a simple manner as follows. In the event type choice model, instead of developing the likelihood of the entire sequence of repeated choices from the same consumer, consider developing a surrogate likelihood function that is the product of the probability of easily computed marginal events. For instance, one may compound (multiply) pairwise probabilities of a consumer q choosing alternative i at time t and choosing alternative  at time , of the consumer q choosing alternative i at time t and choosing alternative  at time , and so forth. The CML estimator (in this instance, the pairwise CML estimator) is then the one that maximizes the compounded probability of all pairwise events. Almost all earlier research efforts employing the CML technique have used the pairwise approach. Alternatively, the analyst can also consider larger subsets of observations, such as triplets or quadruplets or even higher dimensional subsets (see Engler et al., 2006 and Caragea and Smith, 2007). However, it is generally agreed that the pairwise approach is a good balance between statistical and computational efficiency.

The properties of the CML estimator may be derived using the theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, under usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and Reid, 2011), the CML estimator is consistent and asymptotically normal distributed, and its covariance matrix is given by the inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005). Of course, the CML estimator loses some asymptotic efficiency from a theoretical perspective relative to a full likelihood estimator (Lindsay, 1988; Zhao and Joe, 2005).[footnoteRef:6] On the other hand, when simulation methods have to be used to evaluate the likelihood function (as would be needed to compute  in Equation (5)), there is also a loss in asymptotic efficiency in the maximum simulated likelihood (MSL) estimator relative to a full likelihood estimator (see McFadden and Train, 2000).[footnoteRef:7] Consequently, it is difficult to state from a theoretical standpoint whether the CML estimator efficiency will be higher or lower than the MSL estimator efficiency. However, in a simulation comparison of the CML and MSL methods for multivariate ordered response systems, Bhat et al. (2010) found that there was literally no difference between the CML estimator efficiency and the MSL estimator efficiency. Even when the log-likelihood function may be maximized without simulations, several studies have found that the efficiency. Similar results have been found in many other empirical contexts (see Zhao and Joe, 2005; Lele, 2006; Joe and Lee, 2009).[footnoteRef:8] [6:  The theoretical efficiency loss of the CML estimator compared to the full information maximum likelihood (ML) estimator, if such an estimator is feasible, originates from the failure of the information identity (i.e., ). This is also referred to as the failure of the second Bartlett identity. In particular, from a theoretical standpoint, the difference between the asymptotic variances of the CML estimator (i.e., ) and the ML estimator () is positive semi-definite (see Cox and Reid, 2004; Zhao and Joe, 2005). ]  [7:  Specifically, McFadden and Train (2000) indicate, in their use of independent number of random draws across observations, that the difference between the asymptotic covariance matrix of the MSL estimator obtained as the inverse of the sandwich information matrix and the asymptotic covariance matrix of the ML estimator obtained as the inverse of the cross-product of first derivatives is also theoretically positive semi-definite for finite number of draws per observation. ]  [8:  A handful of studies (see Hjort and Varin, 2008; Mardia et al., 2009; Cox and Reid, 2004) have also theoretically examined the limiting normality properties of the CML approach, and compared the asymptotic variance matrices from this approach and the ML approach. However, such a precise theoretical analysis is possible only for extremely simple models.] 


Letting the individual q’s choice at time t be denoted by the index , the CML function for the event type choice model for consumer q may be written as:
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where . Then,
	
,
	(16)








where ,  is the 2×2-sub-matrix of  that includes elements corresponding to the tth and  choice occasions of individual q, and  is the diagonal matrix of the standard deviations of . Finally, the function to be maximized to obtain the parameters is:
	
.
	(17)






The  component in the equation above entails the evaluation of a multivariate normal cumulative distribution (MVNCD) function of dimension equal to , while the  component involves the evaluation of a MVNCD function of dimension But these may be evaluated using the approximation part of the maximum approximate composite marginal likelihood (MACML) approach of Bhat (2011), leading to solely bivariate and univariate cumulative normal function evaluations.


One additional issue still needs to be dealt with. This concerns the positive definiteness of several matrices in Equation (17). Specifically, for the estimation to work, we need to ensure the positive definiteness of the following matrices: and . This can be guaranteed in a straightforward fashion using a Cholesky decomposition approach (by parameterizing the function in Equation (17) in terms of the Cholesky-decomposed parameters).


3. CONSISTENCY WITH TWO-STAGE BUDGETING
The proposed approach that combines a total count model with a model that allocates the count to different event types is analogous to the two stage budgeting procedure in utility-based consumer theory. The basic idea of two stage budgeting is to determine a budget for a specific group of commodities at a first stage (through the development of a scalar price index for the commodity group) in such a way that the first stage utility maximization can progress without the need to worry about allocations to particular commodities within the group. Once the budget is determined at the first stage, the allocation of the budget to individual commodities is pursued in a second stage. The approach makes use of the notion of weak separability of the direct utility function. Our presentation follows that of Hausman et al. (1995), except that there is a difficulty with the Hausman et al. formulation  that makes it incompatible with two-stage budgeting, while our formulation is. 
Consider a direct utility function in which a group of commodities is separable from the rest. The group of commodities corresponds to the one whose count is being modeled. So, it may correspond to recreational or grocery shopping trips (with the event type being alternative destinations), or to vehicle ownership level (with the event type being alternative body types), or, as in our empirical application, the number of out-of-home non-work episodes (with the event type being different time periods of the day). The notion of separability implies that the commodity group can be represented by a group utility function in the first stage of the two-stage budgeting process in which the overall budget allocation to the commodity group is being determined in the presence of other commodity groups. It also implies that the optimal allocation of the budget within the commodity group can be determined solely by the group utility function in a second stage, once the budget to the commodity group is determined in the first stage and the prices of individual commodities in the group are known (the reader is referred to Deaton and Muelbaurer, 1980, for a detailed description of the concepts of separability and two-stage budgeting; a comprehensive discussion is well beyond the scope of this paper). 


An important issue in the two-stage budgeting is the question of how to determine the budget allocation to the commodity group in the first stage. While one can consider many different formulations, it would be particularly convenient if there were no need to explicitly consider the detailed vector information of the prices of all the individual commodities in the group in this first stage. The question then is whether one can use a group (scalar) price index for the commodity group at this first stage. Gorman (1959) studied this problem in his seminal research, and concluded that one can use a scalar price index if, in addition to the separability property of the overall utility function, this overall utility function in the first stage is additive in the group utility functions and the group indirect utility functions (corresponding to the group direct utility functions) follow what is now referred to as the Gorman Polar Form (GPF). We start with this group indirect utility function of the GPF form for the commodity group of interest. In the following presentation, we suppress the index q for the individual, and, as in Hausman et al. (1995), consider the group utility function to be homothetic. Then, we can write the group indirect utility function for the commodity group D as a function of the budget for the commodity group  and the vector of prices of the goods within the commodity group D:

										     (18)




In the above GPF equation,  represents the group scalar price index. The functional form of must be homogenous of degree one. If this condition is satisfied, then information about the value of is adequate to determine the budget allocation to the commodity group in the first stage. That is, the entire commodity group can be viewed as a single commodity with price  in the first stage budgeting, which takes the form of maximizing a direct utility function that takes consumption in other goods and consumption in a single composite “good” representing the commodity group of interest as arguments (subject to the usual budget constraint). The number of units (the total count) of consumption in the commodity group becomes . 

	The second stage budgeting of the group budget  to individual commodities in the group can be obtained by applying Roy’s identity to the indirect utility function of Equation (18). Specifically, the conditional number of units of consumption of commodity i can be written as:
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where  is now the price of commodity i within group D.  To view the above equation as the second stage of a two-stage budgeting procedure, there are two conditions that must satisfy: (1) it must be homogeneous of degree one (that is the requirement of the GPF), and (2)  (this allows the interpretation of  as the total units (or count) of consumption across all commodities in group D). Hausman et al. (1995) choose the expected consumer surplus (or accessibility) measure resulting from a multinomial logit model for  . That is, they write  With this specification, we have , and therefore the second condition above on  is satisfied. However, the form used by Hausman et al. for  does not satisfy the first condition because of the presence of the log transformation. Specifically, Thus, as pointed out by Rouwnedal and Boter (2009), Hausman et al.’s model specification is not consistent with a single utility maximization setting. Further, the use of any generalized extreme value (GEV) model for the second stage commodity choice is also not consistent with utility theory because the resulting expression for  is not homogeneous. Rouwnedal and Boter (2009) comment that they have not been able to find an expression for  that satisfies both the conditions stated above. That is exactly where our proposed model comes in. To our knowledge, we are the first to propose a specification for  that satisfies both the required conditions discussed above for compatibility of the joint count-event type model with two-stage budgeting, while also allowing the probability of choice of commodity i to be a function of individual commodity prices (as they should be). In particular, as in Hausman et al., we propose  except that we specify  to be multivariate normal (see previous section;  after suppressing the index q for individuals, where  plays the role of a generalized price vector for the set of individual commodities and is interchangeable with   in the theoretical model). This specification has not been considered in econometrics and utility theory in the past because the exact density function and moment generating functions for the maximum of multivariate normally distributed variables were not established until very recently. Specifically, it was not until the research of Arellano-Valle and Genton (2008) and Jamalizadeh and Balakrishnan (2009, 2010) that an exact density function and moment generating function was obtained for the maximum of arbitrarily dependent normally distributed random variables. These works show that the distribution of , when  has a general multivariate normal distribution, is a mixture of unified univariate skew-normal distribution functions, and then use this mixture representation to derive the density and moment generating functions of  (in doing so, they invoke the density and moment generating functions of the unified univariate skew-normal distribution functions). In this paper, we derive, apparently for the first time, expressions for the density and the moment generating functions for  directly from first principles (rather than going through the circuitous route of using a mixture representation) and explicitly write out these expressions for (these are buried within the expressions for the general distribution of order statistics in Jamalizadeh and Balakrishnan, 2010). Also, we have not seen an expression for the first moment (or expected value) of  in the literature, which is important because that is the expression for  in our econometric model. We explicitly derive this expression from the moment generating function of . These results are collected below as Theorem 2. 

Theorem 2










Let  be the sub-vector of  without the ith element, let  be the ith element of , let  be the sub-matrix of  without the ith row and the ith column, let  be the diagonal entry at the ith row and ith column of , and let  be the ith column of the matrix  minus the ith row element. 



(1) Denote the probability density function of  by . Then:
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where .


 (2) The moment generating function of  is given by:

, 				     (21)




where , , , and . 















(3) Let  be the vector  minus the lth row element,  the lth element of the vector ,  the lth element of the vector ,  the sub-matrix of  without the lth row and the lth column,  be the diagonal entry at the lth row and lth column of ,  be the lth column of the matrix  minus the lth row element, and the matrix . 	     (22)

With the expected value of  as above, we now present the following theorem that is crucial to the utility-consistent nature of our proposed model. 

Theorem 3


as defined in Equation (22) is both homogeneous of degree one and satisfies the condition .




The fact that is homogeneous of degree one is proved by noting that  corresponds to the expected value of the maximum over random variables that are distributed . Then, by the application of Equation (22), we get 







The condition can be proved in many ways. The easiest is to first defineas an  matrix corresponding to an  identity matrix with an extra column of  ‘’ values added as the  column. Then, statistically speaking, we can write:

.				    (23)

Then, by the first fundamental theorem of calculus,  and therefore .



Based on the results from Theorem 3, we have proved that setting  with  arising from a multinomial probit formulation for event type provides a theoretic underpinning to integrate the discrete choice model and a count data model into a single integrated utility maximizing framework. In particular, we can now write Equation (19) as:
								    (24)


That is, the demand for commodity i is a product of the total count of the units of the commodity group consumed times the probability that commodity i is chosen. But everything above is predicated on using  from the MNP model in the count model. Without introducing this linkage, there is no way that prices of individual commodities enter into the total count model, and the resulting model is not utility-consistent. This linkage is precisely what we accomplish in Equation (10) of the previous section, but with an important difference. In particular, we recognize that  has a distribution because of the presence of choice model errors. Thus, the precursor to the latent structure part of Equation (10), after reintroducing the index q for individuals, is as follows:

,						     (25)
Equation (10) is the net result. 

4. AN EMPIRICAL APPLICATION TO WEEKDAY NON-WORK ACTIVITY EPISODE GENERATION AND SCHEDULING
4.1. Background
The joint count-event type choice model proposed in this paper can be used in a wide variety of multivariate count data settings. In the current research, we demonstrate an application to examine the total number of out-of-home non-work episodes pursued by a worker over the course of a weekday, and the organization of these episodes across five time-of-day blocks during the day. An episode, which is a commonly used term in the travel modeling field, refers to a single instance of participation in a specific activity. An example would be an episode of participation in shopping activity. Note that there can be multiple episodes of non-work activity within a given day.
The time-of-day blocks are defined based on the worker’s schedule, recognizing that the work activity tends to be a “peg” around which other activities typically get scheduled (see Damm, 1980, Rajagopalan et al., 2009). The five time-of-day blocks are as follows:
· Before-work (BW), representing the time from 3 AM in the morning to the individual’s departure from home on the first home-to-work trip in the day.
· During home-to-work commute (HWC), representing the time between the individual’s departure from home on her/his first home-to-work trip in the day to the individual’s arrival time at work at the end of this first home-to-work trip (for presentation ease, we will refer to this latter clock time as the work start time of the individual).
· Work-based (WB), representing the time between the individual’s work start time to the individual’s departure time from work on the last trip of the day from work-toward home (we will refer to this departure time as the work end time of the individual).
· During work-to-home commute (WHC), representing the period between the individual’s work end time to the arrival time at home at the end of the chain of trips that began at work at the work start time (we will label this arrival time at home as the home arrival time). 
· After home arrival from work (AH), representing the period from the home arrival time to 3AM the next day. 
The joint model of total non-work episodes and organization in the five time blocks identified above can provide important insights for travel demand forecasting and policy analysis (see Damm, 1980 and McGuckin et al., 2005). More broadly, modeling the organization of episodes to different time blocks allows the generation of activity episode demand for different times of the day, and can capture interaction effects in episode generation across different time blocks. Besides, the total count of non-work episodes, and the variability in this count across the population, is important in its own right, given that increases in overall travel demand in recent years may be largely attributed to non-work travel growth, with corresponding greenhouse gas emissions implications and global climate change effects. It is therefore no surprise that there has been an explosion in studies in the past few years on studying non-work-related activity participation and scheduling, and the interlinking of non-work participation with work activity, to inform the subsequent and finer modeling of activity purpose/types, time allocation, destinations, and travel mileages within each time-of-day block defined in relation to the work schedule (see, for example, Jou et al., 2010, Castro et al., 2011, Van Acker and Witlox, 2011, and Lachapelle and Noland, 2012).

4.2. Data Source and Sample Description



The data used in this study is derived from the 2009 National Household Travel Survey (NHTS) conducted in the United States, which collected information on more than one million trips to/from each out-of-home episode undertaken by 320,000 individuals from 150,000 households sampled from all over the country for one day of the week. The purpose (such as work, shopping, recreation, etc.) of each out-of-home episode was provided by the respondent. The survey also collected detailed information on individual and household socio-demographic and employment-related characteristics. For this study, we employed the NHTS California add-on dataset for the Southern California (SC) region comprising Imperial, Los Angeles, Orange, Riverside, San Bernardino and Ventura counties. The SC region was chosen because the California add-on dataset has geocoded home and work location Census tract information, and because the research team has detailed accessibility measures computed at the census tract level by time of day for the SC region.[footnoteRef:9] The accessibility measures are opportunity-based indicators that measure the number of activity opportunities by fifteen different industry types that can be reached within 20 minutes from each Census tract during each of four time periods: (1) morning-peak period (6am-9am), (2) off-peak period (9am-3pm), (3) afternoon-peak period (3pm-7pm), and (4) night-time period (7pm-6am). The measures take the following general form for Census tract i, industry type e, and time period t: where  is the set of all Census tracts that are reachable within ten minutes of highway travel from tract i during time period t, and is the number of activity opportunities of industry type e at Census tract j. The details of the approach to develop and  for each Census tract is provided in Chen et al. (2011).[footnoteRef:10]  [9:  These accessibility measures were computed by Prof. Konstadinos Goulias’s research group at the University of California at Santa Barbara. The reader is referred to Chen et al. (2011) for details of the construction of these Census tract-based accessibility measures. The time-of-day variation arises because the number of activity opportunities varies by time of day based on the open/closed-times of the activity centers. Thus, for example, the accessibility for entertainment opportunities (arts, entertainment, recreation, accommodation and food services) would see an increase in the evening periods compared to the morning periods. ]  [10: The fifteen industry types used in the accessibility computations are (1) Agriculture (including forestry, fishing and hunting and mining, (2) Construction, (3) Manufacturing, (4) Wholesale trade, (5) Retail trade, (6) Transportation and warehousing and utilities, (7) Information, (8) Finance services (including insurance, real estate and rental and leasing), (9) Professional, scientific, management, administrative, and waste management services, (10) Educational, (11) Health, (12) Entertainment (including arts, entertainment, recreation, accommodation and food services), (13) Other services (except public administration), (14) Public administration, and (15) Armed forces.
] 

The sample formation included several steps. First, only individuals over 18 years of age, and who participated in at least one work activity episode during the survey day on a weekday (Monday to Friday), were selected. Second, we eliminated individuals whose trip diary did not start or end at home. Third, records that contained incomplete information on individual, household, employment-related, and activity and travel characteristics of relevance to the current analysis were removed from the sample. Fourth, several consistency checks were performed and records with missing or inconsistent data were eliminated. The final estimation sample contained 2,113 person observations. Fifth the trip diaries of these 2,113 individuals were processed to obtain, for each individual, the total number of out-of-home non-work episodes undertaken during the survey day, along with the number of these episodes pursued during each of the five time-of-day blocks identified in Section 4.1. Finally, the accessibility measures by the fifteen different industry types were appended to each time-of-day block for each individual as follows. For the before-work (BW) block, the accessibility measures (by industry type) are based off the time the individual would have had to leave home if s/he went directly to work (computed as the individual’s work start time minus the estimated direct home-to-work commute time assuming auto mode of travel and an average speed of 30 mph). That is, the accessibility measures corresponding to the individual’s estimated departure time from home to work (assuming a direct home-to-work trip) and for the residential Census tract of the individual are designated as the home end accessibilities for the BW block. For the home-to-work commute (HWC) block, the accessibility measures are based off the individual’s work start time. For this block, we create two sets of accessibility measures, one for the home end (based on the Census tract of residence) and another for the work end (based on the Census tract of the individual’s workplace location). For the work-based (WB) block, the accessibility measures are based on the off-peak period for the work location Census tract. For the work-to-home commute (WHC) block, the accessibility measures are based off the individual’s work end time. For this block, we once again create both a home end set of accessibilities as well as a work end set of accessibilities. For the after home arrival from work (AH) block, the accessibilities are based off the time the individual would have arrived home if s/he went directly back home from work (computed as the individual’s work end time plus the estimated direct work-to-home commute time assuming auto mode of travel and an average speed of 30 mph). That is, the accessibility measures corresponding to the estimated arrival time back home and for the residential Census tract of the individual (assuming a direct work-to-home trip) are designated as the home end accessibilities. It is important to note that the accessibility measures, as discussed above, vary across the different time-of-day blocks for the same individual. 
Table 1 provides an unweighted summary of select individual, household, work-related and activity and travel characteristics of the final sample. The statistics corresponding to individual, work-related, and activity/travel characteristics represent those of the surveyed adult (note that the entire analysis here is being undertaken at the individual worker level). Among individual characteristics, Table 1 reveals a high percentage of non-Hispanic Caucasian workers (almost 72%), a higher proportion of men than women, a vast majority of individuals with a driver’s license, a highly educated sample, and work being characterized as the primary activity in the past week for most individuals (as opposed to non-work activities such as vacation, studying, shopping and recreation), and about 43% of individuals shopping over the internet in the past month. The descriptive statistics of age in the middle panel of the table indicate an average age of about 47 years, with a minimum of 18 years and a maximum of 86 years. In the category of household characteristics, the table shows a rather high household income in the sample (compared to the overall California population), a high percentage of individuals residing in an urban cluster, an average household size of 3.14 individuals (an average of 2.4 adults and 0.74 non-adults per household), about the same average household number of drivers and vehicles as the number of adults, and an average of 1.84 workers per household. Work-related characteristics capture the nature of work schedules and the flexibility associated with the schedules. Table 1 shows that almost half of the individuals work in professional, managerial or technical jobs, with less than 10% of the workforce being self-employed and holding more than one job. Also, less than 45% of individuals have a flexible work schedule and about 13% have the option to telecommute. The average distance to work (see the middle panel) is 13.52 miles, with a variation about equal to the mean. The activity and travel characteristics of individuals in the sample reveal a slightly less than the expected fifth of individuals completing their survey on a Friday, a small fraction using public transportation on the survey day or bicycling in the week prior to the survey day, and a rather high percentage of workers who pursued at least one trip completely by walk.
The bottom panel of Table 1 shows the sample statistics of the daily number of out-of-home non-work episodes by time-of-day blocks, which is the dependent variable in the current empirical analysis. The statistics clearly reveal the higher inclination to undertake non-work activities after work (during the WHC and AW blocks). This is consistent with the findings from earlier literature (Strathman and Dueker, 1995; Bhat and Sardesai, 2006). On average, workers participate in 1.54 non-work activities per day, with a standard deviation which is larger than the mean value (see the last row).

4.3. Estimation Results
4.3.1. Variable Specification 
The selection of variables included in the final model specification in Table 2 was based on previous research, intuitiveness, and parsimony considerations. For categorical exogenous variables, if a certain level of the variable did not have sufficient observations, it was combined with another appropriate level; and if two levels had similar effects, they were combined into one level. For continuous variables, we tested alternative linear and non-linear functional forms, including dummy variables for different ranges. The exogenous variables described in Section 4.2 were considered both in the count model specification (threshold and long-term propensity) and in the event type choice model specification, except for the time of day block-specific accessibility measures that were introduced in the time-of-day block choice (i.e., event type) model. The accessibility measures constructed at the home end were used in the BW, HWC, WHC and AH blocks, while the accessibility measures constructed at the workplace end were used in the HWC, WB, and WHC blocks.
The final estimation results are presented in Table 2 (for the count data model component) and Table 3 (for the event type choice model component). In some cases, we have retained variables that are not statistically significant at a 0.05 significance level because of their intuitive effects and to inform future research efforts in the field.

4.3.2. Count data model component
The first main numeric column of Table 2 provides the coefficients associated with the latent propensity, while the second main numeric column presents the threshold coefficients. In these tables, for categorical variables, the base category is presented in parenthesis. For example, for the “race and ethnicity” variables, the base category is “non-Hispanic and non-Asian”. Also, a positive sign for a latent propensity coefficient indicates that an increase in the corresponding variable results in an increased propensity to undertake non-work activity episodes, while a negative sign indicates the reverse. For the threshold variables, a positive coefficient shifts the threshold toward the left of the propensity scale, which has the effect of reducing the probability of the zero-trip outcome (increasing the overall probability of the non-zero outcome). A negative coefficient, on the other hand, shifts the threshold toward the right of the propensity scale, which has the effect of increasing the probability of the zero-trip outcome (decreasing the overall probability of the non-zero outcome; see CPB). 





The first row panel in Table 2 presents the constant in the  vector, as well as the threshold-specific constants values). These constants do not have any substantive interpretations, though the threshold specific constants  provide flexibility in the count model to accommodate high or low probability masses for specific outcomes. As indicated in Section 3.2.1, identification is achieved by specifying  and . In the present specification, we initially set K = 13 (which is the maximum value of the total number of non-work episodes in the sample) and progressively reduced K based on statistical significance considerations and general data fit. We also combined the threshold constants when they were not statistically significantly different to gain estimation efficiency. The final specification in Table 2 is based on setting K = 6.
The next row panel of Table 2 provides the effects of individual characteristics. Hispanic and non-Hispanic Asians are less likely to pursue non-work episodes during the day relative to other race-ethnicity groups (primarily dominated by non-Hispanic Caucasians). Women, on average, pursue more non-work episodes than males, a consistent finding in the literature attributable to the typically larger role played by women in maintenance, shopping, and serve-passenger activities (see Crane and Takahashi, 2009 and Bernardo et al., 2012). However, there is substantial variation in this gender effect, as evidenced by the large standard deviation estimate on the female dummy variable. The mean and standard deviation estimates indicate that about 60% of employed women participate in more non-work activities than their male counterparts, while 40% of employed women participate in less activities that their male counterparts. Individuals who characterized their primary activity last week as being non-work related have a higher non-work episode making propensity, as expected, while the internet shopping variable indicates complementarity between internet shopping and in-person shopping out-of-home (see Bhat et al., 2003 and Farag, 2006 for a similar result). 
Among household characteristics, individuals whose home location is not in an urban cluster are less inclined to undertake non-work activities. The household composition effects are interesting, and reflect the higher levels of in-home activity participation and/or economies of scale in non-work participation when there are multiple adults in the household. Also, on average, a higher number of non-adults in the household leads to higher shopping and care-related needs of non-adults (see McDonald, 2008), as evidenced by the positive sign on the mean effect of this variable. However, there is also substantial variation in the magnitude of this effect, with a higher number of non-adults in the household leading to a lower level of non-work episodes for almost 26% of individuals. The number of workers in the employee’s household is found to positively influence non-work episode frequency through the threshold specification that governs the “instantaneous” translation of the non-work participation propensity to whether or not a non-work episode is participated on any given day. This positive effect is a reflection perhaps of spontaneous non-work stops by employed individuals made during the work commute.
In the category of work-related characteristics, self-employed workers have a higher propensity to participate in non-work episodes relative to those not self-employed, while those who have the option to work from home make more spontaneous non-work stops than those who do not have the option to work from home. The former result is suggestive of the overall flexibility enjoyed by those who are self-employed, while the latter result may be an indication of the “on-the-spur” decision-making ability of those who work from home. Workers with multiple jobs have a higher propensity to make non-work stops, perhaps a reflection of juggling tasks and having many non-work responsibilities (see Dickey et al., 2011 and Khan et al., 2012). In addition, those with long commutes have less time for non-work activity participation than those with short commutes, which may explain the negative sign on the “distance to work” variable (see also Lyons and Chatterjee, 2008 and Sandow, 2011 for a similar result). 
The effects of the mobility and situational characteristics are also reasonable. Employed individuals who use some form of public transportation on the survey day have a lower non-work participation propensity than other individuals, possibly due to schedule inflexibility and less time available for non-work participation among those who use public transportation. Also, workers who walked or biked at least once in the past week are more likely to undertake non-work episodes, a result that can be associated with the active life style of individuals who use non-motorized modes (Merom et al., 2010 also observe this result).
Finally, the parameter that links the event type choice model with the count model in our final model specification is highly statistically significant, supporting the hypothesis that workers jointly decide the frequency of non-work activities (count model) and the organization of these activities across time-of-day blocks (event type choice model). That is, the total count of non-work episodes is endogenous to the time-of-day participation in the episodes, and variables that affect the time-of-day of participation also impact the total count of episodes. 

4.3.3. Time-of-day block (i.e., event type) choice model component
Table 3 presents the results of the time-of-day block choice model component. The first row panel of Table 3 presents the alternate specific constants, with the base alternative being the before-work (BW) block. These constants do not have any substantive interpretation because of the presence of continuous explanatory variables (the accessibility measures). However, several of these constants have a significant standard deviation, indicating individual-specific heterogeneity in the preferences for the time-of-day alternatives for non-work episode participation. 
The accessibility measures by industry type and time block are significant determinants of time-of-day block, both at the home end and the work end. In general, workers are less likely to participate in non-work episodes during time blocks when their homes/work locations are highly accessible to traditionally work-focused industry centers (such as natural resources, manufacturing, information, financial services, and educational services), and more likely, in general, to participate in non-work episodes during time blocks when their home/work locations are highly accessible to service and entertainment related industry opportunities (wholesale trade, health, and entertainment). The significant standard deviation on the entertainment accessibility indicates variation in this effect, though the mean and standard deviation estimates imply an increase in entertainment accessibility in a specific time-of-day block increases non-work activity participation in the time block for over 92% of employed individuals. The results also indicate the marginally higher propensity of women to participate in non-work episodes during time blocks that have a high accessibility to retail trade, a finding consistent with the higher shopping tendency of women relative to men (Brunow and Gründer, 2013).
In the category of work-related characteristics, self-employed workers are more likely to participate in non-work activity episodes during the work-based (WB) block and less likely to participate during the work-to-home commute (WHC) block. This is intuitive, given the independence and flexibility offered by self-employment during the WB period, and the consequent reduction in WHC (van Ommeren and van der Straaten, 2008). The finding that workers who have a flexible work start time have a lower propensity (than those with rigid work start times) to undertake non-work episodes in the BW block is interesting, and needs further exploration. 
Within the category of mobility and situational characteristics, workers are more likely to pursue non-work episodes during the WHC and AH blocks on Fridays than on other weekdays, highlighting the spike in social-recreational activity pursuits on Friday evenings (Stone et al., 2012). Workers who use public transportation on the survey day are less likely to participate in non-work activities in the BW block, presumably because of difficulty in coordinating non-work activities with the public transportation schedules and the work start time. 

As described in Section 2.1, we optimize the likelihood function with respect to the elements of the differenced covariance matrix  during model estimation. However, the elements of the differenced covariance matrix are not intuitive and cannot be interpreted directly. To make meaningful inferences, it is essential to impute the dependencies between utilities of alternatives directly. So, we constructed an equivalent un-differenced covariance matrix which results in the differenced covariance matrix that we obtained at the end of the model estimation process (this final specification of the differenced covariance matrix was a restrictive version of the fully free differenced covariance matrix with the single scale restriction; the restrictive version provided as good a fit, from a statistical standpoint, as the fully free covariance matrix). Table 4 presents the estimation results corresponding to the equivalent un-differenced covariance matrix of the type-of-day block choice model component. It can be seen from the table that only two elements are significant from their corresponding values in an independent MNP model at 95% confidence level. All the remaining elements are fixed as shown in the table (the diagonal elements of the covariance matrix are fixed to 0.5 while the off-diagonal elements are fixed to zero). We found that there is high positive covariance in the unobserved factors affecting the WHC and AW time-of-day blocks. This suggests that there are common unobserved factors which simultaneously increase (decrease) the utility associated with these two time-of-day blocks. This is intuitive given that there are no rigid space and time constraints after the end of work (such as fixed work start time, minimum work hours, and presence at the work place) resulting in considerable available time for activity participation during both WHC and AW time-of-day blocks. It is also possible that the evening time after work is perceived to be more conducive for participating in several out-of-home activities (including shopping, dining, and recreation) with family and friends. The magnitude of the variance element corresponding to the AH time-of-day block is 0.5695 and is significantly different from 0.5, indicating larger variability in the unobserved factors impacting the utility associated with AH time-of-day block compared to other time-of-day blocks. 

4.4. Model Fit


The composite log-likelihood (CL) measure of the model system proposed in this paper that retains the linkage between the total count model and the event type model (the joint model) is  with 50 parameters. The corresponding figure for the model system that unlinks the total count model and the event type model (the independent model) is  with 49 parameters. These CL measures can be statistically compared by computing the adjusted composite likelihood ratio test (ADCLRT) statistic, which serves the same role as the likelihood ratio test in traditional maximum likelihood estimation (see Pace et al., 2011 and Bhat, 2011 for details of the computation of this ADCLRT statistic). This ADCLRT statistic returns a value of 66.23, which is larger than the table chi-squared value with one degree of freedom at any reasonable level of significance.







The model fit of our proposed model can also be evaluated using other more intuitive measures by obtaining predictive distributions. To do so, we first define   as an  matrix that corresponds to an  identity matrix with an extra column of ’s added as the  column. Following the notation in Equation (10) and immediately after, define . We can then write the probability that individual (consumer) q chooses alternative i at any choice occasion as:
	
.
	(26)






Next, since this probability does not change across choice occasions, and the individual-specific preferences are already embedded in  (through the  vector), the multivariate probability of counts in each time-of-day block (i.e., event type), conditional on the total count level  ), takes the usual multinomial distribution form:
	

	(27)





In our joint model of multivariate counts, the unconditional multivariate probability then takes the form indicated below (, , ):
	

	(28)






with  as in Equation (13) after replacing (the actual observed total count for individual q in the estimation sample) with an arbitrary value . Using the properties of the multinomial distribution, the marginal probability of  counts for time-of-day block i is:
	

	(29)





In the above expression, the upper bound of the summation is , though the probability values fade very rapidly beyond a  value of 10. For the purposes of this paper, we carry the summation up to 
With the above preliminaries, the model predictions can be used to evaluate data fit at both the disaggregate and aggregate levels, as well as for both the multivariate count distribution and the marginal count distribution. At the disaggregate level, we estimate the probability of the observed multivariate count outcome for each individual using Equation (20), and compute an average probability of correct prediction. Similarly, we also estimate the probability of the observed marginal count outcome separately for each time-of-day period using Equation (21), and compute an average probability of correct prediction. At the aggregate level, we design a heuristic diagnostic check of model fit by computing the predicted aggregate share of individuals for specific multivariate outcome cases (because it would be infeasible to provide this information for each possible multivariate outcome). In particular, we compute the aggregate share of consumers for each of six combinations. The first combination corresponds to no participation in any non-work episodes (which we will refer to as the “no participation” combination). The other five combinations correspond to participation in one or more episodes during a specific time-of-day block and no participation in any other time-of-day period (which we will refer to using such labels as the “BW participation only” combination or the “HWC participation only” combination). In addition to these aggregate shares of multivariate outcomes, we also compute the aggregate shares of the marginal outcomes of count values of 0, 1, 2, 3, and 4+ for each time-of-day period, as well as for the total count. As a yardstick to evaluate the performance of the joint model proposed here, we compare the predictions from the joint model with the independent model using the absolute percentage error (APE) statistic for each count value, and then compute a mean weighted APE value across the count values (of 0 1, 2, 3, and 4+) using the observed number for each count value as the weight for that count value. 
The disaggregate-level data fit measures indicate an average probability of correct prediction of 13.9% for the multivariate counts and an average probability of correct prediction of 67.6% for the marginal counts. The corresponding values for the independent model are 13.6% and 65.0%, respectively, which are smaller in magnitude than those from the joint model. The aggregate fit measures are provided in Table 5. The joint model provides a better (lower) APE value for all the multivariate outcomes in Table 5 (see upper panel of the table), except for the WB participation only outcome. The APE values are sizeable for both the joint and independent values, but it should be noted that these predictions are for multivariate outcomes. Overall, the mean weighted APE value is about 12% higher for the independent model relative to the joint model. As expected, the APE values are lower for the marginal outcomes (see lower panel of Table 5) than for the multivariate outcomes. The total count predictions from the joint model are much better than the total count predictions from the independent model. Also, the predictions for the other marginal counts are better from the joint model relative to the independent model (except for the WB block count). These results clearly show that the joint model proposed here outperforms the traditional independent model in the disaggregate level and aggregate level comparisons. 

4.5. Model Application
The joint model estimated in this paper can be used to examine the impact of changes in socio-demographic characteristics over time as well as the effects of policy actions that involve a change in the accessibility measures and work-related characteristics. In this paper, we demonstrate the application of this model by studying the effects of changes in three selected variables: distance to workplace, retail trade accessibility at the home location, and entertainment accessibility at the home location. These three variables are increased by 20% across all workers. 
The impact on the frequency and organization of non-work activities is estimated by determining the percentage change in the expected number of non-work episodes (across all workers) for the entire day (i.e., total count) and for each time-of-day block. To demonstrate the potentially misleading inferences from the independent model, we compute the percentage change as predicted by both the joint model as well as the independent model. The emphasis here is not on substantive empirical inferences as much as it is on demonstrating the differences in the inferences from the two models. Table 6 provides the results.
Three observations may be made from Table 6. First, in the independent model, a change in the retail trade and entertainment accessibility variables do not have any impact on the total count of non-work episodes over the entire day. This is, of course, because these variables appear only in the event discrete choice model and not the total count model (and the independent model does not have any link between the discrete choice model and the total count model). As indicated earlier in the paper, it is natural to expect that changes in the attributes impacting the attractiveness of alternatives in the choice model (retail trade and entertainment accessibilities in the specific case under discussion) will result not only in substitution among the counts of each discrete choice alternative, but also an overall change in the total count, as appropriately recognized by the joint model. Second, the positive effect (of an increase in the number of retail trade jobs) on the number of non-work tours during the BW, HWC, WHC, and AH periods is underestimated by the independent model, while the negative effect of the variable on WB non-work tours is overestimated by the independent model. Third, a similar result holds also for the influence of the number of entertainment jobs at the home location. Indeed, for this variable, the directionality of the effect on WHC non-work tours is itself different between the independent and joint models. These differences between the models highlight the potentially misinformed policy analyses that result from ignoring the linkage between the frequency of non-work episodes and their organization across time-of-day blocks. 

5. CONCLUSIONS
Count data models are used in several disciplines to analyze discrete and non-negative outcomes, but their implementation has been mostly restricted to univariate or bivariate count systems. In the current paper, we develop an approach to multivariate count data modeling that combines a total count model with a discrete choice model for event choice that allocates the total count to different events. While previous studies have used such an approach, most do not consider the linkage between the event choice and the total count. And those that consider this linkage do so by including the expected value of the maximum utility from the event type multinomial model as an explanatory variable in the conditional expectation for the total count random variable. They ignore the effect of the event choice errors on the total count, which is critical to recognize the full econometric jointness of the two decisions
	In the current paper, we have proposed a joint model of total count and event type choice for multivariate count data analysis that (a) uses a flexible MNP structure for the event type choice, (b) develops and uses new results regarding the distribution of the maximum of multivariate normally distributed random variables (with a general covariance matrix) as well as its stochastic affine transformations, and (c) employs a latent variable framework for modeling the total count variable that, at once, enables the linkage of the event type choice and total count, recognizes the presence of unobserved individual-specific preference and taste variations, and accommodates excess zeros (or excess number of any count value for that matter) without the need for zero-inflated or hurdle devices. 
The modeling framework is applied to examine the total number of out-of-home non-work episodes pursued by a worker and the organization of these episodes across five time-of-day blocks. The data used is derived from the 2009 National Household Travel Survey (NHTS) for the South California region. The results show the importance of recognizing the joint nature of total count and event type choice decisions, from both a data fit perspective as well as for forecasting and policy analysis.
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APPENDIX A

The notations used here will be the same as those used in the text. Before providing proofs for the theorems in the main text, we provide the following well established results for the multivariate normal distribution, collected together in a single Lemma (without proof).

Lemma 1



1) The multivariate normal density function and cumulative distribution function of dimension R are respectively given by  and , where .


















2) Let  and  be normally distributed vectors of dimension  and , respectively. The corresponding mean vector and covariance matrix of  and  are  and . Defining ,  and , where  is the covariance matrix between  and , the conditional distribution of  given  is . Then,

.
In what follows, we present and discuss four theorems that are key to the proposal in this paper.

Theorem 1



The stochastic transformation of  aswhere  is a constant scalar parameter and  is a univariate normally distributed scalar , has a cumulative distribution function and density function as below:


Proof:



Theorem 2 – Proposition (1)
The probability function of  is given by  as follows:

where .

Proof:
The cumulative distribution function of is given by (see Tellambura, 2008):




The proof that the density function takes the form as given above can be shown by differentiating with respect to  and using the last result from Lemma 1.

Theorem 2 – Proposition (2)

The moment generating function of  is given by:

, 


where , , , and . 
Proof:





where .
The moment generating function of  is given by:












,  where 








since  for all scalar a, vector B and random variable  (see Marsaglia, 1963 and Gupta et al., 2004).

Finally, .
Theorem 2 – Proposition (3)
This proposition can be proved through straightforward, but tedious, differentiation, and using the results of Lemma 1.

Table 1. Sample Characteristics
	Variable
	Share [%]
	Variable
	Share [%]

	Individual characteristics
	 
	Household characteristics
	 

	Race and ethnicity
	 
	Household income [US$/year]
	 

	 
	Non-Hispanic Caucasian
	71.56
	 
	Less than 80,000
	46.66

	 
	Hispanic
	  9.99
	 
	80,000 or more
	53.34

	 
	Non-Hispanic Asian
	  9.37
	Home location
	 

	 
	Non-Hispanic African-American
	  4.45
	 
	Urban cluster
	94.18

	 
	Non-Hispanic Other[footnoteRef:11] [11:  Non-Hispanic Other includes American Indian, Alaskan Native (1.23%), Native Hawaiian, or other Pacific Islander (0.52%), Multiracial (0.70%), and other (that is, specified in the survey capture itself as a catch all “other” category (2.18%)] 

	  4.63
	 
	Not in urban cluster
	  5.82

	Gender
	 
	Work-related characteristics
	 

	 
	Male
	52.25
	Employment Industry
	 

	 
	Female
	47.75
	
	Professional, managerial or technical
	48.62

	Driver status
	 
	
	Sales or services
	23.32

	 
	Has driver’s license
	98.58
	
	Clerical or administrative support
	14.59

	 
	Does not have a driver’s license
	  1.42
	
	Other[footnoteRef:12] [12:  This other category includes Manufacturing, construction, maintenance or farming (12.62%) and other (that is, specified in the survey capture itself as a catch all “other category”): 0.85%] 

	13.47

	Highest education level
	 
	Is self-employed
	  9.51

	 
	At least some college education
	76.53
	Has flexible work start time
	44.87

	 
	No college education
	23.47
	Has more than one job
	  9.13

	Past week primary activity
	 
	Has the option to work at home
	13.06

	 
	Work
	94.18
	Activity and travel characteristics
	 

	 
	Other activity
	  5.82
	Survey day is Friday
	17.79

	Shopped via internet in past month
	 
	Used public transportation on survey day
	  3.98

	 
	No
	57.31
	At least one walk trip in past week
	63.98

	 
	Yes
	42.69
	At least one bike trip in past week
	  6.58

	Descriptive statistics

	Variable
	Mean
	Std. Dev.
	Min.
	Max.

	Individual characteristics
	 
	 
	 
	 

	 
	Age [years]
	46.67
	12.70
	18.00
	86.00

	Household characteristics
	 
	 
	 
	 

	 
	Number of adults
	  2.40
	  0.92
	  1.00
	  7.00

	 
	Number of non-adults
	  0.74
	  1.05
	  0.00
	  6.00

	 
	Number of drivers
	  2.33
	  0.92
	  0.00
	  7.00

	 
	Number of vehicles
	  2.59
	  1.30
	  0.00
	12.00

	
	Number of workers
	  1.84
	  0.82
	  1.00
	  5.00

	Work-related characteristics
	 
	 
	 
	 

	 
	Distance to work [miles]
	13.52
	12.56
	  0.11
	97.00

	Dependent variable: Number of out-of-home non-work episodes

	Time-of-day block
	Mean
	Std. Dev.
	Min.
	Max.

	Before-work (BW)
	0.12
	0.44
	0.00
	  6.00

	Home-to-work commute (HWC)
	0.20
	0.56
	0.00
	11.00

	Work-based (WB)
	0.23
	0.47
	0.00
	  4.00

	Work-to-home commute (WHC)
	0.43
	0.83
	0.00
	  6.00

	After-home (AH)
	0.56
	1.12
	0.00
	12.00

	Total non-work episodes
	1.54
	1.67
	0.00
	13.00
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Table 2. Joint Model Estimation Results - Count Data Model Component
	Variables
	Latent Propensity Coefficients
	Threshold Coefficients

	
	Estimate
	t-stat
	Estimate
	t-stat

	Constant in φ vector
	 
	 
	-0.3733
	-1.683

	Threshold specific constants
	 
	 
	 
	 

	 
	α1
	 
	 
	  0.0837
	 1.222

	 
	α1 to α5
	 
	 
	  0.0887
	 0.787

	 
	α6
	 
	 
	  0.1447
	 0.827

	Individual characteristics
	 
	 
	 
	 

	Race and ethnicity (non-Hispanic and non-Asian)
	 
	 
	 
	 

	 
	Hispanic
	-0.1787
	-1.500
	 
	 

	 
	Non-Hispanic Asian
	-0.1796
	-1.470
	 
	 

	Gender (male)
	 
	 
	 
	 

	 
	Female - mean effect
	  0.1933
	 2.217
	 
	 

	 
	             - std. deviation
	  0.8789
	 8.200
	 
	 

	Past week primary activity (work)
	 
	 
	 
	 

	 
	Other activity
	  0.3393
	 2.304
	 
	 

	Shopped via internet in past month (no)
	 
	 
	 
	 

	 
	Yes
	  0.3442
	 4.426
	 
	 

	Household characteristics
	 
	 
	 
	 

	Home location (urban cluster)
	 
	 
	 
	 

	 
	Not in urban cluster
	-0.5824
	-3.668
	 
	 

	Household composition
	 
	 
	 
	 

	 
	Number of adults
	-0.1670
	-2.886
	 
	 

	 
	Number of non-adults   - mean effect
	  0.1952
	 5.453
	 
	 

	 
	                                       - std. deviation
	  0.3018
	 5.097
	 
	 

	 
	Number of workers
	 
	 
	  0.1059
	 5.701

	Work-related characteristics
	 
	 
	 
	 

	 
	Is self-employed (not self-employed)
	  0.2707
	 2.277
	 
	 

	 
	Has the option to work at home (cannot work from home)
	 
	 
	  0.3577
	 4.189

	 
	Has more than one job (has only one job)
	  0.2557
	 2.222
	 
	 

	 
	Distance to work [miles/100]
	-1.6488
	-5.444
	 
	 

	Mobility and situational characteristics
	 
	 
	 
	 

	 
	Used public transportation on survey day (not used public transportation on survey day)
	-0.3927
	-2.098
	 
	 

	 
	At least one walk trip in past week (no walk trip in past week)
	  0.2562
	 2.996
	 
	 

	 
	At least one bike trip in past week (no bike trip in past week)
	  0.1643
	 1.437
	 
	 

	
Linkage parameter 
	  1.0660
	 6.020
	 
	 






Table 3. Joint Model Estimation Results - Event Type Choice Model Component
	Variables
	Coefficient
	Standard Deviation

	
	Estimate
	t-stat
	Estimate
	t-stat

	Constants
	 
	 
	 
	 
	 

	 
	HWC
	 
	-0.4717
	  -5.457
	0.6888
	4.440

	 
	WB
	
	 
	-0.8882
	  -7.609
	 
	 

	 
	WHC
	 
	 0.3764
	   3.261
	0.2739
	1.639

	 
	AH
	
	 
	 0.5233
	   7.334
	 
	 

	Accessibility measures at the home location for BW, HWC, WHC and AH time-of-day blocks [number of jobs/100,000]
	 
	 
	 
	 

	 
	For the entire population
	 
	 
	 
	 

	 
	
	Natural resources
	-0.9339
	  -1.843
	 
	 

	 
	
	Manufacturing
	-0.0773
	  -2.015
	 
	 

	 
	
	Information
	-0.1487
	  -1.596
	 
	 

	 
	
	Financial services
	-0.0847
	  -1.307
	 
	 

	 
	
	Educational 
	-0.8455
	  -4.161
	 
	 

	 
	
	Wholesale trade
	 0.4065
	   2.259
	 
	 

	 
	
	Health 
	 0.2268
	   2.298
	 
	 

	 
	
	Entertainment
	 0.2781
	   2.967
	0.2757
	5.170

	 
	For females only
	 
	 
	 
	 

	 
	 
	Retail trade
	 0.0490
	   1.114
	 
	 

	Accessibility measures at the workplace location for HWC, WB and WHC time-of-day blocks [number of jobs/100,000]
	 
	 
	 
	 

	 
	For the entire population
	 
	 
	 
	 

	 
	
	Manufacturing
	-0.0363
	  -2.202
	 
	 

	 
	
	Information
	-0.0702
	  -1.258
	 
	 

	 
	
	Financial services
	 0.0999
	   1.460
	 
	 

	 
	For females only
	 
	 
	 
	 

	 
	 
	Retail trade
	 0.0360
	   1.934
	 
	 

	Work-related characteristics
	 
	 
	 
	 

	 
	Is self-employed
	 
	 
	 
	 

	 
	
	WB
	 0.3045
	   2.021
	 
	 

	 
	
	WHC
	-0.0615
	  -0.853
	 
	 

	 
	Has flexible work start time
	 
	 
	 
	 

	 
	 
	BW
	-0.6257
	  -7.040
	 
	 

	Mobility and situational characteristics
	 
	 
	 
	 

	 
	Survey day is Friday
	 
	 
	 
	 

	 
	
	WHC and AH
	 0.1827
	   2.115
	 
	 

	 
	Used public transportation on survey day
	 
	 
	 
	 

	 
	 
	BW
	-1.8864
	-11.974
	 
	 




Table 4. Covariance Matrix for the Event Type Choice Model Component
	Time-of-Day Block
	BW
	HWC
	WB
	WHC
	AH

	BW
	0.5
	
	
	
	

	HWC
	0.0
	0.5
	
	
	

	WB
	0.0
	0.0
	0.5
	
	

	WHC
	0.0
	0.0
	0.0
	0.5
	

	AH
	0.0
	0.0
	0.0
	0.5146 (29.153)*
	0.5695 (11.535) **


*   t-stat computed with respect to zero
** t-stat computed with respect to 0.5


Table 5. Aggregate Data Fit Measures
	Aggregation Level
	Combination Event
	Observed
	Joint Model
	Independent Model

	
	
	
	Predicted
	APE
	Predicted
	APE

	Multivariate
	No participation
	
	676
	669.7
	0.9
	656.1
	2.9

	
	BW participation only
	67
	90.5
	35.0
	95.2
	42.1

	
	HWC participation only
	67
	85.2
	27.1
	87.0
	29.9

	
	WB participation only
	168
	63.0
	62.5
	67.4
	59.9

	
	WHC participation only
	230
	153.6
	33.2
	137.0
	40.4

	
	AH participation only
	279
	345.4
	23.8
	347.7
	24.6

	
	Overall mean weighted APE
	19.9
	22.2

	Marginal
	Total count
	0
	676
	669.7
	0.9
	656.1
	2.9

	
	
	1
	593
	589.1
	0.7
	585.7
	1.2

	
	
	2
	388
	379.1
	2.3
	377.2
	2.8

	
	
	3
	208
	225.6
	8.4
	253.5
	21.9

	
	
	4+
	248
	249.5
	0.6
	240.5
	3.0

	
	Weighted APE
	1.8
	4.3

	
	BW block
count
	0
	1926
	1756.8
	8.8
	1745.3
	9.4

	
	
	1
	  147
	295.8
	101.2
	305.7
	108.0

	
	
	2
	   24
	47.8
	99.1
	50.8
	111.5

	
	
	3
	   13
	7.6
	41.5
	8.1
	37.7

	
	
	4+
	     3
	5.0
	66.7
	3.1
	3.3

	
	Weighted APE
	16.5
	17.6

	
	HWC block count
	0
	1792
	1739.1
	3.0
	1729.8
	3.5

	
	
	1
	  250
	317.8
	27.1
	326.4
	30.6

	
	
	2
	   57
	45.8
	19.6
	48.1
	15.7

	
	
	3
	   10
	5.9
	41.0
	6.2
	38.3

	
	
	4+
	     4
	4.4
	10.0
	2.5
	37.5

	
	Weighted APE
	6.5
	7.3

	
	WB block
count
	0
	1660
	1831.5
	10.3
	1809.9
	9.0

	
	
	1
	  421
	244.8
	41.9
	261.2
	38.0

	
	
	2
	   29
	29.2
	0.7
	35.0
	20.7

	
	
	3
	     2
	3.6
	77.5
	4.7
	133.2

	
	
	4+
	     1
	3.9
	290.0
	2.2
	120.0

	
	Weighted APE
	16.7
	15.1

	
	WHC block count
	0
	1516
	1560.2
	2.9
	1593.4
	5.1

	
	
	1
	  397
	423.4
	6.6
	408.7
	3.0

	
	
	2
	  131
	97.1
	25.8
	87.2
	33.5

	
	
	3
	   45
	22.0
	51.0
	17.6
	60.8

	
	
	4+
	   24
	10.3
	57.1
	6.1
	74.6

	
	Weighted APE
	6.7
	8.4

	
	AH block
count
	0
	1465
	1216.0
	17.0
	1201.7
	18.0

	
	
	1
	  394
	576.9
	46.4
	589.8
	49.7

	
	
	2
	   90
	214.3
	138.1
	221.7
	146.3

	
	
	3
	  103
	71.9
	30.2
	71.6
	30.5

	
	
	4+
	   61
	33.9
	44.4
	28.2
	53.8

	
	Weighted APE
	29.1
	31.0



Table 6. Aggregate Percentage Change in Expected Number of Non-Work Episodes
	Effect of 20% increase in …
	Time-of-day block
	Joint
Model
	Independent Model

	Distance to work
	All day
	-2.51
	-2.30

	
	BW
	-2.64
	-2.44

	
	HWC
	-2.52
	-2.32

	
	WB
	-2.30
	-2.08

	
	WHC
	-2.46
	-2.27

	
	AH
	-2.46
	-2.27

	Number of retail trade jobs at the home location
	All day
	 0.53
	 0.00

	
	BW
	 0.75
	 0.31

	
	HWC
	 0.85
	 0.40

	
	WB
	-1.30
	-2.34

	
	WHC
	 0.62
	 0.06

	
	AH
	 0.69
	 0.31

	Number of entertainment jobs at the home location
	All day
	 3.44
	 0.00

	
	BW
	 8.31
	 5.23

	
	HWC
	 5.93
	 2.32

	
	WB
	-2.41
	-6.94

	
	WHC
	 1.52
	-1.75

	
	AH
	 3.27
	 0.37
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