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ABSTRACT

The focus of this paper is to develop a procedure for the Maximum Composite Marginal Likelihood (MACML) estimation of multinomial logit models with normally mixed terms, as would be the case with normally-mixed random coefficient and/or error-component structures. 

Keywords: mixed logit, multinomial logit, composite marginal likelihood, maximum simulated likelihood, discrete choice models, mixed models, panel models. 

1. BACKGROUND
The Maximum Composite Marginal Likelihood (MACML) inference approach proposed by Bhat (2011) is particularly suited to estimating the multinomial probit (MNP) model, and can also be used for mixed MNP models where a normal-mixing structure (such as random coefficients) is superimposed on an MNP kernel. In the past several years, such mixed unordered-response models have mostly been estimated using a mixed (multinomial) logit formulation rather than a mixed MNP formulation, mainly because the former is easier to estimate using simulation techniques within a maximum simulated likelihood (MSL) approach. Also, in most applications of mixed models, a normally distributed mixture is used. Within the context of such normally-mixed models, the mixed MNP model is simpler to estimate using the MACML approach than is the mixed logit model (a reverse of the case with the MSL approach), because of the conjugate additional property of the normal distribution. On the other hand, the MACML estimation of the mixed logit model may be undertaken using a normal scale mixture representation for the extreme value error terms, which adds an additional layer of computational effort. 
In applications, the use of a mixed MNP model or a mixed logit model is one of pure convenience, and so it stands to reason that the mixed MNP model should be used given the substantial computational efficiency achievable using the MACML inference approach compared to the MSL estimation of a mixed logit model (see Bhat and Sidharthan, 2011). However, it is of some academic interest to develop a procedure for the MACML estimation of mixed logit models. Besides, once developed, such an approach can be extended to estimating MNP models with non-normal mixing distributions. Accordingly, the focus of this paper is to develop the procedure for the MACML estimation of normally-mixed logit models. 
The next section presents the MACML estimation of the mixed cross-sectional logit model, while Section 3 presents the MACML estimation of the mixed panel logit model. 
2. THE MIXED CROSS-SECTIONAL MULTINOMIAL LOGIT MODEL
Consider a random-coefficients formulation in which the utility that an individual q associates with alternative i is written as:
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where 
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 is assumed to be an independently and identically distributed (across alternatives and individuals) standard Type I extreme value (or Gumbel) error term.  Assume that the 
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 vector in Equation (1) is a realization from a multivariate normal distribution with a mean vector b and covariance matrix 
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, where L is the lower-triangular Choleski factor of 
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. Then, the likelihood contribution of individual q who chooses alternative m takes the familiar mixed multinomial logit form:
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where 
[image: image11.wmf]qm

qi

qim

x

x

z

-

=

. This requires the integration of a K-dimensional integral, which is typically undertaken using maximum simulated likelihood estimation with pseudo-Monte Carlo (PMC) or Quasi-Monte Carlo (QMC) draws (Yu et al., 2010 provides a recent overview and comparison of alternative QMC methods, while Bastin et al. (2006) and Qian and Shapiro (2006) discuss optimization/adaptive algorithm techniques to accelerate estimation using PMC draws). Bayesian approaches to the mixed logit estimation are also available based on Allenby and Lenk’s (1994) approach (see Train, 2009, Chapter 12 for a discussion).


The MACML estimation approach we propose here (rather than the typical simulation-based approaches) for the mixed logit model is based on using a normal scale mixture representation for the extreme value error terms. Specifically, consider the utility differentials again, each between the chosen alternative m and the other 
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The probability of alternative m being chosen continues to be given by the multivariate orthant probability expression 
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. However, this orthant probability does not have a closed-form, because of the mixing of the normal term 
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. But the approximation in Section 2.1 of Bhat (2011) based on the binary variables holds for any multivariate cumulative distribution function (note that the derivation of the linear association coefficient vector 
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 in Equation (6) of Bhat (2011) is independent of any distributional assumption on the vector W). Thus, we still can write the following (assuming 
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where 
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 are matrices of bivariate marginal probabilities defined similarly as in Section 2.1 of Bhat (2011), and  
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 Again, we have only bivariate and univariate distributions in the expression. To approximate these orthant probabilities, we use the idea of a scale mixture. In particular, the bivariate probability is obtained by replacing the non-normal densities of 
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where 
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 is the standard type I extreme value density function, 
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 Frühwirth-Schnatter and Frühwirth (2007) provide the mixture weight points 
[image: image36.wmf]s

p

 and the corresponding density moments (
[image: image37.wmf]s

c

 and 
[image: image38.wmf]2

s

s

) based on minimizing the Kullback-Leibler distance measure (a measure of distance between the true density and estimated mixture-based density). The error in their approximation is extremely small even with 5 mixture points and literally non-existent with 10 mixture points (the values of 
[image: image39.wmf]s

p

, 
[image: image40.wmf]s

c

, and 
[image: image41.wmf]2

s

s

 are tabled in their paper).
 Now, consider a specific mixture s for the error term 
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Thus,
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To write the pairwise marginal probability 
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where 
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Next, one can obtain the overall pairwise marginal probability by taking the weighted sum of the mixture-specific bivariate probability in Equation (8) over all permutations of h, l, and s:
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The univariate marginal probabilities in Equation (4) are much simpler to approximate, since one can directly use a normal scale mixture approximation for the logistic distribution. The normal scale mixture approximation for the symmetric logistic distribution is essentially exact for as few as 
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 components (see Monahan and Stefansky, 1992; Drum and McCullagh, 1993; Feddag and Bacci, 2009). The logistic distribution may be written as follows:
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where 
[image: image70.wmf]L
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 is the standard logistic density function, and 
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 is the normal density function with mean a and variance 
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and 
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With the expressions above, the likelihood of individual q in the mixed multinomial logit model is obtained from Equation (4). 

3. THE MIXED PANEL MULTINOMIAL LOGIT MODEL
Consider the following model with ‘t’ now being an index for choice occasion:
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Let 
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 be IID standard Type I-extreme value distributed over individuals, alternatives, and choice occasions. We will assume that the coefficients 
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 are constant over choice situations of a given decision maker. Also, we will assume that the number of choice occasions per individual is the same across all individuals. The case of different numbers of choice occasions per individual may be handled in a straightforward fashion based on Section 4.2 of Bhat (2011).
The likelihood contribution of individual q who selects alternative 
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where 
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. For the estimation of the above mixed panel MNL model, we bring together all the three devices of (1) approximation for multivariate orthant probabilities, (2) the CML approach, and (3) the scale-mixture technique. In the mixed cross-sectional MNL mode, we started from the normal scale mixture approximation for the type I extreme value error term, because (in the notation of the panel model now) the utility difference error terms 
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Using the same notations and derivational approach as for the mixed cross-sectional MNL model, the relevant bivariate marginal orthant probabilities for the latent utilities within the same time period t take the form below 
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where 
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The corresponding bivariate orthant probability expression for the pairings across time periods, using the normal scale mixture representation directly for the independent logistic terms is 
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In the above expression, 
[image: image127.wmf]igtw

Δ

 is a selection matrix of size 
[image: image128.wmf]]

)

1

[(

2

T

I

´

-

´

. This matrix has a value of one in the 
[image: image129.wmf]th

]

)

1

(

)

1

[(

i

t

I

+

-

´

-

 column in the first row if 
[image: image130.wmf]t

m

i

<

 or a value of one in the 
[image: image131.wmf]th

)]

1

(

)

1

(

)

1

[(

-

+

-

´

-

i

t

I

 column in the first row if 
[image: image132.wmf]t

m

i

>

. Similarly, it has a value of one in the 
[image: image133.wmf]th

]

)

1

(

)

1

[(

g

w

I

+

-

´

-

 column in the second row if 
[image: image134.wmf]w

m

g

<

 or a value of one in the 
[image: image135.wmf]th

)]

1

(

)

1

(

)

1

[(

-

+

-

´

-

g

w

I

 column in the second row if 
[image: image136.wmf]w

m

g

>

. The matrix has values of zero everywhere else.

4. CONCLUSIONS
In this paper, we introduce a simulation-free maximum approximated composite marginal likelihood (MACML) estimation approach for normally-mixed multinomial logit models in both a cross-sectional and panel context. The approach is based on using a normal scale mixture representation for the extreme value error terms. In both the cross-sectional and panel contexts, the MACML approach involves only univariate and bivariate cumulative normal distribution function evaluations, regardless of the number of alternatives or the number of choice occasions per individual. Extensions to include more complex mixing in panel models, such as intra- and cross-temporal random coefficients and/or autoregressive random coefficients, pose no conceptual difficulties and can be based on the same normal scale mixture technique as in the simpler mixing cases. The scale mixture technique developed here can also be extended to handle non-normal mixing distributions with an MNP kernel or a logit kernel. 
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