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ABSTRACT 

In the current paper, we propose a new utility-consistent modeling framework to explicitly link a 

count data model with an event type multinomial choice model. The proposed framework uses a 

multinomial probit kernel for the event type choice model and introduces unobserved 

heterogeneity in both the count and discrete choice components. Additionally, this paper 

establishes important new results regarding the distribution of the maximum of multivariate 

normally distributed variables, which form the basis to embed the multinomial probit model 

within a joint modeling system for multivariate count data. The model is applied for analyzing 

out-of-home non-work episodes pursued by workers, using data from the National Household 

Travel Survey. 

 

Keywords: multivariate count data, generalized ordered-response, multinomial probit, 

multivariate normal distribution. 
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1. INTRODUCTION 

Count data models are used in several disciplines to analyze discrete and non-negative outcomes 

without an explicit upper limit. These models assume a discrete probability distribution for the 

count variables, followed by the parameterization of the mean of the discrete distribution as a 

function of explanatory variables.  

In the current paper, we propose a parametric utility-consistent framework for 

multivariate count data that is based on linking a univariate count model for the total count 

across all possible event states with a discrete choice model for the choice among the event 

states. For example, the total count may be the total number of grocery shopping occasions 

within say a month, and the event states may be some discrete representation of locations of 

participation. In the next section, we discuss closely related efforts in the econometric literature, 

and position the current paper in the context of earlier research.1  

 

1.1. Earlier Related Research 

Three broad approaches have been used in the literature to model multivariate count data: (1) 

multivariate count models, (2) multiple discrete-continuous models, and (3) joint discrete choice 

and count models. 

 

1.1.1. Multivariate count models 

A multivariate count model may be developed using multivariate versions of the Poisson or 

negative binomial (NB) discrete distributions (see Buck et al., 2009 and Bermúdez and Karlis, 

2011 for recent applications of these methods). These multivariate Poisson and NB models have 

the advantage of a closed form, but they become cumbersome as the number of events increases 

and can only accommodate a positive correlation in the counts. Alternatively, one may use a 

mixing structure, in which one or more random terms are introduced in the parameterization of 

the mean. The most common form of such a mixture is to include normally distributed terms 

within the exponentiated mean function, so that the probability of the multivariate counts then 

requires integration over these random terms (see, for example, Chib and Winkelman, 2001, and 

Haque et al., 2010). The advantage of this method is that it permits both positive and negative 

                                                            
1 There have been several studies in the literature that ignore the joint nature of multivariate count data, and model 
each count independently from the other (see Terza and Wilson, 1990 and Cameron and Trivedi, 2013). We do not 
discuss such studies in the next section. 
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dependency between the counts, but the limitations are that the approach gets quickly 

cumbersome in the presence of several mixing components. Recently, Bhat and colleagues (see 

Castro et al., 2012, Narayanamoorthy et al., 2013, Bhat et al., 2014) have addressed this problem 

by recasting count models as a special case of generalized ordered-response models with 

underlying continuous latent variables, and introducing multivariateness through the 

specification of the error terms in the continuous latent variables (this approach also happens to 

nest the copula approach proposed by van Ophem, 1999 as a special case). These models allow 

for a more “linear” introduction of the dependencies and, in combination with a new estimation 

technique proposed by the authors, lead to a simple way to estimate correlated count data 

models. But these multivariate count approaches are not based on an underlying utility-

maximizing framework; rather they represent a specification for the statistical expectation of 

demand, and then use relatively mechanical statistical “stitching” devices to accommodate 

correlations in the multivariate counts. Thus, these models are not of much use for economic 

welfare analysis, which can be very important in many recreational, cultural, and other empirical 

contexts. Further, the use of these models do not allow for potentially complex substitution and 

income effects that are likely to be present across event states in consumer choice decisions. For 

example, an increase in the price of groceries at one location (say A) may result in an increase in 

the attractiveness of other grocery locations due to a substitution effect, but also a decrease in 

total grocery shopping episodes because of an income effect. So, while the frequency of 

shopping instances to location A will reduce, the frequency of shopping instances to other 

locations may increase or decrease. The multivariate count models do not explicitly account for 

such substitution and income effects. Finally, such multivariate count models can be negatively 

affected by small sample sizes for each event count, and will, in general, necessitate the use of 

techniques to accommodate excess zeros in the count for each event category, which become 

difficult in a multivariate setting. 

 

1.1.2. Multiple discrete-continuous models 

Another approach that may be used for multivariate count data is to use an explicit utility 

maximizing framework based on the assumption that consumer preferences can be represented 

by a random utility function that is quasi-concave, increasing, and continuously differentiable 

with respect to the consumption quantity vector. Consumers maximize the stochastic utility 
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function subject to one or more budget constraints. The use of a non-linear utility form that 

allows diminishing marginal utility (or satiation effects) with increasing consumption leads to the 

possibility of consumption of multiple alternatives and also provides the continuous quantity of 

the consumed alternatives. Bhat (2008) proposed a general Box-Cox transformation of the 

translated constant elasticity of substitution (or CES) additive utility function, and showed how 

the resulting constrained random utility maximization problem can be solved via standard 

Karush-Kuhn-Tucker (KKT) first order conditions of optimality (see Hanemann, 1978 and 

Wales and Woodland, 1983 for the initial conceptions of KKT-based  model systems, and Kim et 

al., 2002, von Haefen and Phaneuf, 2005, Bhat, 2005, and Bhat et al., 2009 for specific 

implementations of the KKT framework in the past decade). The resulting multiple discrete-

continuous (MDC) models have the advantage of being directly descendent from constrained 

utility maximizing principles, but fundamentally assume that alternatives can be consumed in 

non-negative and perfectly divisible (i.e., continuous) units. On the other hand, the situation of 

multivariate counts is truly a discrete-discrete situation, where the alternatives are discrete and 

the consumption quantity of the consumed alternatives is also discrete. While the MDC model 

may be a reasonable approximation when the observation period of consumption is long (such as 

say a year in the context of grocery shopping episodes), a utility-consistent formulation that 

explicitly recognizes the discrete nature of consumption quantity would be more desirable.2  

 

1.1.3. Combined discrete choice and count model 

A third approach uses a combination of a total count model to analyze multivariate count data 

and a discrete choice model for event choice that allocates the total count to different events. 

This approach has been adopted quite extensively in the literature. Studies differ in whether or 

not there is a linkage between the total count model and the discrete event choice model. Thus, 

many studies essentially model the total count using a count model system in the first step, and 

then independently (and hierarchically, given the total count) develop a multinomial choice 

model for the choice of event type at each instance of the total number of choice instances (as 
                                                            
2  von Haefen and Phaneuf (2003) consider a slightly revised version of the KKT-based utility maximization 
approach for handling multivariate count data. Specifically, they assume a deterministic utility function (rather than 
a random utility function), derive the implied deterministic continuous consumption vector using KKT conditions, 
then consider these continuous consumptions as the expected demands, and finally treat the consumer’s observed 
demand for each alternative as an independent draw from a NB distribution with the expected demand function for 
the alternative as the mean. However, this method is a rather indirect way of accommodating discrete counts, and 
there is no guarantee that the predicted counts will satisfy the original budget constraint in the KKT framework.  
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given by the total count). Since the multivariate count setting does not provide any information 

on the ordering of the choice instances, the probability of the observed counts in each event type, 

given the total count, takes a multinomial distribution form (see Terza and Wilson, 1990). This 

structure, while easy to estimate and implement, does not explicitly consider the substitution and 

income effects that are likely to lead to a change in total count because of a change in a variable 

that impacts any event type choice. This is because there is no linkage of any kind from the event 

type choice model back to the total count model. The structure without this linkage is also not 

consistent with utility theory, as we show in Appendix B in the online supplement to this paper. 

An alternate and more appealing structure is one that explicitly links the event discrete choice 

model with the total count model. In this structure, the expected value of the maximum utility 

from the event type multinomial model is used as an explanatory variable in the conditional 

expectation for the total count random variable (see Mannering and Hamed, 1990 and Hausman 

et al., 1995, and Rouwendal and Boter, 2009). But a problem with the way this structure has 

been implemented in the earlier studies is that the resulting model is inconsistent with utility 

theory (more on this later) and/or fails to recognize the effects of unobserved factors in the event 

type alternative utilities on the total count (because only the expected value of maximum utility 

enters the count model intensity, and not the full distribution of maximum utility, resulting in the 

absence of a mapping of the choice errors into the count intensity). On the other hand, the factors 

in the unobserved portions of utilities must also influence the count intensity just as the observed 

factors in the utilities do. This is essential to recognize the integrated nature of the event choice 

and the total count decisions. Unfortunately, if this were to be considered in the case when a 

generalized extreme value (GEV) model is used for the event choice (as has been done in the 

past), the maximum over the utilities is extreme-value distributed, and including this maximum 

utility distribution form in the count model leads to difficult distributional mismatch issues in the 

count model component of the joint model (this is perhaps the reason that earlier models have 

not considered the full distribution of the maximum utility in the count model). As indicated by 

Burda et al. (2012), while the situation may be resolved by using Bayesian augmentation 

procedures, these tend to be difficult to implement, particularly when random taste variations 

across individuals are also present in the event choice model. 
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1.2. The Current Paper 

In the current paper, we use the third approach discussed above, while also ensuring a utility-

consistent model for multivariate counts that considers the linkage in the total count and event 

choice components of the model system by accommodating the complete distribution of 

maximum utility from the event type choice model to the total count model. To our knowledge, 

this is the first such joint model proposed in the literature. In this context, there are four aspects 

of the proposed model system that are novel in the literature. First, we use a multinomial probit 

(MNP) kernel for the event choice type model, rather than the traditional GEV-based kernels 

(dominantly the multinomial logit (MNL) or the nested logit (NL) kernel) used in earlier studies. 

The use of the MNP kernel has several advantages, including allowing a more flexible 

covariance structure for the event utilities relative to traditional GEV kernels, ensuring that the 

resulting model is utility-consistent based on separability of the direct utility function (Hausman 

et al.’s (1995) model, while stated by the authors as being utility-consistent, is actually not 

utility-consistent because they use a GEV kernel for the choice model, as discussed later), and 

also facilitating the linkage between the event choice and the total count components of our 

proposed model system (this is because the cumulative distribution of the maximum over a 

multivariate normally distributed vector takes back the form of a cumulative multivariate normal 

distribution, which we exploit in the way we introduce the linkage between the event type choice 

model and the total count model in our modeling approach).3 Second, and related to the first, we 

allow random taste variations (or unobserved heterogeneity) in the sensitivity to exogenous 

factors in both the event choice model as well as the total count components. This is 

accomplished by recasting the total count model as a special case of a generalized ordered-

response model in which a single latent continuous variable is partitioned into mutually 

exclusive intervals (see Castro, Paleti, and Bhat, 2012 or CPB in the rest of this paper). The 

recasting facilitates the inclusion of the linkage as well as easily accommodates random taste 

variations, because of the conjugate nature of the multivariate normal distribution of the linkage 

                                                            
3 As a secondary contribution, the paper potentially opens up a whole new area of studies of welfare economics that 
use an MNP kernel for choice models, as opposed to the use of GEV-based models for welfare economics. Indeed, 
we have found no discussion in the literature on welfare economics of consumer surplus concepts in the context of 
MNP choice models, primarily because results regarding the distribution of the maximum of a multivariate normally 
distributed vector (with a general covariance matrix) have been recent and have been confined to the statistical 
literature. In this regard, the current paper brings these recent statistical results on the distribution of the maximum 
of multivariate normally distributed variables, along with new results that we establish, into the economic domain of 
utility-based models. 
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parameter (that includes the random taste variations in the event type choice model) and the 

multivariate normal distribution for the random taste variations in the count model. Further, the 

recasting can easily accommodate high or low probability masses for specific count outcomes 

without the need for zero-inflated or hurdle approaches, and allows the use of a specific 

estimation approach that very quickly evaluates multivariate normal cumulative distribution 

functions. Third, we establish a few new results regarding the distribution of the maximum of 

multivariate normally distributed random variables (with a general covariance matrix). These 

results constitute another core element in our utility-consistent approach to link the event and 

total count components, in addition to being important in their own right. In particular, the use of 

GEV structures in the past for event choice in joint models has ostensibly been because the exact 

form of the maximum of GEV distributed variables is well known. We show that similar results 

do also exist for the maximum of normally distributed variables, though these have simply not 

been invoked in econometric models. In doing so, we bring recent developments in the statistical 

field into the economic field. Fourth, we propose the estimation of our joint model for 

multivariate count data using Bhat’s (2011) frequentist MACML (for maximum composite 

marginal likelihood) approach, which is easy to code and computationally time efficient (see also 

Bhat and Sidharthan, 2011). More broadly, the approach in this paper should open up a whole 

new set of applications in consumer choice modeling, because the analyst can now embed an 

MNP model within a modeling system for multivariate count data. In summary, it is the 

combination of multiple things that work in tandem that lead to our proposed new utility-

consistent, flexible, and easy-to-estimate model, including the use of an MNP kernel for the 

event type choice, the recasting of traditional count models as generalized ordered-response 

models, the application of new statistical results for the maximum of multivariate normally 

distributed variables, and the use of the MACML estimation approach for estimation.  

The rest of this paper is structured as follows. The next section presents the fundamental 

structure of the multivariate normal distribution and new results regarding the distribution of the 

maximum of normally distributed variables. Section 3 illustrates an application of the proposed 

model for analyzing out-of-home non-work episodes pursued by workers. Finally, Section 4 

summarizes the key findings of the paper and identifies directions for further research. 
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2. THE JOINT EVENT TYPE-TOTAL COUNT MODEL SYSTEM 

Let the total observed demand count over a certain period of interest for consumer q 

),...,2,1( Qq   be qh . Also, let there be I ),...,2,1( Ii   event type possibilities (or alternatives) 

that the total count qh  may be allocated to (the number of event types may vary across decision 

agents; however, for ease in presentation and also because the case of varying number of event 

types does not pose any complications, we assume the same number of alternatives across all 

consumers). Each count unit contribution to the total count qh  corresponds to a choice occasion 

from among the I alternatives. Thus, one may view the choice situation as a case of repeated 

choice data, with qh  choice occasions and time-invarying independent variables.4 The “chosen” 

alternative at each choice occasion is developed such that the total number of times an alternative 

is “chosen” across the qh  choice occasions equals the actual count in that alternative (the order of 

the assignment of the “chosen” alternatives across choice occasions is immaterial, and does not 

affect the estimation in any way). The resulting repeated choice data allows the estimation of 

individual-specific unobserved factors that influence the intrinsic preference for each alternative 

as well as the responsiveness to independent variables.  

The next section presents the econometric formulation for the event choice at each choice 

occasion, while the subsequent section develops the econometric formulation for the total count 

model (including the linkage between the event choice and the total count).  

 

2.1. Event Type Choice Model 

Consider the following random-coefficients formulation in which the utility qtiU  that an 

individual q associates with alternative i at choice occasion t is given by:
 
 

),(~
~

,
~

;~ ΩDDqqqqtiqiqqti MVNU 0ββbβxβ   ,          (1)

where qix  is a (D×1)-column vector of exogenous attributes (including a constant), and qβ  is an 

individual-specific (D×1)-column vector of corresponding coefficients that is a realization from a 

multivariate normal density function with mean vector b and covariance matrix Ω (this 

                                                            
4 In many situations, the count by event type is explicitly based on observation or reported decisions at a choice 
occasion level (such as individuals reporting all the activity episodes by type of participation over a day, or recalling 
each recreational trip participated in over a period of time). 
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specification allows taste variation as well as generic preference variations due to unobserved 

individual attributes). qti~  is assumed to be an independently and identically distributed (across 

choice occasions and across individuals) error term, but having a general covariance structure 

across alternatives at each choice occasion. Thus, consider the (I×1)-vector 

),,,,( 321  qtIqtqtqtqt εεεε ~~~~ε~  . We assume that ),(~~ ΘIIqt MVN 0ε , leading to a multinomial probit 

(MNP) model of event type choice ( ),( ΘIIMVN 0 stands for the multivariate normal distribution 

of I dimensions with mean vector I0  and covariance matrix Θ). To accommodate the invariance 

in choice probabilities to utility function translations and scaling, appropriate identification 

considerations need to be imposed on Θ. An appealing approach is to take the differences of the 

error terms with respect to the first error term (the designation of the first alternative is arbitrary). 

Let )( 11 qtqtiqti εεε ~~  , and let ),...,,( 131211 qtIqtqtqt εεεε . Then, up to a scaling factor, the 

covariance matrix of 1qtε  (say 1Θ ) is identifiable. Next, scale the top left diagonal element of 

this error-differenced covariance matrix to 1. Thus, there are 1)]2/()1[(  II  free covariance 

terms in the )1()1(  II  matrix 1Θ . Later on during estimation, we will take the difference of 

the utilities with respect to the chosen alternative (not the first alternative). But to ensure that, 

whenever differences are taken with respect to the chosen alternative, these differences are 

consistent with the same error covariance matrix Θ for the undifferenced error term vector qtε
~ , 

Θ is effectively constructed from 1Θ  by adding a top row of zeros and a first column of zeros 

(see Train, 2003; page 134). Also, in MNP models where the variables are all specific to 

individuals (and whose values do not vary across alternatives), empirical identification issues 

need to be considered. In particular, as discussed by Keane (1992) and Munkin and Trivedi 

(2008), identification is tenuous unless exclusion restrictions are placed in the form of at least 

one individual characteristic being excluded from each alternative’s utility in addition to being 

excluded from a base alternative (but appearing in the utilities of some other alternatives). In our 

application, this empirical identification issue does not arise because we do have alternative-

specific variables in the event type choice model.  
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We now set out some additional notation. Define ),...,,( 21  qtIqtqtqt UUUU  (I×1 vector), 

),...,,( 21  qTqqq UUUU  (TI×1 vector), ),...,,( 21  qTqqq ε~ε~ε~ε~  (TI×1 vector), and 

),...,,( 21  qIqqq xxxx  (I×D matrix). Then, we can write:
 
 

      qqqqqTqTq εVεβbU  ~ 
~

x1x1 , (2)

where  bV qTq x1   and   qεβε ~ 
~  qqTq x1 . Also, assume that individual q chooses 

alternative qtm  at the tth choice instance. Define qM  as an ][])1[( TITI   block diagonal 

matrix, with each block diagonal having )1( I  rows and I columns corresponding to the qth 

individual’s tth choice instance. This II  )1(  matrix for individual q and observation time 

period t corresponds to an )1( I  identity matrix with an extra column of 1 ’s added as the th
qtm  

column. In the utility differential form (where the utility differentials are taken with respect to 

the chosen alternative qtm  at each choice occasion), we may write Equation (2) as:
 
 

qqqqqq
*
q εMVMUMu  . (3)

To determine the covariance matrix of *
qu , define   TITIqqTTq  (

~
Ωxx1Ω  matrix) and 

ΘIDENΘ  T

~
 TITI ( matrix). Let  ΘΩF

~~~  qq  and qqqq M
~

M  FF . Also, let 

qqq VMH  . Finally, we obtain the result below:
 
 

),(1 qqn)(I
*
q q

MVN FH~u  . (4)

The parameters to be estimated in the event type model include the b vector, and the 

elements of the covariance matrices .and ΘΩ  To write this, as well as for future use, we define 

several key notations as follows: RIDEN  for an identity matrix of dimension R, R1  for a column 

vector of ones of dimension R, R0  for a column vector of zeros of dimension R, RR1  for a matrix 

of ones of dimension R×R, ), ;(. 2f  for the univariate normal density function with mean   

and variance ,2 (.)  for the univariate standard normal density function, ), ;(. ΓτRf  for the 

multivariate normal density function of dimension R with mean vector τ  and covariance matrix 

Γ , Γω  for the diagonal matrix of the standard deviations of Γ , with its rth element being rωΓ , 

);(. *ΓR  for the multivariate standard normal density function of dimension R and correlation 



10 

matrix *Γ , ), ;(. 2F  for the univariate normal cumulative distribution function with mean   

and variance ,2  (.) for the univariate standard normal cumulative distribution function, 

),; (. ΓτRF  for the multivariate normal cumulative distribution function of dimension R with 

mean vector τ  and covariance matrix Γ , and ); (. *ΓR  for the multivariate standard normal 

cumulative distribution function of dimension R and correlation matrix *Γ (these notations will 

also be used in Appendix A in the online supplement to this paper). The likelihood contribution 

of individual q from the event type choice model is then the ])1[( qnI  -dimensional integral 

below: 

 111
)1(, )()(),()()0(),,( 
 

qqqq qqnI
*
qeventq PL FFF ωFωωΘΩ Hub . (5)

The above likelihood function has a high dimensionality of integration, especially when the total 

number of counts qn  and/or the number of alternatives I is high. To resolve this, we use the 

MACML approach proposed by Bhat (2011), which involves the evaluation of only univariate 

and bivariate cumulative normal distribution evaluations. However, note that the parameters 

from the event type model also appear in the total count model, and hence we discuss the overall 

estimation procedure for the total count-event type model in Section 2.3 after first discussing the 

total count model formulation in the next section. 

 

2.2. Total Count Model 

A key to linking the event type choice model to the total count model is our recasting of the 

count model as a generalized ordered-response model. Specifically, as discussed by CPB (2012), 

any count model may be reformulated as a special case of a generalized ordered-response model 

in which a single latent continuous variable is partitioned into mutually exclusive intervals. 

Using this equivalent latent variable-based generalized-ordered response framework for count 

data models, we are then able to gainfully and efficiently introduce the linkage from the event 

choice model to the count model through the latent continuous variable. The formulation also 

allows handling excess zeros in a straightforward manner. 

We first provide a brief overview of CPB’s recasting of the count model as a special case 

of the generalized ordered-response probit model in Section 2.2.1, and then discuss the linkage 

with the event type model in Section 2.2.2. 
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2.2.1. The basic recasting 

As earlier, let q ),...,2,1( Qq   be the index for the consumer and let k ),...,2,1,0( k  be the 

index to represent the count level ( qh , the total observed count for consumer q, takes a specific 

value in the domain of k).  Consider the following form of the GORP model system: 

qqqg  wθq
* , kgq   if qkqkq g  

*
1, ,

 kqkqk )(f    , (6)

where k is a scalar similar to the thresholds in a standard ordered-response model 

0;( 01    for identification, and ...)0 321   , and )( qkf  is a non-linear 

function of a vector of consumer-specific variables q  that (a) ensures that the thresholds qkδ  

satisfy the ordering conditions ( 1,q ;  < ...)3,210  qqqq   and (b) allows 

identification for any variables that are common in qw  and q . *
qg  in Equation (6) corresponds 

to the latent propensity underlying the observed count variable qg , qw  is an (L×1)-column 

vector of exogenous attributes (excluding a constant), qθ  is a corresponding (L×1)-column vector 

of individual-specific variable effects, and q  is an idiosyncratic random error term assumed to 

be identically and independently standard normal distributed across individuals q.  

Several points about the GORP model of Equation (6) are noteworthy, as discussed by 

CPB. First, the model in Equation (6) can exactly reproduce any traditional count data model. 

For example, if )( qkf  = 
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 (7) 

Second, the analyst can accommodate high or low probability masses for specific count 

outcomes by estimating some of the k  parameters in the threshold function. At the same time, 

the GORP model can estimate the probability for any arbitrary count value. All that needs to be 
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done is to identify a count value K above which k  is held fixed at K ; that is, Kk    for all 

Kk  . The analyst can empirically test different values of K and compare data fit to determine 

the optimal value of K to add flexibility over the traditional count specification (that constrains 

all k  parameters to zero). 5  Third, the interpretation of the generalized ordered-response 

recasting is that consumers have a latent “long-term” (and constant over a certain time period) 

propensity *
qg  associated with the demand for the product/service under consideration that is a 

linear function of a set of consumer-related attributes qw . On the other hand, there may be some 

specific consumer contexts and characteristics (embedded in q ) that may dictate the likelihood 

of the long-term propensity getting translated into a manifested demand at any given instant of 

time (there may be common elements in qw  and q ). Further, as will be clear in the next 

section, our implicit assumption in linking the total count model to the event type choice model 

is that the maximum utility (or a measure of per unit consumer surplus) from the event type 

choice model affects the “long-term” latent demand propensity *
qg , but does not play a role in 

the instantaneous translation of propensity to actual manifested demand. That is, the 

factors/constraints that are responsible for the instantaneous translation of propensity to 

manifested demand are not impacted by changes in the quality attributes of the consumer product 

alternatives (that is, of the event types), but the “long-term” demand propensity is. 

 

2.2.2. Linkage with the event type choice model 

To link the event type choice model with the count model, we need a measure of maximum 

utility from the event choice model in the count model. In this manner, an improvement in the 

quality or a reduction in price of any alternative in the choice model gets manifested as an 

increase in overall utility (or consumer surplus) per choice occasion, resulting in a higher 

propensity for the consumer product under consideration and an increase in the total count of 

units purchased. To develop this link, consider the utility expressions of each alternative in the 

event choice model at any choice occasion t ),...,2,1( qnt  . Since these expressions do not vary 

across choice occasions during the observation period, we can ignore the index t, as we now do. 

                                                            
5  It should be noted that the analyst needs to place the restriction αk = αK for some value of K in order for the GORP 
reformulation to be able to predict count outcomes beyond those observed in the estimation data. 
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From Equation (1), the utility expression for alternative i at any choice occasion is then as 

follows: 

),(~
~

,
~

;~x ΩDDqqqqiqiqqi MVNU 0ββbββ  


. (8)

Define ),...,,( 21  qIqqq UUU


U  ( 1I  vector) and ),...,,( 21  qIqqq εεε ~~~ε


 ( 1I vector). With other 

definitions as earlier, we may write:
 
 

    qqqqq εβbU


 
~  xx . (9)

This vector qU


 is normally distributed as follows: ),( qqIq MVN Σd~U


, where bd qq x  and 

ΘxΩxΣ  qqq . Let )(Max qq U


 . q , when divided by the marginal utility of income 

(assuming constant marginal utility of income), is a measure of per choice occasion consumer 

surplus for individual q. That is, q  represents the utility that individual q receives from each 

choice occasion characterizing her/his total demand count (this is because the individual, at each 

choice occasion, chooses the alternative with the highest utility). Now, it is reasonable and 

natural to assume that the individual’s count choice is a function of the per-choice occasion 

utility accrued by the individual (as we will show later, and because of our use of an MNP kernel 

for the event type choice, this assumption also makes our joint model consistent with two-stage 

budgeting). As the per choice occasion utility for an individual increases, the individual will have 

a higher count. Equivalently, the introduction of the per-choice occasion consumer surplus or 

maximum utility measure q  in the count model is equivalent to the introduction of a single 

(scalar) price index represented by q  for the commodity group represented by the count. Note, 

however, that this is a stochastic variable to the analyst, because the analyst does not observe the 

utility vector qU


.  Thus, it is important to consider the full distribution of  q  in the count model, 

as opposed to using simply the expected value of q  (as has been done by earlier studies, 

including Hausman et al., 1995 and Rouwendal and Boter, 2009).  We introduce the q  variable 

in the total count model of Equation (6) as follows: 
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qθ
~

 in the equation above is an individual-specific coefficient vector introduced to account for 

unobserved heterogeneity in the demand propensity, and is assumed to be distributed 

multivariate normal: ),( ΞLLq MVN 0~θ
~

. It is assumed that qθ
~

 is independent of q . The long-

term propensity in Equation (10) may be re-written as follows: 

.1,θ),,(~where, 22*  qqqqqqqqqqq NWWg www Ξ  (11)

To develop the likelihood function from the total count model, we need the cumulative 

distribution function of *
qg , which we obtain from the following theorem: 

 

Theorem 1: The distribution of a stochastic transformation of )(Max qq U


 as 

,,*
qqq Wg   where   is a constant scalar parameter and qW  is a univariate normally 

distributed scalar )),(~( 2
qqq NW   has a cumulative distribution function as below: 

    222 ,;),,,,;( qIIqIqqIIqqqq zFzH  1dd  Σ11Σ          (12) 

Appendix A provides the proof in the online supplement to this paper.  

 

Finally, the likelihood function from the total count model, given that the observed count level of 

consumer q is qh , may be written as: 

),,,,;(),,,,;(),,,,,,( 2
1

2
qqqqhqqqqhcountq, qq

HHL  ΣΣΞΘΩ ddθb  . (13)

The likelihood function above involves the computation of an I-dimensional integral.  

 

2.3. Estimation Technique 

As we show in Appendix B in the online supplement to this paper, the choice of the MNP model 

as the basis for the event type choice, combined with the use of the maximum utility measure q  

from the event type choice model in the count model, makes our overall model of total count and 
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event type choice consistent with a two-stage budgeting approach within a direct utility 

maximizing planning framework. This allows us to write the count for event type i as the product 

of the total count observed (across all event types) and the probability of observing event type i 

(see Equation B.2 in Appendix B). The net econometric consequence for estimation purposes is 

that the total count model can be separately analyzed in a first stage (as long as q  is introduced 

at this first stage), and the event type choice can be separately analyzed in a second stage 

independent of the choice of the total count. However, q  is a random variable with a 

distribution (because of the presence of individual-level heterogeneity), and has a role in the 

count model estimation. Specifically, q  serves as the vehicle that transmits the effect of event 

type choice determinants and modeling errors into the total count model. Thus, the appropriate 

likelihood function to maximize in the two-stage budgeting approach corresponds to the product 

of the likelihood function of the count model (considering the randomness in the q  variable) 

and the likelihood of the MNP model. This overall likelihood function for our two-stage total 

count-event type model may be obtained from Equations (13) and (5) as follows: 

),,,,,,(),,(),,,,,,( ,,  ΞΘΩΘΩΞΘΩ θbbθb countqeventqq LLL  . (14)

Note that the two components of the likelihood have common parameters.  

To address the issue of the high dimensionality of integration in eventqL ,  (of dimension 

))1( Ihq  in Equation (14), we replace the log-likelihood from the event model with a 

composite marginal likelihood (CML), eventqCMLL ,,  (this CML is not an approximation of the true 

likelihood nor does it make any restrictive assumptions regarding the total count and event type 

models beyond the separability of the likelihood components made possible by two-stage 

budgeting; rather, the CML is simply a different inference approach that also leads to good 

asymptotic properties, as we discuss later). The CML approach has been proposed for and 

applied to various binary and ordered response model forms in the past (see Varin et al., 2011 for 

a recent extensive review of CML methods), and Bhat (2011) extended it recently to unordered 

choice models. The CML approach, which belongs to the more general class of composite 

likelihood function approaches (see Lindsay, 1988), may be explained in a simple manner as 

follows. In the event type choice model, instead of developing the likelihood of the entire 

sequence of repeated choices from the same consumer, consider developing a surrogate 
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likelihood function that is the product of the probability of easily computed marginal events. For 

instance, one may compound (multiply) pairwise probabilities of a consumer q choosing 

alternative i at time t and choosing alternative i'  at time t' , of the consumer q choosing 

alternative i at time t and choosing alternative i''  at time t'' , and so forth. The CML estimator (in 

this instance, the pairwise CML estimator) is then the one that maximizes the compounded 

probability of all pairwise events. Almost all earlier research efforts employing the CML 

technique have used the pairwise approach. Alternatively, the analyst can also consider larger 

subsets of observations, such as triplets or quadruplets or even higher dimensional subsets. 

However, it is generally agreed that the pairwise approach is a good balance between statistical 

and computational efficiency. 

The properties of the CML estimator may be derived using the theory of estimating 

equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, under usual regularity 

assumptions (Xu and Reid, 2011), the CML estimator is consistent and asymptotically normal 

distributed, and its covariance matrix is given by the inverse of Godambe’s (1960) sandwich 

information matrix (see Zhao and Joe, 2005). Of course, the CML estimator loses some 

asymptotic efficiency from a theoretical perspective relative to a full likelihood estimator 

(Lindsay, 1988; Zhao and Joe, 2005). On the other hand, when simulation methods have to be 

used to evaluate the likelihood function (as would be needed to compute eventqL ,  in Equation (5)), 

there is also a loss in asymptotic efficiency in the maximum simulated likelihood (MSL) 

estimator relative to a full likelihood estimator (see McFadden and Train, 2000).  

Letting the individual q’s choice at time t be denoted by the index qtC , the CML function 

for the event type choice model for consumer q may be written as: 
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where ),(  qt'qttqt HHH


, tqt F  is the 2×2-sub-matrix of qF  that includes elements corresponding 

to the tth and tht'  choice occasions of individual q, and ttq Fω


 is the diagonal matrix of the 

standard deviations of tqt F . Finally, the function to be maximized to obtain the parameters is: 

),,,,,,(),,(),,,,,,( ,,,,  ΞΘΩΘΩΞΘΩ θbbθb countqeventqCMLqCML LLL  . (17)

The eventqCMLL ,,  component in the equation above entails the evaluation of a multivariate normal 

cumulative distribution (MVNCD) function of dimension equal to ]2)1[( I , while the countqL ,  

component involves the evaluation of a MVNCD function of dimension .I But these may be 

evaluated using the approximation part of the maximum approximate composite marginal 

likelihood (MACML) approach of Bhat (2011), leading to solely bivariate and univariate 

cumulative normal function evaluations. 

One additional issue still needs to be dealt with. This concerns the positive definiteness of 

several matrices in Equation (17). Specifically, for the estimation to work, we need to ensure the 

positive definiteness of the following matrices: , , ΘΩ and Ξ . This can be guaranteed in a 

straightforward fashion using a Cholesky decomposition approach (by parameterizing the 

function in Equation (17) in terms of the Cholesky-decomposed parameters). 

 

3. AN EMPIRICAL APPLICATION TO WEEKDAY NON-WORK ACTIVITY EPISODE 
GENERATION AND SCHEDULING 

3.1. Background 

The joint count-event type choice model proposed in this paper can be used in a wide variety of 

multivariate count data settings. In the current research, we demonstrate an application to 

examine the total number of out-of-home non-work episodes pursued by a worker over the 

course of a weekday, and the organization of these episodes across five time-of-day blocks 

during the day. An episode, which is a commonly used term in the travel modeling field, refers to 

a single instance of participation in a specific activity. An example would be an episode of 

participation in shopping activity. Note that there can be multiple episodes of non-work activity 

within a given day. 
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The time-of-day blocks are defined based on the worker’s schedule, recognizing that the 

work activity tends to be a “peg” around which other activities typically get scheduled (see 

Rajagopalan et al., 2009). The five time-of-day blocks are as follows: 

 Before-work (BW), representing the time from 3 AM in the morning to the individual’s 

departure from home on the first home-to-work trip in the day. 

 During home-to-work commute (HWC), representing the time between the individual’s 

departure from home on her/his first home-to-work trip in the day to the individual’s arrival 

time at work at the end of this first home-to-work trip (for presentation ease, we will refer 

to this latter clock time as the work start time of the individual). 

 Work-based (WB), representing the time between the individual’s work start time to the 

individual’s departure time from work on the last trip of the day from work-toward home 

(we will refer to this departure time as the work end time of the individual). 

 During work-to-home commute (WHC), representing the period between the individual’s 

work end time to the arrival time at home at the end of the chain of trips that began at work 

at the work start time (we will label this arrival time at home as the home arrival time).  

 After home arrival from work (AH), representing the period from the home arrival time to 

3AM the next day.  

The joint model of total non-work episodes and organization in the five time blocks 

identified above can provide important insights for travel demand forecasting and policy analysis 

(see McGuckin et al., 2005).  

 

3.2. Data Source and Sample Description 

The data used in this study is derived from the 2009 National Household Travel Survey (NHTS) 

conducted in the United States, which collected information on more than one million trips 

to/from each out-of-home episode undertaken by 320,000 individuals from 150,000 households 

sampled from all over the country for one day of the week. The purpose (such as work, shopping, 

recreation, etc.) of each out-of-home episode was provided by the respondent. The survey also 

collected detailed information on individual and household socio-demographic and employment-

related characteristics. For this study, we employed the NHTS California add-on dataset for the 

Southern California (SC) region comprising Imperial, Los Angeles, Orange, Riverside, San 

Bernardino and Ventura counties. The SC region was chosen because the California add-on 
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dataset has geocoded home and work location Census tract information, and because the research 

team has detailed accessibility measures computed at the census tract level by time of day for the 

SC region.6 The accessibility measures are opportunity-based indicators that measure the number 

of activity opportunities by fifteen different industry types that can be reached within 20 minutes 

from each Census tract during each of four time periods: (1) morning-peak period (6am-9am), 

(2) off-peak period (9am-3pm), (3) afternoon-peak period (3pm-7pm), and (4) night-time period 

(7pm-6am). The measures take the following general form for Census tract i, industry type e, and 

time period t: 



itLj

jeiet OA , where itL  is the set of all Census tracts that are reachable within ten 

minutes of highway travel from tract i during time period t, and jeO is the number of activity 

opportunities of industry type e at Census tract j. The details of the approach to develop itL and 

jeO  for each Census tract is provided in Chen et al. (2011).7  

The sample formation included several steps, which are presented in Appendix C in the 

online supplement to this paper. The table in Appendix C provides an unweighted summary of 

select individual, household, work-related and activity and travel characteristics of the final 

sample.  

 

3.3. Estimation Results 

3.3.1. Variable Specification  

The exogenous variables described in Section 3.2 were considered both in the count model 

specification (threshold and long-term propensity) and in the event type choice model 

specification, except for the time of day block-specific accessibility measures that were 

introduced in the time-of-day block choice (i.e., event type) model. The accessibility measures 

constructed at the home end were used in the BW, HWC, WHC and AH blocks, while the 

                                                            
6 These accessibility measures were computed by Prof. Konstadinos Goulias’s research group at the University of 
California at Santa Barbara. The reader is referred to Chen et al. (2011) for details of the construction of these 
Census tract-based accessibility measures.  
7The fifteen industry types used in the accessibility computations are (1) Agriculture (including forestry, fishing and 
hunting and mining, (2) Construction, (3) Manufacturing, (4) Wholesale trade, (5) Retail trade, (6) Transportation 
and warehousing and utilities, (7) Information, (8) Finance services (including insurance, real estate and rental and 
leasing), (9) Professional, scientific, management, administrative, and waste management services, (10) Educational, 
(11) Health, (12) Entertainment (including arts, entertainment, recreation, accommodation and food services), (13) 
Other services (except public administration), (14) Public administration, and (15) Armed forces. 
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accessibility measures constructed at the workplace end were used in the HWC, WB, and WHC 

blocks. 

The final estimation results are presented in Table 1 (for the count data model 

component) and Table 2 (for the event type choice model component). In some cases, we have 

retained variables that are not statistically significant at a 0.05 significance level because of their 

intuitive effects and to inform future research efforts in the field. 

 

3.3.2. Count data model component 

The first main numeric column of Table 1 provides the coefficients associated with the latent 

propensity, while the second main numeric column presents the threshold coefficients. In these 

tables, for categorical variables, the base category is presented in parenthesis. For example, for 

the “race and ethnicity” variables, the base category is “non-Hispanic and non-Asian”. Also, a 

positive sign for a latent propensity coefficient indicates that an increase in the corresponding 

variable results in an increased propensity to undertake non-work activity episodes, while a 

negative sign indicates the reverse. For the threshold variables, a positive coefficient shifts the 

threshold toward the left of the propensity scale, which has the effect of reducing the probability 

of the zero-trip outcome (increasing the overall probability of the non-zero outcome). A negative 

coefficient, on the other hand, shifts the threshold toward the right of the propensity scale, which 

has the effect of increasing the probability of the zero-trip outcome (decreasing the overall 

probability of the non-zero outcome; see CPB).  

The first row panel in Table 1 presents the constant in the   vector, as well as the 

threshold-specific constants k(  values). These constants do not have any substantive 

interpretations, though the threshold specific constants )( k  provide flexibility in the count 

model to accommodate high or low probability masses for specific outcomes. As indicated in 

Section 2.2.1, identification is achieved by specifying 00   and KkKk  . In the 

present specification, we initially set K = 13 (which is the maximum value of the total number of 

non-work episodes in the sample) and progressively reduced K based on statistical significance 

considerations and general data fit. We also combined the threshold constants when they were 

not statistically significantly different to gain estimation efficiency. The final specification in 

Table 1 is based on setting K = 6 (so 6 6  kk  ). 
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The next row panel of Table 1 provides the effects of individual characteristics. Hispanic 

and non-Hispanic Asians are less likely to pursue non-work episodes during the day relative to 

other race-ethnicity groups (primarily dominated by non-Hispanic Caucasians). Women, on 

average, pursue more non-work episodes than males, a consistent finding in the literature 

attributable to the typically larger role played by women in maintenance, shopping, and serve-

passenger activities (see Crane and Takahashi, 2009). However, there is substantial variation in 

this gender effect, as evidenced by the large standard deviation estimate on the female dummy 

variable. The mean and standard deviation estimates indicate that about 60% of employed 

women participate in more non-work activities than their male counterparts, while 40% of 

employed women participate in less activities that their male counterparts. Individuals who 

characterized their primary activity last week as being non-work related have a higher non-work 

episode making propensity, as expected, while the internet shopping variable indicates 

complementarity between internet shopping and in-person shopping out-of-home (see Bhat et al., 

2003 and Farag, 2006 for a similar result).  

Among household characteristics, individuals whose home location is not in an urban 

cluster are less inclined to undertake non-work activities. The household composition effects are 

interesting, and reflect the higher levels of in-home activity participation and/or economies of 

scale in non-work participation when there are multiple adults in the household. Also, on 

average, a higher number of non-adults in the household leads to higher shopping and care-

related needs of non-adults (see McDonald, 2008), as evidenced by the positive sign on the mean 

effect of this variable. However, there is also substantial variation in the magnitude of this effect, 

with a higher number of non-adults in the household leading to a lower level of non-work 

episodes for almost 26% of individuals. The number of workers in the employee’s household is 

found to positively influence non-work episode frequency through the threshold specification 

that governs the “instantaneous” translation of the non-work participation propensity to whether 

or not a non-work episode is participated on any given day. This positive effect is a reflection 

perhaps of spontaneous non-work stops by employed individuals made during the work 

commute. 

In the category of work-related characteristics, self-employed workers have a higher 

propensity to participate in non-work episodes relative to those not self-employed, while those 

who have the option to work from home make more spontaneous non-work stops than those who 
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do not have the option to work from home. The former result is suggestive of the overall 

flexibility enjoyed by those who are self-employed, while the latter result may be an indication 

of the “on-the-spur” decision-making ability of those who work from home. Workers with 

multiple jobs have a higher propensity to make non-work stops, perhaps a reflection of juggling 

tasks and having many non-work responsibilities (see Khan et al., 2012). In addition, those with 

long commutes have less time for non-work activity participation than those with short 

commutes, which may explain the negative sign on the “distance to work” variable (see also 

Sandow, 2011 for a similar result).  

The effects of the mobility and situational characteristics are also reasonable. Employed 

individuals who use some form of public transportation on the survey day have a lower non-

work participation propensity than other individuals, possibly due to schedule inflexibility and 

less time available for non-work participation among those who use public transportation. Also, 

workers who walked or biked at least once in the past week are more likely to undertake non-

work episodes, a result that can be associated with the active life style of individuals who use 

non-motorized modes (Merom et al., 2010 also observe this result). 

Finally, the parameter that links the event type choice model with the count model in our 

final model specification is highly statistically significant, supporting the hypothesis that workers 

jointly decide the frequency of non-work activities (count model) and the organization of these 

activities across time-of-day blocks (event type choice model). That is, the total count of non-

work episodes is endogenous to the time-of-day participation in the episodes, and variables that 

affect the time-of-day of participation also impact the total count of episodes.  

 

3.3.3. Time-of-day block (i.e., event type) choice model component 

Table 2 presents the results of the time-of-day block choice model component. The first row 

panel of Table 2 presents the alternate specific constants, with the base alternative being the 

before-work (BW) block. These constants do not have any substantive interpretation because of 

the presence of continuous explanatory variables (the accessibility measures). However, several 

of these constants have a significant standard deviation, indicating individual-specific 

heterogeneity in the preferences for the time-of-day alternatives for non-work episode 

participation.  
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The accessibility measures by industry type and time block are significant determinants 

of time-of-day block, both at the home end and the work end. In general, workers are less likely 

to participate in non-work episodes during time blocks when their homes/work locations are 

highly accessible to traditionally work-focused industry centers (such as natural resources, 

manufacturing, information, financial services, and educational services), and more likely, in 

general, to participate in non-work episodes during time blocks when their home/work locations 

are highly accessible to service and entertainment related industry opportunities (wholesale trade, 

health, and entertainment). The significant standard deviation on the entertainment accessibility 

indicates variation in this effect, though the mean and standard deviation estimates imply an 

increase in entertainment accessibility in a specific time-of-day block increases non-work 

activity participation in the time block for over 92% of employed individuals. The results also 

indicate the marginally higher propensity of women to participate in non-work episodes during 

time blocks that have a high accessibility to retail trade, a finding consistent with the higher 

shopping tendency of women relative to men (Brunow and Gründer, 2013). 

In the category of work-related characteristics, self-employed workers are more likely to 

participate in non-work activity episodes during the work-based (WB) block and less likely to 

participate during the work-to-home commute (WHC) block. This is intuitive, given the 

independence and flexibility offered by self-employment during the WB period, and the 

consequent reduction in WHC (van Ommeren and van der Straaten, 2008). The finding that 

workers who have a flexible work start time have a lower propensity (than those with rigid work 

start times) to undertake non-work episodes in the BW block is interesting, and needs further 

exploration.  

Within the category of mobility and situational characteristics, workers are more likely 

to pursue non-work episodes during the WHC and AH blocks on Fridays than on other 

weekdays, highlighting the spike in social-recreational activity pursuits on Friday evenings 

(Stone et al., 2012). Workers who use public transportation on the survey day are less likely to 

participate in non-work activities in the BW block, presumably because of difficulty in 

coordinating non-work activities with the public transportation schedules and the work start time.  

As described in Section 2.1, we optimize the likelihood function with respect to the 

elements of the differenced covariance matrix Θ  during model estimation. However, the 

elements of the differenced covariance matrix are not intuitive and cannot be interpreted directly. 
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To make meaningful inferences, it is essential to impute the dependencies between utilities of 

alternatives directly. So, we constructed an equivalent un-differenced covariance matrix which 

results in the differenced covariance matrix that we obtained at the end of the model estimation 

process (this final specification of the differenced covariance matrix was a restrictive version of 

the fully free differenced covariance matrix with the single scale restriction; the restrictive 

version provided as good a fit, from a statistical standpoint, as the fully free covariance matrix). 

Table 3 presents the estimation results corresponding to the equivalent un-differenced covariance 

matrix of the type-of-day block choice model component. It can be seen from the table that only 

two elements are significant from their corresponding values in an independent MNP model at a 

95% confidence level. All the remaining elements are fixed as shown in the table (the diagonal 

elements of the covariance matrix are fixed to 0.5, while the off-diagonal elements are fixed to 

zero). We found that there is high positive covariance in the unobserved factors affecting the 

WHC and AW time-of-day blocks. This suggests that there are common unobserved factors 

which simultaneously increase (decrease) the utility associated with these two time-of-day 

blocks. This is intuitive given that there are no rigid space and time constraints after the end of 

work (such as fixed work start time, minimum work hours, and presence at the work place) 

resulting in considerable available time for activity participation during both WHC and AW 

time-of-day blocks. It is also possible that the evening time after work is perceived to be more 

conducive for participating in several out-of-home activities (including shopping, dining, and 

recreation) with family and friends. The magnitude of the variance element corresponding to the 

AH time-of-day block is 0.5695 and is significantly different from 0.5, indicating larger 

variability in the unobserved factors impacting the utility associated with AH time-of-day block 

compared to other time-of-day blocks.  

 

3.4. Model Fit 

The composite log-likelihood (CL) measure of the model system proposed in this paper that 

retains the linkage between the total count model and the event type model (the joint model) is 

3.441,14  with 50 parameters. The corresponding figure for the model system that unlinks the 

total count model and the event type model (the independent model) is 8.488,14  with 49 

parameters. These CL measures can be statistically compared by computing the adjusted 

composite likelihood ratio test (ADCLRT) statistic, which serves the same role as the likelihood 
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ratio test in traditional maximum likelihood estimation (see Pace et al., 2011 and Bhat, 2011 for 

details of the computation of this ADCLRT statistic). This ADCLRT statistic returns a value of 

66.23, which is larger than the table chi-squared value with one degree of freedom at any 

reasonable level of significance. 

The model fit of our proposed model can also be evaluated using other more intuitive 

measures by obtaining predictive distributions. Due to space constraints, we relegate the 

presentation of these alternative model fit measures to Appendix D in the online supplement to 

this paper. Also, in Appendix E of the online supplement, we provide an application of the joint 

model. 

 

4. CONCLUSIONS 

In the current paper, we have proposed a joint model of total count and event type choice for 

multivariate count data analysis that (a) uses a flexible MNP structure for the event type choice, 

(b) develops and uses new results regarding the distribution of the maximum of multivariate 

normally distributed random variables (with a general covariance matrix) as well as its stochastic 

affine transformations, and (c) employs a latent variable framework for modeling the total count 

variable that, at once, enables the linkage of the event type choice and total count, recognizes the 

presence of unobserved individual-specific preference and taste variations, and accommodates 

excess zeros (or excess number of any count value for that matter) without the need for zero-

inflated or hurdle devices.  

The modeling framework is applied to examine the total number of out-of-home non-

work episodes pursued by a worker and the organization of these episodes across five time-of-

day blocks. The data used is derived from the 2009 National Household Travel Survey (NHTS) 

for the South California region. The results show the importance of recognizing the joint nature 

of total count and event type choice decisions, from both a data fit perspective as well as for 

forecasting and policy analysis. 
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Table 1. Joint Model Estimation Results - Count Data Model Component 

Variables 

Latent Propensity 
Coefficients 

Threshold 
Coefficients 

Estimate t-stat Estimate t-stat 

Constant in φ vector   -0.3733 -1.683 

Threshold specific constants     

  α1   0.0837 1.222 

  α1 to α5   0.0887 0.787 

  α6   0.1447 0.827 

Individual characteristics     

Race and ethnicity (non-Hispanic and non-Asian)     

  Hispanic -0.1787 -1.500   

  Non-Hispanic Asian -0.1796 -1.470   

Gender (male)     

  Female - mean effect 0.1933 2.217   

               - std. deviation 0.8789 8.200   

Past week primary activity (work)     

  Other activity 0.3393 2.304   

Shopped via internet in past month (no)     

  Yes 0.3442 4.426   

Household characteristics     

Home location (urban cluster)     

  Not in urban cluster -0.5824 -3.668   

Household composition     

  Number of adults -0.1670 -2.886   

  Number of non-adults   - mean effect 0.1952 5.453   

                                         - std. deviation 0.3018 5.097   

  Number of workers   0.1059 5.701 

Work-related characteristics     

  Is self-employed (not self-employed) 0.2707 2.277   

  Has the option to work at home (cannot work from home)   0.3577 4.189 

  Has more than one job (has only one job) 0.2557 2.222   

  Distance to work [miles/100] -1.6488 -5.444   

Mobility and situational characteristics     

  Used public transportation on survey day (not used public 
transportation on survey day) 

-0.3927 -2.098   

  At least one walk trip in past week (no walk trip in past week) 0.2562 2.996   

  At least one bike trip in past week (no bike trip in past week) 0.1643 1.437   

Linkage parameter   1.0660 6.020   
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Table 2. Joint Model Estimation Results - Event Type Choice Model Component 

Variables 
Coefficient Standard Deviation

Estimate t-stat Estimate t-stat 
Constants           
  HWC   -0.4717   -5.457 0.6888 4.440 
  WB   -0.8882   -7.609     
  WHC    0.3764    3.261 0.2739 1.639 
  AH    0.5233    7.334     
Accessibility measures at the home location for BW, HWC, 
WHC and AH time-of-day blocks [number of jobs/100,000] 

    
    

  For the entire population         
  Natural resources -0.9339   -1.843     
  Manufacturing -0.0773   -2.015     
  Information -0.1487   -1.596     
  Financial services -0.0847   -1.307     
  Educational  -0.8455   -4.161     
  Wholesale trade  0.4065    2.259     
  Health   0.2268    2.298     
  Entertainment  0.2781    2.967 0.2757 5.170 
  For females only         
    Retail trade  0.0490    1.114     
Accessibility measures at the workplace location for HWC, 
WB and WHC time-of-day blocks [number of jobs/100,000] 

    
    

  For the entire population         
  Manufacturing -0.0363   -2.202     
  Information -0.0702   -1.258     
  Financial services  0.0999    1.460     
  For females only         
    Retail trade  0.0360    1.934     
Work-related characteristics         
  Is self-employed         
  WB  0.3045    2.021     
  WHC -0.0615   -0.853     
  Has flexible work start time         
    BW -0.6257   -7.040     
Mobility and situational characteristics         
  Survey day is Friday         
  WHC and AH  0.1827    2.115     
  Used public transportation on survey day         
    BW -1.8864 -11.974     

 

Table 3. Covariance Matrix for the Event Type Choice Model Component 

Time-of-Day 
Block 

BW HWC WB WHC AH 

BW 0.5 
HWC 0.0 0.5 
WB 0.0 0.0 0.5 
WHC 0.0 0.0 0.0 0.5 
AH 0.0 0.0 0.0 0.5146 (29.153)* 0.5695 (11.535) ** 

*   t-stat computed with respect to zero 
** t-stat computed with respect to 0.5 


