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ABSTRACT 
Tour-based model systems are increasingly being deployed to microsimulate daily activity-travel 
patterns of individuals.  There are a host of tour attributes of interest that are modeled within 
these systems.  However, a dimension that is often missed is that of vehicle type choice, a 
variable of considerable importance in the energy consumption and emissions estimation arena. 
Another issue that arises is that most tour attributes are modeled independently or sequentially 
with loose coupling across the models, thus ignoring important endogeneity effects that may 
exist across multiple tour dimensions.  This paper considers four key dimensions of tours – tour 
complexity, passenger accompaniment, vehicle type choice, and tour length – with a view to 
developing a joint simultaneous equations model system of tour choices while accounting for the 
presence of correlated unobserved attributes affecting multiple dimensions through appropriate 
error covariance structures.  The paper makes an important methodological contribution by 
describing and formulating a multi-dimensional joint choice model system capable of 
accommodating a variety of endogenous variable types (discrete and continuous).  The paper 
makes an important empirical contribution by providing evidence on the nature of the 
relationships among these tour dimensions of interest within the context of a joint model.  The 
model system is estimated on a sample of tours from the 2009 National Household Travel 
Survey of the United States.  In general, it is found that there is significant evidence of correlated 
unobserved factors across these tour dimensions and that vehicle type choice affects tour length, 
a finding that could have important policy implications.  
 
 
Keywords: simultaneous equations model, activity-travel behavior, multi-dimensional choice 
model, tour attributes, unobserved attributes, vehicle type choice, tour length, tour complexity, 
passenger accompaniment  
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INTRODUCTION 
There are a variety of tour attributes of interest in the context of designing and implementing 
activity- or tour-based microsimulation models of travel.  Tour-based model systems generally 
involve the modeling of all or a subset of tour type, number of intermediate stops, time of day 
choice, mode choice, intermediate stop purpose, number of individuals on the tour, destination 
choice for primary and secondary stops, and activity episode duration (Bhat et al, 2004; Vovsha 
and Bradley, 2006; Bowman and Ben-Akiva, 2001).  Model components pertaining to the 
various choices and dimensions of interest are often linked together to form a sequential chain of 
models, with potential feedback involving logsums for choice variables where nested logit model 
forms are used (Wen and Koppelman, 1999).   
 While the above structures are certainly convenient from a model deployment and 
application standpoint, they are limited in their ability to simultaneously model the complex 
inter-relationships among the multiple tour attributes while accounting for the possible presence 
of correlated unobserved attributes across choice dimensions.  The development of simultaneous 
equations models of activity-travel behavior has been of much interest in the travel behavior 
research domain for decades for precisely this reason (e.g., Mannering and Hensher, 1987; 
Kitamura et al, 1996; Pendyala and Bhat, 2004). Simultaneous equations modeling has been 
motivated by the desire to appropriately represent endogeneity in choice processes where 
correlated error structures may exist, and thus make travel behavior models more accurately 
capture behavioral processes at play.  Ignoring endogeneity that may exist across choice 
dimensions that are inter-related with one another results in coefficient estimates that are 
inconsistent and biased (Mokhtarian and Cao, 2008), with inevitable adverse impacts on the 
quality of the forecasts provided by such models.  
 From a methodological perspective, the profession has been limited by the complexity 
associated with formulating and estimating simultaneous equations models that capture a 
multitude of choice dimensions in a joint model system.  Most simultaneous equations models 
have been limited to bivariate model systems (e.g., Hamed and Mannering, 1993; Bhat, 1998; 
Yamamoto and Kitamura, 1999; Golob, 2000; Ye and Pendyala, 2007), either involving two 
discrete choice variables or a combination of discrete and continuous choice variables.  While 
these models have undoubtedly provided key insights into endogeneity of choice processes, the 
inability to model more than two choice dimensions simultaneously has made it difficult to 
account for endogeneity across a multitude of choices that may be made as a package or bundle 
(Chung and Rao, 2003).  The complexity associated with estimating larger multidimensional 
choice models systems with a mixture of endogenous variable types using classical econometric 
formulations has led to a stream of literature utilizing structural equations methods (Golob, 2003; 
Bagley and Mokhtarian, 2002).  In structural equations models, multiple endogenous variables 
may be modeled simultaneously while accounting for the possible presence of significant error 
covariances.  These models have been able to shed considerable light on the complex 
interactions across multiple activity-travel variables; however, the key issue associated with 
structural equations models is that they cannot accommodate multinomial choice variables – 
which happen to be one of the most important variable types in travel modeling (for example, 
destination choice, mode choice, time of day choice, and activity type choice). 
 More recently, progress has been made in the multidimensional modeling of choice 
processes in the activity-travel arena (Pinjari et al, 2011; Eluru et al, 2010).  These efforts exploit 
some of the dramatic advances in choice model specifications and estimation methods that have 
occurred in the recent past (Bhat and Eluru, 2010; Bhat et al, 2008).  These advances make it 
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possible to formulate model specifications that account for complex observed and unobserved 
inter-relationships that exist among multiple dependent variables and to estimate such model 
systems without having to resort to simulation-based approaches that quickly become 
computationally burdensome and potentially imprecise as the dimensionality of the problem 
increases (Bhat, 2011).  The development of methodologies that allow the specification and 
estimation of complex multi-dimensional choice model systems in simultaneous equations 
frameworks may be viewed as a major advance with the potential to lead to dramatic 
breakthroughs in the way activity-based travel model systems are structured and implemented.     

This paper aims to further advance the development and estimation of multidimensional 
choice model systems of activity-travel behavior by considering a bundle of endogeneous 
variables that characterize tours in activity-based travel model systems.  The four attributes 
considered in this paper are tour complexity, passenger accompaniment, vehicle type choice, and 
total tour length.  While this set of dimensions is certainly not exhaustive by any means, it does 
represent an important group of choices from a transportation modeling and planning perspective 
that are likely to be inter-related to one another.  Within the context of the emerging energy 
sustainability and greenhouse gas emissions reduction debates, the modeling of vehicle type 
choice and tour length is of particular interest as these choices direct impact energy and 
environmental outcomes.  Despite the importance of vehicle type choice in this arena, rarely has 
vehicle type choice been explicitly modeled in tour-based models.  Modeling and tracking 
vehicle type choice within the larger context of activity-based models can greatly inform 
emissions inventory models that are able to take advantage of detailed information of vehicle 
trajectories by type of vehicle.  Moreover, from a policy perspective, one can examine the 
potential (sometimes, unintended) consequences of actions.  For example, suppose rebates are 
instituted for the purchase of fuel efficient vehicles to enhance their presence in the fleet.  
Individuals can, however, travel farther distances using more fuel efficient vehicles at the same 
cost as they would travel shorter distances with gas guzzling vehicles.  Then, the longer travel 
distances induced by the acquisition of fuel efficient vehicles (spurred by the policy actions) 
would, at least in part, negate the benefits associated with encouraging fuel efficient vehicle 
acquisition in the population.  In addition, total vehicle miles of travel could increase, leading to 
greater levels of congestion and delay.  It is these types of complex inter-relationships that can be 
captured through the estimation and deployment of multi-dimensional choice model systems.  

The remainder of this paper is organized as follows.  The next section presents a brief 
overview of the multi-dimensional relationships captured in the model system developed in this 
paper.  The third section presents the modeling methodology in detail.  The fourth section offers 
a description of the data while the fifth section presents model estimation results.  The sixth and 
final section offers concluding thoughts.   

 
MULTI-DIMENSIONAL MODELING OF TOUR ATTRIBUTES 
As mentioned earlier, four choice dimensions are considered this paper.  They are tour 
complexity, passenger accompaniment, vehicle type choice, and total tour length.  For the model 
development exercise of this paper, tour complexity is represented by the number of stops made 
on the tour.  A tour itself is defined as a closed chain, with the beginning and ending of the tour 
being the home location.  Only home-based tours are considered in this paper because of the 
desire to model vehicle type choice and it is presumed that one would have a choice among 
vehicle types (in a multiple vehicle household) when a tour begins at home. Stop frequency 
could be represented as an ordered response variable (Bhat and Srinivasan, 2005); however, 
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within the context of this paper, stop frequency is represented as a binary choice variable 
between the choice of making a one-stop tour or a multiple stop tour.  The former may be 
considered “simple” tours while the latter may be considered “complex” tours.  This 
simplification was done because of the generally low frequency of multiple stop tours in travel 
survey data sets.   

Passenger accompaniment is a variable of much interest because it captures multiple 
behavioral processes at play.  Passenger accompaniment is representative of joint or solo activity 
engagement, and thus captures (at least in part) interactions among households members.  There 
is increasing recognition of the importance of intra-household interactions in modeling daily 
activity-travel patterns due to the inevitable linkages and dependencies that exist (Zhang et al, 
2005).  Children, for example, are often dependent on parents for meeting travel needs (Paleti et 
al, 2011).  Household members often undertake activities jointly, particularly in the context of 
maintenance and discretionary activities, and this jointness in activity engagement may have 
important implications for destination choice (tour length), vehicle type choice, and time of day 
choice. In this paper, passenger accompaniment is represented as a trinary choice variable with 
possible choice options being a pure solo tour, a pure joint tour (with multiple vehicle occupants 
throughout the tour), and a partly joint tour (with a single occupant for a part of the tour, and 
multiple occupants for the other part of the tour).  

Vehicle type choice is a variable of much importance and considerable interest from an 
energy consumption and environmental assessment perspective.  However, there is a paucity of 
research that explicitly addresses vehicle type choice in the context of tour-based model systems.  
There is a vast body of literature devoted to modeling vehicle ownership.  While early research 
focused heavily on modeling the count of vehicles (Mannering and Winston, 1985), more recent 
work has provided frameworks for modeling vehicle fleet composition of households with 
vehicle types defined by body type, make and model, fuel type, and vintage (Bhat and Sen, 
2006).   In addition, there have been numerous studies that have attempted to model vehicle 
holding durations, and the timing and nature of vehicle transactions including acquisition, 
disposal, and replacement of vehicles (Mohammadian and Miller, 2003; Yamamoto et al, 1999).  
Thus, while there is a base of research that offers methods to model and forecast vehicle 
ownership by type, there is virtually no research that subsequently uses that information the 
activity-travel microsimulation process.  Vehicle allocation to drivers, and the choice of vehicle 
for individual tours, are not dimensions that are explicitly simulated, thus limiting the ability to 
exploit the detailed information output from activity based microsimulation models in estimating 
energy consumption and emissions inventories.  For this reason, the current paper includes 
vehicle type choice as one of the dimensions in the system.  In this paper, for simplicity, vehicle 
type is represented as a multinomial choice variable with the universe of options being car (auto), 
sports utility vehicle (SUV), van/minivan, and pick-up truck.   

The final choice dimension that is captured in the model system of this paper is 
destination choice.  There is a rich body of evidence on destination choice behavior and spatial 
processes at play in how people perceive spatial opportunities and choose destinations, while 
considering the time-space and institutional constraints that govern such choices (Pendyala et al, 
2002; Bhat and Zhao, 2002).  However, destination choice is a dimension that applies to the 
individual trip or stop level, and not the tour level, because tours may have multiple destinations 
associated with multiple stops.  In this paper, total tour length is used to capture distances 
traveled in reaching the one or more destinations on a tour.  Total tour length is a continuous 
variable and is of much interest because it is representative of vehicle miles of travel (VMT), a 
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travel model outcome that is used to quantify total travel and assess impacts on energy and 
emissions estimates (Shiftan and Suhrbier, 2002).  

Thus, the model system in this paper combines a binary choice variable with two 
multinomial choice variables and one continuous variable.  One of the two multinomial choice 
variables (vehicle type choice) has varying choice sets across choice-makers, depending on the 
vehicle fleet of the household to which the traveler belongs.  The modeling of such a mixture of 
dependent variable types in a single integrated model system is quite complex, and this paper 
presents a state-of-the-art methodological framework for doing so by exploiting some of the 
recent developments in choice modeling and estimation methods.  The methodology involves the 
deployment of new estimation techniques that reduce the dimensionality of the problem, thus 
eliminating some of the concerns associated with computational burden and imprecision that 
might arise when adopting simulation-based estimation approaches in the context of large multi-
dimensional problems (Bhat, 2011).  

Although this section does not constitute a comprehensive review of the literature, it does 
illustrate the level of interest in the choice dimensions considered in this paper and the need for 
advances in multi-dimensional integrated choice modeling that would allow the profession to 
recognize the package or bundle nature of multiple choice processes. While the model system 
may appear to be a theoretical effort at exercising econometric complexity, the model 
specification, formulation, and estimation approach presented in this paper offers the potential 
for dramatic breakthroughs in activity-based travel demand modeling.       
 
MODELING METHODOLOGY 
This section presents a detailed description of the modeling methodology developed for 
estimating a multi-dimensional choice model system involving a mixture of dependent variable 
types.  The model formulation accounts for correlated unobserved factors affecting multiple 
choice dimensions, and allows the estimation of all model parameters in a single step akin to 
classic full-information maximum likelihood approaches thus ensuring the use of all information 
in parameter estimation leading to gains in efficiency.  The remainder of this section presents the 
formulation.   
   
Model Framework 
Let there be G nominal variables for an individual, and let g be the index for the nominal 
variables (g =1, 2, 3,.…,G)1. In the empirical context of the current paper, G=3 (the nominal 
variables are accompaniment type, tour type or complexity, and vehicle type). Also, let Ig be the 
number of alternatives corresponding to the gth nominal variable (Ig≥2) and let ig be the 
corresponding index (ig = 1, 2, 3…... Ig). Note that Ig may vary across individuals, but index for 
individuals is suppressed at this time for ease of presentation. Also, it is possible that some 
nominal variables do not apply for some individuals, in which case G itself is a function of the 
individual q. However, the model is developed at the individual level, and so this notational 
nuance does not appear in the presentation here. 

Consider the gth nominal variable and assume that the individual under consideration 
chooses the alternative mg. Also, assume the usual random utility structure for each alternative ig. 

,'
ggg gigiggiU ε+= xβ

 
(1) 

                                                            
1 A nominal variable can be an unordered multinomial response variable or a binary response variable. 
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where 
ggix is a (Kgx1)-column vector of exogenous attributes, gβ is a column vector of 

corresponding coefficients, and 
ggiε is a normal error term. Let the variance-covariance matrix of 

the vertically stacked vector of errors ( )[ ]'21 ,.....,
ggIggg εεεε =  be gΩ . As usual, appropriate scale 

and level normalization must be imposed on gΩ for identification (more on this later). Under the 
utility maximization paradigm, 

gg gmgi UU − must be less than zero for all gg mi ≠ , since the 

individual chose alternative gm . Let )(*
gggmgimgi miUUy

gggg
≠−= , and stack the latent utility 

differentials into a vector ( ) ⎥⎦
⎤

⎢⎣
⎡ ≠

′
= ggmgImgmg miyyy

gggg
;,...,, **

2
*

1
*
gy . *

gy  has a mean vector of 

,),....,( '
gggg mgI

'
1g2m

'
1g1m

'
1g zβzβzβB where gggg miIi ≠=−= ;,...2,1,

gggg gmgimgi xxz . To obtain the 

covariance matrix of *
gy , define gM  as an (Ig-1) x Ig matrix that corresponds to an (Ig-1) identity 

matrix with an extra column of -1’s added as the th
gm column. Then, one may write:  

( ),,~ *
gΣg

*
g By N where '

gg MM g
*
g ΩΣ = . (2) 

The discussion above focuses on a single nominal variable g. When there are G nominal 

variables, consider the stacked −×⎥
⎦

⎤
⎢
⎣

⎡
−∑

=

1)1(
1

G

g
gI vector ( )⎥⎦⎤⎢⎣

⎡=
''*

G
'*

2
'*

1
* ,.....yy,yy , each of whose 

element vectors is formed by differencing utilities of alternatives from the chosen alternative mg 
for the gth nominal variable. Next, one may write: 

),,(~ *ΣBy* N where ( )',..BB,BB '
G

'
2

'
1= and *Σ  is a ⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
− ∑∑

==

G

g
g

G

g
g II

11
)1(*)1( matrix  as 

follows: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

*
G

*
G2

*
G1

*
2G

*
2

*
21

*
1G

*
12

*
1

*

  Σ...  Σ  Σ
......
......
......

  Σ...  Σ  Σ
  Σ...  Σ  Σ

Σ

 

(3) 

The off-diagonal elements in *Σ capture the dependencies across the utility differentials of 
different nominal variables, the differential being taken with respect to the chosen alternative for 
each nominal variable. 
 Now, assume that, in addition to the G nominal variables, there are H continuous 
variables ),......,( 21 Hyyy with an associated index h (h = 1, 2,…H). Let hhhy η+′= sγh in the 
usual linear regression fashion. Stacking the H continuous variables into a (H x 1)-vector y, one 
may write ),,( ΣcNy =  where ( )'H

'
H2

'
21

'
1 s,.....γsγ,sγc = , and Σ  is the covariance matrix of 

( )Hηηη ,....., 21=η . The variance of ( )''*' ,~ yyy = can be written as:  

Var
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
== ΣΣ

ΣΣ
Λ '

yy

yy
*

*

*~~)y( ,   (4) 



8 
 

where 
yy*Σ is a ⎥

⎦

⎤
⎢
⎣

⎡
−∑

=

G

g
gI

1
)1( xH matrix capturing covariance effects between the *y  vector and 

the y  vector. The conditional distribution of *y , given y , is multivariate normal with mean 
+= BB~ )(1 cy −−ΣΣ yy*  and variance '

yy
1

yy
**

** ΣΣΣΣΣ −−=~ . The basis for the construction of 

the Λ~  matrix will be different for different individuals, since the chosen alternative for each 
nominal variable will, in general, be different across individuals. At the same time, it must be 
ensured that Λ~  across individuals is derived from a common covariance matrix Λ  for the 

original 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑
=

HI
G

g
g

1

-error term vector ,)′′′η,ε(  subject to identification 

considerations ( ) ].,...,[ 21
′′′′= Gεεεε  Also, the overall matrix Λ~  needs to be positive definite (as 

will be discussed later).2 
Next, let θ  be the collection of parameters to be estimated: 

[ ],)();(;);(;
yy

*
*ΣΣΣ VechVechVech H21G21 ,....γγ,γ,....ββ,βθ =  where Vech(Σ ) represents the 

vector of upper triangle elements of Σ . Then the likelihood function for the individual may be 
written as: 

[ ]*
~

~,~)|()( ΣΣ Bcyθ −×−=
GH FL φ , (5) 

where )|(. ΣHφ is the H-dimensional normal density with mean 0 and covariance matrixΣ , and 

(.,.)~GF is the ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

G

g
gIG

1

)1(~ -dimensional normal cumulative distribution function.  

The above likelihood function involves the evaluation of a G~ -dimensional integral for 
each individual, which can be very expensive if there are several nominal variables or if each 
nominal variable can take a large number of values or a combination of the two. So, the 
Maximum Approximated Composite Marginal Likelihood (MACML) approach of Bhat (2011), 
in which the likelihood function only involves the computation of univariate and bivariate 
cumulative distributive functions, is used in this paper. 

 
The MACML Estimation Approach 
Consider the following (pairwise) composite marginal likelihood function formed by taking the 
products (across the G nominal variables) of the joint pairwise probability of the chosen 
alternatives gm and lm for the gth and lth nominal variables for an individual. 

∏∏
−

= +=

==−=
1

1 1

),Pr(*)|()(
G

g

G

gl
ligiHCML mdmdL

lg
Σcyθ φ ,  (6) 

where 
gid is an index for the individual’s choice for the gth nominal variable, and gm is the actual 

chosen alternative for the gth nominal variable. One can write: 
                                                            
2 Note that if Λ~  is positive definite, then it immediately implies that *Σ ),...,,ofeach(and **

2
*
1 GΣΣΣ as well as 

Σ are all positive definite because of the property that any principal square sub-matrix of a positive definite matrix 
is also positive definite.  
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)~,~(),Pr( *
~

'
glglgl ΔΣΔΔ B

gllg Gligi Fmdmd === ,  (7) 

where 2~ −+= lggl IIG  ( gI  is the number of alternatives for the gth nominal variable) and glΔ is 

a GGgl
~*~ -selection matrix with an identity matrix of size ( 1−gI ) occupying the first ( 1−gI ) 
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j
jI ⎥
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1
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jI , and another identity matrix of size ( 1−lI ) occupying the last ( 1−lI ) rows and 
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th

l

j
jI ⎥

⎦

⎤
⎢
⎣
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1

1

through 
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l

j
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⎤
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⎣

⎡
−∑

=1

)1( columns. The net result is that the pairwise likelihood 

function now only needs the evaluation of a glG~ -dimensional cumulative normal distribution 

function (rather than the G~ -dimensional cumulative distribution function in the maximum 
likelihood function). This can lead to substantial computation efficiency. However, in cases 
where there are several alternatives for one or more nominal variables, the dimension glG~  can 
still be quite high. This is where the use of an analytic approximation of the multivariate normal 
cumulative distribution (MVNCD) function, as shown in Bhat (2011), is convenient. The 
resulting maximum approximated composite marginal likelihood (MACML) of Bhat (2011), 
which combines the CML approach with the analytic approximation for the MVNCD function 
evaluation, is solely based on bivariate and univariate cumulative normal computations. The 
MACML approach can be applied using a simple optimization approach for likelihood 
estimation. It also represents a conceptually simpler alternative to simulation techniques. Also, 
the MACML estimator MACMLθ̂  is asymptotically normal distributed with mean θ  and covariance 
matrix given by the inverse of the Godambe’s (1960) sandwich information matrix )(θG  (Zhao 
and Joe, 2005): 

[ ] == −1)()( θθ GVMACML )]([)]()[( 1 θθθ HJH − , (8)  
where )(θH  and )(θJ  take the following form: 

⎥
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)(θH  and )(θJ  can  be estimated in a straightforward manner at the MACML estimate MACMLθ̂  
as follows (introducing q as the index for individuals): 
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Ensuring Identification and Positive Definiteness 
There are two important issues that need to be dealt with during estimation, each of which is 
discussed in this section.  
 
Identification 
The estimated model needs to be theoretically identified. As discussed earlier, in a model with a 
nominal dependent variable, only utility differences matter. Suppose one considers utility 
differences with respect to the first alternative for each of the G nominal variables. Then, the 
analyst can restrict the variance term of the top left diagonal of the resulting covariance matrix 
(say )*

gΣ of utility differences to 1 to account for scale invariance. However, note that the matrix 
*
gΣ  is different from the matrix *

gΣ which corresponds to the covariance of utility differences 
taken with respect to the chosen alternative for the individual.  Next, create a matrix of 

dimension ⎥
⎦
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⎡
−×⎥
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⎢
⎣

⎡
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G

g
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11

)1()1( similar to that of *Σ in Equation (3), except that the matrix 

is expressed in terms of utility differences with respect to the first alternative for each nominal 
variable: 
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Further, construct an enhanced covariance matrix that includes the covariance matrix Σ  
of ( )Hηηη ,....., 21=η  as follows:  
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)1(  . The first 1I  rows and )1( 1 −I  columns correspond 

to the first nominal variable. Insert an identity matrix of size )1( 1 −I  after supplementing with a 
first row of zeros into this first 1I  rows and )1( 1 −I  columns of D. The rest of the columns for 
the first 1I  rows and the rest of the rows for the first )1( 1 −I  columns take a value of zero. Next, 

rows )1( 1 +I through )( 21 II + and columns )( 1I  through )2( 21 −+ II  correspond to the second 
nominal variable. Again position an identity matrix of size )1( 2 −I  after supplementing with a 
first row of zeros into this position. Continue this for all G nominal variables. Finally, insert an 
identity matrix of size H into the last H rows and H columns of the matrix D (with all other 
columns of these last H rows and all other rows of these last H columns receiving a value of 
zero). Thus, for the case with two nominal variables, one nominal variable with 3 alternatives 
and the second with four alternatives, and two continuous variables, the matrix D takes the form 
shown below: 
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 Then, the general covariance matrix may be developed as .DΩDΛ ′=  All parameters in 
this matrix are identifiable by virtue of the way this matrix is constructed based on utility 
differences and, at the same time, it provides a consistent means to obtain the covariance matrix 
Λ~  that is needed for estimation (and is with respect to each individual’s chosen alternative for 
each nominal variable). Specifically, define a matrix M of size 
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)1( . The first )1( 1 −I  rows and 1I  columns correspond to the 

first nominal variable. Insert an identity matrix of size )1( 1 −I  after supplementing with a 
column of ‘-1’ values in the column corresponding to the chosen alternative. The rest of the 
columns for the first )1( 1 −I  rows and the rest of the rows for the first 1I  columns take a value of 
zero. Next, rows )( 1I  through )2( 21 −+ II and columns )1( 1 +I through )( 21 II + correspond to 
the second nominal variable. Again position an identity matrix of size )1( 2 −I  after 
supplementing with a column of ‘-1’ values in the column corresponding to the chosen 
alternative. Continue this procedure for all G nominal variables. Finally, insert an identity matrix 
of size H into the last H rows and H columns of the matrix M. With the matrix M as defined, the 
covariance matrix  Λ~  for any individual is given by .MMΛΛ ′=

~  
 
Positive Definiteness 
The matrix Λ~  for any individual has to be positive definite. The simplest way to guarantee this 
is to ensure that the matrix Ω  is positive definite (recall that this is the covariance matrix for the 
utility differentials with respect to the first alternative). To do so, the Cholesky matrix of Ω  may 
be used as the matrix of parameters to be estimated. However, note that the top diagonal element 
of each *

gΣ  is normalized to one for identification, and this restriction should be recognized 

when using the Choleski factor of Ω . This can be achieved by appropriately parameterizing the 
diagonal elements of the Cholesky decomposition matrix. Thus, consider the lower triangular 
Choleski matrix L  of the same size as Ω . Whenever a diagonal element (say the kkth element) 
of Ω  is to be normalized to one, the first element in the corresponding row of L  is written as 

∑
=

−
k

j
kjd

2

21 , where the kjd  elements are the Cholesky factors that are to be estimated. With this 

parameterization, Ω  obtained as LL ′  is positive definite and adheres to the scaling conditions. 
Using this, one constructsΛ , and subsequently obtains Λ~  as discussed in the previous section. 
The resulting Λ~  is positive definite, since it is constructed to be consistent with Ω , which is 
positive-definite. 
 
DATA DESCRIPTION 
The data for this study is derived from the 2009 National Household Travel Survey of the United 
States.  This survey collects detailed socio-economic, demographic, travel, and vehicle 
information for a sample of households in the nation.  Each trip (involving a personal automobile 
use) is tagged with the identity of the vehicle in the household that was used for the trip.  Trip 
chains or tours can be easily constructed from the trip file.  For this study, all closed loops or 
chains that began and ended at home were constructed as home-based tours and those that began 
and ended at work were constructed as work-based tours.  As the analysis involves the choice of 
vehicle type, only tours undertaken by individuals in households that have multiple vehicles were 
chosen for analysis.  Presumably, individuals in households with zero or one vehicle do not have 
a choice in vehicle usage.  In addition, as vehicle type choice is likely to be limited at the home 



13 
 

anchor, only home-based tours were selected for inclusion in the analysis sample.  As tours 
involving journey to and from work are often time-space constrained and may involve aspects 
that constrain vehicle type choice (e.g., service workers who need pick-up truck for transporting 
tools of the trade), only home-based non-work tours were considered for analysis.  Finally, the 
analysis was limited to home-based non-work vehicle tours undertaken on regular weekdays – 
Monday through Thursday – by individuals aged 15 years or over.  These filtering criteria 
resulted in a total sample size of 66,030 home-based non-work tours suitable for analysis.  For 
ease of computation, and to avoid the artificial inflation of test statistics that may lead to 
erroneous inferences, a random sample of 6,478 tours (nearly 10 percent) were selected for 
model estimation. Table 1 provides descriptive statistics for the subsample of HBNW tours. Each 
HBNW tour involved an average of 1.7 stops with average travel duration of 37 minutes and 
average tour length of 15.7 miles.  On average, there were about 1.7 persons on each tour, 
reflecting the higher vehicle occupancies often associated with non-work travel. Each household 
in the subsample comprised of nearly three persons with one child. Most of the households in the 
sample (68 percent) reside in urban areas. There is a slightly higher percentage (54 percent) of 
females than males. This may be an artifact of limiting the analysis to non-work tours (e.g., 
involving household maintenance, serve-child) which may be undertaken more so by women 
than men.  As the analysis is limited to tours undertaken by individuals in multi-vehicle 
households, the average vehicle ownership for the analysis sample is quite high at 2.8 cars per 
household.  Nearly 20 percent of households report having four or more cars, reasonably 
consistent with the fact that the sample has 34 percent of households with four or more persons.    

Table 1 also shows the distribution of vehicle types chosen for the tours in the estimation 
sample.  First, the distribution is chosen for all tours.  It is found that 42 percent of all tours are 
undertaken by auto, 25 percent by SUV, 14 percent by van, and 19 percent by pick-up truck. 
While these percentages might suggest that individuals are more inclined to choose cars and 
SUVs for travel, that may not necessarily be true because these percentages do not account for 
the differential availability of different vehicle types in the fleet. When one controls for vehicle 
availability in the fleet, then it is found that auto, van, and SUV all enjoy virtually identical 
probabilities of being chosen at about 50 percent.  Only pick-up truck has a lower probability of 
being chosen at about 32 percent.  In other words, when auto, van, or SUV is available in the 
household fleet, each of these vehicles has a one-in-two chance of being chosen for a tour.  
When pick-up truck is available in the fleet, the probability of it being selected for a tour is only 
about one-in-three.  The percent of all tours undertaken by auto is greater than that for all other 
vehicle types simply because it is more available (present) in the household fleets. This 
demonstrates the importance of accounting for differential choice set composition when 
estimating models of vehicle type choice and drawing inferences regarding vehicle choices.   
Additional detailed statistics on tour attributes by vehicle type are shown in Table 2. The table is 
rather self-explanatory with descriptive statistics consistent with expectations.  Average vehicle 
occupancy, for example, is greater for tours undertaken by van and SUV, presumably because 
these vehicles are likely to be owned and used by larger size households.  
 
 
MODEL ESTIMATION RESULTS 
This section presents a detailed discussion of the model estimation results. A variety of models 
were estimated to understand the nature of relationships among the four tour attributes 
considered in this paper.    
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Structure of Relationships Among Endogenous Variables 
Before proceeding to a discussion of the estimates of coefficients and error covariances, it may 
be beneficial to consider behavioral hypotheses governing the nature of relationships among the 
endogenous variables.  Figure 1 presents a flow chart depicting the structure of relationships that 
guided the model specification and estimation.  Socio-economic and demographic attributes are 
assumed to affect all endogenous variables.  Among the endogenous variables themselves, 
passenger accompaniment (which is an endogenous variable because it is a function of 
explanatory variables) is assumed to impact tour complexity.  In the context of a joint or partly 
joint tour, it is more likely that additional stops will be made to serve the needs of the passenger 
or to engage in a series of joint activities (for example, eat dinner at a restaurant and then go to 
the movies).  In addition, however, passenger accompaniment may also affect vehicle type 
choice.  When there are multiple individuals involved in a trip, then the larger vehicle may be 
chosen for reasons of comfort.  Finally, passenger accompaniment may also affect tour length.  
When a joint activity is involved, or a passenger needs to be dropped off or picked up, then 
destinations are often dictated by the collective needs and desires of the multiple occupants.  This 
may result in traveling to and from locations that are farther away than would otherwise be the 
case.  As such, passenger accompaniment is postulated as affecting all three of the other 
endogenous variables.  
 Next, consider tour complexity which is a binary choice variable indicating whether the 
tour involved a single stop or multiple stops.  Tour complexity is assumed to impact both vehicle 
type choice and tour length.  In the context of vehicle type choice, it is possible that larger and 
more comfortable vehicle types will be used for multiple stop tours.  Also, multi-stop tours are 
likely to be of longer distance because of the need to travel to multiple locations.  As multi-stop 
tours are longer in distance, two possibilities arise.  Tour length may, in turn, influence vehicle 
type choice.  First, if tour length is longer (because the tour is complex), individuals may choose 
the more fuel efficient vehicle type to reduce travel costs associated with traveling long 
distances.  On the other hand, if a person would like to increase comfort levels during a long 
multi-stop tour, then the larger vehicle type may be chosen to undertake the trip. 
 In other words, the relationship between the last two variables is subject to debate.  While 
the flowchart shows vehicle type choice affecting tour length, it is entirely possible that tour 
length affects vehicle type choice.  If vehicle type choice affects tour length, then one is implying 
that people make conscious choices regarding destinations (miles of travel) depending on the 
nature of the vehicle being used.  If a person is using a small fuel efficient car, would the person 
visit farther destinations and travel more miles because it is possible to do so at lower cost than if 
a gas guzzling vehicle were used?  Or would the person visit close-by destinations and reduce 
mileage because traveling long distances in the small fuel efficient vehicle is uncomfortable?  
Alternatively, if the traveler has to visit destinations farther away, then would the fuel efficient 
vehicle be chosen to keep costs down? Or would a large gas guzzling vehicle be used to 
maximize comfort levels on the tour? In a previous study, Konduri et al (2011) found that a 
model in which vehicle type choice affects tour length is statistically superior to a model 
specification in which tour length affects vehicle type choice.  While that finding is clear and 
intuitive, as vehicle type choice (and allocation of vehicles in a household to drivers) is likely to 
be a longer term decision relative to tour length choices, the study did not account for the 
possible endogeneity of passenger accompaniment and tour complexity. Both of these 
dimensions were treated as exogenous variables, potentially resulting in erroneous inferences 
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regarding the direction of the relationship between vehicle type choice and tour length.  This 
study offers the opportunity to further explore the nature of the relationship between these two 
variables while accounting for the endogeneity of passenger accompaniment and tour 
complexity. 
 
Model Results 
Model estimation results are presented in Table 3.  The constants in the model of passenger 
accompaniment suggest that partly joint tours are the least likely tour type (all other things being 
equal) and solo tours are the most likely.  A host of socio-economic attributes impact tour 
accompaniment.  Tours undertaken by individuals in households with larger household size 
(relative to number of vehicles) or larger number of children (relative to the number of drivers) 
are more likely to be joint tours than solo tours as evidenced by the positive coefficients on these 
variables.  In particular, the presence of children appears to induce partly joint tours, a finding 
that is consistent with the notion that such households undertake serve-child tours where the 
child accompanies the parent for a part of the tour and the driver is alone for the remainder of the 
tour.  Males are less likely to undertake joint tours, possibly because females are more likely to 
take care of household responsibilities and chauffeuring of children.  Those 18 years and 
younger are likely to undertake joint tours, but less likely to undertake partly joint tours; this 
finding is consistent with expectations, considering that the sample is restricted to those of 
driving age.  These individuals probably drive themselves in solo tours as opposed to needing a 
partly joint tour involving a pick-up/drop-off.  They are, however, more likely to engage in full 
joint tours in consort with other household members. Part-time employment is associated with 
greater participation in partly joint tour; perhaps part-time employees are more able to undertake 
serve-passenger and serve-child activities on behalf of the household leading to a greater 
prevalence of these partly joint tours for this demographic. 
 In general, complex tours are less likely to occur than simple tours (all other things being 
equal) as evidenced by the negative constant for the complexity utility equation (although the 
coefficient is not statistically significant).  A rather surprising finding is that joint and partly joint 
tours are less likely to be complex than solo tours.  One would have expected these tour types, 
that involve multiple passengers, to be more complex. On the other hand, it is possible that this 
finding is quite intuitive.  When multiple passengers are involved, then the driver or any one 
individual may not be able to undertake a series of activities on a tour that are of no interest or 
relevance to other passengers on the tour.  The individuals on the joint tour are collectively going 
to a certain location, undertaking a joint activity, and then returning to base. Only the activity 
that is of interest and relevance to the entire group is visited.  Those who work full time are less 
likely to engage in complex tours, presumably because of time constraints associated with full 
time employment.  Younger individuals are less likely to undertake complex tours.  Males are 
also less likely to undertake complex tours, suggesting that females have more complex activity-
travel patterns as they shoulder a greater share of household responsibilities.   
 The vehicle type choice model is presented next within Table 3.  The constants are all 
very significant, with the auto and SUV having the highest constants suggesting that these two 
vehicle types tend to get used more often than others when they are in the choice set.  Van also 
has a positive coefficient suggesting that it is used more than the pick-up truck which is the base 
alternative.  As expected, joint tours are more likely to be undertaken by van or the larger vehicle 
type, suggesting that the more comfortable (larger) vehicle type is chosen when multiple 
occupants are involved.  In the case of a partly joint tour, the auto is less likely to be used among 
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all vehicle types.  Males are likely to use the pick-up truck (when it is available in the household 
fleet) compared to all other vehicle types when they are present in the fleet.  This finding is 
consistent with expectations and illustrative of the strong gender influence in the pick-up truck 
market.  Those aged 65 years or over and those with children in the household are most likely to 
use van for tours.  The older age group may enjoy the comfort and driving ease of a van, and 
may have more use for the van as they transport grand children or grown children.  It is not 
surprising that the presence of children is associated with a positive impact on van use; 
households with child transport duties would likely enjoy the space and comfort of van for 
chauffeuring duties. Households in non-urban areas are more likely to use a car or a pick-up 
truck in comparison to van and SUV.  This is also consistent with expectations in that the van 
and SUV are probably not the most preferred vehicle types in rural areas.  It is interesting to note 
that tour complexity does not directly enter the equation of vehicle type choice.  It appears that 
tour complexity does not truly directly influence vehicle type choice; rather it is the 
accompaniment that influences vehicle type choice.   
 Finally, the model of tour length shows that accompaniment, complexity, and vehicle 
type affect tour length.  In other words, tour length is affected by all other tour attributes.  
According to the model estimation results presented in the last part of Table 3, joint tours are 
likely to be of longer length.  This is consistent with the notion that tours involving multiple 
people might be longer in distance in an effort to find destinations that satisfy the desires of all 
individuals on the tour.  Similarly, tour complexity also adds significantly to tour length.  As one 
adds stops to a tour, it is natural to expect tour length to increase as the addition of each stop 
entails some additional travel distance.  Among the vehicle types, vans tend to have the longer 
tour length, presumably because vans are comfortable for transporting household members or 
undertaking joint activities.  It is somewhat surprising to see that cars are next in line in terms of 
a positive impact on tour length, while sports utility vehicles and pick-up trucks show the lowest 
impact on tour length.   This finding is a key sign that people are making a conscious trade-off in 
the distance traveled by different vehicle types.  Both sports utility vehicles and pick-up trucks 
generally have the poorest fuel economy among all vehicle types.  The model is indicating that 
both of these vehicle types are associated with the shortest tour lengths relative to car and van 
vehicle types (both of which tend to have better fuel economy).  It appears that individuals are 
making conscious decisions involving trade-offs between travel cost and miles of travel.  If a 
large gas guzzling vehicle is used, then the individual may attempt to consciously find locations 
that are closer in distance to reduce travel costs.  Of course, such trade-offs can be exercised only 
in the context of non-work tours/travel.   
 The impacts of socio-economic and demographic attributes on tour length are in line with 
expectations.  As household size (relative to number of vehicles) increases, the tour length 
decreases.  This may be reflective of the vehicle availability constraints that the household has to 
deal with.  In households where household size is large relative to number of vehicles, 
individuals who take the vehicle to undertake a tour may have to return quickly so that another 
household member can use the same vehicle.  This compels travelers to undertake short tours and 
minimize travel time.  The lower number of vehicles relative to household size may also be 
reflective of a lower income level; individuals in such households may purposefully undertake 
shorter distance tours to save on travel costs.  As the number of children increases, individuals 
tend to make shorter tours.  This is presumably due to two reasons.  First, if the children are 
accompanying the tour maker, then the individual may choose to complete errands quickly by 
undertaking shorter tours in order to avoid taxing the patience of the children.  Second, if the 
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children are not accompanying the individual on the tour, then it might be necessary for the 
individual to quickly conclude the tour and return home to tend to children.  It is also possible 
that children have schedule constraints that compel the traveler to undertake shorter tours. Males 
tend to make longer tours suggesting that females make shorter tours visiting destinations more 
closely located to the home base.  Those with higher education undertake longer tours, perhaps 
because they have higher income levels, or are more aware of desirable destinations for non-
work activities. As expected, those in non-urban areas undertake longer tours; this is likely due 
to the lower levels of accessibility to destinations enjoyed by such households. Lower income 
individuals make shorter tours as do individuals 65 years of age and over.  Older individuals may 
not be comfortable traveling long distances.  Those with flexible work start time, and thus less 
rigid time-space constraints associated with work, are found to engage in short tour lengths.  This 
is presumably because these individuals do not have to chain multiple activities into longer 
multi-stop tours in the quest for efficiency; instead, they can engage in a larger number of short 
tours.  Indeed, the work time flexibility is negatively associated with complex tour formation.   
 
Model Assessment 
This section presents a brief assessment of the joint model estimated and presented in this paper.  
The log likelihood of the final joint model accounting for all potential correlations is 
significantly better than that of the independent model where all dimensions are estimated 
separately.  The log-likelihood value for the joint model is -23487.87 while that for the 
independent model ignoring error correlations is -23535.74.  The likelihood ratio test statistic is 
found to be 95.75 with 12 degrees of freedom.  This value is considerably greater than the 
critical χ2 value of 21.03 at 12 degrees of freedom, suggesting that the joint model offers a 
statistically superior fit at a 0.05 level of significance.  This finding of improved goodness-of-fit 
of the joint model is the first indication that there may significant error correlations that 
contribute to a poorer fit in the independent model where they are ignored.   
 The covariance matrix Ω  for the utility differentials3 with respect to the first alternative 
corresponding to the Cholesky matrix  L  is shown in Table 4. Only those parameters that are 
free to be estimated have t-statistics reported against them.  All other parameters are fixed during 
estimation. It can be seen that there are significant error correlations across different nominal 
variables and the continuous variable even after including right hand side endogenous variables 
in the equations that comprise the joint model system.  In other words, even after accounting for 
observed relationships among the tour attributes considered in this paper, there are correlated 
unobserved factors affecting these attributes leading to the estimation of significant error 
correlations.  The interpretation of the error correlations is that unobserved attributes that affect 
one dimension are correlated with unobserved attributes that affect another dimension.  In this 
particular study, it is found that all significant error correlations are positive.  For example, 
unobserved factors that contribute to partly joint or joint tours are positively correlated with 
unobserved factors that contribute to complex tour formation.  Suppose a person is a fun-seeking 
individual who likes to socialize and visit friends.  Then, this unobserved attribute of the 
individual is likely to positively influence both joint tour formation and complex tour formation.  
Such individuals are likely to enjoy traveling with others (friends) leading to the formation of 
                                                            
3 The t-statistics reported in the table are with respect to the corresponding values in an independent model where we have 1s 
along the diagonal and 0.5s for all off-diagonal elements in each of the block diagonal matrices corresponding to each nominal 
variable and 0s for rest of the elements. It can also be seen that parameters which are fixed during the estimation process do not 
have t-statistics reported along with them. 
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joint tours.  Such individuals are also likely to visit multiple places and undertake complex tours 
as they seek to engage in fun activities with friends.  They may also have to go to multiple 
locations to pick up and drop off friends.   
 Similar interpretations may be applied to other significant error correlations.  For 
example, an adventurous individual may be inclined to undertake complex tours and longer tours 
in search of destinations that meet the individual’s activity preferences. The bottom line is that 
there are significant error correlations, possibly stemming from attitudes and preferences that 
make individuals likely to bundle certain choice options together, or built environment and 
accessibility measures that were not included in the model specifications of this paper.  The 
inclusion of such attributes in the model specifications remains a future research exercise. 
Unobserved attributes that contribute to an individual choosing the car also positively contribute 
to the choice of the sports utility vehicle as evidenced by the positive error correlation between 
auto and SUV vehicle type choices. Unobserved attributes that contribute to joint or complex 
tour formation are positively correlated with unobserved attributes that contribute to longer tours. 
 It is interesting to note that there are some key differences in model results between the 
multi-dimensional choice model system presented in this paper and the bivariate model system 
estimated on the same data set presented in earlier research (Konduri et al, 2011).  In the 
bivariate model system where accompaniment and complexity were treated as exogenous 
variables without adequate accounting for endogeneity and correlated unobserved attributes 
simultaneously impacting these additional dimensions, the tour complexity was found to 
positively impact choice of van in the vehicle type choice model.  However, in the model 
estimated for this paper, tour complexity was not statistically significant at all in any of the 
vehicle type choice utility equations.  Also, in the previous research effort, the influence of 
accompaniment on tour complexity was never captured because these two variables were treated 
as independent variables.  In the earlier bivariate model, the number of error correlations that 
could be estimated was considerably smaller because only two choice dimensions were 
considered as endogenous.  Among the error correlations, only the one between van type choice 
and tour length was found to be statistically significant.  Other relevant error correlations that 
were found to be significant in this work were not found statistically significant in that simpler 
bivariate model system.  Moreover, the error correlation between van and tour length was found 
to be negative in that earlier bivariate model.  In the multi-dimensional model of this paper, this 
error correlation is found to be positive, suggesting that model parameter estimates and 
inferences are significantly impacted by the lack of proper accounting for endogeneity in 
multivariate modeling contexts. The finding in this paper suggests that unobserved attributes 
contributing to longer tours (such as living in suburban locations with lower accessibility to 
destinations) also contribute to the choice of van as a vehicle type (as households in these 
locations tend to have larger household sizes with children and may desire to use the van to 
accommodate multiple individuals more comfortably).      
 Finally, if one were to compare the model estimation results against the original 
hypothesized structure of the nature of the relationships among these endogenous variables as 
depicted in Figure 1, it is seen that the relationships postulated in that figure are all significant 
except the one where tour complexity affects vehicle type choice.  It appears that tour complexity 
itself does not directly affect vehicle type choice.  Rather there are common unobserved 
attributes that simultaneously impact tour complexity and vehicle type choice as evidenced by 
the positive significant error correlation between tour complexity and car vehicle type choice.  
However, this covariance is rather weakly significant (with a t-statistic of 1.69) and no other tour 
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complexity – vehicle type choice error covariance is significant.  In other words, according to the 
model estimated in this paper, the relationship between tour complexity and vehicle type choice 
is quite tenuous, a finding substantially different from the earlier paper (Konduri et al, 2011) 
where tour complexity was found to significantly directly impact (positively) the choice of van.  
However, one of the key similarities between the findings of the two studies is that, in both 
cases, model specifications where vehicle type choice significantly affected tour length were 
statistically superior to model specifications where tour length affected vehicle type choice.  
Thus, the notion that vehicle type choice is a longer term decision, where vehicles are broadly 
allocated to adults or drivers in a household as a higher level household decision, appears to hold 
true regardless of whether one considers accompaniment and tour complexity as exogenous to 
the system or endogenous to the system.   However, the multidimensional choice model 
estimation results in this paper point to the influence that accompaniment and tour complexity 
have on vehicle type choice in the context of a tour.  In other words, although vehicle allocation 
to adults may be occurring as a longer-term higher-level decision process, conscious decisions 
regarding vehicle type choice and tour length are being made at the tour level depending on the 
nature of the tour (in terms of accompaniment and complexity).    
 
CONCLUSIONS 
This paper presents a multi-dimensional choice model system of tour attributes with a view to 
better understand the complex inter-relationships that exist among various choice dimensions of 
interest in the context of tour- and activity-based travel model specification.  The four 
dimensions considered in this paper are passenger accompaniment, tour complexity (measured 
by number of stops undertaken), vehicle type chosen, and tour length (distance).  Modeling these 
choice dimensions independently of one another, without recognizing the potential presence of 
correlated unobserved attributes that simultaneously impact multiple dimensions, leads to a 
number of limitations that may result in erroneous behavioral inferences and travel forecasts.  
First, when endogeneity exists among multiple choice dimensions that are modeled 
independently of one another in a series of sequential models loosely strung together, resulting 
parameter estimates are biased and inconsistent.  This can lead to erroneous impact assessments 
and scenario forecasts.  Second, it is entirely possible that some choice dimensions are made as a 
package or bundle by individuals.  In the context of a tour, it is conceivable that choices 
regarding passenger accompaniment, stop formation, vehicle type, and locations to be visited 
constitute a package of choices that are made together in a bundle.  When that happens, there are 
bound to be unobserved attitudinal and lifestyle preference variables that inevitably impact 
multiple dimensions simultaneously.  Thus, a model that ignores the bundling or packaging of 
choices will inevitably be limited in its representation of behavioral processes at play.   
 This paper makes two major contributions to the field.  First, the paper presents an 
econometric methodology for estimating multi-dimensional choice model systems that include a 
variety of dependent variable types and accommodate error covariances across multiple 
dimensions. The modeling methodology takes advantage of the latest advances in model 
formulation and estimation, and involves the use of novel estimation techniques that greatly 
reduce computational burden without compromising the efficiency (precision) of parameter 
estimates.  Second, the paper sheds considerable light on the nature of the empirical relationships 
among the four dimensions examined in this paper. There is much interest in understanding how 
multiple tour attributes are related to one another with a view to better inform the structure and 
specification of tour-based models.  In addition, there is very limited evidence on tour-level 
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vehicle type choice processes despite the obvious importance of this choice dimension in the 
ongoing debate regarding energy sustainability and greenhouse gas emission reduction.   
 A simultaneous equations model is estimated in this paper on a sample of over 6000 tours 
drawn from the 2009 National Household Travel Survey of the United States. It is found that 
vehicle type choice is highly dependent on vehicle availability by type, underscoring the need to 
consider variable choice set composition explicitly when modeling vehicle type choice.  The 
model estimation results show that the dimensions considered in this paper are all related to one 
another.  Passenger accompaniment affects tour complexity, with tours involving passengers 
likely to be of less complexity involving just a single stop as opposed to multiple stops. 
Passenger accompaniment, but not tour complexity, affects vehicle type choice with joint tours 
most likely to be undertaken by van.  Passenger accompaniment, tour complexity, and vehicle 
type choice are all found to affect tour length.  Joint tours tend to be longer in distance, as do 
complex tours involving multiple stops.  Van tours tend to be longest in length, followed by car 
tours.  Tours by SUV and pick-up truck tend to be shorter in length than van and car tours.  In 
other words it appears that tours undertaken by more fuel efficient vehicles are likely to be 
longer than tours undertaken by SUV and pick-up trucks.  The results point to the possible 
conscious choices and decision on the part of travelers to choose locations and travel distances 
consistent with the fuel efficiency of the vehicle that they drive.   

The model in which vehicle type choice affected tour length was found to offer superior 
statistical fit than the model in which tour length was allowed to affect vehicle type choice.  
Moreover, the statistical fit of the simultaneous equations model with error covariances was 
considerably superior to the fit of the independent equations model with error covariances 
restricted to zero.  This finding suggests that there are correlated unobserved attributes 
simultaneously impact multiple tour dimensions calling for the increased deployment of models 
such as that presented in this paper.  Further research is needed to fully understand the nature of 
the unobserved attributes affecting these multiple tour dimensions, but these are likely to be 
personal attitudes and preferences, built environment attributes, and accessibility measures, 
besides other unobserved variables (such as time-space constraints, household constraints, 
personal constraints, and institutional constraints) not available in the data set.  The modeling 
methodology presented in this paper has the potential to offer dramatic breakthroughs in the 
ability of the profession to better capture and represent simultaneous choice processes at play.   

From a policy perspective, the findings of the paper suggest that the complex inter-
relationships among tour choice dimensions make the analysis of policy impacts potentially more 
involved than one might have imagined.  The findings suggest that the use of a more fuel 
efficient vehicle for a tour contributes to the choice of a longer tour length.  In other words, 
although the driving of a fuel efficient vehicle may reduce energy consumption and emissions, 
the finding that it is driven longer distances suggests that the energy consumption and emissions 
reductions may not be as much as expected and the increase in vehicle miles of travel may 
actually contribute to greater levels of congestion on roadways.  Policies aimed at encouraging 
the ownership and use of fuel efficient and clean vehicles may end up not providing the 
originally intended benefits.  Another interesting finding is that the flexibility associated with 
work start time is contributing to the formation of single stop tours (less complexity) of shorter 
length.  In other words, the loosening of time-space constraints imposed by rigid work schedules 
makes it possible for people to undertake less efficient activity-travel patterns that are 
characterized by a higher frequency of single stop tours.  While an individual single stop tour is 
likely to be of shorter length than a complex tour, the fact that there are more of them (assuming 
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no change in activity agenda itself) could result in an increase in overall mileage.  Again, from a 
policy perspective, the potential benefits that would be expected from the implementation of a 
flexible work hours strategy may not be fully realized. 

In summary, the paper points to the need to further develop multi-dimensional choice 
models capable of reflecting the complex observed and unobserved inter-relationships among 
several behavioral dimensions of interest.  Such models would be able to more accurately 
capture behavioral processes at play and offer more robust forecasts of possible consequences of 
policy actions.  Although the econometric model system formulated and presented in this paper 
may appear to be a rather complex statistical exercise, it offers the potential to move the 
profession a step closer to implementing more simultaneous equations model systems that 
recognize the package nature of activity-travel choices.   
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Table 1. Descriptive Statistics 
Variable Statistic 
Tour-level Mean 
Number of passengers on the tour 1.7 
Number of trips on the tour 2.7 
Number of stops 1.7 
Travel duration of the tour 37.0 minutes 
Travel length of the tour 15.7 miles 
Vehicle type chosen (all tours) 

% Auto 41.9 
% Van 14.1 
% SUV 25.4 
% Pick-up Truck 18.6 

Vehicle type chosen (all tours; accounting for vehicle availability in fleet) 
% Auto 51.1 
% Van 50.2 
% SUV 50.9 
% Pick-up Truck 32.3 

Household-level 
Average household size 3.1 

% 1 person household 3.1 
% 2 person household 44.5 
% 3 person household 18.4 
% 4+ person household 34.0 

Average household vehicle count 2.8 
% 2 vehicle household 49.9 
% 3 vehicle household 30.7 
% 4 or more vehicle household 19.4 

Household Income 
% households with income < $40K 22.0 
% households with income ≥40K and < 60K 17.3 
% households with income ≥60K and < 100K 27.8 
% households with income ≥100K 27.0 

Average number of adults 2.3 
Ratio of household size to vehicle count 1.17 
Ratio of number of children to number of drivers 0.33 
% households in non-urban area 32.0 
% households that own the housing unit 95.2 
Person-level 
Average age 52.2 

% people ≥15 and < 25 years 9.0 
% people ≥25 and < 45 years 22.3 
% people ≥45 and < 65 years 41.6 
% people ≥65 years 27.1 

% males 46.0 
% Hispanic respondents 6.4 
% part-time employees 15.3 
% full-time employees 29.2 
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Table 2. Tour Characteristics by Vehicle Type Chosen and Vehicle Fleet 
Vehicle Body Type 
Selected for the Tour 

Vehicle Fleet by Body 
Type Frequency Tour 

Distance 
Travel 
Time 

Number of 
passengers 

Number 
of Stops 

Average Tour Distance (Not Considering Vehicle Fleet Composition) 
Car 2716 16.0 37.7 1.6 1.6 
Van 911 15.2 37.0 2.1 1.8 
SUV 1647 15.4 36.0 1.8 1.7 
Pickup 1204 15.6 36.5 1.5 1.6 
Average Tour Distance (Considering Vehicle Fleet Composition) 
Car Car, Pickup 1204 17.1 39.3 1.6 1.7 
Car Car, SUV 767 14.3 36.1 1.5 1.6 
Car Car, SUV, Pickup 196 16.6 36.9 1.6 1.6 
Car Car, Van 392 15.2 36.5 1.7 1.6 
Car Car, Van, Pickup 99 15.8 35.6 1.6 1.5 
Car Car, Van, SUV 47 17.2 41.2 1.5 1.6 

Car Car, Van, SUV, 
Pickup 11 20.3 42.4 1.6 1.6 

Van Car, Van 450 15.0 37.5 2.1 1.8 
Van Car, Van, Pickup 102 17.0 38.9 2.1 1.9 
Van Car, Van, SUV 50 11.1 28.8 1.8 1.6 

Van Car, Van, SUV, 
Pickup 12 21.7 43.8 2.3 1.8 

Van Van, Pickup 169 14.4 35.9 2.0 1.8 
Van Van, SUV 100 17.2 39.6 2.1 1.7 
Van Van, SUV, Pickup 28 15.4 31.9 1.9 1.3 
SUV Car, SUV 824 14.1 34.3 1.7 1.6 
SUV Car, SUV, Pickup 241 16.0 37.4 1.7 1.7 
SUV Car, Van, SUV 46 15.4 36.4 1.5 1.9 

SUV Car, Van, SUV, 
Pickup 17 18.3 40.4 2.1 1.9 

SUV SUV, Pickup 412 17.0 37.4 1.9 1.8 
SUV Van, SUV 76 16.4 40.3 1.7 1.7 
SUV Van, SUV, Pickup 31 17.9 38.4 1.9 1.6 
Pickup Car, Pickup 662 15.4 35.8 1.5 1.6 
Pickup Car, SUV, Pickup 137 16.9 36.9 1.4 1.6 
Pickup Car, Van, Pickup 51 14.0 33.5 1.6 1.4 

Pickup Car, Van, SUV, 
Pickup 10 15.0 33.6 1.4 1.6 

Pickup SUV, Pickup 221 15.6 37.4 1.5 1.6 
Pickup Van, Pickup 111 15.9 37.5 1.4 1.7 
Pickup Van, SUV, Pickup 12 17.4 61.4 1.3 1.3 

All figures are averages except for the frequency column. Distance is in miles and travel time is in minutes. 
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Table 3. Model Estimation Results 
Variable Description Coeff t-stat Coeff t-stat Coeff t-stat
Accompaniment (Base Alternative: Solo)
Constant -0.9168 -12.51 -0.6350 -11.71
Socio-economic Attributes

Ratio of household size to number of vehicles 0.3876 8.24 0.4578 9.55
Ratio of number of children and number of drivers 0.4953 9.84 0.1875 3.78
Race of household respondent is Caucasian -0.1687 -3.27
Gender (Male = 1, Female = 0) -0.3065 -7.62 -0.2683 -7.80
Age 18 years and younger (Yes=1, No=0) -0.3278 -3.65 0.1688 2.27
Part-time employment indicator (Yes = 1, No = 0) 0.1252 2.66
Income indicator: 0 - $40K (Yes = 1, No = 0) 0.1839 4.89
HH in non-urban area (Yes=1, No=0) 0.0688 2.08

Tour Complexity (Base Alternative: Simple)
Constant -0.0860 -1.09
Tour Attributes

Accompaniment type: Partly Joint (Yes=1, No=0) -0.3091 -1.98
Accompaniment type: Joint (Yes=1, No=0) -0.3197 -1.75

Socio-economic Attributes
Can set or change work start time (Yes=1, No=0) -0.1354 -2.56
Full-time employment indicator (Yes = 1, No = 0) -0.0879 -2.20
Race of household respondent is Hispanic -0.1326 -1.93
Age 18 years and younger (Yes=1, No=0) -0.1648 -2.06
Gender (Male = 1, Female = 0) -0.1647 -4.18

Vehicle Type (Base Alternative: Pickup Truck)
Constant 1.0414 24.21 0.6839 8.34 1.0239 23.22
Tour Attributes

Accompaniment type: Partly Joint (Yes=1, No=0) -0.5405 -3.31 0.4617 4.61
Accompaniment type: Joint (Yes=1, No=0) 0.5195 6.18

Socio-economic Attributes
Gender (Male = 1, Female = 0) -1.0920 -22.43 -1.3309 -18.12 -1.1220 -20.44
Age 65 years and older (Yes=1, No=0) 0.1374 1.77
No. of children in household 0.0823 3.06
HH in non-urban area (Yes=1, No=0) -0.1168 -1.74 -0.0970 -2.27

Tour Length
Constant 1.4364 14.53
Tour Attributes

Accompaniment type: Joint (Yes=1, No=0) 0.6098 3.17
Tour complexity: Complex tour (Yes=1, No=0) 1.4469 7.89
Vehicle type: Auto (Yes=1, No=0) 0.0872 2.51
Vehicle type: Van (Yes=1, No=0) 0.1545 2.81
Vehicle type: SUV (Yes=1, No=0) 0.0454 1.12

Socio-economic Attributes
Ratio of household size to number of vehicles -0.0843 -2.10
No. of children in household -0.0575 -3.29
Gender (Male = 1, Female = 0) 0.1173 3.91
Education level: Atleast some college (Yes=1, No=0) 0.0469 1.78
Can set or change work start time (Yes=1, No=0) -0.0680 -1.79
HH in non-urban area (Yes=1, No=0) 0.4470 16.81
Income indicator: 0 - $40K (Yes = 1, No = 0) -0.0843 -2.62
Age 65 years or over (Yes=1, No=0) -0.0703 -2.34

Auto Van SUV

Partly Joint Joint

Complex
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Table 4. Error Covariance Matrix 
Dimension Partly Joint Joint Complex Auto Van SUV Tour Length 
Partly Joint 1             
Joint 0.5 1           
Complex  0.3525 (4.50) 0.1914 (1.95) 1         
Auto 0.3787 (4.52) 0.1233 (3.97) 0.0469 (1.69) 1       
Van  0 0 0 0.5 1     
SUV  0.1679 (3.96) 0.2057 (5.81) 0 0.6896 (2.39) 0.5 1   
Tour Length 0 0.2030 (1.72) 0.4549 (3.10) 0 0.1278 (2.97) 0 0.9999 (15.59)

Values in parentheses are t-statistics.  If no t-statistic is provided, it means that the covariance was fixed to the shown value.  
 
 



28 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A Framework of Relationships Among Endogenous Variables 
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