
 Flexible Discrete Choice Structures   1 
 

 

 

CHAPTER 5:  Flexible Model Structures for Discrete Choice Analysis 

 

Chandra R. Bhat * 
The University of Texas at Austin 

Dept of Civil, Architectural & Environmental Engineering 
1 University Station C1761, Austin TX 78712-0278 

Phone: 512-471-4535, Fax: 512-475-8744 
E-mail: bhat@mail.utexas.edu 

University of Texas at Austin 

Naveen Eluru 
The University of Texas at Austin 

Dept of Civil, Architectural & Environmental Engineering 
1 University Station C1761, Austin TX 78712-0278 

Phone: 512-471-4535, Fax: 512-475-8744 
E-mail: NaveenEluru@mail.utexas.edu 

 
and 

Rachel B. Copperman 
The University of Texas at Austin 

Dept of Civil, Architectural & Environmental Engineering 
1 University Station C1761, Austin TX 78712-0278 

Phone: 512-471-4535, Fax: 512-475-8744 
E-mail: RCopperman@mail.utexas.edu 

 
 

* Corresponding author 

 

 

ABSTRACT 

Econometric discrete choice analysis is an essential component of studying individual choice behavior. In 

this chapter, we provide an overview of the motivation for, and structure of, advanced discrete choice 

models derived from random-utility maximization. 
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1  INTRODUCTION 

Econometric discrete choice analysis is an essential component of studying individual choice behavior and is 

used in many diverse fields to model consumer demand for commodities and services. Typical examples of 

the use of econometric discrete choice analysis include studying labor force participation, residential 

location, and house tenure status (owning versus renting) in the economic, geography, and regional science 

fields, respectively; choice of travel mode, destination and car ownership level in the travel demand field; 

purchase incidence and brand choice in the marketing field; and choice of marital status and number of 

children in sociology. 

In this chapter, we provide an overview of the motivation for, and structure of, advanced discrete 

choice models derived from random-utility maximization. The discussion is intended to familiarize readers 

with structural alternatives to the multinomial logit (MNL) and to the models discussed in Chapter 13. 

Before proceeding to a review of advanced discrete choice models, the assumptions of the MNL formulation 

are summarized. This is useful since all other random-utility maximizing discrete choice models focus on 

relaxing one or more of these assumptions.  

There are three basic assumptions which underlie the MNL formulation. 

The first assumption is that the random components of the utilities of the different alternatives are 

independent and identically distributed (IID) with a type I extreme-value (or Gumbel) distribution. The 

assumption of independence implies that there are no common unobserved factors affecting the utilities of 

the various alternatives. This assumption is violated, for example, if a decision-maker assigns a higher utility 

to all transit modes (bus, train, etc.) because of the opportunity to socialize or if the decision maker assigns a 

lower utility to all the transit modes because of the lack of privacy. In such situations, the same underlying 

unobserved factor (opportunity to socialize or lack of privacy) impacts on the utilities of all transit modes. 

As indicated in Chapter 13, presence of such common underlying factors across modal utilities has 
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implications for competitive structure. The assumption of identically distributed (across alternatives) 

random utility terms implies that the extent of variation in unobserved factors affecting modal utility is the 

same across all modes. In general, there is no theoretical reason to believe that this will be the case. For 

example, if comfort is an unobserved variable the values of which vary considerably for the train mode 

(based on, say, the degree of crowding on different train routes) but little for the automobile mode, then the 

random components for the automobile and train modes will have different variances. Unequal error 

variances have significant implications for competitive structure. 

The second assumption of the MNL model is that it maintains homogeneity in responsiveness to 

attributes of alternatives across individuals (i.e., an assumption of response homogeneity). More specifically, 

the MNL model does not allow sensitivity (or taste) variations to an attribute (e.g., travel cost or travel time 

in a mode choice model) due to unobserved individual characteristics. However, unobserved individual 

characteristics can and generally will affect responsiveness. For example, some individuals by their intrinsic 

nature may be extremely time-conscious while other individuals may be “laid back” and less time-

conscious. Ignoring the effect of unobserved individual attributes can lead to biased and inconsistent 

parameter and choice probability estimates (see Chamberlain, 1980).  

The third assumption of the MNL model is that the error variance-covariance structure of the 

alternatives is identical across individuals (i.e., an assumption of error variance-covariance homogeneity). 

The assumption of identical variance across individuals can be violated if, for example, the transit system 

offers different levels of comfort (an unobserved variable) on different routes (i.e., some routes may be 

served by transit vehicles with more comfortable seating and temperature control than others). Then, the 

transit error variance across individuals along the two routes may differ. The assumption of identical error 

covariance of alternatives across individuals may not be appropriate if the extent of substitutability among 

alternatives differs across individuals. To summarize, error variance-covariance homogeneity implies the 
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same competitive structure among alternatives for all individuals, an assumption which is generally difficult 

to justify. 

The three assumptions discussed above together lead to the simple and elegant closed-form 

mathematical structure of the MNL. However, these assumptions also leave the MNL model saddled with 

the “independence of irrelevant alternatives” (IIA) property at the individual level [Luce and Suppes (1965); 

for a detailed discussion of this property see also Ben-Akiva and Lerman (1985)]. Thus, relaxing the three 

assumptions may be important in many choice contexts. 

In this chapter the focus is on three classes of discrete choice models that relax one or more of the 

assumptions discussed above. The first class of models (labeled as “heteroscedastic models”) is relatively 

restrictive; they relax the identically distributed (across alternatives) error term assumption, but do not relax 

the independence assumption (part of the first assumption above) or the assumption of response 

homogeneity (second assumption above).  The second class of models (labeled as “mixed multinomial logit 

(MMNL) models”) and the third class of models (labeled as “mixed generalized extreme value (MGEV) 

models”) are very general; models in this class are flexible enough to relax the independence and identically 

distributed (across alternatives) error structure of the MNL as well as to relax the assumption of response 

homogeneity.  The relaxation of the third assumption implicit in the multinomial logit (and identified on the 

previous page) is not considered in detail in this chapter, since it can be relaxed within the context of any 

given discrete choice model by parameterizing appropriate error structure variances and covariances as a 

function of individual attributes [See Bhat (2007) for a detailed discussion of these procedures.]. 

The reader will note that the generalized extreme value (GEV) models described in Chapter 13 relax 

the IID assumption partially by allowing correlation in unobserved components of different alternatives. The 

advantage of the GEV models is that they maintain closed-form expressions for the choice probabilities. The 

limitation of these models is that they are consistent with utility maximization only under rather strict (and 
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often empirically violated) restrictions on the dissimilarity and allocation parameters (specifically, the 

dissimilarity and allocation parameters should be bounded between 0 and 1 for global consistency with utility 

maximization, and the allocation parameters for any alternative should add to 1). The origin of these 

restrictions can be traced back to the requirement that the variance of the joint alternatives be identical in the 

GEV models. Also, GEV models do not relax assumptions related to taste homogeneity in response to an 

attribute (such as travel time or cost in a mode choice model) due to unobserved decision-maker 

characteristics, and cannot be applied to panel data with temporal correlation in unobserved factors within 

the choices of the same decision-making agent.  However, GEV models do offer computational tractability, 

provide a theoretically sound measure for benefit valuation, and can form the basis for formulating mixed 

models that accommodate random taste variations and temporal correlations in panel data (see Section 4). 

The rest of this chapter is structured as follows.  The class of heteroscedastic models, mixed 

multinomial logit models, and mixed generalized extreme value models are discussed in Sections 2, 3, and 4, 

respectively.  Section 5 presents recent advances in the area of simulation techniques to estimate the mixed 

multinomial and mixed generalized extreme value class of models of Section 3 and 4 (the estimation of the 

heteroscedastic models in section 2 does not require the use of simulation and is discussed within Section 2). 

 Section 6 concludes the paper with a summary of the growing number of applications that use flexible 

discrete choice structures. 

 

2  THE HETEROSCEDASTIC CLASS OF MODELS 

The concept that heteroscedasticity in alternative error terms (i.e., independent, but not identically 

distributed error terms) relaxes the IIA assumption has been recognized for quite some time now. Three 

models have been proposed that allow non-identical random components. The first is the negative 

exponential model of Daganzo (1979), the second is the oddball alternative model of Recker (1995) and the 
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third is the heteroscedastic extreme-value (HEV) model of Bhat (1995).  Of these, Daganzo’s model has not 

seen much application, since it requires that the perceived utility of any alternative not exceed an upper 

bound (this arises because the negative exponential distribution does not have a full range). Daganzo’s 

model also does not nest the MNL model.  Recker (1995) proposed the oddball alternative model which 

permits the random utility variance of one “oddball” alternative to be larger than the random utility 

variances of other alternatives. This situation might occur because of attributes which define the utility of 

the oddball alternative, but are undefined for other alternatives.  Recker’s model has a closed-form structure 

for the choice probabilities. However, it is restrictive in requiring that all alternatives except one have 

identical variance. 

Bhat (1995) formulated the HEV model, which assumes that the alternative error terms are 

distributed with a type I extreme value distribution. The variances of the alternative error terms are allowed 

to be different across all alternatives (with the normalization that the error terms of one of the alternatives 

have a scale parameter of one for identification). Consequently, the HEV model can be viewed as a 

generalization of Recker’s oddball alternative model. The HEV model does not have a closed-form solution 

for the choice probabilities, but involves only a one-dimensional integration regardless of the number of 

alternatives in the choice set. It also nests the MNL model and is flexible enough to allow differential cross-

elasticities among all pairs of alternatives. In the remainder of this discussion of heteroscedastic models, the 

focus is on the HEV model. 

 

2.1.    HEV Model Structure 

The random utility of alternative Ui of alternative i for an individual in random utility models takes the form 

(we suppress the index for individuals in the following presentation): 

iii VU ε+= ,                          (1) 
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where iV  is the systematic component of the utility of alternative i (which is a function of observed 

attributes of alternative i and observed characteristics of the individual), and iε  is the random component of 

the utility function. Let C be the set of alternatives available to the individual. Let the random components in 

the utilities of the different alternatives have a type I extreme value distribution with a location parameter 

equal to zero and a scale parameter equal to iθ  for the ith alternative. The random components are assumed 

to be independent, but non-identically distributed. Thus, the probability density function and the cumulative 

distribution function of the random error term for the ith alternative are: 
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The random utility formulation of Equation (1), combined with the assumed probability distribution 

for the random components in Equation (2) and the assumed independence among the random components 
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where  (.)λ  and (.)Λ  are the probability density function and cumulative distribution function of the 

standard type I extreme value distribution, respectively, and are given by (see Johnson and Kotz, 1970) 
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If the scale parameters of the random components of all alternatives are equal, then the probability 

expression in Equation (5) collapses to that of the MNL (note that the variance of the random error term iε  

of alternative i is equal to 6/22
iθπ , where iθ  is the scale parameter). 

The HEV model discussed above avoids the pitfalls of the IIA property of the MNL model by 

allowing different scale parameters across alternatives. Intuitively, we can explain this by realizing that the 

error term represents unobserved characteristics of an alternative; that is, it represents uncertainty associated 

with the expected utility (or the systematic part of utility) of an alternative. The scale parameter of the error 

term, therefore, represents the level of uncertainty. It sets the relative weights of the systematic and 

uncertain components in estimating the choice probability. When the systematic utility of some alternative l 

changes, this affects the systematic utility differential between another alternative i and the alternative l. 

However, this change in the systematic utility differential is tempered by the unobserved random component 

of alternative i. The larger the scale parameter (or equivalently, the variance) of the random error component 

for alternative i, the more tempered is the effect of the change in the systematic utility differential (see the 

numerator of the cumulative distribution function term in Equation 5) and smaller is the elasticity effect on 

the probability of choosing alternative i. In particular, two alternatives will have the same elasticity effect 

due to a change in the systematic utility of another alternative only if they have the same scale parameter on 

the random components. This property is a logical and intuitive extension of the case of the MNL, in which 

all scale parameters are constrained to be equal and, therefore, all cross-elasticities are equal. 

Assuming a linear-in-parameters functional form for the systematic component of utility for all 

alternatives, the relative magnitudes of the cross-elasticities of the choice probabilities of any two 

alternatives i and j with respect to a change in the kth level of service variable of another alternative l (say, 

klx ) are characterized by the scale parameter of the random components of alternatives i and j: 
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2.2.    HEV Model Estimation 

The HEV model can be estimated using the maximum likelihood technique. Assume a linear-in-parameters 

specification for the systematic utility of each alternative given by qiqi XV β′=  for the qth individual and ith 

alternative (the index for individuals is introduced in the following presentation since the purpose of the 

estimation is to obtain the model parameters by maximizing the likelihood function over all individuals in 

the sample). The parameters to be estimated are the parameter vector β  and the scale parameters of the 

random component of each of the alternatives (one of the scale parameters is normalized to one for 

identifiability). The log likelihood function to be maximized can be written as: 
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where Cq  is the choice set of alternatives available to the qth individual and yqi  is defined as follows:  
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The log (likelihood) function in Equation (7) has no closed-form expression, but can be estimated in 

a straightforward manner using Gaussian quadrature. To do so, define a variable. Then, uedww −−=)(λ  and 
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Equation (7) can be written as 
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The expression within parenthesis in Equation (7) can be estimated using the Laguerre Gaussian quadrature 

formula, which replaces the integral by a summation of terms over a  certain number (say K) of support 

points, each term comprising the evaluation of the function Gqi(.) at the support point k multiplied by a 

probability mass or weight associated with the support point [the support points are the roots of the Laguerre 

polynomial of order K, and the weights are computed based on a set of theorems provided by Press et al. 

(1992)]. 

 

3  THE MIXED MULTINOMIAL LOGIT (MMNL) CLASS OF MODELS 

The HEV model in the previous section and the GEV models in Chapter 13 have the advantage that they are 

easy to estimate; the likelihood function for these models either includes a one-dimensional integral (in the 

HEV model) or is in closed-form (in the GEV models). However, these models are restrictive since they 

only partially relax the IID error assumption across alternatives. In this section, we discuss the MMNL class 

of models that are flexible enough to completely relax the independence and identically distributed error 

structure of the MNL as well as to relax the assumption of response homogeneity. 

The mixed MMNL class of models involves the integration of the MNL formula over the distribution 

of unobserved random parameters. It takes the structure 
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qiP  is the probability that individual q chooses alternative i, qix  is a vector of observed variables specific to 

individual q and alternative i, β  represents parameters which are random realizations from a density 

function f(.), and θ  is a vector of underlying moment parameters characterizing f(.). 

The first applications of the mixed logit structure of Equation (11) appear to have been by Boyd and 

Mellman (1980) and Cardell and Dunbar (1980). However, these were not individual-level models and, 

consequently, the integration inherent in the mixed logit formulation had to be evaluated only once for the 

entire market. Train (1986) and Ben-Akiva et al. (1993) applied the mixed logit to customer-level data, but 

considered only one or two random coefficients in their specifications. Thus, they were able to use 

quadrature techniques for estimation. The first applications to realize the full potential of mixed logit by 

allowing several random coefficients simultaneously include Revelt and Train (1998) and Bhat (1998a),  

both of which were originally completed in early 1996 and exploited the advances in simulation methods. 

The MMNL model structure of Equation (11) can be motivated from two very different (but formally 

equivalent) perspectives. Specifically, a MMNL structure may be generated from an intrinsic motivation to 

allow flexible substitution patterns across alternatives (error-components structure) or from a need to 

accommodate unobserved heterogeneity across individuals in their sensitivity to observed exogenous 

variables (random-coefficients structure). 

 

3.1.   Error-components Structure 

The error-components structure partitions the overall random term associated with the utility of each 

alternative  into two components: one that allows the unobserved error terms to be non-identical and non-

independent across alternatives, and another that is specified to be independent and identically (type I 

extreme value) distributed across alternatives. Specifically, consider the following utility function for 

individual q and alternative i: 
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qiqiqi

qiqiqi
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                                                          (12) 

where qiyγ ′  and qiζ  are the systematic and random components of utility, and iζ  is further partitioned into 

two components, qizµ′  and qiε . qiz  is a vector of observed data associated with alternative i, some of the 

elements of which might also appear in the vector qiy . µ  is a random vector with zero mean. The 

component qizµ′  induces heteroscedasticity and correlation across unobserved utility components of the 

alternatives. Defining ),( ′′′= µγβ  and ),( ′′′= qiqiqi zyx , we obtain the MMNL model structure for the choice 

probability of alternative i for individual q. 

The emphasis in the error-components structure is on allowing a flexible substitution pattern among 

alternatives in a parsimonious fashion. This is achieved by the “clever” specification of the variable vector 

qiz  combined with (usually) the specification of independent normally distributed random elements in the 

vector µ . For example, iz  may be specified to be a row vector of dimension M, with each row representing 

a group m (m = 1, 2, …, M) of alternatives sharing common unobserved components. The row(s) 

corresponding to the group(s) of which i is a member take(s) a value of one and other rows take a value of 

zero. The vector µ  (of dimension M) may be specified to have independent elements, each element having a 

variance component 2
mσ . The result of this specification is a covariance of 2

mσ  among alternatives in group 

m and heteroscedasticity across the groups of alternatives. This structure is less restrictive than the nested 

logit structure in that an alternative can belong to more than one group. Also, by structure, the variance of 

the alternatives is different. More general structures for izµ′  in equation (12) are presented by Ben-Akiva 

and Bolduc (1996) and Brownstone and Train (1999).     Examples of the error-components motivation in 

the literature include Bhat (1998b), Jong et al. (2002a,b), Whelan et al. (2002), and Batley et al. (2001a,b). 

The reader is also referred to the work of Walker and her colleagues (Ben-Akiva et al., 2001; Walker, 2002) 
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and Munizaga and Alvarez-Daziano (2002) for important identification issues in the context of the error 

components MMNL model. 

 

3.2.   Random-coefficients Structure 

The random-coefficients structure allows heterogeneity in the sensitivity of individuals to exogenous 

attributes. The utility that an individual q associates with alternative i is written as 

qiqiqqi xU εβ +′=   (13) 

where qix  is a vector of exogenous attributes, qβ  is a vector of coefficients that varies across individuals 

with density )(βf , and qiε  is assumed to be an independently and identically distributed (across 

alternatives) type I extreme value error term. With this specification, the unconditional choice probability of 

alternative i for individual q is given by the mixed logit formula of equation (11). While several density 

functions may be used for f(.), the most commonly used is the normal distribution. A log-normal distribution 

may also be used if, from a theoretical perspective, an element of β  has to take the same sign for every 

individual (such as a negative coefficient for the travel-time parameter in a travel-mode-choice model).  

Other distributions that have been used in the literature include triangular and uniform distributions (see 

Revelt and Train, 2000; Train, 2001; Hensher and Greene, 2003; Amador et al. 2005), the Rayleigh 

distribution (Siikamaki and Layton, 2001), the censored normal (Cirillo and Axhausen, 2006; Train and 

Sonnier, 2004), and Johnson’s SB (Cirillo and Axhausen, 2006; Train and Sonnier, 2004). The triangular and 

uniform distributions have the nice property that they are bounded on both sides, thus precluding the 

possibility of very high positive or negative coefficients for some decision-makers as would be the case if 

normal or log-normal distributions are used. By constraining the mean and spread to be the same, the 

triangular and uniform distributions can also be customized to cases where all decision-makers should have 

the same sign for one or more coefficients. The Rayleigh distribution, like the lognormal distribution, 



14     Handbook of Transport I: Transport Modeling 
 

assures the same sign of coefficients for all decision-makers. The censored normal distribution is censored 

from below at a value, with a probability mass at that value and a density identical to the normal density 

beyond that value. This distribution is useful to simultaneously capture the influence of attributes that do not 

affect some individuals (i.e., the individuals are indifferent) and affect other individuals. Johnson’s SB 

distribution is similar to the log-normal distribution, but is bounded from above and has thinner tails. 

Johnson’s SB can replicate a variety of distributions, making it a very flexible distribution. Its density can be 

symmetrical or asymmetrical, have a tail to the right or left, or become a flat plateau or be bi-modal1. 

The reader will note that the error-components specification in Equation (12) and the random-

coefficients specification in Equation (13) are structurally equivalent. Specifically, if qβ  is distributed with 

a mean of γ  and deviation µ , then Equation (13) is identical to Equation (12) with qiqiqi zyx == . However, 

this apparent restriction for equality of Equations (12) and (13) is purely notational. Elements of qix  that do 

not appear in qiz  can be viewed as variables the coefficients of which are deterministic in the population, 

while elements of qix  that do not enter in qiy  may be viewed as variables the coefficients of which are 

randomly distributed in the population with mean zero. 

 

3.3.    Probability Expressions and General Comments 

As indicated above, error-components and random-coefficients formulations are equivalent.  Also, the 

random-coefficients formulation is more compact.  Thus, we will adopt the random-coefficients notation to 

write the MMNL probability expression.  Specifically, consider equation (13) and separate out the effect of 

                                                 
1 The reader is referred to Hess and Axhausen (2005), Hess, Bielaire, and Polak (2005), and Train and Sonnier (2004) for a review 
of alternative distributional forms and their ability to approximate several different types of true distributional.  Also, Sorenson and 
Nielson (2003) propose a method for determining the best distributional form prior to estimation. 
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variables with fixed coefficients (including the alternative specific constant) from the effect of variables 

with random coefficients, and write the utility function as: 

,
1

qiqikqk
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k
qiqi xU εβα ++= ∑

=

      (14) 

where qiα  is the effect of variables with fixed coefficients. Let ),(~ kkqk N σµβ , so that qkkkqk sσµβ +=  (q 

= 1, 2, …, Q;  k = 1, 2, …, K). In this notation, we are implicitly assuming that the qkβ  terms are 

independent of one another. Even if they are not, a simple Choleski decomposition can be undertaken so that 

the resulting integration involves independent normal variates (see Revelt and Train, 1998). qks  (q = 1, 2, 

…, Q;  k = 1, 2, …, K) is a standard normal variate. Further, let  qikk
k

qiqi xV µα ∑+= .  The probability 

that the th individual chooses alternative q i  for the random-coefficients logit model may be written as 
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where (.)Φ  represents the standard normal cumulative distribution function and 

The MMNL class of models can approximate any discrete choice model derived from random utility 

maximization (including the multinomial probit) as closely as one pleases (see McFadden and Train, 2000). 

The MMNL model structure is also conceptually appealing and easy to understand since it is the familiar 

MNL model mixed with the multivariate distribution (generally multivariate normal) of the random 

parameters (see Hensher and Greene, 2003). In the context of relaxing the IID error structure of the MNL, 

the MMNL model represents a computationally efficient structure when the number of error components (or 

factors) needed to generate the desired error covariance structure across alternatives is much smaller than 

the number of alternatives (see Bhat, 2003). The MMNL model structure also serves as a comprehensive 

framework for relaxing both the IID error structure as well as the response homogeneity assumption.  
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A few notes are in order here about the MMNL model vis-à-vis the MNP model. First, both these 

models are very flexible in the sense of being able to capture random taste variations and flexible 

substitution patterns. Second, both these models are able to capture temporal correlation over time, as would 

normally be the case with panel data. Third, the MMNL model is able to accommodate non-normal 

distributions for random coefficients, while the MNP model can handle only normal distributions. Fourth, 

researchers and practitioners familiar with the traditional MNL model might find it conceptually easier to 

understand the structure of the MMNL model compared to the MNP. Fifth, both the MMNL and MNP 

model, in general, require the use of simulators to estimate the multidimensional integrals in the likelihood 

function. Sixth, the MMNL model can be viewed as arising from the use of a logit-smoothed Accept-Reject 

(AR) simulator for an MNP model (see Bhat 2000, and Train 2003; page 124). Seventh, the simulation 

techniques for the MMNL model are conceptually simple, and straightforward to code. They involve 

simultaneous draws from the appropriate density function with unrestricted ranges for all alternatives. 

Overall, the MMNL model is very appealing and broad in scope, and there appears to be little reason to 

prefer the MNP model over the MMNL model. However, there is at least one exception to this general rule, 

corresponding to the case of normally distributed random taste coefficients. Specifically, if the number of 

normally distributed random coefficients is substantially more than the number of alternatives, the MNP 

model offers advantages because the dimensionality is of the order of the number of alternatives (in the 

MMNL, the dimensionality is of the order of the number of random coefficients)2. 

 

                                                 
2 The reader is also referred to Munizaga and Alvarez-Daziano (2002) for a detailed discussion comparing the MMNL model with 
the nested logit and MNP models. 
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4  THE MIXED GEV CLASS OF MODELS 

The MMNL class of models is very general in structure and can accommodate both relaxations of the IID 

assumption as well as unobserved response homogeneity within a simple unifying framework. 

Consequently, the need to consider a mixed GEV class may appear unnecessary. However, there are 

instances when substantial computational efficiency gains may be achieved using a MGEV structure that 

superimposes a mixing distribution over an underlying GEV model rather than over the MNL model. 

Consider, for instance, Bhat and Guo’s (2004) model for household residential location choice. It is possible, 

if not very likely, that the utility of spatial units that are close to each other will be correlated due to 

common unobserved spatial elements. A common specification in the spatial analysis literature for capturing 

such spatial correlation is to allow contiguous alternatives to be correlated. In the MMNL structure, such a 

correlation structure may be imposed through the specification of a multivariate MNP-like error structure, 

which will then require multidimensional integration of the order of the number of spatial units (see Bolduc 

et al., 1996).  On the other hand, a carefully specified GEV model can accommodate the spatial correlation 

structure within a closed-form formulation3. However, the GEV model structure of Bhat and Guo cannot 

accommodate unobserved random heterogeneity across individuals. One could superimpose a mixing 

distribution over the GEV model structure to accommodate such random coefficients, leading to a 

parsimonious and powerful MGEV structure. Thus, in a case with 1000 spatial units (or zones), the MMNL 

model would entail a multidimensional integration of the order of 1000 plus the number of random 

coefficients, while the MGEV model involves multidimensional integration only of the order of the number 

of random coefficients (a reduction of dimensionality of the order of 1000!). 

                                                 
3 The GEV structure used by Bhat and Guo is a restricted version of the GNL model proposed by Wen and Koppelman (2001). 
Specifically, the GEV structure takes the form of a paired GNL (PGNL) model with equal dissimilarity parameters across all 
paired nests (each paired nest includes a spatial unit and one of its adjacent spatial units). 
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In addition to computational efficiency gains, there is another more basic reason to prefer the MGEV class 

of models when possible over the MMNL class of models. This is related to the fact that closed-form 

analytic structures should be used whenever feasible, because they are always more accurate than the 

simulation evaluation of analytically intractable structures (see Train, 2003; pg. 191). In this regard, 

superimposing a mixing structure to accommodate random coefficients over a closed form analytic structure 

that accommodates a particular desired inter-alternative error correlation structure represents a powerful 

approach to capture random taste variations and complex substitution patterns. 

Clearly, there are valuable gains to be achieved by combining the state-of-the-art developments in 

closed-form GEV models with the state-of-the-art developments in open-form mixed distribution models. 

With the recent advances in simulation techniques, there appears to be a feeling among some discrete choice 

modelers that there is no need for any further consideration of closed-form structures for capturing 

correlation patterns. But, as Bhat and Guo (2004) have demonstrated in their paper, the developments in 

GEV-based structures and open-form mixed models are not as mutually exclusive as may be the impression 

in the field; rather these developments can, and are, synergistic, enabling the estimation of model structures 

that cannot be estimated using GEV structures alone or cannot be efficiently estimated (from a 

computational standpoint) using a mixed multinomial logit structure. 

 

5  SIMULATION ESTIMATION TECHNIQUES  

The mixed models discussed in Sections 3 and 4 require the evaluation of analytically intractable 

multidimensional integrals in the classical estimation approach. The approximation of these integrals is 

undertaken using simulation techniques that entail the evaluation of the integrand at a number of draws 

taken from the domain of integration (usually the multivariate normal distribution) and computing the 

average of the resulting integrand values across the different draws. The draws can be taken by generating 
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standard univariate draws for each dimension, and developing the necessary multivariate draws through a 

simple Cholesky decomposition of the target multivariate covariance matrix applied to the standard 

univariate draws. Thus, the focus of simulation techniques is on generating N sets of S univariate draws for 

each individual, where N is the number of draws and S is the dimensionality of integration. To maintain 

independence over the simulated likelihood functions of decision-makers, different draws are used for each 

individual. 

Three broad simulation methods are available for generating the draws needed for mixed model 

estimations: (a) Monte Carlo methods, (b) Quasi-Monte Carlo methods, and (c) Randomized Quasi-Monte 

Carlo methods. Each of these is discussed descriptively below. Mathematical details are available in Bhat 

(2001; 2003), Sivakumar et al. (2005), and Train (2003; Chapter 9). 

 

5.1.    The Monte-Carlo Method 

The Monte-Carlo simulation method (or “the method of statistical trials”) to evaluating multidimensional 

integrals entails computing the integrand at a sequence of “random” points and computing the average of the 

integrand values. The basic principle is to replace a continuous average by a discrete average over randomly 

chosen points. Of course, in actual implementation, truly random sequences are not available; instead, 

deterministic pseudo-random sequences which appear random when subjected to simple statistical tests are 

used (see Niederreiter, 1995 for a discussion of pseudo-random sequence generation). This pseudo-Monte 

Carlo (or PMC) method has a slow asymptotic convergence rate with the expected integration error of the 

order of N -0.5 in probability (N being the number of pseudo-random points drawn from the s-dimensional 

integration space). Thus, to obtain an added decimal digit of accuracy, the number of draws needs to be 

increased hundred fold. However, the PMC method's convergence rate is remarkable in that it is applicable 

for a wide class of integrands (the only requirement is that the integrand have a finite variance; see Spanier 
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and Maize, 1991). Further, the integration error can be easily estimated using the sample values and 

invoking the central limit theorem, or by replicating the evaluation of the integral several times using 

independent sets of PMC draws and computing the variance in the different estimates of the integrand. 

 

5.2.    The Quasi-Monte Carlo Method 

The quasi-Monte Carlo method is similar to the Monte Carlo method in that it evaluates a multidimensional 

integral by replacing it with an average of values of the integrand computed at discrete points. However, 

rather than using pseudo-random sequences for the discrete points, the quasi-Monte Carlo approach uses 

“cleverly” crafted non-random and more uniformly distributed sequences (labeled as quasi-Monte Carlo or 

QMC sequences) within the domain of integration. The underlying idea of the method is that it is really 

inconsequential whether the discrete points are truly random; of primary importance is the even distribution 

(or maximal spread) of the points in the integration space. The convergence rate for quasi-random sequences 

is, in general, faster than for pseudo-random sequences. In particular, the theoretical upper bound of the 

integration error for reasonably well-behaved smooth functions is of the order of N -1 in the QMC method, 

where N is the number of quasi-random integration points.  

 The QMC sequences have been well known for a long time in the number theory literature. 

However, the focus in number theory is on the use of QMC sequences for accurate evaluation of a single 

multidimensional integral. In contrast, the focus of the maximum simulated likelihood estimation of 

econometric models is on accurately estimating underlying model parameters through the evaluation of 

multiple multidimensional integrals, each of which involves a parameterization of the model parameters and 

the data. The intent in the latter case is to estimate the model parameters accurately, and not expressly on 

evaluating each integral itself accurately. 
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Bhat (2001) proposed and introduced, in 1999, a simulation approach using QMC sequences for 

estimating discrete choice models with analytically intractable likelihood functions. There are several quasi-

random sequences that may be employed in the QMC simulation method. Among these sequences are those 

that belong to the family of r-adic expansion of integers: the Halton, Faure, and Sobol sequences (see 

Bratley et al., 1992 for a good review). Bhat used the Halton sequence in the QMC simulation because of its 

conceptual simplicity. In his approach, Bhat generates a multidimensional QMC sequence of length N*Q, 

then uses the first N points to compute the contribution of the first observation to the criterion function, the 

second N points to compute the contribution of the second observation, and so on. This technique is based 

on averaging out of simulation errors across observations. But rather than being random sets of points across 

observations, each set of N points fills in the gaps left by the sets of N points used for previous observations. 

Consequently, the averaging effect across observations is stronger when using QMC sequences than when 

using the PMC sequence. In addition to the stronger averaging out effect across observations, the QMC 

sequence also provides more uniform coverage over the domain of the integration space for each 

observation compared to the PMC sequence. This enables more accurate computations of the probabilities 

for each observation with fewer points (i.e., smaller N) when QMC sequences are used. 

Bhat compared the Halton and PMC sequences in their ability to accurately and reliably recover 

model parameters in a mixed logit model. His experimental and computational results indicated that the 

Halton sequence outperformed the PMC sequence by a substantial margin. Specifically, he found that 125 

Halton draws produced more accurate parameters than 2000 PMC draws in estimation, and noted that this 

substantial reduction in computational burden can dramatically influence the use of mixed models in 

practice. Subsequent studies by Train (2000), Hensher (2001a), Munizaga and Alvarez-Daziano (2001), and 

Jong et al. (2002a,b) have confirmed this dramatic improvement using the Halton sequence. For example, 

Hensher (2001a) found that the data fit and parameter values of the mixed logit model in his study remained 
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about the same beyond 50 Halton draws and concludes that the QMC approach is “a phenomenal 

development in the estimation of complex choice models”.  

Sandor and Train (2004) have found that there is some room for further improvement in accuracy 

and efficiency using more complex digital QMC sequences proposed by Niederreiter and his colleagues 

relative to the Halton sequence. Bhat (2003) suggests a scrambled Halton approach in high dimensions to 

reduce the correlation along high dimensions of a standard Halton sequence (see also Braaten and Weller, 

1979), and shows that the scrambling improves the performance of the standard Halton sequence.  

A limitation of the QMC method for simulation estimation, however, is that there is no 

straightforward practical way of statistically estimating the error in integration, because of the deterministic 

nature of the QMC sequences. Theoretical results are available to compute the upper bound of the error 

using a well-known theorem in number theory referred to as the Koksma-Hlawka inequality (Zaremba, 

1968). But, computing this theoretical error bound is not practical and, in fact, is much more complicated 

than evaluating the integral itself (Owen, 1997; Tuffin, 1996). Besides, the upper bound of the integration 

error from the theoretical result can be very conservative (Owen, 1998). 

 

5.3.    The Hybrid Method   

The discussion in the previous two sections indicates that QMC sequences provide better accuracy than 

PMC sequences, while PMC sequences provide the ability to estimate the integration error easily. To take 

advantage of the strengths of each of these two methods, it is desirable to develop hybrid or randomized 

QMC sequences (see Owen, 1995 for a history of such hybrid sequences). The essential idea is to introduce 

some randomness into a QMC sequence, while preserving the equidistribution property of the underlying 

QMC sequence. Then, by using several independent randomized QMC sequences, one can use standard 

statistical methods to estimate integration error.  
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Bhat (2003) describes a process to randomize QMC sequences for use in simulation estimation. This 

process, based on Tuffin’s (1996) randomization procedures, is described intuitively and mathematically by 

Bhat in the context of a single multidimensional integral.  Sivakumar et al. (2005) experimentally compared 

the performance of revised hybrid sequences based on the Halton and Faure sequences in the context of the 

simulated likelihood estimation of an MMNL model of choice.  They also assessed the effects of scrambling 

on the accuracy and efficiency of these sequences. In addition, they compared the efficiency of the QMC 

sequences generated with and without scrambling across observations. The results of their analysis indicate 

that the Faure sequence consistently outperforms the Halton sequence. The Random Linear and Random 

Digit scrambled Faure sequences, in particular, are among the most effective QMC sequences for simulated 

maximum likelihood estimation of the MMNL model. 

 

5.4.    Summary on Simulation Estimation of Mixed Models 

The discussion above shows the substantial progress in simulation methods, and the arrival of quasi-Monte 

Carlo (QMC) methods as an important breakthrough in the simulation estimation of advanced discrete 

choice models. The discovery and application of QMC sequences for discrete choice model estimation is a 

watershed event and has fundamentally changed the way we think about, specify, and estimate discrete 

choice models.  In the very few years since it was proposed by Bhat at the turn of the millennium, it has 

already become the “bread and butter” of simulation techniques in the field.   

 

6  CONCLUSIONS AND APPLICATION OF ADVANCED MODELS 

This chapter has discussed the structure, estimation techniques, and transport applications of three different 

classes of discrete choice models — heteroscedastic models, mixed multinomial logit (MMNL) models, and 

mixed generalized extreme value models. The formulations presented are quite flexible although estimation 
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using the maximum likelihood technique requires the evaluation of one-dimensional integrals (in the HEV 

model) or multi-dimensional integrals (in the MMNL and MGEV models). However, these integrals can be 

approximated using Gaussian quadrature techniques or simulation techniques. The advent of fast computers 

and the development of increasingly more efficient sequences for simulation have now made the estimation 

of such analytically intractable model formulations very practical. In this regard, QMC simulation 

techniques have proved to be very effective.  This should be evident from Table 1, which lists recent (within 

the past 5 years) transportation applications of flexible discrete choice models.  There is a clear shift from 

pseudo-random draws to QMC draws (primarily Halton draws) in the more recent applications of flexible 

choice structures.  Additionally, Table 1 illustrates the wide applicability of flexible choice structures, 

including airport operations and planning, travel behavioral analysis, travel mode choice, and other 

transport-related fields. 

A note of caution before closing. It is important for the analyst to continue to think carefully about 

model specification issues rather than to use the (relatively) advanced model formulations presented in this 

chapter as a panacea for all systematic specification ills. The flexible models presented here should be 

viewed as formulations that recognize the inevitable presence of unobserved heterogeneity in individual 

responsiveness across individuals and/or of interactions among unobserved components affecting the utility 

of alternatives (because it is impossible to identify, or collect data on, all factors affecting choice decisions). 

The flexible models are not, however, a substitute for careful identification of systematic variations in the 

population. The analyst must always explore alternative and improved ways to incorporate systematic 

effects in a model. The flexible structures can then be superimposed on models that have attributed as much 

heterogeneity to systematic variations as possible. Another important issue in using flexible models is that 

the specification adopted should be easy to interpret; the analyst would do well to retain as simple a 

specification as possible while attempting to capture the salient interaction patterns in the empirical context 
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under study. The MMNL model is particularly appealing in this regard since it “forces” the analyst to think 

structurally during model specification. 

The confluence of continued careful structural specification with the ability to accommodate very 

flexible substitution patterns or unobserved heterogeneity should facilitate the application of behaviorally 

rich structures in transportation-related discrete choice modeling in the years to come. 
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Table 1. Sample of Recent (within the past 5 years) Travel Behavior Applications of Advanced Discrete Choice Models 

Model 
Type Authors Model Structure Application Focus Data Source 

Type of 
Simulation 

Draws 

HEV 

Hensher (2006) Heteroscedastic error terms Route choice: Accommodating scale 
differences of varying SP data designs 
through unconstrained variances on the 
random components of each alternative 

2002 SP travel survey 
conducted in Sydney, 
Australia 

-- 

Bekhor et al. (2002) Error components structure Travel route choice: Accommodating 
unobserved correlation on paths with 
overlapping links. 

1997 transportation survey 
of MIT faculty and staff. 

Pseudo-random 
draws 

Jong et al. (2002a) Error components structure Travel mode and time-of-day choice: 
Allowing unobserved correlation 
across time and mode dimensions. 

2001 SP data collected from 
travelers during extended 
peak periods (6-11 a.m. and 
3-7 p.m.) on weekdays. 

Pseudo-random 
draws 

Vichiensan, 
Miyamoto, and 
Tokunaga (2005) 

Error components structure Residential location choice: 
Accommodates spatial dependency 
between residential zones by 
specifying spatially autocorrelated 
deterministic and random error 
components. 

2002 RP urban travel survey 
data collected in Sendai 
City, Japan. 

Pseudo-random 
draws 

Amador, Gonzalez,  
and Ortuzar (2005) 

Random coefficients 
structure 

Mode choice: Accommodating 
unobserved individual-specific 
sensitivities to travel time and other 
factors. 

2000 survey of economic 
and business students’ mode 
choice to school collected in 
La Laguna, Spain. 

Halton draws 

Bhat and Sardesai 
(2006) 

Random coefficients 
structure 

Commute mode choice: 
Accommodating scale differences 
between SP and RP choices and 
accounting for unobserved individual-
specific sensitivities to travel time and 
reliability variables. 

2000 RP/SP simulator-based 
experiment with Austin area 
commuters. 

Halton draws 

Han et al. (2001) Random coefficients 
structure 

Travel route choice: Incorporating 
unobserved individual-specific 
heterogeneity to route choice 
determinants (delay, heavy traffic, 
normal travel time, etc.). 

2000 SP survey and scenario 
data collected in Sweden. 

Pseudo-random 
draws 

MMNL 
 
 

Hensher (2001a) Random coefficients 
structure 

Long distance travel route choice: 
Accommodating unobserved 
individual-specific sensitivities to 
different components of travel time 
(free flow time, slowed-down time, 
and stop time). 

2000 SP survey data 
collected in New Zealand. 

Pseudo-random 
draws 
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Brownstone and 
Small (2005) 

Random coefficients 
structure 

Choice of toll versus non-toll facility: 
Allowing random coefficients to 
account for individual-specific 
unobserved preferences, and 
responsiveness to travel time and 
unreliability of travel time. 

1996-2000 RP/SP survey 
from the SR-91 facility in 
Orange County, California. 

Pseudo-random 
draws 

Carlsson (2003) Random coefficients 
structure 

Mode choice: Allowing coefficients to 
vary for each individual across choice 
situation and allowing for individual-
specific unobserved preferences for 
specific modes and other factors. 

SP intercity travel survey of 
business travelers between 
Stockholm and Gothenburg. 

Pseudo-random 
draws 

Cirillo and Axhausen 
(2006) 

Random coefficients 
structure 

Mode choice: Accommodating 
unobserved individual-specific 
sensitivities to travel time and other 
factors and accounting for correlation 
across tours for the same individual. 

1999 multi-week urban 
travel survey collected in 
Karlsruhe and Halle, 
Germany. 

Halton draws  

Iragüen and Ortúzar 
(2004) 

Random coefficients 
structure 

Urban route choice: Recognizing 
unobserved individual heterogeneity in 
sensitivities to cost, number of 
accidents, and travel time. 

2002 SP survey of car users 
of several private and public 
employment firms in 
Santiago. 

Information not 
provided 

Galilea and Ortúzar 
(2005) 

Random coefficients 
structure 

Residential location choice: 
Accommodating unobserved individual 
heterogeneity in sensitivities to travel 
time to work, monthly rent, and noise 
level. 

2002 SP survey of a sample 
of Santiago residents. 

Information not 
provided 

Greene, Hensher, and 
Rose (2006) 

Random coefficients 
structure 

Commuter Mode Choice: 
Parameterizing the variance 
heterogeneity to examine the moments 
associated with the willingness to pay 
for travel time savings. 

2003 SP survey of transport 
mode preferences collected 
in New South Wales, 
Australia. 

Halton draws 

Hensher and Greene 
(2003) 

Random coefficients 
structure 

Urban commute travel route choice: 
Accommodating unobserved 
individual-specific sensitivities to 
different components of travel time 
and cost. 

1999 SP survey data sets 
collected in seven cities in 
New Zealand. 

Halton draws 

MMNL 

Hensher (2001b) Random coefficients 
structure 

The valuation of commuter travel time 
savings for car drivers: Comparing the 
value of travel savings obtained from 
MNL and alternative specifications of 
mixed logit models. 

1999 SP/RP survey of 
residents in New Zealand.  

Halton draws 
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Hess et al. (2005) Random coefficients 
structure 

Travel time savings: Addressing the 
issue of non-zero probability of 
positive travel-time coefficients within 
the context of mixed logit 
specifications.  

1989 Rail Operator data in 
the Toronto –Montreal 
corridor, Canada  

Information not 
provided 

Hess and Polak 
(2005) 

Random coefficients 
structure 

Airport choice: Accommodating taste 
heterogeneity associated with the 
sensitivity to access time in choosing a 
departing airport. 

1995 Airline passenger 
survey collected in the San 
Francisco Bay area. 

Halton draws 

Lijesen (2006) Random coefficients 
structure 

Valuation of frequency in aviation: 
Developing a framework to link flight 
frequency with optimal arrival time 
and accounting for heterogeneity 
within customers’ valuation of 
schedule delay. 

Conjoint choice analysis 
experiment. 

Information not 
provided 

Mohammadian and 
Doherty (2004) 

Random coefficients 
structure 

Choice of activity scheduling time 
horizon: Accommodating unobserved 
individual-specific sensitivities to 
travel time, flexibility in time, and 
activity frequency. 

2002-2003 household 
activity scheduling survey 
collected in Toronto, 
Canada. 

Pseudo-random 
draws 

Pathomsiri and 
Haghani (2005) 

Random coefficients 
structure 

Airport choice: Capturing random taste 
variations across passengers in 
response to airport level of service. 

1998 Air passenger survey 
database for Baltimore, 
Washington DC 

Information not 
provided 

Rizzi and Ortúzar 
(2003) 

Random coefficients 
structure 

Urban and interurban route choice: 
Accommodating unobserved individual 
heterogeneity in sensitivities to toll, 
travel time, and accidents. 

2002 stated choice survey 
collected in Santiago and 
1999-2000 survey collected 
in Santiago, Vina del Mar, 
Valparaiso, and Rancagua . 

Information not 
provided 

Silliano and Ortúzar 
(2005) 

Random coefficients 
structure 

Residential choice incorporating 
unobserved individual heterogeneity in 
sensitivities to travel time to work, 
travel time to school, and days of alert 
status associated with the air quality of 
the zone of dwelling unit. 

2001 SP survey conducted 
in Santiago. 

Information not 
provided 

MMNL 
 

Small et al. (2005) Random coefficients 
structure 

Use of toll facilities versus non-toll 
facilities. Allowing random 
coefficients to accommodate 
unobserved individual-specific 
preferences and sensitivities to cost, 
travel time, and reliability. 

1996-2000 RP/SP survey 
from the SR-91 facility in 
Orange County, California. 

Pseudo-random 
draws 
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Sivakumar and Bhat 
(2006) 

Random coefficients 
structure 

Spatial location choice: Developing a 
framework for modeling spatial 
location choice incorporating spatial 
cognition, heterogeneity in preference 
behavior, and spatial interaction. 

1999 Travel survey in 
Karlsruhe (West Germany) 
and Halle  (East Germany) 

Random Linear 
scrambled Faure 

sequence 
 

Valdemar et al. 
(2005) 

Random coefficients 
structure 

Air passenger sensitivity to service 
attributes: Accommodating observed 
heterogeneity (related to demographic- 
and trip-related factors) and residual 
heterogeneity (related to unobserved 
factors). 

2001 online survey of air 
travelers in US. 

Halton draws 

Walker and Parker 
(2006) 

Random coefficients 
structure 

Time of day Airline demand: 
Formulating a continuous time utility 
function for airline demand. 

2004 stated preference 
survey conducted by Boeing 

Information not 
provided 

Adler et al. (2005) Error components and 
random coefficients structure 

Air itinerary choices: Modeling service 
tradeoffs by including the effects of 
itinerary choices of airline travel, 
airport, aircraft type and their 
corresponding interactions. 

2000 Stated Preference 
survey of US domestic air 
travelers 

Halton Draws 

Bhat and Castelar 
(2002) 

Error components and 
random coefficients structure 

Mode and time-of-day choice: 
Allowing unobserved correlation 
across alternatives through error 
components, preference heterogeneity 
and variations in responsiveness to 
level-of-service through random 
coefficients, and inertia effects of RP 
choice on SP choices through random 
coefficients. 

1996 RP/SP multiday urban 
travel survey from the San 
Francisco Bay area. 

Halton draws 

Bhat and Gossen 
(2004) 

Error components and 
random coefficients structure 

Weekend recreational episode type 
choice: Recognizing unobserved 
correlation in out-of-home episode 
type utilities and unobserved 
individual-specific preferences to 
participate in in-home, away-from-
home, and recreational travel episodes. 

2000 RP multiday urban 
travel survey collected in the 
San Francisco Bay area. 

Halton draws 

Jong et al. (2002b) Error components and 
random coefficients 

Travel mode and time-of-day choice: 
Allowing unobserved correlation 
across time and mode dimensions; 
individual specific random effects. 

2001 SP data collected from 
travelers during extended 
peak periods (6-11 a.m. and 
3-7 p.m.) on weekdays. 

Pseudo-random 
draws 

MMNL 

Lee et al. (2004) Error components and 
random coefficients structure 

Travel mode choice: Accommodating 
heterogeneity and heteroscedasticity in 
intercity travel mode choice. 

RP/SP survey of users from 
Honam, South Korea. 

Halton draws 
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Pinjari and Bhat 
(2005) 

Error components and 
random coefficients structure 

Travel mode choice: Incorporating 
non-linearity of response to level of 
service variables for travel mode 
choice. 

2000 RP/SP simulator-based 
experiment with Austin area 
commuters. 

Halton draws 

Srinivasan and 
Mahmassani (2003) 

Error components and 
random coefficients structure 

Route switching behavior under 
Advanced Traveler Information 
System (ATIS): Accommodating error-
components associated with a 
particular decision location in space, 
unobserved individual-specific 
heterogeneity in preferences (intrinsic 
biases) and in age/gender effects. 

Simulator-based experiment 
with Austin area commuters 
in 2000. 

Pseudo-random 
draws 

MMNL 

Srinivasan and 
Ramadurai (2006) 

Error components and 
Random coefficients 
structure 

Travel behavior and mode choice: 
Accommodating within-day dynamics 
and variations in mode-choice within 
and across individuals at the activity-
episode level. 

2000 RP multiday urban 
travel survey collected in the 
San Francisco Bay area. 

Pseudo-random 
draws 

Bhat and Guo (2004) Random coefficients with 
GEV base structure 

Residential location choice: Allowing 
spatial correlation in adjacent spatial 
units due to unobserved location 
factors using a paired Generalized 
Nested Logit (GNL) structure, and 
unobserved individual-specific 
heterogeneity in responsiveness to 
travel time and other factors. 

1996 RP urban travel survey 
from the Dallas-Fort Worth 
area. 

Halton draws 

Bajwa et al (2006) Nested logit with random 
coefficients structure 

Joint departure time and mode choice: 
Accounting for correlation among 
alternative modes as well as the 
unobserved individual specific 
sensitivities to arrival time and other 
factors. 

SP survey of commuters 
collected in Tokyo, Japan. 

Information not 
provided 

Hess et al. (2004) Nested and cross-nested 
logit with random 
coefficients structure 

Mode choice: Accounting for inter-
alternative correlation and random 
taste heterogeneity in travel time and 
alternative specific attributes. 

1999 SP survey of mode 
choice collected in 
Switzerland. 

Halton draws 

MGEV 

Lapparant (2006) Nested logit with random 
coefficients structure 

Mode choice: Accounting for 
correlation among alternative models 
as well as the unobserved individual-
specific sensitivities to level-of-service 
and other factors 

2001-2002 RP regional 
travel survey conducted in 
the French Parisian region of 
France. 

Halton draws 



 Flexible Discrete Choice Structures   39 
 

Srinivasan and 
Athuru (2005) 

Nested logit with error 
components structure 

Out-of-home maintenance 
participation: Accounting for 
correlation in solo participation, 
unobserved correlation between 
household members, and for 
correlation across episodes made by 
the same individual. 

1996 RP urban travel survey 
collected in the San 
Francisco Bay Area. 

Pseudo-random 
draws 

 


