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ABSTRACT 

In this paper, we develop a new matrix-based implementation of the Mendell and Elston (ME) 

analytic approximation to evaluate the multivariate normal cumulative distribution (MVNCD) 

function, using an LDLT decomposition method followed by a rank 1 update of the LDLT 

factorization. Our implementation is easy to code for individuals familiar with matrix-based 

coding. Further, our new matrix-based implementation for the ME algorithm allows us to 

efficiently write the analytic matrix-based gradients of the approximated MVNCD function with 

respect to the abscissae and correlation parameters, an issue that is important in econometric model 

estimation. In addition, we propose four new analytic methods for approximating the MVNCD 

function. The paper then evaluates the ability of the multiple approximations for individual 

MVNCD evaluations as well as multinomial probit model estimation. As expected, in our tests for 

evaluating individual MVNCD functions, we found that the traditional GHK approach degrades 

rapidly as the dimensionality of integration increases. Concomitant with this degradation in 

accuracy is a rapid increase in computational time. The analytic approximation methods are also 

much more stable across different numbers of dimensions of integration, and even the simplest of 

these methods is superior to the GHK-500 beyond seven dimensions of integration. Based on all 

the evaluation results in this paper, we recommend the new Two-Variate Bivariate Screening 

(TVBS) method proposed in this paper as the evaluation approach for MVNCD function 

evaluation.  

 

Keywords: multivariate normal cumulative distribution function, multinomial probit, discrete 

choice models, econometric models.  
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1. INTRODUCTION 

Many statistical and econometric applications require the evaluation of the multivariate normal 

cumulative distribution (MVNCD) function. For example, in consumer choice analysis in general, 

and transportation and marketing analysis in particular, the estimation of such models as the 

multinomial probit (MNP) model, the multivariate binary and ordered-response models, and the 

multiple discrete-continuous model all require the computation of the MVNCD function. The 

computation of the MVNCD function also features in applications in a variety of other stochastic 

programming fields such as defense and environmental economics, geography, and water 

management.  

Earlier studies have developed many ways to evaluate the MVNCD function. While these 

methods are general and can be used in a variety of situations, most earlier studies have examined 

the MVNCD function evaluation in the context of MNP estimation. Some of these earlier MVNCD 

evaluations are based on simulation techniques and others on analytic approximations. Among the 

simulation methods, the best known approach within a frequentist estimation framework is the 

GHK probability simulator, named after Geweke (1991), Hajivassiliou (Hajivassiliou and 

McFadden, 1998), and Keane (1990, 1994). The GHK approach starts with transforming the 

correlated random terms into linear functions of uncorrelated standard normal deviates using the 

Cholesky decomposition of the correlation matrix in the MVNCD evaluation. Doing so helps in 

recasting the MVNCD as a recursive product of univariate (conditional) cumulative normal 

distributions (UCCNCD). Each UCCNCD involves the integral over a single-sided truncated 

normal, which is achieved in the GHK through simulation of pseudo-random draws from a 

truncated normal. Bhat et al. (2010) embed the Halton approach (rather than the pseudo-random 

approach) to draw from the truncated normal, because of the better coverage of the Halton draws 

over the integration space (see Bhat, 2001). Alternative GHK procedures involve the use of 

multivariate quadrature using sparse grid integration (SGI) (see Heiss and Winschel, 2008) or the 

use of Efficient Importance Sampling (EIS) within the GHK simulator (see Heiss, 2010). In 

addition to the above frequentist approach, efficient MCMC methods for models involving the 

MVNCD function evaluation have also been proposed through data augmentation techniques that 

make it possible to use standard Bayesian regression techniques (see McCulloch et al., 2000 and 

Imai and van Dyk, 2005).  
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Among the analytic approximation techniques, one of the first approaches was that 

proposed by Clark (1961). Unfortunately, this approximation does not perform well for MVNCD 

evaluations when the random variables are highly correlated or have different variances. In another 

analytic approximation study, Mendell and Elston (1974) (ME) use the same univariate 

conditioning approach that formed the basis later for the GHK, except they replace draws from the 

truncated normal at each conditioning step with approximations of the first two moments of the 

truncated variables at earlier conditioning steps. This method has also been used by many other 

authors since, including Rice et al. (1979), Kamakura (1989), and Hutmacher and French (2011). 

Yet another MVNCD analytic approximation was first proposed by Solow (1990) based on Switzer 

(1977), and then refined by Joe (1995). This procedure entails the decomposition of the 

multivariate integral into a product of conditional probabilities. At each step, the conditional 

probability is approximated based on replacing the conditional events by binary variables and the 

conditional probability itself as an expectation in a linear regression (with the binary variables for 

the conditional events serving as exogenous variables, with known covariances amongst 

themselves based on the correlation matrix of the MVNCD evaluation).  

With the many simulation and analytic approaches, a couple of recent studies have 

examined the accuracy and precision offered by the many approaches in the context of MNP model 

estimation. Patil et al. (2017) compared all the simulation techniques mentioned earlier with Bhat’s 

(2011) maximum approximate composite marginal likelihood (MACML) approach, which 

combines the Switzer-Solow-Joe (SSJ) approximation for the MVNCD function with the 

composite marginal likelihood (CML) inference approach for MNP models. The focus of Patil et 

al.’s (2017) study was on the accuracy and precision of MNP parameter recovery in a five-

alternative choice context. They find that, among all the simulation-based techniques, the GHK-

Halton performs best for MNP estimation.  However, among the simulation and MACML 

approaches, the overall winner in terms of accuracy and precision of underlying parameter 

recovery, as well as computational time, is the MACML procedure with but one permutation of 

the ordering of the random term abscissae in its embedded analytic approximation for the MVNCD 

function. Connors et al. (2014) focused on the analytic approximations corresponding to the ME 

method and the SSJ method, though they also included the GHK and a couple of other simulation 

approaches for reference reasons. Unlike Patil et al. (2017), Connors et al. (2014) focused on the 

ability of the methods to recover the probabilities for individual observations in an MNP setting 
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rather than the underlying choice process parameters at the end of the choice model estimation. 

They tested four different numbers of alternatives (5, 7, 9, and 15 alternatives) as well as a range 

of utility values and correlation structures. Their results indicated that, for estimating the 

probabilities for individual observations, an optimally ordered version of the ME method (to be 

discussed later in this paper) does much better than the SSJ method with even as many as ten 

permutations of the abscissae. In addition,  they found that the ME method is an order faster than 

the typical GHK approach in computing the choice probabilities while providing at least the same 

level of accuracy. A few earlier studies have also done a relatively limited comparison, including 

Kamakura (1989) who, using a three-to-five alternative set-up in an MNP model, evaluated the 

ME method with Clark’s (1961) approximation and another method proposed by Langdon (1984). 

He found that the ME method works best relative to the other two, in both evaluating the MVNCD 

function (as reflected in individual choice probabilities) as well as the underlying MNP model 

parameters. Joe (1995) tested the SSJ approximation of two different orders (a first order one that 

entails the evaluation of univariate and bivariate cumulative normal distributions and a more 

accurate second order one that entails the evaluation of trivariate and quadrivariate cumulative 

normal distributions) in the context of MVNCD evaluations (rather than MNP parameter 

recovery). He observed that the SSJ approximation of the first order does better than the ME as 

well as simulated versions for up to 20 dimensions, though his SSJ approximation is based on 

averaging over the results of up to 2000 permutations of the abscissae (or all permutations of 

abscissae if this is less than 2000)  for each MVNCD evaluation.  

In the current paper, we first propose a streamlined and matrix-based version of the ME 

method that relies on a single-sided truncation of a multivariate normal distribution in which some 

variables are truncated while others are not. A number of recent papers have focused on such 

multivariate distributions and studied the properties of the resulting distributions (see, for example, 

Kim and Kim, 2015), making use of results related to the moments of truncated multivariate 

normal distributions (Manjunath and Wilhelm, 2012 and Kan and Robotti, 2017) and using a 

regression technique (see Kotz et al., 2000, page 70) to obtain the mean and covariance matrices 

of the untruncated variables from the moments of the truncated variables. We use this approach, 

except propose a new way to implement this approach using an LDLT decomposition method for 

the correlation matrix followed by rank 1 or rank 2 updates of the LDLT factorization. This 

implementation is easier to code and more computationally efficient than the recursive scalar 
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computations in all earlier implementations of the ME. Using our new matrix-based 

implementation for the ME algorithm, we also write the analytic matrix-based gradients of the 

approximated MVNCD function with respect to the input (to the MVNCD function) abscissae and 

correlation parameters. We also show how, based on our matrix ME implementation, the Trinh 

and Genz or TG (2015) implementation of the ME method (labeled as the TGME approach) is a 

substantial simplification that will not provide as accurate MVNCD evaluations as the ME 

method.1  

In addition to proposing a streamlined and matrix-based approach for the extant ME 

method, we propose four new methods for approximating the MVNCD function. The first of these 

(which we will refer to as the one variate univariate screening or OVUS method) is based on 

recognizing that, when two untruncated variables are normally distributed, the marginal 

distribution of one of the untruncated variates given that the other variable is truncated (or 

screened) is skew-normally distributed and not normally distributed (see Arnold et al., 1993; the 

ME method, on the other hand, approximates this skew-normal distribution by a normal 

distribution). The second method (which we will label as the one variate bivariate screening or 

OVBS method) extends the OVUS method, and uses three variates at a time. The marginal 

distribution of one variate, given the other two variables are truncated (or screened), takes the 

OVBS distribution. The third method (which we will label as the bivariate ME or BME method) 

is based on starting with a quadrivariate normal distribution, using a bivariate truncation scheme 

for the first two variables, and assuming that the marginal distribution of the third and fourth 

untruncated variables, given the first two are truncated, remains bivariate normal. Conceptually, 

this is the extension of the ME method, which is based on univariate conditioning, to a bivariate 

conditioning mechanism. Trinh and Genz (2015) recently have also proposed a bivariate 

conditioning generalization of the ME method (algorithms 3.2 and 3.3 of their paper). Again, we 

will show how the TG version of this bivariate conditioning algorithm (referred to as the TGBME 

method) is not as accurate as our proposed bivariate conditioning approach. The fourth method 

(which we will label as the two-variate bivariate screening or TVBS method) combines the 

                                                 
1 Intuitively, the TG version of the ME method (see their algorithms 2.1 and 2.2) ignores the fact that the variance of 
a second untruncated marginal element conditional on a first truncated element has a different variance than the 
variance of the second untruncated element conditional on the first untruncated element. Thus, assume two bivariate 
normal random variables W1 and W2. Then, the marginal distribution of W2 | W1 < w1 has a different variance than     
W2 | W1. By ignoring this issue in their algorithms 2.1 and 2.2, TG’s ME implementation is not as accurate as the actual 
ME method (we will demonstrate this through simulation experiments). 
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bivariate truncation scheme of the second method with the recognition that the bivariate marginal 

of the untruncated variables in a quadrivariate system is bivariate skewed and not bivariate normal.  

The analytic gradients for all these methods have also been coded, tested, and verified. 

While our way of writing the gradients requires familiarity with matrix differentiation, the matrix-

based implementation makes the coding streamlined and compact. Having the analytic gradients 

of the many MVNCD approximations allows the use of these analytic approximation methods in 

econometric model estimation to speed up convergence (on the other hand, relying on numerical 

gradients can be unstable, can lead to convergence problems, and takes an order of magnitude 

more time, especially as the number of alternatives in the MNP model increases).  A complete 

library of GAUSS matrix programming codes for the proposed matrix-based implementation of 

the ME method, and for all the new proposed analytic methods as well as the SSJ method (and 

gradients of all these analytic approaches), are available at 

http://www.caee.utexas.edu/prof/bhat/LDLT.html.  

We evaluate the four proposed analytic MVNCD approximations, as well as the simplified 

TGME and TGBME methods, with the SSJ and ME methods. For the SSJ method, we consider 

the first-order approximation that entails the evaluation of only univariate and bivariate cumulative 

normal distribution functions. We consider both the case of a single permutation (SSJ1), as well 

as ten random permutations of the abscissae (SSJ10), to compute the MVNCD function (Connors 

et al., 2014 found little to no benefit of having more than ten permutations in the SSJ method, 

especially relative to the added time needed). For reference, we also examine the performance of 

the GHK-Halton simulation method for MVNCD evaluation. In the GHK-Halton, we use 500 

Halton draws for drawing from the truncated standard normal distribution, as discussed in detail 

in Bhat et al. (2010). In the comparison of all the methods, we use different numbers of dimensions 

of integration (h = 5, 7, 10, 12, 15, 18, and 20). In doing so, we observed a rapid deterioration of 

the GHK-Halton with 500 Halton draws as the dimensionality increased, and so also added a GHK 

Halton procedure with 10,000 Halton draws.  

In addition to the ability to accurately compute individual MVNCD functions (or, 

equivalently individual observation MNP choice probabilities), we evaluate performance based on 

the ability of the methods to recover underlying MNP parameters. Additionally, we ensure that we 

cover the range of choice probabilities in our evaluation. 
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The paper is structured as follows. The next section presents the proposed methods. Section 

3 presents the evaluation design set-up, clearly identifying the methods being tested and the 

performance metrics used. Section 4 presents the results. Section 5 concludes the paper by 

highlighting important findings. 

 

2. THE MVNCD ANALYTIC APPROXIMATION ALGORITHMS 

In this section, we first start with two important properties of truncated multivariate normal 

distributions, which are used in the matrix-oriented implementation of the ME method (that utilizes 

exact moments for the untruncated variables in a multivariate system, given that a single variable 

is truncated) as well as all other methods advanced in this paper. We then proceed to a discussion 

of the ME method and the four new methods proposed in this paper.  

 

2.1. Truncated Multivariate Normal Distributions 

We make use of two important properties of truncated multivariate normal distributions, the first 

dealing with the expected values and variances of single-sided truncations (from above) of 

univariate and bivariate normally distributed random variables, and the second dealing with the 

marginal distribution of the vector of untruncated variables when some variables are truncated.  

 

Property 1 

Consider a bivariate normally distributed couplet 1X  and 2X : 
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(.)2  above is the bivariate standard normal cumulative distribution function, (.)  is the 

univariate standard normal cumulative distribution function, and  (.) is the univariate standard 

normal density function. The covariance matrix of Y is: 
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2 (.) above represent the bivariate standard normal probability density function. The proof is in 

Appendix A.  

When considering only a single normal variable that is truncated (say 1X ), then,  
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Property 2 

Consider a H-dimensional vector X of multivariate normally distributed variables 
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This property is based on Pearson (1903) and Aitken (1934), and is also presented in Kotz et al. 

(2000) and Manjunath and Wilhelm (2012). It is used by Kim and Kim (2015) in obtaining the 

first two moments of their general class of rectangle-screened multivariate normal distributions. 

The ME method (discussed in the next section in more detail) is based on first applying Equation 

(8) to the truncation of 1X  (such that )11 xX  , and  determining the expected value vector and 

covariance matrix of the vector ),...,,(
~

322 HYYYY . So far, all is fine. Then, it starts with the vector 

),...,,(
~

322 HYYYY , assumes this to be multivariate normal, applies a truncation next on 2X  (such 

that )22 xX  , and applies Equation (8) again to get the expected value vector and covariance 

matrix of the resulting new ),...,,(
~

433 HYYYY . This process is continued. However, after the first 

truncation on 1X , 2

~
Y  is not multivariate normal. Thus the use of Equation (8) is not strictly correct, 

but is used as an approximation to obtain the expected value vector and covariance matrix of 

),...,,(
~

433 HYYYY . To be precise, 2

~
Y  takes a multivariate skew distribution form (see Lee and 

McLachlan, 2013; though the truncation of 1X  is from above and not below as in the standard 

skew distribution form).  

 

2.2. The ME Method 

The ME method is based on univariate conditioning. The fundamental concept behind the 

univariate conditioning mechanism, used also in the GHK procedure as well as the ME, is that the 

MVNCD function may be written conveniently as a sequence of UCCNCDs. More specifically, 

let ) ,..., , ,( 321 HWWWW  be a multivariate normally distributed random vector with zero means, 
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variances of 1, and a correlation matrix Σ (H > 2). Then, interest centers on approximating the 

following orthant probability: 

)  ..., ,  ,  ,( Pr)( Pr):,...,,( 33221121 HHHH wWwWwWwWwww  wWΣ . (9) 

The above joint probability may be written as the product of a univariate marginal probability and 

univariate conditional probabilities as follows (H ≥ 2): 
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Earlier discussions and implementations of the ME method (see Kamakura, 1989, Rice et al., 1979, 

and Hutmacher and French, 2011) use rather notationally intensive recursive scalar manipulations 

based on Property 2. Our implementation, on the other hand, is based directly off the applications 

of the two properties discussed in the earlier section, supplemented with a much more streamlined 

way of implementing Property 2 that obtains the results in Equation (8) in a quick and simple 

matrix-based form. To explicate our new proposal for ME implementation, we first state the 

following two additional properties. 

 

Property 3 

Consider a H-dimensional vector X of multivariate normally distributed variables 
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Then, Equation (8) may be equivalently written as: 
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D 0   

0Ω
L

Y

Y

2

Cov



where 1
~μ  and 1Ω  are the expected value and covariance matrix of the truncated normally 
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distributed vector 1Y


 (in the case that G=1 or G=2, which are the cases that we will use in the 

current paper, the expressions for 1
~μ  and 1Ω  are available from property 1). The proof is 

straightforward based on substituting for 11ψ , 21ψ , and 22ψ  in Equation (8) by the right side of 

Equation (11). The above property obviates the need to undertake the relatively more expensive 

manipulations of Equation (8). The advantage of the method will become more clear when 

combined with Property 4 below.  

 

Property 4 

In the ME algorithm, there is a need to sequentially truncate on successive variables at the 

univariate level. Let the first variable be truncated, while the remaining are not truncated. In our 

notation earlier, ,| 1111 xXXY  and, correspondingly, 1111 | wWWZ  with .
1

11
1 




x
w  

Also, ),( 21
 μμ  . Then, from the univariate version of Property 1, we have 

,)1()(,~)( 2

1

2

1

2

111

2

11111111   wYVarYE  where 11)( ZE and 

).1()( 2

111

2

11   wZVar  Using Property 3, the mean vector and covariance matrix of 

)
~

,( 21 YY  can be expressed as follows: 

,~;
~

~
2

1

2

111

2

1 L
D 0   

0
L

Y0
Lμ

Y








 
















 








 Y
Cov

Y
E


 (13) 

where the matrix sandwiched between the L matrices in the last expression above is the D matrix 

except for the first element being replaced by the 1  term (representing the variance of the 

truncated first element). Thus, in the context of the previous property, )~()
~

( 112122   LμYE  

and ,)
~

( 22222211212 LDLLLY Cov  The next step would be to partition 2

~
X  as ,)

~
,(

~
322
 XX X

where ),...,(
~

33  HXXX  and then implement Property 2 again (in an approximate way now, as 

discussed earlier) by truncating on 2X . When using Property 3 instead of Property 2, the analyst 

will need to obtain the LDLT decomposition of .)
~

( 22222211212 LDLLLY Cov  Herein lies the 

added advantage of using Property 3 rather than the equivalent Property 2 (to obtain )
~

( 3YE  and 

)
~

( 3YCov ). This is because the LDLT factorization of 22222211212 )
~

( LDLLLY Cov  can be 

obtained as a simple rank-1 update of the previously obtained LDLT decomposition of ,LLDΣ 
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because 1  is a scalar (so the first term 21121 LL   is the rank-one update of the already existing 

LDLT decomposition 22222 LDL  ). Formally, we may write: 

newnewnew LDLLDLLL  2222221121  (14) 

Pre- and post-multiplying both sides of the above equation by 1
22
-L  and  1

22
-L , and re-arranging, 

we obtain: 

)1
22

1
2221  -

newnewnew
- (LLDLLDGG , where )( 21

1
22 LLG -  [a 1)1( H  matrix]. (15) 

We can very quickly (in order )(HO  time) find the LDL ~~~
 factorization for the left side of the 

above equation 21 DGG   using a triangular factorization-based updating algorithm by using 

suitable Givens rotations (see Golub and Van Loan, 2013), and then LLL
~

22new  and DD
~new . 

Our approach is basically a combination of rank-one updating with a deletion of a row/column of 

the original covariance matrix LLDΣ  .   

Property 4 may be formally stated as follows. At each iteration (i.e., truncation of a 

variable) of the ME method, the needed LDLT decomposition to apply Property 3 constitutes a 

simple update of the original (only once-to-be-computed) LDLT decomposition of LLDΣ   

(that is, there is no need to repeatedly compute LDLT decompositions, which can be expensive). 

Specifically, we first obtain L and D in the first (and only) LDLT decomposition of the original 

covariance (correlation) matrix Σ, next truncate on the variable 1X , compute )(~
11 YE  and 

)( 11 YVar , and obtain )
~

( 2YE , then develop the LDLT decomposition of 2 2( )CovΣ Y   as new

2L  

and new

2D  employing a simple updating mechanism (that uses only L, D, and the variance of the 

truncated 1X  (i.e., )( 11 YVar ) and obtain the first element of 2Σ  simply as the first element of 

new

2D . Next, we truncate on the variable 2X , compute )( 2YE  and )( 22 YVar , and obtain 

)
~

( 3YE , develop the LDLT decomposition of 3Σ  to obtain new

3L  and  new

3D  using a simple updating 

procedure, and obtain the first element of 3 3( )CovΣ Y   as the first element of new

3D . This process 

is continued.  

The pseudo-code for the LDLT updating algorithm applicable to a rank-1 update with a 

single row/column deletion or a rank-2 update with the deletion of two rows/columns is available 

at http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/LDLT/Pseudo-code.pdf. The rank-2 

update will be useful for some of the new approximation procedures proposed later in this paper 
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(even though only the rank-one update with a single row/column deletion is used in our ME 

implementation).  The update procedure takes much less time (is of )(HO order in time) than 

explicitly performing the LDLT decomposition (which is an )( 3HO operation) at each of the H–1 

iterations of the ME method). All that is needed in our implementation is the original LDLT 

decomposition, which is then updated fast at each truncation of a variable once the expected value 

and variance of the previously truncated variable is in place. 

We are now able to state our implementation of the ME method in the following pseudo-

code (in terms of the quantities already defined; H ≥ 2): 

 

(1) Compute )( 1wP1   

(2) Compute the LDLT decomposition LLD   of the original covariance matrix Σ. For 

notational convention purposes, set ,)()
~

( 11 0μXYπ  EE  and ., 11 DDLL  newnew  

(3) For h = 1 to H–1; 

(4) Truncate on hX (that is, hh xX  ) and obtain hhhh YVarYE  )(and~)(   using 

Equation (6) in Property 1, with h  (in the computation of h~ ) being replaced by the 

first element of )
~

( hh E Yπ   and h  obtained as the square root of the first element of 
new

hD  (= ]),1,1[new

hD  and compute 

])1[~(]1,1:2[]1:2[)
~

( 11 hh

new

hhhh hHhHE πLπYπ     using Property 3.  

(5) Implement an LDLT decomposition of 1 1( )h hCov Σ Y   using a call to the LDLT rank-1 

updating algorithm with inputs { new

hL , new

hD , h  } to obtain new

h 1L  and new

h 1D .  

(6) Obtain )( 1hYE  as the first entry of the vector )
~

( 11   hh E Yπ  and )( 1hYVar  as the first 

entry of the matrix new

h 1D . Compute 








 







)(

)(

1

11

h

hh
1h

YVar

YEw
P . 

(7) End for 

(8) Return ( h

H

h

P
1

). 

 

It is important to note that Trinh and Genz’s (TG’s) (2015) implementation in their algorithms 2.1 

and 2.2 do not represent the ME method. When taken in the context of the ME implementation 

proposed in this paper, the TG approach essentially ignores the fact that the variance of a sub-
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vector ( hY
~

 in our notation) conditional on truncation on another sub-vector (when both the 

untruncated sub-vectors have a multivariate distribution) is not the same as the variance of the 

untruncated hX
~

 vector conditional on the other untruncated sub-vector. Specifically, in Equation 

(13) of our ME implementation, Trinh and Genz (2015) do not compute the 1  variance term, and 

simply maintain the same original covariance matrix Σ without any updating after truncation. In 

other words, there is no computation of 1  in step 4 of our ME implementation, and step 5 of the 

algorithm above is completely ignored in the TG algorithms (with D and L trivially revised at each 

h-step as pure submatrices of the original D and L matrices -- 

]1:1,1:1[1  hHhhHhnew
h DD , ]1:1,1:1[1  hHhhHhnew

h LL ). The result is 

that TG’s approach overestimates the MVNCD approximation relative to the ME method, with 

larger errors relative to the ME method. As an illustration, consider a simple bivariate normal 

cumulative distribution function evaluation of 1W  and 2W , with )0,0( μ  and 

. 
14.0

4.01

1

1






















Σ  The intent is to approximate )1 ,3.0( 21  WWP . In our ME 

implementation, first 0.61791. )3.0( 1P  The LDLT decomposition of Σ  provides 











14.0

01
1L  and .

84.00.0

01
1 








D  Truncating on 3.01 W  provides 61722.0~

1   and 

43387.01   (expressed to the closest five digits of accuracy for presentation ease), and 

 )061722.0(4.00)
~

( 22 Yπ E -0.24689. Implementing step 5 and step 6 provides 

0.12 L , 2D 0.90942 )1( 1

22   , and  )( 2YVar 0.90942, and  

, 0.90448043 
90942.0

)24689.0(1








 
2P  and .55889.090448.0*61791.0)1 ,3.0( 21  WWP  

In the TG algorithms, 0.61791 )3.0( 1P , as earlier. But 1  is not computed, 

 )061722.0(4.00)
~

( 22 Yπ E -0.24689 (as earlier), step 5 is not implemented, )( 2YVar  is 

assigned the ]2,2[1D  value of 0.84 )1( 2 , and  0.91316,  
84.0

)24689.0(1








 
2P and 

.56425.091316.0*61791.0)1 ,3.0( 21  WWP  The true value of  )1 ,3.0( 21  WWP  is 

0.55915. Clearly, our ME implementation is closer to the true value, while the TG implementation 
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is an overestimate. In fact, this problem permeates into the bivariate conditioning algorithm too 

proposed in TG. 

 

2.3. New Methods 

In this paper, we propose four new approaches to approximate the MVNCD function. Two of these 

methods are based on univariate truncation (that is, at each step of the approach, a single variable 

is truncated; in the context of property 2 earlier, G=1), and two others are based on bivariate 

truncation (that is, at each step of the approach, two variables are simultaneously truncated; in the 

context of property 2 earlier, G=2). In the following presentation, the same notation is used as 

earlier.  

 

2.3.1. Univariate Truncation Approaches 

2.3.1.1 The One-Variate Univariate Screening (OVUS) Method 

The ME method, as already discussed, is based on successive truncations on hX  (that is, ),hh xX   

and the assumption at each step that the first element of 1

~
hY  is normally distributed. However, 

this method can be improved by noting that, if we assume that 1hY and 2hY  are bivariate normally 

distributed at each step, the distribution of 2hY  given 1hY  is a type of a skew-normal distribution 

and does not have a normal distribution as assumed in the ME method. Using the terminology of 

Kim and Kim (2015), 2hY is a one-variate univariate screened variable (that is, is based on 

selection or screening on one variable 1hY ). This is a simple, yet significant improvement over the 

ME method. Further, given the speed at which a bivariate normal cumulative distribution function 

can be computed today, the computation time is not likely to be substantially more than the ME 

implementation, as we will note later. Formally, the algorithm is as follows (H ≥ 2): 

 

(1) Compute    
   12212

1

12212
1 ,,

,, 
ww

w

ww
wP1 




 . If H=2, STOP. 

(2) Compute the LDLT decomposition LLD   of the original covariance matrix Σ. For 

notational convention purposes, set ,)()
~

( 11 0μXYπ  EE  and ., 11 DDLL  newnew  

(3) For h = 1 to H–2; 
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(4) Truncate on hX (that is, hh xX  ) and obtain hhhh YVarYE  )(and~)(   using 

Equation (6) in Property 1, with h  (in the computation of h~ ) being replaced by the 

first element of )
~

( hh E Yπ   and h  obtained as the square root of the first element of 
new

hD  (= ]),1,1[new

hD  and compute 

])1[~(]1,1:2[]1:2[)
~

( 11 hh

new

hhhh hHhHE πLπYπ     using Property 3.  

(5) Implement an LDLT decomposition of 1 1( )h hCov Σ Y  using a call to the LDLT rank-1 

updating algorithm with inputs { new

hL , new

hD , h  } to obtain new

h 1L  and new

h 1D .  

(6) Obtain ))'(),((
~

211   hhh YEYEλ  as the first two entries of the vector )
~

( 11   hh E Yπ , 

),(~
211
  hhh www , and the covariance matrix 1hΞ  of 21 and  hh YY  as 

    .]2:1,2:1[]2:1,2:1[]2:1,2:1[ 111




new

h

new

h

new

h LDL  1hΞ is basically the covariance sub-matrix 

of the first two rows and first two columns of 1hΣ .2 Let 1

11

1

11

~ 



  hhhh ΓΞΓΞ , where 1hΓ  is 

a diagonal matrix of the square root of the diagonal elements  of .1hΞ  Compute 

 .)(/)((

)
~

);
~~((

111

111

1

12







 



hhh

hhhh
1h

YVarYEw
P

ΞλwΓ
  

(7) End for 

(8) Return ( 1h

H

h

PP 






2

1
1 ). 

 

2.3.1.2. The One-Variate Bivariate Screening (OVBS) Method 

The univariate screening method can be extended to a bivariate screening method. Specifically, if 

we assume that 1hY , 2hY , and 3hY  are trivariate normally distributed at each step, 3hY  given 1hY

and 2hY  is a one-variate variable based on bivariate screening. Using this approach to approximate 

the MVNCD function should improve accuracy, though it also will increase the computation time 

marginally, because it entails the evaluation of trivariate normal cumulative distribution functions. 

Formally, the algorithm is as follows (H > 3): 

 

                                                 
2 Because of the lower-triangular nature of the L matrix and the diagonal nature of the D matrix, 

1hΞ  can be computed 

in a straight forward manner as     ]2:1,2:1[]2:1,2:1[]2:1,2:1[ 111

new

h

new

h

new

h LDL  instead of computing the entire 

1 1( )h hCov Σ Y   matrix and then taking the sub-matrix of this matrix. 
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(1) Compute 3 1 2 3 12 1 2
1 1

1 2 1 2

( , , ; )( , : )
( )

( ) ( , ; )

w w ww w
P w

w w w


  

 
1

1

ΛΞ

Ξ



 = 3 1 2 3 1( , , ; ),w w w Λ  where 1Λ  

is the marginal trivariate correlation matrix of the first three rows and first three columns 
of Σ and 1Ξ  is the marginal bivariate correlation matrix of the first two rows and two 

columns of Σ. If H=3, STOP. 

(2) Compute the LDLT decomposition LLD   of the original covariance matrix Σ. For 

notational convention purposes, set ,)()
~

( 11 0μXYπ  EE  and ., 11 DDLL  newnew  

(3) For h = 1 to H–3; 

(4) Truncate on hX (that is, hh xX  ) and obtain hhhh YVarYE  )(and~)(   using 

Equation (6) in Property 1, with h  (in the computation of h~ ) being replaced by the 

first element of )
~

( hh E Yπ   and h  obtained as the square root of the first element of 
new

hD  (= ]),1,1[new

hD  and compute 

])1[~(]1,1:2[]1:2[)
~

( 11 hh

new

hhhh hHhHE πLπYπ     using Property 3.  

(5) Implement an LDLT decomposition of 1 1( )h hCov Σ Y   using a call to the LDLT rank-1 

updating algorithm with inputs { new

hL , new

hD , h  } to obtain new

h 1L  and new

h 1D .  

(6) Obtain ))'(),(( 211   hhh YEYEλ  as the first two entries of the vector )
~

( 11   hh E Yπ , and 

))'(),(),(( 3211   hhhh YEYEYEθ  as the first three entries of the vector )
~

( 11   hh E Yπ . Let 

),(~
211
  hhh www  and .),,( 3211

  hhhh wwww


 Let 1hΞ be the covariance sub-matrix of 

the first two rows and two columns of 1hΣ , and 1hΛ  be the covariance sub-matrix 

obtained as the first three rows and three columns of )
~

( 1hCov Y .3 Let 1

11

1

11

~ 



  hhhh ΓΞΓΞ , 

where 1hΓ  is a diagonal matrix of the square root of the diagonal elements  of .1hΞ   

Similarly, let 1

11

1

11

~~~ 



  hhhh ΓΛΓΛ  , where 1hΓ  is a diagonal matrix of the square root of 

the diagonal elements  of 1hΛ . Compute 
 

.
)

~
);~((

~
);(

~

111

1

12

111

1

13









 



hhhh

hhhh
1hP

ΞλwΓ

ΛθwΓ


 

(7) End for 

(8) Return ( 1h

H

h

PP 






3

1
1 ). 

 

                                                 
3 

1hΞ =     ]2:1,2:1[]2:1,2:1[]2:1,2:1[ 111

new

h

new

h

new

h LDL   and 
1hΛ =     ]3:1,3:1[]3:1,3:1[]3:1,3:1[ 111

new
h

new
h

new
h LDL . 
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2.3.2. Bivariate Truncation Approaches 

2.3.2.1 The Bivariate ME (BME) Method 

In this proposed extension of the ME method, we write the MVNCD function as a recursive 

product of bivariate (conditional) cumulative distributions (BCCCD) (rather than as a recursive 

product of univariate (conditional) cumulative distributions in the ME method). More specifically, 

using the notations as earlier, for (H ≥ 2), even H, and K=Floor(H/2) (that is, H/2 is rounded down 

to the nearest integer to obtain K): 

)
~

(

)
~

(~,
)

~
(

)
~

(
~

~

), ~~
,~~

(|)~~
,~~

( Pr

 ),( Pr

. )  ..., ,  ,  ,(|),( Pr

 ),( Pr)( Pr

22121222221212
1

2211

2233221122221212
1

2211

r

rr
r

r

rr
r

kkkkkkkk

1-K

k

kkkkkk

1-K

k

YVar

YEw
w

YVar

YEY
W

wWwWwWwW

wWwW

wWwWwWwWwWwW

wWwW

























wW

 (16)      

If H is odd, there is a singleton added at the end of the latter expression above that takes the form 

). ~~
,~~

(|)~~
( Pr 2212121212 KKKKKK wWwWwW    At each step k of this approach, the bivariate 

distribution of ) 
~

,
~

(|
~

,
~

2122212 kkkk WWWW   is assumed to be bivariate normal, and the corresponding 

bivariate (conditional) cumulative distribution function is evaluated using a bivariate normal 

cumulative distribution function.  Formally, the BME algorithm is as follows (H ≥ 2): 

 

(1) Compute 1 2 1 2 12( , : )P w w   . If H=2, STOP. Return 12P . 

(2) Compute the two-block LDLT decomposition LLD   of the original covariance matrix Σ. 

For notational convention purposes, set ,)()
~

11 μXY(π  EE  

1 1( ) ( ) ,= Cov Var Σ Y X Σ  and DDLL  newnew

11 , ; Compute K=Floor(H/2). If H–

2*K=0, set ; 1
~  KK  else set KK ~

. 

(3) For k = 1 to K
~

. 

(4) Truncate on the (2k–1) and (2k) elements of X and obtain
)'.,(where,)(and~)( 212 kkkkkkk YYCovE  YΩYμY


 This is done using Equations (4) 

and (5) in Property 1, with 12 k  and k2  (in the computation of kμ
~ ) being replaced by 

the first two elements of )
~

kk E Y(π  , and 2
12

2
2

2
1 and,,   being replaced by the 
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elements of the sub-matrix of the first two rows and two columns of new
kD ; compute 

])2:1[~(]2:1,22:3[]22:3[)
~

11 kk

new

kkkk kHkHE πμLπY(π   using 

Property 3.  

(5) Implement a two-block LDLT decomposition of 1 1( )k kCov Σ Y   using a call to the 

LDLT rank-2 updating algorithm with inputs { kL , kD , kΩ } to obtain 1
new
kL  and 1

new
kD .  

(6) If H < 2k + 2, obtain )( 121   kk YEθ as the (only) entry of the vector )
~

11   kk E Y(π , and 

)( 12 KYVar  as the only element of new

1kD  , and compute 








 







)(

)(

12

1212

K

KK
1k

YVar

YEw
P . If H ≥ 

2k + 2, obtain ))'(),(( 22121   kkk YEYEθ  as the first two entries of the vector 

)
~

11   kk E Y(π . Let ),(~
22121
  kkk www , and let 1kΞ  be the sub-matrix of the first two 

rows and two columns of 1
new
kD .4 Let 1

11

1

11

~ 



  kkkk ΓΞΓΞ , where 1kΓ  is a diagonal matrix 

of the square root of the diagonal elements  of 1kΞ . Compute 

)
~

);~(( 111

1

12 

  kkkk1kP ΞθwΓ . 

(7) End for 

(8) Return ( 1k

K

k

PP 



~

1
1 ). 

 

Trinh and Genz (2015) also develop a bivariate conditioning approximation in their algorithm 3.2. 

However, again, as in the case of the (univariate) ME method, they ignore the )
~

( 1kCov Y term at 

each k-step, and simply retain the original variance Σ without any updating at each k-step. In other 

words, there is no computation of )( 1kCov Y


 in step 4 of our proposed approach, and step 5 of our 

algorithm above is completely ignored. The result is again an overestimation in the MVNCD 

approximation relative to our bivariate ME method, and larger errors relative to our proposed 

bivariate ME method. 

 

                                                 
4 Note that, because of the nature of the LDLT-block decomposition, it will be true that the sub-matrix of the first two 
rows and first two columns of 

1
new
kD  will be exactly the same as the sub-matrix of the first two rows and first two 

columns of 
1 1( )k kCov Σ Y  . 
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2.3.2.2. The Two-Variate Bivariate Screening (TVBS) Method 

At each step k of the proposed bivariate ME method, the bivariate distribution of 

) 
~

,
~

(|
~

,
~

2122212 kkkk WWWW   is assumed to be bivariate normal. However, a much more appropriate 

assumption is to acknowledge that this is a kind of multivariate skew normal distribution, or, in 

Kim and Kim’s (2015) terminology, a two-variate bivariate-screened distribution. Accordingly, 

the corresponding conditional cumulative distribution function at each step is better represented as 

a ratio of a four-variate normal cumulative distribution function and a two-variate normal 

cumulative distribution function (CDF). But since a four-variate normal CDF can be time-

consuming, we approximate the four-variate normal CDF very fast and accurately by taking the 

trivariate cumulative CDF of the first three variates ( 123P ), truncating on the first two variates using 

Property 1 to obtain the expected values and variance-covariance matrix of the third and four 

variates conditioned on the truncation on the first two variates, and then approximating the 

cumulative distribution function of the last variate given the third variate as a skew normal using 

step 6 of the one-variate univariate screening approach. The formal algorithm is as follows (H ≥ 

2), where we will use the notation (.)
~

4  to represent the accurate approximation just described 

for (.)4 . 

 

(1) If H=2, return ):,( 2121 ΣwwP  . STOP. If H=3, return ):,,( 32131 ΣwwwP  . STOP. 

If H=4, return ).:,,,(
~

432141 ΣwwwwP   STOP. If H>4, compute 

1 4 1 2 3 4 1( , , , : ).P w w w w  Λ  1Λ  is the marginal quadrivariate correlation sub-matrix of the 

first four rows and first four columns of Σ. 

(2) Compute the two-block LDLT decomposition LLD   of the original covariance matrix Σ. 

For notational convention purposes, set ,)()
~

11 μXY(π  EE  

1 1( ) ( ) ,= Cov Var Σ Y X Σ  and DDLL  newnew

11 , ; Compute K=Floor(H/2). If H–

2*K=0, set ;1
~  KK  else set KK ~

. 

(3) For k = 1 to 1
~ K ; 

(4) Same as in our proposed bivariate ME method. 

(5) Implement a two-block LDLT decomposition of 1 1( )k kCov Σ Y   using a call to the 

LDLT rank-2 updating algorithm with inputs { kL , kD , kΩ } to obtain 1
new
kL  and 1

new
kD .  
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(6) Obtain ))'(),(( 22121   kkk YEYEλ  as the first two entries of the vector )
~

( 11   kk E Yπ . 

Let 1kΞ be the sub-matrix of the first two rows and first two columns of 1
new
kD  

(equivalently, this is the covariance sub-matrix of the first two rows and two columns of 

1kΣ ). Let 1 1
1 1 1 1k k k k

 
   Ξ Γ Ξ Γ , where 1kΓ  is a diagonal matrix of the square root of the 

diagonal elements  of 1kΞ . If H<2*k+4, obtain ))'(),(),(( 3222121   kkkk YEYEYEθ  as the 

three entries of the vector )
~

11   kk E Y(π . Let 1kΛ be the covariance matrix 1kΣ , which 

can be obtained as 1 1 1( ) .new new new
k k k


  L D L  Let 1

11

1

11

~~~ 



  kkkk ΓΛΓΛ , where 1

~
kΓ  is a diagonal 

matrix of the square root of the diagonal elements  of .1kΛ  Let ),(~
22121
  kkk www  and 

.),,( 3222121
  kkkk wwww


 Compute 

 
.

)
~

);~((

~
);(

~

111

1

12

111

1

13









 



kkkk

kkkk
1kP

ΞλwΓ

ΛθwΓ


 If H≥2*k+4, 

obtain ))'(),(),(),(( 423222121   kkkkk YEYEYEYEθ  as the first four entries of the vector 

)
~

( 11   kk E Yπ . Let 1kΛ be the covariance sub-matrix of the first four rows and four 

columns of 1kΣ , computed as 1 1 1[1: 4,1: 4] [1: 4,1: 4]( [1: 4,1: 4]) .new new new
k k k


  L D L  Let

1

11

1

11

~~~ 



  kkkk ΓΛΓΛ , where 1

~
kΓ  is a diagonal matrix of the  square root of the diagonal 

elements  of .1kΛ  )
~

11   hh E Y(π . Let ),(~
22121
  kkk www  and 

.),,,( 423222121
  kkkkk wwwww


 Compute 

 
.

)
~

);~((

~
);(

~~

111

1

12

111

1

14









 



kkkk

kkkk
1kP

ΞλwΓ

ΛθwΓ


 

(7) End for 

(8) Return ( 1k

K

k

PP 






1

1
1 ). 

 

3. THE EVALUATION DESIGN 

We tested the multiple methods in two ways in this paper. The first was to evaluate the accuracy 

of computing the MVNCD function directly for different dimensions (H = 5, 7, 10, 12, 15, 18, and 

20), and the second was to examine the recovery ability of underlying MNP parameters with 

different numbers of alternatives (H + 1 = 6, 11, 16, 21) that lead to MVNCD evaluations of H 

dimensions (H = 5, 10, 15, and 20; an MNP with H+1 alternatives requires the evaluation of an H-

dimensional MVNCD function). 

 

3.1. The Direct MVNCD Function Evaluation 

For the first set of experiments, for each H value, we first generate 1000 random positive-definite 

covariance matrices, based on a simple factoring approach, as )(ruRRC diag  , where R is 
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a matrix of HH   random univariate standard normal variates, and )(rudiag  represents a diagonal 

matrix with the 1H  vector ru of standard uniform random variates on the diagonal. δ is a scalar 

that determines the relative magnitude of the diagonal elements relative to the non-diagonal 

elements. Finally, the positive definite random correlation matrix is obtained from the generated 

positive definite covariance matrix C. In this set-up, the higher the value of δ, the lower are the 

correlations in the corresponding correlation matrix. We use two different values of δ; one with a 

value of 10, generating 500 correlation matrices with low correlations (with the correlations 

ranging from -0.8566 to 0.8085), and another with a value of zero, generating another 500 

correlation matrices with high correlations (with the correlations ranging from -0.9634 to 0.9781).5 

For half of the 500 matrices from each of the low correlation case and high correlation cases, the 

upper integration limits were uniformly drawn (separately and independently for each of the H 

dimensions) from ],0[ H .6  This produced “exact” MVNCD values (see next paragraph for how 

the “exact” MVNCD value was computed) that ranged from 0.0044 to 0.8868 (overall mean of 

0.2502) in our experiments across all the H values (with the range being 0.0622 to 0.8868 for H=5 

with a mean of 0.3933, and 0.0044 to 0.8479 for H=20 with a mean of 0.1519). Next, to also have 

representation at the lower values of the MVNCD function, we generated another set of 500 upper 

integration limits (corresponding to the other half of the 1000 correlation matrices) now drawn 

from ],2/[ HH   as .
2

]1,0[*
2

3 H
rnduH   This produced “exact” MVNCD values that 

ranged from 0  to 0.8988 (overall mean of 0.0273) across all the H values (with the range being 
0  to 0.8988 for H=5 with a mean of 0.1143,  and shrinking rapidly to 0 to 0.0356 for H=20 with 

a mean of 0.0003). Taken together, we consider four sets of 250 MVNCD evaluations each, 

corresponding to (a) low correlations, high MVNCD values, (b) low correlations, low MVNCD 

values, (c) high correlations, high MVNCD values, and (d) high correlations, low MVNCD values. 

                                                 
5 The random generation of correlations across all H values shows extreme values that do not differ much between the 
low and high correlation cases, but the overall correlation magnitudes depend on the value of H and do vary quite a 
bit between the low and high correlation cases. For example, for the case of H=5, 74.2% of the absolute values of the 
generated correlations lie between 0 and 0.25 for the low correlation case, relative to only 35.8% for the high 
correlation case. On the other hand, less than 0.1% of the absolute values of the generated correlations lie between 
0.75 and 1 for the low correlation case, relative to almost 9% for the high correlation case.  
6 The reason we draw uniform variates from ],0[ H for the upper integration limits (so that the upper integration 

limits generally are higher for high H) is because, as H increases, the MVNCD value gets closer and closer to zero for 
a given upper integration limit. By increasing the upper integration limit as H increases, we are allowing for a better 
distribution of the MVNCD value in the {0,1} range.  
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The 1000 evaluations cover the range of MVNCD values from 0 to 1, as well as low and high 

correlation patterns.  

 The “exact” evaluation of each of the 1000 MVNCD functions was undertaken using the 

CDFMVNe function of the GAUSS matrix programming language, up to an accuracy of 1e-6 (i.e., 

0.000001). The various methods were compared against this exact value by computing the mean 

absolute error or MAE (mean across the 1000 evaluations of the absolute difference between the 

MVNCD from the method relative to the “exact” value), the mean absolute percentage error or 

MAPE, the percentage of the 1000 evaluations in which the error was over 0.005, and the 

percentage of evaluations in which the percentage error exceeded two percent. The methods tested, 

for each of the H values of 5, 7, 10, 12, 15, 18, and 20, include the following: the GHK-Halton 

500 (GHK-Halton with 500 draws), the GHK-Halton 10000 (GHK-Halton with 10,000 draws), 

the SSJ1, the SSJ10, the TGME method, the true ME method, the OVUS method, the OVBS 

method, the TGBME method, the BME method, and the TVBS method (for a total of 11 

approaches). In addition to the metrics above, we also computed the total time (in seconds) for 

evaluation of the 1000 MVNCD functions for each method. For the ME method, as well as the 

proposed new methods and the TG methods, we use an optimally ordered version based on the 

decreasing range of the abscissae (we also considered a more refined version of ordering based on 

the outermost integral variables having the smallest expected values, as suggested by Gibson et 

al., 1994 and implemented in Trinh and Genz, 2015; but this refined version provided little to no 

gains in accuracy in our experiments relative to the more simple reordering used here).   

 

3.2. The MNP Model Set-up 

As discussed earlier, the estimation of an MNP with H+1 alternatives requires the evaluation of an 

H-dimensional MVNCD function. While traditional simulation procedures have been primarily 

used for evaluation of these MVNCD functions, Bhat (2011) proposed the analytic approximation-

based maximum approximate composite marginal likelihood (MACML) approach. In doing so, 

Bhat underscores the convergence and computational cost problems underlying the traditional 

simulation-based approaches to maximum likelihood inference estimation.7 Bhat and colleagues 

                                                 
7 In particular, the computational cost to ensure desirable asymptotic properties of the simulation-based estimators 
(consistency, efficiency, and asymptotic normality) can be prohibitive and literally infeasible (in the context of the 
computation resources available and the time available for estimation) as the number of dimensions of integration 
increases, because the accuracy of simulation techniques is known to degrade rapidly at medium-to-high dimensions, 



23 

(see Bhat, 2015 for a review) have also applied this MACML approach for MNP models with 

spatial/social dependence models, making use of the CML inference approach to dramatically 

reduce the dimensionality of expressions during estimation from the order of the number of 

individuals times the number of alternatives (in the traditional maximum likelihood approach) to 

the number of alternatives (in the CML approach). 

In this paper, we consider a simple non-spatial MNP setting and evaluate alternative 

MVNCD function evaluation approaches in estimating the MNP model. A challenge in doing so 

is to compare parameter estimates using the alternative approaches against the true estimates, given 

a sample. In this paper, we use a key insight that allows us to obtain the true estimates of the 

underlying MNP parameters very accurately and quickly for a particular setting of the MNP, given 

a data sample and regardless of the dimensionality involved in the resulting MVNCD evaluation. 

The insight is the reverse of that used by Bhat (2003) when his objective there was to test 

simulation techniques in a mixed discrete choice setting.   

To make things clear, consider the following set-up for an MNP model in which the utility 

that an individual q associates with alternative h ( )1,...,2 ,1  Hh is written as: 

),0(~~,~ ; 2 NczU qqqqhqhqqhqh   xb ,  (17) 

where qhx  is an )1( E -column vector of exogenous attributes, b  is a fixed )1( E -column vector 

of corresponding coefficients, qhz  is a single exogenous variable corresponding to individual q and 

alternative h, and q  is a random coefficient (capturing unobserved heterogeneity or response 

sensitivity variation across individuals to the variable qhz ) that is a realization from a normal 

distribution with mean c and variance 2  ],0),[cov( qqqq  . qh  is assumed to be an 

independently and identically distributed (across alternatives and across individuals) normal error 

term with a variance of 5.0 . This variance has to be preset for identification purposes. Let 

),...,,( 1,21
 Hqqq qξ  ( 1)1( H  vector). Then, )*5.0 ,(~ 1 1HHMVN  IDENξ q 0 , where 

                                                 
and the simulation noise increases substantially (leading to convergence problems too during estimation). More 
generally, Patil et al. (2017) have recently shown that the routinely invoked good asymptotic properties of simulation-
based estimators do not translate to a lack of bias and low finite sample efficiency in the range of finite sample sizes 
and numbers of simulation draws typically used in consumer choice estimations. On the other hand, while analytic 
approximation-based estimators of the MACML type do not necessarily bring with them the theoretically appealing 
asymptotic properties (see Batram and Bauer, 2016), they can be far superior to simulation-based estimators in routine 
consumer choice analyses in the typical sample sizes available for estimation.  
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1H IDEN  is an identity matrix of size (H+1). qh  is also assumed to be independent of q . Also, 

collect all the parameters to be estimated into a vector .) , ,( 2  cbθ   

In the current paper, for each number of alternatives (H + 1 = 6, 11, 16, and 21), we generate 

a sample of 3000 observations corresponding to 3000 individuals.  We consider two variables in 

the qhx  vector: a continuous variable and a dummy variable taking the values 0/1. We also consider 

a continuous variable for qhz . Overall, then, we have a total of two continuous variables and a 

single dummy variable in the experimental design for MVNCD evaluation ability in the MNP 

estimation.8  The values for the continuous variable ( qh1x ) in the qhx  vector are drawn for the first 

half of alternatives (the first three in the six-alternative case, the first six in the 11-alternative case, 

the first eight in the 16-alternative case, and the first 11 in the 21-alternative case) from a standard 

univariate normal distribution, while the corresponding values for the remaining alternatives are 

drawn from a univariate normal distribution with mean 0.5 and standard deviation of 1. The 

parameter 1b  on qh1x  is specified to be one across all alternatives. The procedure is exactly reversed 

for qhz , with the values for the first half of alternatives drawn from a univariate normal distribution 

with mean 0.5 and standard deviation of one and the values for the remaining alternatives drawn 

from a standard univariate normal distribution. The parameter on qhz  is drawn from a normal 

distribution with a mean (c) of -0.5 and variance ( 2 ) of 1 (that is, 3000 realizations are drawn 

from the normal distribution, and applied to qhz  for each alternative across the many tests with 

different numbers of all alternatives). For the dummy variable ( qh2x ) in qhx , we treat this as an 

individual-specific variable (that does not vary across alternatives). To construct this dummy 

variable, 3000 independent values are drawn from the standard uniform distribution. If the value 

drawn is less than 0.5, the value of ‘0’ is assigned for the dummy variable. Otherwise, the value 

of ‘1’ is assigned. The dummy variable values, once generated, are held the same across the many 

tests with different numbers of alternatives. The coefficients on this dummy variable are specified 

to be 0 for the first half of alternatives (as defined earlier) and 0.75 for the second half. Thus, a 

                                                 
8 We do not include alternative-specific constants in our design because this would add many more parameters to the 
model. For example, in the 21 alternative case, there would be 20 additional alternative-specific constants. Our focus 
here is on the ability to evaluate the MVNCD function accurately as part of the MNP estimation, and so we choose to 
keep the number of parameters embedded within the MVNCD function in the MNP model to a small number.  
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single parameter 2b  is to be estimated for the dummy variable (note that, in estimation, we 

constrain the coefficients to be zero for the first half of alternatives, and estimate a single parameter 

that is constrained to be equal across the second half of alternatievs). The parameters to be 

estimated from the data generating process above correspond to 

.)1 ,5.0 ,75.0 ,1( 2
21   cbb  However, because we are using a single sample to estimate 

the parameters, the actual estimates of these parameters (even if exactly determined) on the sample 

generated will not be identical to the above. In the current paper, we are able to determine the 

actual true estimates on the specific sample generated for each combination of correlation intensity 

(low and high) and number of alternatives, as discussed next. The ability of the approximation 

methods to recover these parameters specific to the samples generated is tested against the true 

estimates for each sample.   

With the set-up as above, the likelihood function for the estimation of the parameters can 

be computed in one of two ways: (a) the easy “exact” way using a mixed probit framework that 

exploits the independence across utilities of alternatives conditional on q  or (b) the 

“approximate” way using a traditional multinomial probit (MNP) framework.  These two methods 

are discussed in the two subsequent sections.   

 

3.2.1. The Mixed Probit Framework 

Let the individual q choose the qm th alternative. Define 
qq qmqhqhm xxx ~ , 

qq qmqhqhm zzz ~ , and

qqq qhmqhmqhm zcV ~~  xb . Because the individual chose the qm th alternative,   

.)( qqmqh mhUU
q

 That is, .~~~
qqmqhmqqhmqh mhzV

qqq
  Using the independence 

assumption across the error terms qh , we can write individual q’s likelihood function for the 

choice of the qm th alternative, conditional on a given realization of  
qqmq  and~ , as  

    ~~~
2,~|)(

qqq

q

q qmqhmqqhm
mh

qmqq zVL   


 

Then, the unconditional likelihood function for individual q is given by: 
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The likelihood function above involves only a two-dimensional integral regardless of the number 

of alternatives H+1. The two-dimensional integral can be evaluated very accurately using 

traditional simulation techniques. Here, we evaluated the integral using 35,000 pseudo-random 

draws (there was little change in the parameter estimates with as few as 10,000 pseudo-random 

draws, but we increased to 35,000 draws to get “exact” true estimates for the θ parameter vector 

and the standard error of its elements).   

 

3.2.2. The Traditional MNP Estimation 

For the traditional MNP estimation, let ),...,,( 121
 qHqqq UUUU  1)1(( H vector), 

),...,,,( ,  1321 Hqqqqq xxxxx  EH  )1(( matrix), ),...,,,( 1q3q21  q,Hq zzzzqz  1)1(( H  

vector), qqq zbx V  1)1(( H vector), 1
22 )(  Hqqq IDENzz Ω  

)matrix )1()1((  HH . Then, we may write, in matrix notation, qqqq ξVU  ~z  and 

).,(~ 1 qqHq MVN ΩVU   Also, let )(),,,( 1,21 qHqqqq mhuuu  u
 
be an H×1 vector, where, as 

earlier, qm  is the actual observed choice of individual q, and ).( qqmqhqh mhUUu
q

 Then, 

,Hq 0u  because alternative qm  is the chosen alternative by individual q. 

To develop the likelihood function, define qM  as an identity matrix of size H with an extra 

column of ‘-1’ values added at the th
qm  column (thus, qM  

is a matrix of dimension )).1((  HH  

Then, qu  is distributed as follows: )Ξu qqB ,(~ Hq MVN , where qq VMqB and 
qq MΩMΞ  qq
. 

Let 
qΞ

ω  be the diagonal matrix of standard deviations of qΞ . Using the usual notations as 

described earlier, the likelihood contribution of individual q is as below: 

      ),),(()( 1 *
Ξ Ξω qqHq q

L Bθ     (18) 

where .11 
qq qq ΞΞ

* ωΞωΞ   
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The likelihood function above requires the evaluation of an H-dimensional MVNCD function, and 

forms the basis for comparing the performance of alternative computation methods in estimating 

the underlying parameters when compared to the true estimates of the parameter vector θ obtained 

from the mixed probit approach in the way we have set things up. For each number of alternatives, 

11 estimations are undertaken corresponding to each of the 11 analytic MVNCD approximation 

methods. All the methods were implemented using the GAUSS matrix programming language. 

The approximated log-likelihood function and the gradients of the approximated log-likelihood 

function with respect to relevant parameters were coded.  

The true estimates of the parameters from the mixed probit estimation served as the 

benchmark to compare the performances of the alternate MVNCD approximation methods.  The 

performance evaluation of each method was based on five criteria: (a) ability to recover the true 

estimates of the model parameters, (b) ability to recover the true sampling standard error of the 

estimator, (c) ability to estimate the overall log-likelihood function accurately, (d) ability to 

reproduce individual (i.e., observation-specific) likelihood function values, and (e) ability to 

replicate the logarithm of the individual likelihood function. For each of these criteria, the 

evaluation of the proximity of the estimated parameter values from the different MVNCD 

approximation methods and the true estimates was based on the mean absolute percentage error 

(MAPE). The time to convergence using each method is also obtained.  

 

4. THE RESULTS 

4.1. The Individual MVNCD Evaluation Results 

Table 1 provides the overall results across the 1000 MVNCD evaluations. Across the many 

methods, the GHK-500 (the first numeric column in Table 1) starts off well with H=5, with an 

MAE of 0.00061 (see first numeric row under GHK-500) and an MAPE value of 0.92, but the 

performance deteriorates rapidly as the number of dimensions increase. At H=20, the MAE for 

GHK-500 increases to 0.00124, with a corresponding MAPE value of 18.53%. Also, the 

percentage of MVNCD evaluations with an MAPE value greater than 2% for the GHK-500 

increases from 4.3% for H=5 to 63.3% for H=20. Concomitant with this degradation in accuracy 

is a rapid increase in computational time, from 0.071 seconds on average for each MVNCD 

computation at H=5 to a seven-fold increase to 0.458 seconds at H=20. The GHK-10000 (the 

second numeric column in Table 1), as expected, has a much better performance than the GHK-
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500, with the MAE-based accuracy increasing by one digit or about a ten-fold improvement across 

all H values. However, again, there is rapid degradation as one goes from H=5 to H=20, with the 

MAPE increasing from 0.14% at H=5 to 10.76% at H=20 and the percentage of MVNCD 

evaluations with an MAPE value greater than 2% increasing from 0.9% at H=5 to 34.1% at H=20. 

As importantly, the computational time for the GHK-10000 explodes with an increase in H, from 

close to 1 second for H=5 to 11.39 seconds for H=20.  

 The SSJ1 does not do as well as the GHK-500 at low H values (H = 5, 7, and 10), but, 

remarkably, does better than the GHK-500 at high H values (H = 12, 15, 18, and 20) in terms of 

MAE and about the same as the GHK-500 at these high H values in terms of other metrics. 

However, the computation time of SSJ1, which is about half the time needed for GHK-500 at low 

H values, becomes almost comparable to that of GHK-500 at the high H values. The SSJ10 

method, relative to the SSJ1 method, improves accuracy at the low H values, but this improvement 

decreases as we move into the high H ranges.  At the same time, as with the case with GHK-10000, 

the computation time is of the order of seconds (3.093 seconds, on average) for the SSJ10 at H=20. 

Overall, among the four SSJ and GHK methods, and based on a combination of accuracy and 

computational time, it appears that the GHK-500 would be the preferred method until H=10, but 

the SSJ1 method becomes the preferred method at higher H values.  

 Moving to the four univariate truncation methods, the TGME method does very poorly 

(and by an order of magnitude) relative to the SSJ and GHK methods for all H values. The ME 

method, as expected, performs substantially better than the TGME method for the reasons already 

discussed conceptually earlier. However, the ME method does not do as well as the GHK-500 

method for H=5 and 7. But, beyond H=7, while the GHK-500 degrades rapidly, the ME continues 

to do well, and surpasses the GHK-500 on all metrics, even though it takes a little more time to 

compute than the GHK-500. At these higher H values, the ME is also superior to the SSJ1, though 

it does take about twice the time to compute as the SSJ1. The implication so far then is that, 

between the SSJ, GHK, and ME methods, the GHK-500 appears to be the preferred method for 

MVNCD evaluation until H=7, after which the ME comes out on top. 

 Among the univariate truncation methods, the trend is clear. The OVUS is superior to the 

ME, and the OVBS is superior to the OVUS, for every H value. Also, there is no substantial 

difference in computation times across the ME, OVUS, and OVBS approaches. As importantly, 

the OVBS is superior to the GHK-500 even for H=5 in terms of MAE, and very comparable to 
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GHK-500 on other metrics for H=5. At H=7 and beyond, it is clearly the better approach relative 

to GHK-500. Interestingly, the ME, OVUS, and OVBS methods all provide better accuracy than 

even the GHK-10000 draws, and at about 12-14 times faster speed, at H=20. Based on accuracy 

and computation time, among all the GHK, SSJ, and univariate truncation schemes, the OVBS 

comes out clearly on top across all H values.  

 The last column panel of Table 1 provides the results for the three bivariate truncation 

methods. Again, the TGBME does very poorly here, even if marginally better than the TGME. On 

all the metrics, the TGME and the TGBME methods provide the worst results, a reflection of 

completely ignoring the variance component of truncation elements. The BME does better than 

the ME for all H values, and at lesser computation cost (while the bivariate truncations involve 

more computation time in computing the moments of a bivariate truncated vector of elements, as 

discussed in Section 2, it also has fewer iterations or “flops” because it races faster to cover the 

dimensionality H of variables; see step 3 in the univariate and truncation algorithms). Our special 

LDLT-based implementation of the algorithms also helps in ensuring that there is no substantial 

speed reduction within each iteration because of using a bivariate truncation scheme relative to a 

univariate truncation scheme. Between the BME and the OVBS methods (which came out to be 

the best in all the non-bivariate truncation approaches), the OVBS seems to do marginally better 

until H=12, after which the two are similar, with the BME faring slightly better on most accuracy 

metrics. The BME is, however, about twice as fast as the OVBS. Finally, between the TVBS and 

the BME methods, the TVBS is clearly better on all metrics for all H values (except for H=20, 

where there is literally no difference between the two). Further, the performance of the TVBS is 

as good or better than the OVBS across the board, and the TVBS faster than the OVBS. Overall, 

the TVBS is the best in terms of accuracy and speed in evaluating individual MVNCD functions.  

 To further investigate performance of the different methods, we also examined their 

performances in each of four sets of cases corresponding to (a) low correlations, high MVNCD 

values, (b) low correlations, low MVNCD values, (c) high correlations, high MVNCD values, and 

(d) high correlations, low MVNCD values. Some important insights from this exercise are as 

follows (the results in the same form as Table 1, but separately for each of the four cases, are 

available at http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/LDLT/OnlineSupplement.pdf). 

First, all methods do very well in the case of low correlations and high MVNCD values. This is 

not surprising, because all methods will provide the exact values when the elements are fully 
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independent.  Second, the algorithms generally do well even for the second set of low correlations 

and low MVNCD values, though the %MAPE metric starts getting high because of the extremely 

low exact values of the MVNCD function. But, in addition to the TG and the TGBME methods 

that always do poorly, the SSJ and GHK-500 also perform very poorly relative to the ME, OVUS, 

OVBS, BME, and TVBS methods in this second set (much more so than in Table 1; for example, 

with H=20, the percentage of MVNCD evaluations with an MAPE value higher than 2% for the 

SSJ and GHK-500 approaches are of the order of 85-90% compared to about 30% for the other 

approaches). Third, the results for the last two sets with high correlations also show good 

performances in terms of MAE, though the MAE values are higher for the third set relative to the 

first and for the fourth set relative to the second. Again, relative to the ME, OVUS, OVBS, BME, 

and TVBS approaches, the SSJ and GHK-500 approaches perform much more poorly than in the 

general results of Table 1 for the fourth set of high correlation and low MVNCD values. Finally, 

overall, the same relative performances of the algorithms are observed as discussed earlier across 

all sets for each individual set of 250 MVNCD evaluations. Of course, in general, it is also difficult 

to know a priori whether the correlations are going to be high or low, or whether the truncation of 

the MVNCD function from above is going to be at a low value or high value. But, the fact that the 

relative performances of the approaches do not change based on the context provides additional 

reinforcement to our findings that the TVBS approach appears to be most promising for all 

dimensions and all MVNCD evaluation contexts. The performance of the BME method is also 

very good, and may be considered in place of TVBS, especially for H=10 and beyond, if 

computational time is a critical issue.  

 

4.2. MNP Model Results 

Before presenting the MNP results, three important issues are in order. First, in examining the 

ability of the different evaluation methods to recover the true estimates, we tested a couple of 

implementation variants of the methods. The first uses the optimally-ordered abscissae approach 

to evaluate each of the individual choice probabilities, which, as indicated earlier, produced better 

individual MVNCD evaluations than without any such ordering. However, estimation of the 

underlying model parameters is not simply about estimating each individual choice probability 

accurately. As Bhat (2011) points out, “…. the focus in model estimation is on evaluating 

underlying model parameters that appear in the integrands of several multidimensional integrals. 
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The intent …is to estimate the model parameters accurately, and not expressly on evaluating each 

integral (that is, each individual choice probability) itself accurately.” Indeed, this is the basis for 

the use of simulation methods that rely on the cancellation of simulation noise across individual 

choice probability evaluations. In our context, where we use analytic approximations rather than 

simulation methods, there may be value to randomizing the ordering of abscissae across individual 

observations. Doing so effectively randomizes the ordering of the deterministic utility differences 

as well as the covariance matrix of the utility differences, which may help cancel out “noise” 

introduced by the ordering effect. To test for this, our second variant in implementing the many 

analytic methods entailed randomizing the ordering of abscissae for each individual (with different 

randomizations for different individuals) rather than using a uniform optimal ordering across all 

individuals, as in the first variant (note, however, that the SSJ method is already based on random 

ordering, because its basis does not provide any advantage in terms of accuracy for an optimal 

ordering as done for the non-SSJ methods). Between the two variants -- optimally ordered 

abscissae approach and the randomly ordered abscissae approach -- the former came out to be the 

clear winner in terms of almost all the measures, suggesting that, even for parameter estimation, it 

is better in the context of analytic approximations to evaluate individual choice probabilities (and, 

thus, individual log-likelihoods) accurately rather than relying on any ordering noise cancellation 

through randomization of the abscissae across observations (the only exception to this was for the 

ME and the BME methods, which did see a marginal improvement in parameter recovery in the 

randomized abscissae variant, but this improvement was drowned by the degradation in the 

standard error recovery and individual choice probability evaluations).9 In the rest of this section, 

we present the results only for the case where the abscissae for each individual are optimally 

ordered before computing the MVNCD function.    

The second point is that, even if the randomization across individuals in the abscissae may 

help in potentially more accurately estimating the underlying model parameters, the asymptotic 

                                                 
9 This general result held regardless of the starting values used for the MNP iterations. More generally, in another 
informal mini-experiment, we experimented with different starting values to test if the ability to recover the true 
estimates and the convergence times of the different evaluation methods is a function of the starting values. But the 
results for relative performance and computational time across the many methods tested remained stable regardless of 
starting point. Also, in our mini-experiments, the convergent estimates remained the same regardless of the starting 
point for each (and all) evaluation methods. In the subsequent reporting of computation time for convergence for the 
different evaluation methods, we provide the time for the specific case when the starting values are set at the common 
parameter values used to generate the many data samples (not the true estimates unique to each data sample). 
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standard errors of parameters are estimated based on the variation (across individuals) of the 

individual log-likelihood functions. Thus, in computing the standard errors, the accurate 

computation of each individual choice probability (and log-likelihood) at the estimated parameters 

should be of paramount importance. Similarly, while undertaking statistical tests or for predictions 

of the impacts of changes in exogenous variables, the ability to compute individual log-likelihoods 

and choice probabilities accurately is important. Thus, we also tested an implementation where, 

once parameters are estimated, the standard errors as well as all the likelihood-based measures are 

estimated by reverting to the optimal ordering of abscissae for each observation. In our 

experiments, however, we found very marginal improvements in the standard error recovery and 

the likelihood-based measures due to an optimal ordering after first estimating the parameters 

using a random ordering procedure.  

 Third, we confine attention in the MNP estimation to the analytic approximation methods, 

given that these methods are much faster than the traditional GHK simulation method for each 

individual MVNCD evaluation, while also being, in general, more accurate. Besides, the 

performance of the GHK degrades very rapidly as the dimensionality of the MVNCD function 

increases, as already discussed (see also Connors et al., 2014). In addition, Patil et al. (2017) have 

already established the superior performance of the SSJ1 method (the only analytic approximation 

method considered there) relative to the GHK method for the recovery of MNP choice model 

parameters (see also Bhat et al., 2010, Bhat and Sidharthan, 2011, Fu and Juan, 2017, and 

Martinetti and Geniaux, 2017, all of whom establish the superior performance of the SSJ1-based 

and/or ME-based methods relative to GHK-based methods for a whole variety of probit-kernel 

econometric models). Further, the TGME and TGBME methods performed very poorly relative to 

the other analytic approximation methods (by an order of magnitude), and so the results for these 

two methods are not presented in this section.10  

 Table 2 presents the results. In terms of the ability to recover the true estimates of the 

parameters (see first row panel of the table), for all methods except the ME, the mean absolute 

percentage error (MAPE) increases as the number of alternatives in the MNP model increases. 

                                                 
10 We should note here that Martinetti and Geniaux (2017), in their spatial binary probit model, use the TGME method 
for evaluating the MVNCD function. They indicate reasonable performance of the method, though they did not 
compare the performance relative to the other methods discussed in this paper. On the other hand, Bhat and colleagues 
(see Sidharthan and Bhat, 2012, Castro et al., 2012, Ferdous and Bhat, 2013, Castro et al., 2013, Narayanamoorthy et 
al., 2013, Bhat et al., 2014, Bhat, 2015, Bhat et al., 2015, and Bhat et al., 2017) have used a MACML approach for 
estimating a variety of spatial models in which they use the SSJ approach for evaluating the MVNCD function. 
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This is to be expected. Among the many analytic methods, the SSJ1 method performs quite well, 

and there does not seem to be substantial gains from using the SSJ10 method (in fact, the SSJ10 

method does provide MAPE values that are worse off than the faster SSJ1 method for the case 

with 11, 16, and 21 alternatives). Among the other methods, the ME and the BME methods are 

clearly not as good as the SSJ, OVUS, OVBS, and the TVBS methods in terms of parameter 

recovery, and the OVBS method appears to come out on top regardless of the number of 

alternatives involved. However, in terms of recovering the standard errors of the estimated 

parameters (second row panel of Table 2), the ME and BME do better than the other methods, 

while the TVBS method comes in third. On the dimensions of the ability to evaluate the overall 

log-likelihood function (third row panel), the ability to evaluate the individual likelihood function 

(that is, the choice probability of the chosen alternative) (the fourth row panel), and the ability to 

evaluate individual log-likelihoods (the fifth row panel), the OVBS and the TVBS generally come 

out well on top relative to other methods (except for the OVUS method, which comes in a close 

third). Interestingly, the SSJ1 method does the worst on these dimensions, though it does better 

than other methods except the OVBS method in terms of recovering the true parameter estimates. 

This suggests that it is not necessarily true that a method that recovers parameter estimates well 

will also approximate individual choice probabilities well. Finally, on the dimension of 

computation time, the SSJ10 method takes too long a time to be of practical value. The SSJ1 

method, while quite fast for lower dimensions, tends to take rather long as the number of 

alternatives increases. The OVUS method appears to have a clear advantage over other methods 

in terms of the time to convergence, especially as the number of alternatives increase. Particularly 

important to note also is that the TVBS method is faster than the ME, OVBS, and BME methods 

by a rather substantial amount at 1H 11, 16, and 21. Overall, it appears that the OVUS, OVBS, 

or TVBS may be good candidates to consider.   

To summarize, based on all the evidence thus far in terms of individual MVNCD function 

evaluations as well as MNP estimation, it appears that the OVUS, OVBS, and the TVBS methods 

are good candidates for consideration. The OVBS, in the context of MNP estimation takes rather 

long, while the OVUS method has a clear computational time advantage. The computational time 

for the TVBS method falls somewhere in-between. If we had to choose one uniform method for 

MVNCD function evaluation in any context, based on accuracy and computational time, we would 

favor the TVBS approach, based on the results in this paper.  
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5. CONCLUSIONS 

In this paper, we develop new analytic ways to evaluate the multivariate normal cumulative 

distribution (MVNCD) function. These methods should be of interest in a wide variety of settings 

where the MVNCD function needs to be evaluated, including (but not limited to) the estimation 

of probit-based consumer choice models. Unlike traditional simulation-based methods to MVNCD 

evaluation for econometric models, which can be saddled with convergence and computational 

cost problems, these analytic approximation techniques for MVNCD evaluation are known to 

provide likelihood surfaces (and the derivatives and hessians of these surfaces with respect to 

model parameters) that are more smooth, reducing convergence and covariance matrix 

computation problems that can occur routinely in the maximum likelihood estimation of consumer 

choice models with analytically intractable likelihood functions (see Bhat and Sidharthan, 2011).  

In the context of analytic approximation-based evaluations of MVNCD functions, while 

there have been many such approximations proposed, two of the most common are the SSJ and 

the ME approaches. In the current paper, we have proposed a streamlined and matrix-based version 

of the ME method, which relies on a single-sided truncation of a multivariate normal distribution 

in which some variables are truncated while others are not. But we propose a new way to 

implement the ME approach using an LDLT decomposition method followed by a rank 1 update 

of the LDLT factorization. Our implementation is easy to code for analysts skilled in matrix-based 

coding. Further, our new matrix-based implementation for the ME algorithm allows us to write, in 

a streamlined manner, the analytic matrix-based gradients of the approximated MVNCD function 

with respect to the abscissae and correlation parameters, an issue that is important in model 

estimation.  In addition, we have proposed four new methods for approximating the MVNCD 

function, based on recognizing that, when untruncated variables are normally distributed,  the 

marginal distribution of one of the untruncated variates given that other variables are truncated (or 

screened) is skew-normally distributed and not normally distributed. A rank-2 update of the LDLT 

decomposition is proposed and used in two of the newly proposed methods.  

The paper evaluated the ability of the four proposed analytic MVNCD approximations, 

along with the SSJ, ME, and GHK simulation methods, for MVNCD function estimation for 

different numbers of dimensions of integration (H = 5, 7, 10, 12, 15, 18, and 20). In addition, the 

paper also evaluated the performance of the many analytic approximation methods in their ability 



35 

to recover underlying MNP parameters. For the latter evaluation, we use a key insight that allows 

us to obtain the true estimates of the underlying parameters accurately and quickly, given a data 

sample and regardless of the dimensionality involved in the resulting MVNCD evaluation.  

As expected, in our tests for evaluating MVNCD functions, we found that the traditional 

GHK approach degrades rapidly as the dimensionality of integration increases. Concomitant with 

this degradation in accuracy is a rapid increase in computational time. The analytic approximation 

methods are more stable across different numbers of dimensions of integration, and even the 

simplest of these methods is superior to the GHK-500 beyond seven dimensions of integration. 

The more advanced analytic approximations proposed in this paper are superior to the GHK-500 

at every integration dimension. Further, almost all of the methods provide better accuracy than 

even the GHK-10000 draws, and at about 12-14 times faster speed, at H=20. Also, when the 

truncation value from above is low, the GHK (and also the SSJ) approaches perform poorly relative 

to the other analytic approximation methods. Overall, we find that the TVBS approach is the best 

in terms of accuracy and speed in evaluating individual MVNCD functions.  

In the testing of the analytic methods for MNP model estimation and prediction, we 

considered both an optimally ordered abscissae approach and a randomly ordered abscissae 

approach. The former came out to be the clear winner suggesting that, even for parameter 

estimation, it is better (at least in the context of analytic approximations) to evaluate individual 

choice probabilities (and, thus, individual log-likelihoods) accurately rather than relying on any 

ordering noise cancellation through randomization of the abscissa across observations. Overall, 

based on the multiple evaluation criteria of ability to recover parameters, ability to evaluate the 

overall log-likelihood function, ability to evaluate individual choice probabilities, ability to 

evaluate individual log-likelihoods, and computational time, the OVUS, OVBS, and the TVBS 

generally come out well on top relative to other methods.  

Based on all the evaluation results in this paper, we recommend the TVBS approach as the 

one-stop evaluation approach for MVNCD function evaluation. Of course, further evaluation and 

testing of the many analytic approximation methods in other consumer choice modeling contexts 

that involve MVNCD function evaluations, such as in multivariate ordered-response models and 

mixed models with different types of dependent variables, would be helpful in additional 

assessments of the many methods proposed in the paper. Doing so is particularly important because 

the analytic methods, unlike the simulation methods, do not readily provide error estimates.  
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Table 1. MVNCD evaluation results for the different analytic approximation methods 
 

Dim. Measure 
GHK SSJ Univariate truncation methods Bivariate truncation methods

500 10,000  1  10  TGME ME OVUS OVBS TGBME BME TVBS 

H=5 

MAE 0.00061 0.00009 0.00182 0.00116 0.01514 0.00124 0.00078 0.00045 0.01065 0.00083 0.00051 

MAPE 0.92 0.14 3.77 2.90 9.08 1.78 1.52 0.98 6.72 1.32 0.82 

%MAE>0.005 0.9 0.2 9.0 3.8 56.0 6.3 2.9 1.0 47.3 2.7 1.1 

%MAPE>2 4.3 0.9 27.6 19.8 65.0 13.4 9.3 5.1 54.5 8.0 4.9 

Time (s) 0.071 0.989 0.035 0.222 0.031 0.063 0.073 0.072 0.037 0.050 0.066 

H=7 

MAE 0.00075 0.00009 0.00148 0.00085 0.01301 0.00081 0.00064 0.00043 0.01020 0.00061 0.00045 

MAPE 1.77 0.43 7.44 5.36 11.34 1.94 1.83 1.83 8.77 1.62 1.46 

%MAE>0.005 1.4 0.1 6.7 1.5 53.9 3.1 1.8 0.9 48.4 1.7 0.9 

%MAPE>2 11.4 2.2 38.1 28.9 83.6 14.3 11.9 8.9 75.8 10.2 7.9 

Time (s) 0.106 1.670 0.054 0.389 0.048 0.114 0.126 0.141 0.055 0.078 0.122 

H=10 

MAE 0.00096 0.00011 0.00102 0.00057 0.01191 0.00050 0.00042 0.00032 0.00976 0.00040 0.00032 

MAPE 5.30 1.93 10.23 8.31 14.78 2.83 2.85 2.71 12.81 3.16 3.21 

%MAE>0.005 3.6 0.0 2.7 0.6 47.8 1.1 0.8 0.5 45.7 0.6 0.3 

%MAPE>2 26.1 8.6 45.3 38.3 89.7 16.7 15.2 12.6 87.9 13.9 12.7 

Time (s) 0.172 3.029 0.114 0.791 0.067 0.213 0.233 0.270 0.080 0.126 0.210 

H=12 

MAE 0.00101 0.00012 0.00085 0.00049 0.01078 0.00038 0.00032 0.00025 0.00898 0.00031 0.00025 

MAPE 7.00 2.16 15.66 12.06 14.62 3.29 2.97 2.71 12.52 2.68 2.41 

%MAE>0.005 4.5 0.0 2.5 0.4 46.8 0.2 0.1 0.0 44.1 0.1 0.1 

%MAPE>2 35.5 10.9 47.7 42.4 92.7 18.3 17.0 14.6 91.4 15.1 13.5 

Time (s) 0.219 4.653 0.150 1.145 0.084 0.296 0.328 0.383 0.095 0.187 0.295 

H=15 

MAE 0.00111 0.00014 0.00077 0.00038 0.00927 0.00029 0.00026 0.00020 0.00792 0.00024 0.00020 

MAPE 10.86 4.83 14.53 12.23 16.21 4.13 3.76 3.68 14.62 3.68 3.71 

%MAE>0.005 4.3 0.0 1.4 0.0 45.4 0.2 0.1 0.1 45.0 0.1 0.1 

%MAPE>2 47.1 18.2 51.5 43.7 93.3 21.3 20.2 17.9 93.1 17.7 16.7 

Time (s) 0.291 8.818 0.268 1.757 0.118 0.559 0.570 0.584 0.135 0.265 0.422 

H=18 

MAE 0.00113 0.00015 0.00059 0.00034 0.00855 0.00024 0.00021 0.00016 0.00737 0.00019 0.00016 

MAPE 15.55 6.96 16.67 13.33 17.92 5.41 4.83 4.56 15.95 4.06 3.67 

%MAE>0.005 5.4 0.0 0.3 0.0 43.8 0.0 0.0 0.0 42.3 0.0 0.0 

%MAPE>2 56.7 28.0 52.7 45.4 93.3 24.6 23.6 23.1 93.8 20.9 20.4 

Time (s) 0.400 9.252 0.394 2.653 0.137 0.675 0.694 0.843 0.166 0.368 0.571 

H=20 

MAE 0.00124 0.00016 0.00057 0.00032 0.00789 0.00021 0.00018 0.00015 0.00681 0.00017 0.00015 

MAPE 18.53 10.76 17.22 14.69 20.07 5.37 5.10 5.11 17.89 4.87 5.08 

%MAE>0.005 6.9 0.0 0.8 0.0 40.2 0.0 0.0 0.0 39.9 0.0 0.0 

%MAPE>2 63.3 34.1 53.7 47.3 94.7 26.0 24.9 24.7 93.9 23.8 24.0 

Time (s) 0.458 11.390 0.426 3.093 0.155 0.800 0.879 0.987 0.197 0.437 0.652 
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Table 2. MNP estimation results for the different analytic approximation methods 
 

Number of 
alternatives 

Analytics Approximation Methods 

SSJ Univariate truncation methods 
Bivariate truncation 

methods 
1  10  ME OVUS OVBS BME TVBS 

Ability to recover "true" parameter estimates (absolute percentage error) 

6 1.62 1.34 9.09 3.39 1.34 6.04 1.95 

11 3.19 3.27 9.01 3.92 2.65 7.92 4.24 

16 4.66 4.86 8.37 4.76 3.31 8.27 5.02 

21 4.53 5.52 8.08 4.95 3.77 8.79 6.00 

All 3.50 3.75 8.64 4.25 2.77 7.75 4.30 

Ability to recover "true" sampling standard error of estimator  (absolute percentage error) 

6 12.89 12.84 9.19 11.68 12.67 10.39 12.31 

11 11.01 10.92 7.93 10.02 10.67 8.10 9.77 

16 8.64 8.33 6.38 8.01 8.71 6.20 7.53 

21 8.75 7.52 5.99 7.14 7.62 5.42 6.46 

All 10.32 9.90 7.38 9.21 9.92 7.53 9.02 

Ability to estimate overall log-likelihood function  (absolute percentage error) 

6 0.11 0.09 0.40 0.06 0.04 0.56 0.09 

11 0.45 0.27 0.16 0.28 0.23 0.56 0.06 

16 0.81 0.48 0.10 0.49 0.42 0.37 0.09 

21 1.07 0.56 0.40 0.72 0.62 0.11 0.29 

All 0.61 0.35 0.27 0.39 0.33 0.40 0.14 

Ability to replicate the individual likelihood function values  (absolute percentage error) 

6 2.60 1.14 3.03 1.04 0.63 2.36 0.80 

11 5.85 2.49 3.80 1.78 1.25 3.76 1.81 

16 7.95 3.52 3.93 2.44 1.93 4.22 2.46 

21 10.39 4.65 4.14 3.20 2.71 4.74 3.11 

All 6.70 2.95 3.73 2.11 1.63 3.77 2.04 

Ability to replicate the logarithm of the individual likelihood function  (absolute percentage error) 

6 1.97 0.89 2.68 0.94 0.56 2.04 0.71 

11 3.49 1.49 2.75 1.27 0.86 2.69 1.28 

16 4.27 1.98 2.59 1.49 1.15 2.77 1.56 

21 4.94 2.34 2.35 1.64 1.38 2.75 1.71 

All 3.67 1.68 2.59 1.33 0.99 2.56 1.31 

Computation time (minutes) 

6 0.69 4.36 1.13 1.20 2.89 1.21 2.69 

11 7.12 57.96 12.81 6.77 12.31 20.60 9.05 

16 32.08 259.20 24.33 23.13 30.35 42.76 22.19 

21 221.80 2366.67 180.13 63.40 195.99 189.84 127.58 

All 65.42 672.05 54.60 23.62 60.38 63.60 40.38 
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Appendix A: The covariance matrix of single-sided truncations (from above) of bivariate 
normally distributed random variables 

 

Using the same notations as in Property 1, and using the general results on the moments of 

truncated multivariate distributions (see Kan and Robotti, 2017) we may write the following: 
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Using the expressions above and the expressions for 1 1 1 2 2( | ( , ))E X X x X x   and 

2 1 1 2 2( | ( , ))E X X x X x   from Equation (3), and after some straightforward but tedious algebra, 

the simple expressions in Equation (5) result. 

 


