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ABSTRACT
This paper makes both a methodological contribution as well as an empirical contribution. From a methodological perspective, we propose a new econometric approach for the estimation of joint mixed models that include a multiple discrete choice outcome and a nominal discrete outcome, in addition to the count, binary/ordinal outcomes, and continuous outcomes considered in traditional structural equation models. These outcomes are modeled together by specifying latent underlying unobserved individual lifestyle, personality, and attitudinal factors that impact the many outcomes, and generate the jointness among the outcomes. From an empirical perspective, we analyze residential location choice, household vehicle ownership choice, as well as time-use choices, and investigate the extent of association versus causality in the effects of residential density on activity participation and mobility choices. The sample for the empirical application is drawn from a travel survey conducted in the Puget Sound Region in 2014. The results show that residential density effects on activity participation and motorized auto ownership are both associative as well as causal, emphasizing that accounting for residential self-selection effects are not simply esoteric econometric pursuits, but can have important implications for land-use policy measures that focus on neo-urbanist design. 
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1. INTRODUCTION
The joint modeling of multiple outcomes is of substantial interest in several fields. In econometric terminology, this jointness may arise because of the impact (on the multiple choice outcomes) of common underlying exogenous observed variables, or common underlying exogenous unobserved variables, or a combination of the two. For instance, consider the choice of residential location, motorized vehicle ownership (or simply auto ownership from hereon), and activity time-use in recreational pursuits (such as going to the movies/opera, going to the gym, playing sports, and camping). In this setting, it is possible (if not very likely) that individuals from households who have a high green lifestyle propensity (an unobserved variable) may search for locations that are relatively dense (with good non-motorized and public transportation facilities and high accessibility to activity locations), may own fewer cars, may travel less and so pursue more in-home (IH) activities, and pursue less of what they may perceive as activities that correlate with  extravagant living and indulgence such as out-of-home (OH) personal care/grooming, shopping, and dining out. In this case, when one or more unobserved factors (for example, green lifestyle) affect(s) the multiple outcomes, independently modeling the outcomes results in the inefficient estimation of covariate effects for each outcome (because such an approach fails to borrow information on other outcomes; see Teixeira-Pinto and Harezlak, 2013). But, more importantly, if some of the endogenous outcomes are used to explain other endogenous outcomes (such as examining the effect of density of residence on auto ownership, or the effect of density of residence on OH activity time-use, or the effect of auto ownership on time-use in activities), and if the outcomes are not modeled jointly in the presence of unobserved exogenous variable effects, the result is inconsistent estimation of the effects of one endogenous outcome on another (see Bhat and Guo, 2007, and Mokhtarian and Cao, 2008). In the next section, we position the current paper within this broader methodological context of modeling multiple outcomes jointly.

1.1. The Methodological Context
The joint modeling of multiple outcomes has been a subject of interest for many years, dominated by the joint modeling of multiple continuous outcomes (see de Leon and Chough, 2013). However, in many cases, the outcomes of interest are not all continuous, and will be non-commensurate (that is, a mix of continuous, count, and discrete variables). The joint modeling of non-commensurate outcomes makes things more difficult because of the absence of a convenient multivariate distribution to jointly (and directly) represent the relationship between discrete and continuous outcomes. This is particularly the case when one of the dependent outcomes is of a multiple discrete-continuous (MDC) nature. An outcome is said to be of the MDC type if it exists in multiple states that can be jointly consumed to different continuous amounts. In the example presented in the earlier paragraph, activity time-use is an MDC variable, assuming a daily or weekly or monthly period of observation. Thus, in a given day, an individual may participate in multiple types of non-work activities (shopping, personal business, child-care, recreation, and so on) and invest different amounts of time in each activity types (see Bhat et al., 2009 and Pinjari and Bhat, 2014 for detailed reviews of MDC contexts).  
In this paper, we introduce a joint mixed model that includes an MDC outcome and a nominal discrete outcome, in addition to count, ordinal, and continuous outcomes. Each non-continuous outcome is cast in the form of a latent underlying variable regression, wherein the latent “dependent” stochastic variable is assumed to manifest itself through an a priori transformation rule in the observed non-continuous outcomes. Next, the continuous observed outcome and the latent continuous manifestations of the non-continuous dependent outcomes themselves are tied together using a second layer of common latent underlying unobserved decision-maker variables (such as individual lifestyle, personality, and attitudinal factors) that impact the outcomes. The presence of this second layer of latent “independent” is what generates jointness among the outcomes. Reported subjective ordinal attitudinal indicators for the latent “independent” variables help provide additional information and stability to the model system. In this manner, we build on Bhat’s (2015) Generalized Heterogeneous Data Model (GHDM) that expressly acknowledges the presence of latent “independent” variables (or sometimes referred to as latent psychological constructs in the social sciences and in this paper as well) affecting choice, and assumes that these latent “independent” variables get manifested in observed psychological indicators as well as the observed dependent outcomes. In particular, we develop a powerful and parsimonious way of jointly analyzing mixed outcomes including an MDC outcome. In addition, we formulate and implement a practical estimation approach for the resulting GHDM (GHDM including an MDC outcome) model using Bhat’s (2011) maximum approximate composite marginal likelihood (MACML) inference approach. This approach is not simulation-based (see Bhat, 2000 and Bhat, 2001 for such simulation approaches, but which can lead to convergence issues as well as be computationally intensive). Rather, the MACML approach requires only the evaluation of bivariate or univariate cumulative normal distribution functions regardless of the number of latent variables or the number and type of dependent variable outcomes. Many structural equation models (SEMs) and similar models in the past, on the other hand, are estimated using  simulation-based methods or, alternatively, sequential estimation methods (see Temme et al., 2008 and Katsikatsou et al., 2012 for discussions of these sequential methods). The problem with the latter sequential methods is that they do not account for sampling variability induced in earlier steps in the later steps, leading to inefficient estimation. In addition, the use of such sequential methods will, in general, also lead to inconsistent estimation (see Daziano and Bolduc, 2013 for discussions of the reasons). The MACML approach is a practical way to obtain consistent estimators even in high dimensional mixed multivariate model systems. 
 To our knowledge, this is the first formulation and application of such an integrated model system in the econometric and statistical literature. The model should be applicable in a wide variety of fields where MDC variables appear as elements of package choices of different types of outcomes of interest. For example, in the health field, in addition to binary, count, and continuous variables related to the occurrence, frequency, and intensity, respectively, of specific health problems, it is not uncommon to obtain ordinal information on quality of life outcomes/perceptions and there may be interest in associating these variables with an MDC variable representing the type and intensity of participation in different types of physical activities and the durations in each participated physical activity. Other fields where the proposed model should be of interest include biology, developmental toxicology, finance, economics, epidemiology, and social science (see a good synthesis of potential applications of mixed models in De Leon and Chough, 2013). However, to make clear the application potential of the methodology presented here, we will further motivate the methodology with a specific application context originating in the land use-trasnportation domain, as we discuss next. 

1.2. The Empirical Context
An issue that has received particular attention within the broad land use-transportation literature is whether any effect of the BE on travel demand is causal or merely associative (or some combination of the two; see Bhat and Guo, 2007, Mokhtarian and Cao, 2008, Pinjari et al., 2008, Bohte et al., 2009, Van Wee, 2009, and Van Acker et al., 2014). Commonly labeled as the residential self-selection problem, the underlying problem is that the data available to assess the potential effects of land-use on activity-travel (AT) patterns is typically of a cross-sectional nature. In such observational data, the residential location of households and the activity-travel patterns of household members are jointly observed at a given point in time. Thus, the data reflects household residential location preferences co-mingled with the AT preferences of the households. On the other hand, from a policy perspective, the emphasis is on analyzing whether (and how much) a neo-urbanist design (compact BE design, high bicycle lane and roadway street density, good land-use mix, and good transit and non-motorized mode accessibility/facilities) would help in reducing motorized travel. To do so, the conceptual experiment that reveals the “true” effect of the BE features of the residential location on AT patterns is the one that randomly locates households in residential locations. The problem then, econometrically speaking, is that the analyst has to extract out the “true” BE effect from a potentially non-randomly assigned (to residential locations) observed cross-sectional sample. If the non-random assignment can be completely captured by observed non-travel characteristics of households and the BE (such as, say, poor households locating in areas with low housing cost), then a conventional travel model accommodating the observed non-AT characteristics of households and the BE characteristics would suffice to extract the “true” BE effect on AT patterns. However, it is quite possible (if not likely) that there are some antecedent personality, attitude, and lifestyle characteristics of households that are unobserved to the analyst and that impact both residential location choice and activity-travel behavior, as discussed earlier. Ignoring such self-selection effects in residence choices can lead to a “spurious” causal effect of neighborhood attributes on activity-travel behavior, and potentially lead to misinformed BE design policies.
	Many different approaches may be used to account for residential self-selection effects, a detailed review of which is beyond the scope of this paper (the reader is referred to Bhat and Guo, 2007, Bhat and Eluru, 2009, Mokhtarian and Cao, 2008, and Bhat, 2015). But, within the context of cross-sectional data, one broad direction is to more explicitly capture what is traditionally “unobserved” (latent) in typical travel survey data sets, and include these as “independent” variables. It is here that our proposed GHDM model comes into play.  
Another important point of departure of the current empirical study from most earlier studies in the land use-transportation domain is that we examine residential self-selection (and more generally integrated land use-transportation modeling) in the context of an activity-based modeling (ABM) paradigm (see, for example, Bhat and Koppelman, 1993). As pointed out by Pinjari et al. (2009) and more recently by Chen et al. (2014), despite the fact that the ABM paradigm is increasingly now accepted even in practice as the approach of choice for travel analysis, there has been little consideration of residential self-selection issues within the ABM modeling paradigm. The central basis of the ABM paradigm is that individuals' activity-travel patterns are a result of their time-use decisions; individuals have 24 hours in a day (or multiples of 24 hours for longer periods of time) and decide how to use that time among activities and travel (and with whom) subject to their sociodemographic, spatial, temporal, transportation system, and other contextual constraints; see Bhat et al. (2004) and Pinjari and Bhat (2011). In the activity-based approach, the impact of land-use and demand management policies on time-use behavior is an important precursor step to assessing the impact of such polices on individual travel behavior. Accordingly, in this paper, we jointly model residential location-related choices along with auto ownership and activity time-use in different activities. 
The rest of this paper is structured as follows. The next section presents the modeling framework. Section 3 describes the data source employed, the sample formation procedures, the empirical estimation results, and then implications for integrated land use-transportation planning. The final section summarizes the findings and main conclusions.

2. THE GHDM MODEL FORMULATION INCLUDING MDC VARIABLES
For ease in notation, consider a cross-sectional model. As appropriate and convenient, we will suppress the index q for decision-makers (q=1,2,…,Q) in parts of the presentation. 

2.1. Latent Variable Structural Equation Model

In the usual structural equation model set-up, we specify the latent “independent” variable or latent construct  (l=1,2,…,L) as a linear function of covariates:
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where w is a  vector of observed covariates (not including a constant),  is a corresponding  vector of coefficients, and  is a random error term assumed to be standard normally distributed for identification purposes (see Stapleton, 1978). Next, define the  matrix , and the  vectors  and  Let , where  is an  column vector of zeros, and  is an correlation matrix. In matrix form, we may write Equation (1) as:

.         	(2)

2.2. Latent Variable Measurement Equation Model Components



Consider a combination of continuous, ordinal, count, nominal, and MDC outcomes of the underlying latent variable vector . Note that, in the GHMD, the actual mixed outcomes of interest (“endogenous” variables, including continuous, count, nominal, and MDC outcomes) as well as any subjective indicators (all ordinal in the current paper) of the latent vector  are together (and simultaneously) used to estimate the structural Equation (2) that relates the latent constructs with exogenous covariates (through a reduced form of the measurement equation system; see Appendix A). That is, the fact that we have additional ordinal indicators of the latent constructs helps provide stability to the estimation of Equation (2) in the model system, but does not play a central role in identifying the latent constructs per se. In other words, there is no distinction between the traditional subjective indicators (usually ordinal) and other actual endogenous variables of interest in the GHDM. All of these indicators/outcomes together are treated identically as marker manifestations of the underlying latent construct vector . Thus, in the GHDM, there is even no need for any subjective indicators, since the actual endogenous outcomes themselves serve as indicators of the latent constructs. The latent constructs are identified based on theory and earlier studies, as in all earlier land use-transportation studies that incorporate latent psychological constructs in the modeling framework (please see Section 3.3 for a more complete discussion of this point). Once estimated, the relationship between the latent constructs and the subjective indicators can be discarded (these purely help in efficiently estimating Equation (2), and in identifying Equation (2) if the number of endogenous outcomes present are not adequate). The focus is on (a) the measurement relationship between the actual endogenous outcomes with (i) exogenous covariates, (ii) other actual endogenous outcomes, and (iii) the latent constructs, and (b) the structural equation system of Equation (2). In the former relationship, the inter-relationships among the endogenous variables are “uncorrupted causal” influences after controlling for error correlations across the many dimensions (engendered by the latent effects). These endogenous effects correspond to recursive influences among the dependent variable outcomes.[footnoteRef:1]  [1:  In joint limited-dependent variables systems in which one or more dependent variables are not observed on a continuous scale, such as the joint system considered in this paper that has discrete dependent, count, and MDC variables, the structural effects of one limited-dependent variable on another can only be in a single direction. See Maddala, (1983) and Bhat (2015) for a more detailed explanation. ] 

In the following presentation, we will use the term “outcome” to refer to both the actual endogenous outcomes of interest as well as subjective ordinal indicators of the latent constructs. We also allow more than one outcome for the continuous and ordinal variable types, but confine attention to only one outcome each for the count, nominal and MDC variable types. This is purely for ease in presentation, and is by no means methodologically restrictive. Indeed, the extension to more than one count, and/or one nominal and/or one MDC outcome is straightforward. 





















Let there be H continuous outcomes  with an associated index h . Let  in the usual linear regression fashion, where  is an -vector of exogenous variables (including a constant) as well as the observed values of other endogenous outcomes.  is the corresponding compatible coefficient vector.  is an  vector of latent variable loadings on the hth continuous outcome, and  is a normally distributed measurement error term. Define the following two  vectors:  and , with  (that is, the vector  is assumed to be H-variate normally distributed with zero means for all its elements and a covariance matrix ).  is restricted to be diagonal to aid in identification because the latent variable vector  already serves as a vehicle to generate covariance between the outcome variables. Define the  matrix  and the  matrix of latent variable loadings  Then, one may write the following vector measurement equation for the continuous outcomes:

.                              	(3)








Next, let there be  ordinal outcomes (indicator variables in this paper) for the individual, and let n be the index for the ordinal outcomes . Also, let  be the number of categories for the nth ordinal outcome  and let the corresponding index be. Let  be the latent underlying variable whose horizontal partitioning leads to the observed outcome for the nth ordinal variable. Assume that the individual under consideration chooses the  ordinal category. Then, in the usual ordered response formulation, we may write:
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where  is as defined earlier,  is a corresponding vector of coefficients to be estimated,  is an vector of latent variable loadings on the nth continuous outcome, the  terms represent thresholds (for each n, ), and  is the standard normal random error for the nth ordinal outcome. For later use, let . Stack the N underlying continuous variables  into an  vector , and the N error terms  into another  vector . Define  [ matrix]  and  [ matrix], and let  be the identity matrix of dimension N representing the correlation matrix of ; . Finally, stack the lower thresholds for the decision-maker  into an  vector  and the upper thresholds  into another vector . Then, in matrix form, the measurement equation for the ordinal outcomes (indicators) for the decision-maker may be written as:

.     							       (5)

For the count variable, let the index be g for the count categories  and let r be the actual observed count value for the household. Then, a generalized version of the negative binomial count model may be written as (see Castro, Paleti, and Bhat, or CPB, 2012 and Bhat et al., 2013): 

	(6)
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In the above equation,  is a latent continuous stochastic propensity variable that maps into the observed count r through the  vector (which is a vertically stacked column vector of thresholds  is an  vector of latent variable loadings on the count outcome, and  is a standard normal random error term.  is a column vector corresponding to the vector  (including a constant) of exogenous observable covariates and endogenous outcomes.  in the threshold function of Equation (7) is the inverse function of the univariate cumulative standard normal.  is a parameter that provides flexibility to the count formulation, and is related to the dispersion parameter in a traditional negative binomial model if the general negative binomial structure collapses to a general Poisson structure).  is the traditional gamma function; . The threshold terms in the  vector satisfy the ordering condition (i.e.,  as long as   The presence of the  terms in the thresholds provides substantial flexibility to accommodate high or low probability masses for specific count outcomes (see CPB, 2012 for a detailed discussion). For identification, set  and . In addition, we identify a count value   above which is held fixed at ; that is,  if  where the value of  can be based on empirical testing. Doing so is the key to allowing the count model to predict beyond the count range available in the estimation sample. For later use, let  ( vector) (assuming . 


Next, consider the nominal (unordered-response) outcome for the individual, and let i be the corresponding index ( = 1, 2, 3,…, I). Let the individual under consideration choose the alternative . Also, assume the usual random utility structure for each alternative i.	

								                  (8)





































where  is the same fixed vector of exogenous variables as earlier,  is an  column vector of corresponding coefficients, and  is a normal random error term.  is a matrix of variables interacting with latent variables to influence the utility of alternative i, and  is an  column vector of coefficients capturing the effects of latent variables and their interaction effects with other exogenous variables. If each of the latent variables impacts the utility of the alternatives for each nominal variable purely through a constant shift in the utility function,  will be an identity matrix of size , and each element of  will capture the effect of a latent variable on the constant specific to alternative i (see Bhat and Dubey, 2014). To move forward, let  ( vector), and . Taking the difference with respect to the first alternative, only the elements of the covariance matrix of the covariance matrix of the error differences,  (where ,), is estimable.[footnoteRef:2]  Further, the variance term at the top left diagonal of  is set to one to account for scale invariance.  is constructed from  by adding an additional row on top and an additional column to the left. All elements of this additional row and column are filled with values of zeros.  Next, define   vector),   matrix), and   matrix. Also, define the  matrix  which is initially filled with all zero values. Then, position the  row vector in the first row to occupy columns 1 to  , position the  row vector in the second row to occupy columns +1 to  and so on until the  row vector  is appropriately positioned.  Further, define  matrix). Then, in matrix form, we may write: [2:  Also, in MNP models, identification is tenuous when only individual-specific covariates are used in the vector x (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in the form of at least one individual characteristic being excluded from each alternative’s utility in addition to being excluded from a base alternative (but appearing in some other utilities). But these exclusion restrictions are not needed when there are alternative-specific variables. ] 


										      (9)





Next, note that, under the utility maximization paradigm,  must be less than zero for all , since the individual chose alternative m. Stack the latent utility differentials into a vector .  To write this utility differential vector compactly in terms of the original utilities, define a matrix M of size . Insert an identity matrix of size  after supplementing with a column of ‘-1’ values in the column corresponding to the chosen alternative m. Then, we may write the following:


 with 
	Finally, consider the MDC outcome. Following Bhat (2005) and Bhat (2008), consider a choice scenario where the decision maker maximizes his/her time utility subject to a binding time budget constraint:

 	(10)
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where the utility function  is quasi-concave, increasing and continuously differentiable, t is the time investment vector of dimension K×1 with elements , , , and  are parameters associated with activity purpose k, and T represents the time budget to be allocated among the K activity purposes. The utility function form in Equation (10) allows corner solutions (i.e., zero consumptions) for activity purposes 1 through  through the parameters , which allow corner solutions for these alternatives while also serving the role of satiation parameters     (). On the other hand, the functional form for the final activity purpose ensures that some time is invested in activity purpose K (for example, activity purpose K may refer to in-home activities such as eating, watching TV, and relaxing; activity purpose K is usually referred to as an essential outside good in the microeconomics literature; see Bhat, 2008). The role of  is to capture satiation effects, with a smaller value of  implying higher satiation for activity purpose k.  represents the stochastic baseline marginal utility; that is, it is the marginal utility at the point of zero time investment for alternative k.















The utility function in Equation (10) constitutes a valid utility function if, in addition to the constraints on the  parameters as discussed above, , and  for all k. Also, as indicated earlier,  and  influence satiation, though in quite different ways:  controls satiation by translating consumption quantity, while  controls satiation by exponentiating consumption quantity. Empirically speaking, it is difficult to disentangle the effects of  and  separately, which leads to serious empirical identification problems and estimation breakdowns when one attempts to estimate both parameters for each good. Thus, Bhat (2008) suggests estimating a -profile (in which  for all alternatives, and the  terms are estimated) and an -profile (in which the  terms are normalized to the value of one for all alternatives, and the  terms are estimated), and choose the profile that provides a better statistical fit.[footnoteRef:3] However, we will retain the utility form of Equation (10) to keep the presentation general. Next, to complete the model structure, the baseline utility is specified to be a function of the latent variable vector, the A-dimensional exogenous variable vector x, and a random error term as follows:  [3:  The τ-profile equivalent of Equation (10) is , and the α-profile equivalent is . ] 
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where  and  are A-dimensional and L-dimensional column vectors, respectively, and  captures the idiosyncratic characteristics that impact the baseline utility of activity purpose k. We assume that the error terms  are multivariate normally distributed across alternatives: . But only differences in the logarithm of the baseline utilities matter, not the actual logarithm of the baseline utility values (see Bhat, 2008). Thus, it will be easier to work with the logarithm of the baseline utilities of the first  alternatives, and normalize the logarithm of the baseline utility for the last alternative to zero. That is, we write:

        	(12)









It should be clear from above that only the covariance matrix, say  of the error differences is estimable, and not the covariance matrix  of the original error terms. Further, with the formulation as in Equation (10), where the sum of the time investments across activity purposes is equal to the total time budget, an additional scale normalization needs to be imposed (see Bhat, 2008). A convenient normalization is to set the first element of  (that is, to one). Further, for ease in interpretation of the covariance matrix , we assume that the error term of the “outside” alternative  is independent of the error terms of the “inside” alternatives  With this assumption, each covariance matrix element of  can then immediately be interpreted as a direct indicator of the extent of variance and covariance in the utilities of the inside alternatives.[footnoteRef:4] [4:  In particular, assume that the variance of  is 0.5. Then, to normalize  to one, we should have that the variance of  is also 0.5. Let the variance of  be  and the covariance between  and   be . Then, the matrix  of the error differences  is:
 ] 




The analyst can solve for the optimal consumption allocations corresponding to Equation (10) by forming the Lagrangian and applying the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian function for the problem, after substituting  (equal to  and equal to) in Equation (10) is:

 	(13)






where  is the Lagrangian multiplier associated with the time budget constraint (that is, it can be viewed as the marginal utility of total time). The KKT first-order condition for the “optimal” investment  in the last activity purpose (which is always positive) implies the following:  that is, . The KKT first-order conditions for the optimal time investments for the inside alternatives (the  values for  are given by:



 , if , 	(14)



, if , 

Substituteinto the above equations, take logarithms, and rewrite the KKT conditions as: 



, if , 	(15)
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where  for . Define [ vector],  [ vector],   [ vector],   matrix], and  Then, we may write, in matrix form, the following equation:

,           									    (16)





with the elements of  adhering to the conditions in Equation (15). Also, for later use, let  be the set of consumed alternatives not including the last alternative (with cardinality ), and  be the set of non-consumed alternatives (with cardinality ).





The parameter vector to be estimated is , where vech() implies a row vector of all the unique and non-fixed elements of matrix . The maximum likelihood estimation of the model involves the evaluation of an -dimensional rectangular integral for each decision-maker, which can be computationally expensive. So, we use the Maximum Approximate Composite Marginal Likelihood (MACML) approach of Bhat (2011). The estimation approach is very notation-intensive, and so we relegate the details of the approach to Appendix A. Also, in a figure of the online supplement (http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf), we provide a diagrammatic representation of the entire model system, including the notations used in this section for easy association.  


3. AN APPLICATION
In this paper, as discussed in Section 1.2, we apply the proposed model to examine households’ residential location (characterized by commute distance and the density or number of households per square mile in the Census block group of the household’s residence, as obtained from the 2010 decennial Census data), auto ownership level, and time spent on a typical weekday on (a) in-home (IH) non-work, non-educational, and non-sleep activities and (b) out-of-home (OH) non-work non-educational pursuits. In the analysis, the OH activities are classified into one of six types: personal business (including family or personal obligations, going to day care, and medical appointments), shopping (including buying food and goods), eating out, social activities (including visiting friends or relatives and attending parties), recreation (including visiting cultural/arts centers, going to the movies, attending sports events, going to the gym, pursuing physical activities such as running, walking, swimming, and playing sports), and “other” activities (including picking up or dropping off someone, and “other” non-work, non-education, and non-sleep activities. A further investigation of this “other” activity category indicated that it was dominated by serve passenger activity. Specifically, 80% of the “other” activities corresponded to serve passenger activity. Hence, to make our labeling easy and comprehensible, we will refer to the “other” category as the “serve passenger” category in the rest of this paper. 

3.1. Data Source and Sample Formation
The data source used in this study is the Puget Sound household travel survey conducted by the Puget Sound Regional Council (PSRC) in the spring (April–June) of 2014 in the four county PSRC planning region (the four counties are King, Kitsap, Pierce, and Snohomish) in the State of Washington. Households were randomly sampled, with the intent of obtaining a representative sample of households from the region for analyzing activity-travel patterns. The survey was administered by recruiting households using a stratified address-based sampling method based on the US Post Office’s Computerized Delivery Sequence File (CDSF) that is a compilation of all mailing addresses in the US, providing coverage for approximately 97% of all households. Households were initially contacted using a “recruit survey” through which information on household-level socio-demographics (including motorized vehicle ownership by type, and home location address, housing type, and tenure status) and person-level information (including work and student status) was obtained.  Only one adult household member (age 18 or older) was asked to complete the “recruit survey”, and the corresponding household respondent was designated as the household reference person. The “recruit survey” also elicited information from the household reference person on the factors that influenced the current residential choice. This included the importance of the following six factors: (1) having a walkable neighborhood and being near local activities, (2) being close to public transit, (3) being within a 30-minute commute to work, (4) quality of schools in the neighborhood, (5) having space and separation from others, and (6) being close to the highway. Another part of the survey was a “retrieval survey” that comprised a comprehensive travel diary for a pre-defined household-specific mid-weekday (Tuesday, Wednesday, or Thursday) that each individual in the household (5 years or older) was asked to fill in at a “dashboard” web site generated for the household. Following the 24-hour diary portion of the retrieval survey, respondents were asked a series of questions about their typical transportation behaviors (to provide additional information beyond a single day’s travel). Additional details of the survey recruitment and administration procedures are available in RSG (2014). 
The survey collected information from a total of 6,036 households, of which 4,631 households had at least one worker employed in the household and with a work location outside the residential dwelling unit. The focus of the current analysis is on these 1+-worker households, to acknowledge the rather substantial differences in household residence and activity-travel patterns between zero-worker households (retired couples, unemployed individual households, and student households) and 1+-worker households (see, for example, Rajagopalan et al., 2009). After further screening to remove households with incomplete residence, travel, attitude, or demographic information, the final sample used in the current analysis included 3,637 households. In an online supplement to this paper, we provide descriptive characteristics of the socioeconomic characteristics of the sample (see the online supplement at: http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf). 

3.2. Dependent Variable Characteristics
The dependent variables in our model system include a combination of a continuous variable, multiple ordinal indicators, a count variable, a nominal variable, and an MDC variable. The construction of each of these variables is discussed in turn in the subsequent paragraphs. Table 1 provides descriptive statistics of the dependent variables.
Commute distance, the continuous variable, was not reported directly by members of the household; it was derived by the Puget Sound Regional Council from shortest-path distance skims based on the home and primary work locations of each individual. We then computed a household average commute distance (miles) as the average one-way distance in miles between the home and the primary workplace across those individuals working outside the home (for brevity, from here on, we will refer to this variable as household commute distance). As may be observed from Table 1, the minimum and maximum household commute distances in the sample are 0.05 miles and 99.95 miles, respectively. The 95th percentile value for the household commute distance is 41.7 miles. In our estimation, we used the natural logarithm of household commute distance as the continuous dependent variable. 
As indicated in the previous section, the household reference person was asked a series of questions to elicit preferences regarding residential choices. The responses to these questions were all collected on a five-point ordinal Likert scale. These questions and the distribution of the corresponding responses are shown in the second panel of Table 1. The statistics reveal, not surprisingly, that being within 30 minutes of work and proximity/walkability to local activities are “important” or “very important” considerations to more than 75% of the respondents when making residential choices.[footnoteRef:5]  [5:  “Quality of schools” is rated quite low in the overall. To examine if there is a substantial difference between households with children and without children, we examined the ratings on this question by presence or absence of children. The percentage of households that rated this attribute as being important or very important in the segment of households with children was 72.1%, relative to 22.0% in the segment without children. Clearly, as expected, there is a difference in the quality of school ratings based on the presence of children. This effect is captured in our analysis, as discussed later. ] 

The number of motorized personal vehicles in the household (that is, auto ownership), as reported in the survey by the household reference person, is a count dependent variable. The distribution of this variable (see the third panel of Table 1) indicates that most households have one or two cars (75.0%) and the average number of autos per household is 1.69. 
Each household’s residential location was assigned to one of the following nominal density categories: (a) 0–749 households per square mile, (b) 750–1,999 households per square mile, (c) 2,000–2,999 households per square mile, and (d) ≥ 3,000 households per square mile. The descriptive statistics in Table 1 for this nominal variable indicate that half of the households in the sample are located in high density areas, while about 13.2% are located in the lowest density areas. In the estimation, the highest density category is considered the base category. The use of density, along with commute distance, to characterize residential choice makes the definition of the residential choice alternatives clear and manageable. It also provides a convenient way to capture land-use/BE effects on auto ownership levels and activity time-use patterns, particularly because of the strong association between density and other BE elements. Indeed, there is a long and strong precedent for using residential density as a proxy for land-use/BE elements in the transportation literature (see, for example, Bhat and Singh, 2000, Chen et al., 2008, Kim and Brownstone, 2013, Paleti et al., 2013, and Cao and Fan, 2012).
The MDC alternatives include in-home (IH) activity and six purposes of out-of-home (OH) activity: personal business, shopping, eating out, social activities, recreation, and serve passenger. The discrete component corresponds to household-level participation in these different activity purposes, while the continuous component corresponds to the amount of household time invested in these activity purposes. The following two step process was used to obtain the time spent on different activities by each household: (1) The activity episodes undertaken by each individual during the survey day were collected together by each of the seven activity purposes, and the total individual daily time-investment in each activity purpose was computed across all episodes of the activity purpose, (2) The activity times by purpose were aggregated across all individuals in each household to obtain household-level participations and time investments in IH activity and the six OH activity purposes. The total household time budget in the MDC model corresponds to the sum across the seven activity purposes (that is, this corresponds to total household time, or 24 hours times the number of individuals in the household, minus the time (across all individuals) spent on work, education, and sleep; see footnote in the first paragraph of Section 3). In our analysis, for convenience, we use the household-level participations and fractions of time investments in each activity purpose as the dependent variables (that is, we effectively are normalizing the household time investments in each purpose by the total household budget, so that the continuous components correspond to fractions, and the total budget is 1 for each household).[footnoteRef:6]  [6:  The determination of how the OH participations and times are allocated across individuals in the household can be determined in a downstream allocation model, as in Gliebe and Koppelman, 2002. ] 

The final panel of Table 1 provides descriptive statistics of the time-use of households in the sample. All households participate in IH activity, which constitutes the outside good in the MDC model. Among the OH activity purposes, there is a relatively high participation level in personal business activity (44.2% of households) and shopping activity (45.8% of households), suggesting relatively high intrinsic baseline preferences for these two activity purposes. The social activity purpose and the serve passenger activity purpose, on the other hand, have the least participation rates, suggesting relatively low intrinsic baseline preferences for these two activity purposes. The third column indicates the fraction of time spent on each activity purpose, as averaged across households that participate in the corresponding activity purpose. For example, the first entry for IH activity shows that, on average, 78.0% of the total household time budget is spent on IH activity, while the entry for personal business activity reveals that, on average across the 44.2% of households who actually participate in personal business activity, 20.2% of the total household budget is spent on personal business activity. The implication from this third column is that, if participated in, the shopping, dining out, and serve passenger activity purpose are the ones on which the least time is spent, suggesting high satiation rates for these activity purposes.[footnoteRef:7] The final two columns highlight the multiple-discrete nature of activity participations. The first row for IH activity shows that 14.7% of households participate in only IH activity (and no OH activity), while 85.3% of households participate in IH activity as well as one or more OH activity purposes. The second row for personal business reveals that 13.4% of households partake in personal business as the only OH activity (in addition to IH activity, which all households participate in), while 86.6% of households pursue personal business and at least one other OH activity purpose.   [7:  Note that the mean fractions in this third column sum to greater than one across all activity purposes because the means are computed for each activity purpose conditional on households participating in that activity purpose. But the reader will note that the participation-weighted fractions in this third columns sum to 1: that is, 1*0.78+0.442*0.202+0.458*0.06+0.278*0.131+0.300*0.081+0.181*0.18+0.206*0.047=1 (after accounting for rounding).] 

The discussions above are helpful to get a general idea of the patterns of preferences and satiation. However, the final baseline preference and satiation parameters for the activity purposes in the MDC model are based on a combination of participation rates, conditional-upon-participation durations, and the split between sole participations and participations with other activity purposes. 

3.3. Latent Constructs
In developing the latent variables to characterize attitudes and lifestyles, we examined earlier studies investigating (directly or indirectly) lifestyle-related characteristics affecting residential choice decisions, auto ownership choice, and activity time-use decisions (see, for example, Schwanen and Mokhtarian, 2007, Walker and Li, 2007, Van Acker et al., 2014, Bohte et al., 2009, de Abreu e Silva et al., 2012, and Bhat et al., 2014 for reviews of this literature). Some of these studies are based on intensive qualitative focus group interviews and/or ethnographic studies that tease out underlying psycho-social factors. These earlier studies, while labeling the factors sometimes differently, converge to two basic lifestyle-related factors: (1) Green lifestyle propensity and (2) luxury lifestyle propensity. The first latent variable drives the overall attitude and concern toward the environment, while the second reflects a penchant for consuming more, marked by a desire for privacy, spaciousness, and exclusivity. From a residential choice standpoint, the first latent variable has sometimes been referred to as “urban living propensity”, while the second has been associated with “suburban/rural living propensity” and better quality public schools. From an auto ownership/modal standpoint, the first is sometimes referred to as “pro-public transportation” attitude, while the second has been associated with “pro-driving” attitude. From an activity time-use standpoint, the first latent variable has typically been associated with active recreation and non-motorized mode use, while the second has been associated with increased time investments in shopping and dining out activity participations. While one can justifiably argue that the latent variables above specific to each of the residential choice, modal/car ownership, and activity time-use dimensions are not perfectly correlated in the way suggested above, there are clearly very strong associations to the two basic lifestyle factors of green lifestyle propensity and luxury lifestyle propensity. So, from the standpoint of parsimony, as well as from the viewpoint of mapping the six ordinal attitudinal indicators and other dependent variable outcomes (see previous section) with the latent variable constructs, we decided to work with the two factors of (1) green lifestyle propensity (GLP) and (2) luxury lifestyle propensity (LLP). The first latent variable is a measure of the overall attitude and concern toward the environment, while the second reflects a penchant for consuming more, marked by a desire for privacy, spaciousness, and exclusivity. Our expectation is that households with a GLP disposition will prefer to reside in high density neighborhoods close to their workplace, own few or no vehicles, and engage more in IH activities and OH social and active recreation activities, while those with an LLP disposition will be inclined to locate in low to medium density neighborhoods, own many vehicles, and potentially be engaged in more OH shopping and dining out activities. However, these will be tested empirically in the measurement equation model during the specification and statistical testing process, as discussed later. 
The reader will note that, as discussed above, we use earlier ethnographic and qualitative studies investigating (directly or indirectly) general lifestyle-related characteristics that affect residential choice, auto ownership, and activity time-use decisions as the basis to identify our latent variables (or constructs).  As stated by Golob (2003), “Theory and good sense must guide model specification”. The fact that we have additional ordinal indicators related to residential choice preferences helps provide stability to the model system, but does not play a central role in identifying the latent constructs per se. This is different from studies in psychology that collect a battery of tens (and sometimes hundreds) of indicators, and use exploratory factor analysis to identify a much fewer number of factors (or latent constructs) through analytic variance minimization. In our case, we identify plausible latent constructs first based on intuition and the findings from previous studies, and then use both the ordinal indicators as well as the actual endogenous variable outcomes together to help relate observed covariates to the latent constructs in the structural equation system. Once the latent constructs are identified, the final specification in the structural equation system and the measurement equation system (for the loadings of the latent constructs, and the effects of observed covariates, on the ordinal indicators and the dependent outcomes) is based on statistical testing using nested predictive likelihood ratio tests and non-nested adjusted predictive likelihood ratio tests.[footnoteRef:8] For additional details, please see how the structural and measurement equation systems in Equation (A.1) of the Appendix are converted to the joint reduced form system of Equation (A.2) for estimation.  [8:  Indeed, almost all applications in the transportation literature that collect a handful of indicators use a combination of intuitiveness, judgment, and earlier studies to identify the latent constructs, rather than undertake a factor analysis of any kind to identify the latent factors (see, for example, Daly et al., 2012, Bolduc et al., 2005, de Abreu e Silva et al., 2014, La Paix et al., 2013, Temme et al., 2008). But we acknowledge that there is some level of subjectivity in the number and “labels” of the latent variables, and these constructs can be questioned. But model building will always retain that element of judgment and subjectivity. The important point is that we have provided a conceptual basis for our selection of latent variables.] 


3.4. Model Estimation Results


The final variable specification was obtained based on a systematic process of eliminating statistically insignificant variables, supplemented with a healthy dose of judgment and results from earlier studies. In the MDC activity time-use model, the -profile came out to be consistently superior to the -profile for all variable specifications, and so is the one used.  

3.4.1. Latent Variable Structural Equation Model Results
The results of the structural equation model that relate the two latent psycho-social constructs of GLP and LLP as a function of demographic attributes are presented in Table 2. 

Green Lifestyle Propensity (GLP)
The results suggest that lower income households have a higher GLP relative to higher income households (note that the highest income category is the base category in Table 2, and the coefficients for the other income categories are all positive with the magnitude being the highest for the lowest income category and decreasing thereafter). Table 2 also indicates that households with a high fraction of young adults (less than the age of 34 years) have a higher GLP relative to those with a low fraction of young adults. This latter effect is consistent with the environmental sociology literature (see, for example, Liu et al., 2014), which attributes this effect to young adults (especially the millennials) being increasingly exposed to environmental issues in the past decade through both school curricula and social media. Interestingly, age appears to have a U-shaped effect on GLP, with households with a high fraction of senior adults (65 years or older) having a higher GLP than households with a high fraction of middle-aged adults. Overall, households with a high fraction of adults in the 35-54 years age group seem to be the least “green”. During the late 1990s, the Puget Sound Region succeeded in attracting young, well-educated workers into their region’s workforce (Council, 2005). These young and highly-skilled “creative class” workers played a key role in the development of new technologies and industries, the creation of startup firms, and associated job growth during the technology boom of the late 90s. This creative class should be aged 35-54 years now and their past context of economic growth may explain their relatively low environmental consciousness (for an analysis of the inverse relationship between green life-style tendency and economic growth in the late 1990s, see Diekmann and Franzen, 1999). 
The results also suggest a higher GLP associated with households with a high fraction of women (relative to a low fraction of women) and a high fraction of well-educated individuals in the household (relative to a low fraction of well-educated individuals).  


Luxury Lifestyle Propensity (LLP)
The Table 2 results corresponding to LLP show that LLP increases with household income, the number of children in the household, and the age of household members in the household. The effect of income is very intuitive, because higher incomes provide not only the financial wherewithal to indulge, but an explicit show of indulgence may be viewed as a socio-cultural vehicle to signal wealth, power and status, and privileged access to limited resources. 
The effect of children on LLP may be attributed to the desire for more privacy and separation from others to “protect” children from perceived unsafe levels of traffic and social environments (including safety from crime), a felt need to provide spacious indoor and outdoor play room for children, a desire for good quality schools (as observed in the descriptive statistics section), and an increase in motorized access to chauffeur children to activities, all of which are indicators of LLP (see next section). 
Finally, the association between age and LLP may be related to the decrease in familial responsibilities with age, an increasing awareness of one’s decreasing lifespan in which to expend any accumulated wealth, and a desire to experience the “unexperienced” (see Cleaver and Muller, 2001, and Twitchell, 2013). In earlier studies, age has been linked to luxury fashion consumption (see for example Li et al., 2012), luxury cars purchases (Rosecky and King 1996), and luxury trips, such as cruises or exotic destinations (Hwang and Han, 2014).  

Correlation
The correlation coefficient between the GLP and LLP latent constructs is statistically significant at any reasonable level of significance, with a value of -0.16 and a t-statistic of -5.4. This negative correlation is reasonable, since a green lifestyle is associated with careful and conservative consumption of resources, while a luxury lifestyle correlates with extravagant living and indulgence beyond an indispensable minimum. 

3.4.2. Measurement Equation Results for Non-Nominal Variables
The results for the non-nominal variables are presented in Table 3. The dependent variables are organized column-wise and the independent variables are arranged row-wise. 





The standard error corresponding to the natural logarithm of the household commute distance is 1.333 with a t-statistic of 3.28. The constants in the many equations, as well as the thresholds (note that in the model formulation, the first threshold () and the first flexibility parameter () for the ordinal and count variable have been fixed to zero), do not have any substantive interpretations. For the auto ownership variable, the dispersion parameter () became quite large during the estimation and was fixed at the value of 5.0 for estimation stability. The resulting specification is effectively the same as a flexible Poisson-based specification. The flexibility arises because we estimated two flexibility parameters for the auto ownership count to accommodate spikes in ownership of one car and two cars (see Table 2). These came out to be very statistically significant as follows:  (t-statistic of 10.22) and  (t-statistic of 11.09), and are not reported in Table 3. 


The “number of children” effects in Table 3 (corresponding to elements of the coefficient vectors  and  in Section 2.2 and the figure in the online supplement) suggest that the presence of a child leads to a shorter household commute distance compared to the case without a child. Further, as the number of children increases, there is a continued linear reduction effect on household commute distance.  In contrast to the negative relationship between number of children and household commute distance, there is a positive relationship between number of children and auto ownership propensity, presumably due to additional mobility needs placed upon the household to chauffeur children from one activity to another (see also Potoglou and Susilo, 2008 and Ma and Srinivasan, 2010 for a similar result). 
The latent construct effects in Table 3 indicate, not surprisingly, that “green” households have a lower household commute distance relative to their peers, as such households are likely to consciously locate themselves closer to work locations to enable the use of non-motorized forms of transportation. The loadings of the latent constructs on the ordinal indicator variables are intuitive, and indicate that “green” households are likely to value, in terms of importance in residential choice decisions, being in a walkable neighborhood in proximal reach of activity opportunities, and being close to public transit and the work place. On the other hand, households with a high LLP propensity value prefer neighborhoods with good quality of schools perhaps as a means to signal exclusivity as neighborhoods with good quality schools are typically synonymous with relatively wealthy neighborhoods with a good tax base (note also that the number of children does affect LLP propensity). Households with high LLP propensity also value space and privacy, have a preference to be in close proximity of highways (presumably as a means to retain the ability to reach activities quickly even while maintaining a very private, spacious, and exclusive living quarter), and have a penchant for owning more cars.
The endogenous effects in Table 3 are discussed together with the endogenous effects in Table 4 in Section 3.4.4. 

3.4.3. Residential density Choice Model and Activity Time-Use Results
The estimation results for residential density and activity time use are presented in Table 4. The constant parameters do not have any substantive interpretation because of the presence of the continuous latent variables. 
The effects of the family structure variables indicate that single person households are most likely to stay away from the lowest density neighborhoods, while households with children (in particular, nuclear and single parent families) are most likely to live in the lowest density neighborhoods. Earlier research (see Kim and Chung, 2011) does suggest that single person households tend to locate themselves in denser neighborhoods, enabling easy access to social and related activity opportunities. Interestingly, single person households also appear to prefer medium-high density (2000-2,999 households per square mile) neighborhoods relative to the highest density neighborhoods, perhaps as a way of balancing space/privacy with activity accessibility and social networking opportunities in the immediate vicinity. The effects of the family structure variables on activity time-use indicate that single person households have the highest preference for in-home activities, while nuclear families and single-parent families, relative to other household types, have a clear higher baseline preference for OH shopping and serve passenger activities. On the other hand, there is an indication that single parent households, relative to nuclear families, are time poor (lack of time for leisure, sports, and relaxation activities) and have the danger of social exclusion (broadly defined as the “inability to participate fully in society”, one aspect of which is not being able to participate in the “normal activities of daily life”; see Farber et al., 2011). 
The next set of variables relate to the fraction of part-time, self-employed, and non-workers in the household, with the fraction of full-time workers in the household constituting the base category. Overall, these coefficients indicate a pattern where households with a high fraction of full-time workers have a clear preference to reside in the highest density areas, with a generally increasing tendency of households with higher fractions of part-time, self-employed, and non-workers to locate in progressively lower density areas. This result may be a reflection of the benefits of knowledge spillovers through networking opportunities in highly dense urban regions, which enable full time workers to retain (and enhance) their competitive edge in the market place (see Autant-Bernard and LeSage, 2011). 
In terms of the latent constructs, “green” households tend to locate themselves in the highest density neighborhoods (>3000 households per square mile) and shy away from the medium density categories (750–1,999 or 2,000-2,999 households per square mile), while households with a high LLP tend to locate themselves in the medium density categories. The latter effect may be attributed to seeking a good balance between less dense, exclusive neighborhoods and good auto-based accessibility to OH activity opportunities. In addition, the effects of the latent constructs in the activity time-use model suggest that households with a high GLP, relative to their peers with a low GLP, spend more time at home, are less likely to pursue the more money-consuming (and potentially viewed as less “green”) personal business, shopping, and dining out activities, and are more likely to seek social networking opportunities as well as pursue active recreation and other recreation activities (such as going to sports events, theaters, cinemas or art galleries). Finally, in terms of the latent construct effects, households with a high LLP spend more time than their peers with a low LLP on shopping and dining out. This is reasonable, because such individuals not only have the financial wherewithal to consume goods and services, but may also use shopping and dining activities at fancy places as a way to seek social differentiation and signal power and wealth. 







The satiation parameters in Table 4, along with the baseline preference constants and baseline parameters, are estimated for each activity purpose (except the IH activity purpose) to best replicate the combination of participation rates, conditional-upon-participation durations, and the split between sole and joint participations with other activity purposes. The satiation parameters in Table 4 correspond to the -profile. Satiation increases for purpose k as  goes closer to zero ( for the IH activity in the -profile by construction, because the IH activity is always participated in and has a high baseline constant that has to be compensated by the high satiation). As expected initially from the descriptive statistics, the shopping, dining out, and serve passenger activity purposes have high satiation rates (low values of ) among the OH activity purposes. The social activity purpose has a low participation rate, but a high duration conditional on participation, which leads to the low satiation (high value of ) for this purpose given its high negative baseline constant. For the personal business purpose, while it has both a high participation rate and a high duration conditional on participation, it has the lowest participation all by itself as an OH activity purpose excepting for the social and serve passenger purposes (see Table 1). The result is that the satiation parameter has to accommodate this high tendency for non-solo personal business participations, which leads to a relatively high satiation (low value of ) parameter for the personal business purpose. 
In each of the residential density and activity time use models, we also allowed a general error covariance matrix but we could not reject the hypothesis that the error covariance matrix was different from an independent and identically distributed error structure. 

3.4.4. Endogenous Effects
Tables 3 and 4 also present the endogenous effects. The final directions of the recursive endogenous effects were obtained in the current paper after extensive testing of various model specifications, and choosing the specification that provided the best data fit in terms of the composite marginal log-likelihood value (note, however, that regardless of the presence or absence of recursive effects, the model is a joint model because of the presence of latent variables that impact the many dependent variables). 
Figure 1 presents the overall directions of the endogenous relationships, while also including the effects of the GLP and LLP latent constructs on the endogenous outcomes, as discussed in the previous two sections. Further, the figure presents the sign of the effects of the GLP and LLP constructs on the residential density, commute distance, and auto ownership endogenous outcomes (but not on the activity time-use variable, because this is a multiple discrete variable with differing effects of the latent constructs on different activity purposes). All of the latent constructs and the endogenous outcomes in Figure 1 are affected by demographic factors, which we do not show in Figure 1 to focus on the endogenous effects. Our results (see Figure 1 as well as Tables 3 and 4) of the endogenous effects indicate that, after accommodating the jointness among the dependent variables caused by the latent (and stochastic) GLP and LLP latent constructs, the choice of residential density impacts both auto ownership and activity time-use.  In particular, residing in lower (higher) density neighborhoods leads to a higher (lower) auto ownership level, as has been well established in much of the earlier literature (see, for example, Bhat and Guo, 2007; Bhat et al., 2009; Aditjandra et al., 2012, Bhat et al., 2014, and Brownstone and Fang, 2014). Also, lower (higher) density tends to result in lower (higher) baseline preferences for (i.e., participations and time investments in) OH recreational activities, shopping, and dining out. These impacts may be attributed to higher densities being strongly correlated with more walk and bicycle infrastructure, better public transit services, and more opportunities for OH activities, and are consistent with earlier studies on time-use and physical activity. For example, Forsyth et al. (2009) and McCormack et al. (2014) indicate that higher density and mixed land-use increase time spent in neighborhood physical activity (primarily walking), while Wendel-Vos et al. (2007) and Ding et al. (2013) identify proximity to recreational activities (such as parks and exercise facilities) and even shopping locations as promoters of leisure time and overall physical activity. Also, Bhat et al. (2013) and Born et al. (2014) find, consistent with our findings, that households in urban areas and high OH activity accessibility areas participate more in recreation, shopping, and dining out than peer households residing in other areas. On the other hand, the increased preference for OH social activities in the most sparsely populated neighborhoods is presumably because social activities are the easiest to pursue in locations with few to no activity centers (shopping places, restaurants, gyms, etc.). Further, as discussed in earlier studies (see Coleman, 2009, Romans et al., 2011, and Bernardo et al., 2015), this result is suggestive of a business-like culture in urban areas that is moving away from the relatively close-knit, informal, and social networks, but that still exists in non-urban areas for visiting and social get-togethers. Finally, in terms of residential location effects on time-use, time investment in serve passenger activity increases as one moves from the highest density neighborhoods to progressively lower density neighborhoods.
Interestingly, we did not find any statistically significant evidence of a direct causal relationship between residential (household) density and commute distance, or auto ownership and commute distance. The former result suggests that simply building compact cities will not necessarily translate to more sustainable travel in terms of shorter commute distance, contrary to some other studies that suggest there are commuting-based sustainability benefits of compact cities (see, for example, Boussauw et al., 2012). That is, while building compact neighborhoods may lead to shorter commutes for households who choose to reside in these compact neighborhoods, our results suggest that this is because households with a green lifestyle propensity self-select to live in such neighborhoods while those who are not green move out of such neighborhoods and have long commute distances. Thus, in the population as a whole, compact developments may not lead to shorter commute distances. The results in Figure 1 also indicate that auto ownership, by itself, has no impact on activity time-use. The implication, as in Bhat and Steed (2002) and Grigolon et al. (2013), is that lifestyles, demographics, and activity opportunities are the main drivers of activity-travel patterns. 
Commute distance, causally speaking, impacts only time use (Figure 1 and Table 4); households with longer commute distances spend more time on shopping, recreation, and dining out. This may the result of two reinforcing effects. First, as household commute distance increases, the number of opportunities for shopping, recreation, and dining out increases. Second, as household commute distance increases, it puts more time pressure on the household, which may be released by shopping more for easy-to-prepare meals and dining out. Some earlier studies, including Wang et al. (2013) and Castro et al. (2011), have suggested the reverse -- that households with shorter commute distances participate more in non-work activities because of denser non-work activity locations and less time pressure. However, these earlier studies do not consider residential self-selection effects as we do. But this subject of the relationship between commute distances and non-work activity participation certainly deserves more exploration and the disentangling of multiple push-pull effects, as also acknowledged by the earlier studies just identified. 

3.4.5. Model Data Fit Comparisons
To assess the importance of considering jointness across choice dimensions, we also estimated an Independent Heterogeneous Data Model (IHDM) that does not consider such jointness (that is, the covariances engendered by the stochastic latent constructs in the GHDM model are ignored). In this IHDM model, we introduce the exogenous variables (sociodemographic variables) used to explain the latent constructs as exogenous variables in the choice dimension equations. This way, the contribution to the observed part of the utility due to sociodemographic variables is still maintained (and is allowed to vary relative to the GHDM to absorb, to the extent possible, the GHDM covariances due to unobserved effects). The resulting IHDM may be compared to the GHDM using the composite likelihood information criterion (CLIC) introduced by Varin and Vidoni (2005). The CLIC takes the following form (after replacing the composite marginal likelihood (CML) with the maximum approximate CML (MACML)):

	(17)

The model that provides a higher value of CLIC is preferred. The  values for the GHDM and IHDM models were estimated to be -227,321.0 and -253,231.1, respectively, with the corresponding CLIC statistic values of -227,504.0 and -253,432.0. These CLIC statistics clearly favor the GHDM over the IHDM. 
All the ordinal variables used in the measurement equation are included solely for the purpose of model identification and do not serve any purpose in predicting the choice bundle once the model is estimated. Therefore, we can also use the familiar non-nested likelihood ratio test to compare the two models. To do so, we evaluate a predictive log-likelihood value of both the GHDM and IHDM models using the parameter values at the MACML convergent values by excluding the six ordinal variables. The same is also done to obtain to the constants-only log-likelihood value. Then, one can compute the adjusted likelihood ratio index of each model with respect to the log-likelihood with only the constants as follows:

,									                (18)








where  and  are the predictive log-likelihood functions at convergence and at constants, respectively, and M is the number of parameters (not including the constant(s) for each dimension and not including the ordinal indicators) estimated in the model. This test determines if the adjusted likelihood ratio indices of two non-nested models are significantly different. In particular, if the difference in the indices is , then the probability that this difference could have occurred by chance is no larger than  in the asymptotic limit. A small value for the probability of chance occurrence indicates that the difference is statistically significant and that the model with the higher value for the adjusted likelihood ratio index is to be preferred. The  values (number of parameters) for the GHDM and IHDM models were computed to be -21,322.1 (number of parameters = 89) and       -32,028.1 (number of parameters = 152), respectively. The  value was -44,402.1, with the corresponding predictive  values of 0.518 and 0.275 for the GHDM and IHDM models, respectively.  The non-nested adjusted likelihood ratio test returns a value of , which is literally zero, clearly rejecting the IHDM model in favor of the GHDM model and underscoring the importance of considering the stochastic latent constructs that engender covariation among the choice dimensions.

3.5. Examining “True” Effects of Neo-Urbanist Densification Efforts
To demonstrate the value of the proposed model, consider the GLP-caused associations among the many dimensions and, for now, ignore the LLP-caused associations. Also, we confine our attention to residential density, auto ownership, and OH recreational activity. According to our GHDM results, households with a high GLP have a generic preference (due to unobserved factors) to reside in the highest density neighborhoods, have low auto ownership levels, and are likely to pursue more OH recreational pursuits. Thus, because of GLP, households who happen to reside in the highest density neighborhoods tend to be there already because they are generically auto-disinclined and like to pursue recreational activities. But, even after capturing these pre-dispositions (or associations) due to residential self-selection caused by unobserved factors, the GHDM indicates, through the endogenous effects, that the higher density “truly causes” households to own fewer cars and partake more in recreation pursuits. But if the residential self-selection effects were ignored (as is done by the IHDM model), the effect of moving a random household from a low density neighborhood to a high density neighborhood (or, equivalently, densifying an existing low density neighborhood) would be magnified in terms of auto ownership reduction (because the low auto ownership predisposition of the people living in the highest density neighborhoods would get tagged on to the “true” negative causal effect). Similarly, the positive effect of residential density on OH recreational pursuits would also be magnified (because the high OH recreational participation of the people living in the highest density neighborhood would again get tagged on to the “true” positive causal effect. In both these cases, there would be an overestimation of auto ownership reduction and OH recreational activity participation increase attributable to densification. Of course, how these impact motorized travel and traffic patterns will have to be determined through downstream models in an activity-based modeling system. The important point is that ignoring residential self-selection could lead to incorrect conclusions on the effects on auto ownership and activity time-use. 

	The intuitive explanation above does not consider the LLP-caused associations. Also, in the IHDM model, we allow explanatory demographic variables to impact the many choice dimensions directly. Thus, the final “net” effect of not accommodating residential self-selection cannot be gleaned as easily as described above. But to show a cumulative effect of capturing versus not capturing residential self-selection effects, we compute average treatment effects (ATEs) from the GHDM and IHDM models. The ATE measure for a variable provides the expected difference in that variable for a random household if it were located in a specific density configuration i as opposed to another density configuration . We compute this measure for auto ownership and activity time-use as discussed in the online supplement (see http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf).  
The analyst can compute the ATE measures for all the pairwise combinations of residential density category relocations. Here, we focus on the case when a household in the lowest density neighborhood (<750 households per square mile) is transplanted to the highest density neighborhood (>3000 households per square mile). For ease in discussion, in the rest of this section, we will refer to the former neighborhood type as a low density neighborhood, and the latter neighborhood type as a high density neighborhood. Table 5 presents the estimated ATE values (and standard errors) for auto ownership and out-of-home activities for both the GHDM and IHDM models. The first row under the “GHDM model” heading indicates that a random household that is shifted from the low density category location to the high density category location is, on an average, likely to reduce its auto ownership level by 0.143 vehicles (standard error of 0.011). Equivalently, if 100 random households are relocated from the low density neighborhood to the high density neighborhood, the point estimate indicates a reduction in auto ownership by about 14 vehicles. On the other hand, the IHDM model estimate predicts a reduction of 0.340 vehicles (standard error of 0.021). That is, if 100 random households are relocated from the low density neighborhood to the high density neighborhood, the independent model point estimate projects a reduction in motorized vehicle ownership by about 34 vehicles. The exaggeration in the reduction in auto ownership based on the IHDM model (because of the change in residence from the low density to the high density neighborhood) is readily apparent, and is a reflection of unobserved residential self-selection effects not being controlled for. The t-statistic value for the hypothesis of equality in the ATE estimates is 9.4, much higher than the table value even at the 0.005 level of significance, strongly rejecting equality between the two models.
The other rows of the table provide the ATE values with respect to each of the OH activity purposes. For example, the ATE for the GHDM corresponding to personal business indicates that a random household that is shifted from the low density category location to the high density category location is, on average, likely to reduce its participation probability in personal business activity by 0.037. Equivalently, if 100 random households are relocated from the low density neighborhood to the high density neighborhood, the point estimate indicates a reduction in personal business activity by 3.7 participations during the course of the day. Other values may be similarly interpreted. The results show that the IHDM model exaggerates the ATE for every OH purpose, whether positive or negative. The ATEs for all OH activity purposes and both models are statistically significant at least at the 0.1 level of significance, and generally at a much lower level of significance. The t-statistics for testing the differences in the ATE estimates between the two models are in the range of 1.0-2.3 for the shopping, recreation, dining out, and social activities, though there is literally no statistically significant difference the personal business and serve passenger purposes. Overall, the results show that, if self-selection effects are ignored, the result is exaggerated effects of densification. 
One can also quantify the magnitude of the “true” effect and the spurious residential self-selection effect because the IHDM model comingles these effects, while the joint model estimates the “true” effect. Because the IHDM model consistently exaggerates the ATE, the “true” effect may be computed as a percentage of the GHDM ATE relative to the IHDM ATE, while the self-selection effect may be computed as the difference of the ATE of the two models as a percentage of the IHDM ATE. The last two columns of Table 5 indicate that unobserved self-selection effects are estimated, based on the point estimates, to constitute about 58% of the difference in the number of autos between low density and high density households, while “true” built environment effects constitute the remaining 42% of the difference. Clearly, the self-selection effect is larger than the “true” effect, showing that ignoring self-selection will substantially overestimate the benefits of densification from an auto ownership reduction standpoint. Among the OH activity purposes, the self-selection effect is highest for the shopping, recreation, and social purposes, and the lowest for the serve passenger and personal business purposes. While the self-selection effect is lower than the “true density effect” for the OH activity purposes, it is still of the order of 30% for the shopping, recreation, and social purposes. 

4. CONCLUSION
In this paper, we introduce a joint mixed model that includes an MDC outcome and a nominal discrete outcome, in addition to count, binary/ordinal outcomes, and continuous outcomes. The outcomes are modeled jointly in a parsimonious fashion by specifying latent underlying unobserved individual lifestyle, personality, and attitudinal factors. Reported subjective attitudinal indicators for the latent variables help provide additional information and stability to the model system. In addition, we formulate and implement a practical estimation approach for the resulting model using Bhat’s (2011) maximum approximate composite marginal likelihood (MACML) inference approach. 
From an empirical standpoint, we focus on examining residential self-selection in the context of an activity-based modeling (ABM) paradigm. In the activity-based approach, the impact of land-use and demand management policies on time-use behavior is an important precursor step to assessing the impact of such polices on travel behavior. Accordingly, in this paper, we jointly model residential location-related choices (density of residential location and commute distance), along with auto ownership and activity time-use, in a way that has a social-psychological underpinning through latent variables while also explicitly considering residential self-selection issues. 
The empirical application uses data from the 2014 Puget Sound Household Travel Survey. Two basic lifestyle-related factors; Green lifestyle propensity and luxury lifestyle propensity; are used to explain the multiple mixed dependent variables. These two latent and stochastic psycho-social constructs impact the dependent variables and engender covariation among them. The proposed generalized heterogeneous data model (GHDM) model with an MDC variable clearly rejects a simpler independent heterogeneous data model (IHDM) that ignores the effects of the latent constructs. Effectively, this implies the presence of self-selection effects (endogeneity), and suggests that modeling the choice processes independently will not capture true relationships that exist across the choice dimensions. This is also evidenced in the ATE measures, which emphasize that accounting for residential self-selection effects are not simply esoteric econometric pursuits, but can have important implications for land-use policy measures that focus on neo-urbanist design. 
	To summarize, this paper proposes and applies an integrated framework to model multiple types of variables, including continuous, ordinal, count, nominal, and multiple discrete-continuous (MDC) variables. The paper also contributes to disentangling residential self-selection effects from “true” density effects on activity pursuits and auto ownership. We hope that the elegant way of tying the mixed types of dependent variables, including an MDC variable, through a parsimonious latent structure approach will open new doors in the exploration of the nexus between land use and activity-based travel modeling, as well as contribute to empirical research in many other fields where MDC variables occur frequently. 
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Figure 1. Effects of Latent Constructs and Endogenous Effects

Table 1. Sample Characteristics of Dependent Variables
	Dependent variable: Continuous variable

	Variable
	Mean
	Std. Dev.
	Min.
	Max.

	Household commute distance
	14.47
	13.78
	0.05
	99.95

	Indicator variable: Ordinal variables

	Attitudinal Question
	Response rate

	
	Very Unimportant
1
	2
	3
	4
	Very Important
5

	How important when choosing current home:
 
   Having a walkable neighborhood and being near to local activities
	 5.5%
	7.6%
	11.1%
	32.3%
	43.5%

	   Being close to public transit
	15.4%
	12.0%
	17.0%
	24.8%
	30.8%

	   Being within a 30-minute commute to work
	 6.6%
	6.5%
	10.0%
	24.4%
	52.5%

	   Quality of schools (K-12)
	31.2%
	7.5%
	26.7%
	14.6%
	20.0%

	   Having space and separation from others
	 9.2%
	13.7%
	21.8%
	34.3%
	21.0%

	   Being close to the highway
	12.7%
	16.0%
	21.4%
	38.0%
	11.9%

	Dependent variable: Count variable

	Motorized Vehicle Count
	Frequency

	
	0
	1
	2
	3
	4
	5
	>6

	Number
	304
	1,378
	1,354
	413
	135
	36
	17

	%
	8.4
	37.8
	37.2
	11.4
	3.7
	1.0
	0.5

	Dependent variable: MNP variable

	Residential Density (households per sq. mile)
	Number of observations (%)

	<750
	  478 (13.2)

	750-2,000
	  866 (23.8)

	2,000-3,000
	  525 (14.4)

	>3,000
	1,768 (48.6)

	Dependent variable: MDC variables

	Activity
	Participation (%)
	Mean* fraction
	Number of households (% of total number) spent time…

	
	
	
	Only in activity type** 
	In other activity types too**

	In home (IH)
	 3,637 (100.0)
	0.780
	533 (14.7)
	3,104 (85.3)

	Personal Business
	1,607 ( 44.2)
	0.202
	216 (13.4)
	1,391 (86.6)

	Shopping
	1,664 ( 45.8)
	0.060
	355 (21.3)
	1,309 (78.7)

	Recreation
	1,011 ( 27.8)
	0.131
	148 (14.6)
	  863 (85.4)

	Dining Out
	1,092 ( 30.0)
	0.081
	203 (18.6)
	  889 (81.4)

	Social
	  659 ( 18.1)
	0.180
	  82 (12.4)
	  557 (87.6)

	Serve Passenger
	  751 ( 20.6)
	0.047
	26 (  3.5)
	  725 (96.5)


*: The mean duration of activities reported in the table are for only those who participated.
**: For the IH activity, the splits refer to participation only in IH activity and participation in IH activity and at least one OH activity purpose. For each OH activity purpose, the splits refer to participation in that OH activity purpose as well as another OH activity purpose (in addition to IH activity)    
Table 2. Estimation Results of Structural Equation
	Variable
	Coefficient
	T-stat

	Green Lifestyle Propensity (GLP)

	Household income (base: 75,000 or more) 
	
	

	    Less than 25,000
	0.702
	12.001

	    25,000 – 34,999
	0.523
	7.234

	    35,000 – 49,999
	0.401
	6.944

	    50,000 – 74,999
	0.198
	7.104

	Age (base: fraction of adults in the age group 18-34)
	
	

	    Fraction of adults in the age group 35-54
	-0.478
	-9.623

	    Fraction of adults in the age group 55-64
	-0.331
	-4.978

	    Fraction of adults in the age group 65 or more
	-0.132
	-1.941

	Gender (base: fraction of female adults in the household) 
	
	

	    Fraction of male adults in the household
	-0.029
	-1.850

	Education status (base: fraction of adults with less than a bachelor’s degree)
	
	

	    Fraction of adults with a bachelor’s degree
	0.160
	4.101

	    Fraction of adults with an MS or PhD degree 
	0.203
	2.103

	Luxury Lifestyle Propensity (LLP)

	Household income (base: 75,000 or more) 
	
	

	    Less than 25,000
	-0.201
	-11.933

	    25,000 – 34,999
	-0.322
	-8.000

	    35,000 – 49,999
	-0.431
	-7.924

	    50,000 – 74,999
	-0.472
	-6.424

	Number of children (less than 18 years old) in the household
	0.473
	11.926

	Age (base: fraction of adults in the age group 18-34)
	
	

	    Fraction of adults in the age group 35-54
	0.130
	3.553

	    Fraction of adults in the age group 55-64
	0.412
	3.567

	    Fraction of adults in the age group 65 or more
	0.450
	2.210

	Correlation coefficient between ‘active living/pro-environment attitude’ and ‘travel affinity/privacy desire’ latent constructs
	-0.168
	-5.421







Table 3. Estimation Results for Non-Nominal Variables of Measurement Equation

	Independent variables
	Continuous variable
	Ordinal variables
	Count variable

	
	Natural logarithm of household commute distance*
	Having a walkable neighborhood and being near local activities
	Being close to public transit
	Being within a 30-minute commute to work
	Having space and separation from others
	Quality of schools
	Being close to the highway
	Auto ownership

	
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat

	Constants
	 1.881
	11.78
	1.461
	4.49
	0.910
	4.10
	1.382
	8.67
	1.071
	7.12
	0.333
	7.21
	0.865
	6.30
	 0.899
	 6.34

	Thresholds for ordinal indicators
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Somewhat unimportant & not important
	
	
	0.462
	15.65
	0.418
	13.00
	0.375
	20.00
	0.591
	15.56
	0.732
	18.26
	0.573
	14.52
	
	

	Not important & somewhat important
	
	
	0.822
	15.10
	0.873
	20.01
	0.717
	14.61
	1.184
	18.32
	3.640
	19.33
	1.110
	15.68
	
	

	Somewhat important and very important
	
	
	1.678
	14.10
	1.513
	11.89
	1.374
	13.20
	2.142
	14.22
	5.722
	19.69
	2.295
	17.21
	
	

	Household characteristics
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Number of children in the household
	-0.334
	-6.23
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	 0.070
	 2.190

	Latent constructs
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Green Lifestyle Propensity (GLP)
	-0.761
	-12.12
	0.203
	13.72
	0.262
	11.81
	0.297
	14.71
	------
	------
	------
	------
	------
	------
	-0.292
	-11.41

	Luxury Lifestyle Propensity (LLP)
	------
	------
	------
	------
	------
	------
	------
	------
	0.251
	4.66
	3.800
	17.82
	0.201
	5.08
	 0.110
	 2.19

	Endogenous Effects
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Residential density (base: >3000 hh/sq-mile)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Less than 750 hh/sq-mile
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	0.511
	6.145

	750-1999 hh/sq-mile
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	0.438
	5.793

	2000-3000 hh/sq-mile
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	------
	0.311
	5.454


------: Not significant in the case of the effect of residential density on commute distance, and not applicable in the case of the effects of residential density on the ordinal indicators (note that these ordinal indicators serve purely the purpose of better pinning down the latent constructs and the relationship between the latent constructs and exogenous covariates in the structural equation system).  
*: Estimated variance of commute distance is 1.333 and the associated t-stat is 3.281.


Table 4. Estimation Results for Nominal Variables of Measurement Equation

	Independent Variables
	Residential location (base: >3000 hh/sq-mile)
	Fraction of time spent on various activities by household  (base: In-home)

	
	Less than 750 hh/sq-mile
	750-1999  hh/sq-mile
	2000-3000 hh/sq-mile
	Personal Business
	Shopping
	Recreation
	Dining Out
	Social
	Serve Passenger

	
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat
	Coeff
	T-stat

	Constant
	-0.680
	-6.73
	-0.393
	-4.88
	-0.636
	-9.53
	-0.143
	-3.64
	-0.43
	-7.70
	-0.69
	-12.66
	-0.567
	-14.05
	-1.344
	-17.48
	-1.549
	-19.99

	Family structurea 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	  Single person HH
	-0.180
	-3.21
	------
	------
	 0.088
	2.10
	------
	------
	-0.596
	-6.94
	-0.565
	-5.89
	-0.144
	-1.86
	-0.405
	-3.50
	-1.411
	-7.87

	  Nuclear family
	 0.355
	10.23
	------
	------
	------
	------
	------
	------
	 1.611
	23.13
	 0.446
	5.49
	------
	------
	0.312
	3.13
	1.923
	22.29

	  Single parent family
	 0.619
	 7.43
	------
	------
	 0.312
	9.08
	------
	------
	 2.472
	13.58
	------
	------
	------
	------
	------
	------
	1.392
	5.61

	Fraction of adults by work status in HHb
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	  Part-time workers
	 0.256
	 2.19
	 0.282
	2.26
	 0.110
	2.00
	 0.365
	  3.06
	 0.679
	5.73
	------
	------
	------
	------
	0.493
	2.88
	0.492
	3.07

	  Self-employed
  Workers
	 0.320
	 3.04
	 0.284
	4.82
	 0.132
	2.16
	------
	------
	 0.274
	1.98
	------
	------
	------
	------
	0.394
	2.06
	------
	------

	  Non-workers
	 0.410
	 2.87
	 0.290
	3.32
	 0.187
	3.21
	 0.762
	  5.85
	 1.167
	8.80
	 0.391
	2.51
	------
	------
	0.771
	4.09
	1.122
	6.56

	Latent constructs
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	  Green Lifestyle
  Propensity (GLP)
	-0.051
	-2.22
	-0.152
	-6.09
	-0.098
	-3.62
	-0.720
	-2.42
	-0.681
	-5.72
	 0.089
	4.68
	-1.030
	-8.39
	0.124
	2.26
	------
	------

	  Luxury Lifestyle
  Propensity (LLP)
	-0.190
	-2.17
	 0.073
	2.90
	 0.051
	2.82
	------
	------
	 0.265
	2.29
	------
	------
	 0.125
	2.20
	------
	------
	------
	------

	Satiation parameters
	
	
	
	
	
	
	 0.029
	24.23
	 0.075
	20.62
	 0.092
	18.33
	0.038
	19.22
	0.168
	14.26
	0.017
	15.98

	Endogenous Effects
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Commute distance
	------
	------
	------
	------
	------
	------
	------
	------
	 0.203
	7.67
	0.152
	5.42
	0.268
	3.28
	------
	------
	------
	------

	Residential density (base: >3000 hh/sq-mile)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Less than 750 hh/sq-mile
	------
	------
	------
	------
	------
	------
	------
	------
	-0.681
	-7.90
	-0.203
	-2.38
	-0.456
	-4.15
	0.269
	2.33
	0.971
	8.81

	750-1999  hh/sq- mile
	------
	------
	------
	------
	------
	------
	0.177
	 2.66
	-0.517
	-7.16
	------
	------
	-0.423
	-4.88
	------
	------
	0.614
	6.19

	2000-3000 hh/sq-mile
	------
	------
	------
	------
	------
	------
	------
	------
	-0.234
	-2.72
	-0.245
	-2.41
	-0.493
	-4.76
	------
	------
	0.510
	4.42


------: Not significant
a: base is couple family and multi-adult households 
b: base is full-time workers


Table 5. Treatment Effects Corresponding to Transplanting a Random Household from a Lowest Density Neighborhood (<750 hh/sq. mile) to Highest Density Neighborhood (>3000 hh/sq. mile) (standard error in parenthesis)

	Variable
	ATE from GHDM
	ATE from IHDM
	% Difference Attributable to

	
	
	
	“True” Effect
	Self-Selection Effect

	Vehicle ownership
	0.143 (0.011)
	   0.340 (0.021)
	42
	58

	Participation on

	Personal business
	-0.037 (0.013)
	 -0.041 (0.013) 
	90
	10

	Shopping
	0.011 (0.004)
	  0.019 (0.007)
	65
	35 

	Recreation
	0.134 (0.021)
	  0.190 (0.014)
	71
	29 

	Dining out
	0.094 (0.020)
	  0.119 (0.021)
	79
	21 

	Social
	-0.056 (0.014)
	 -0.078 (0.017)
	72
	28 

	Serve Passenger
	-0.156 (0.033)
	 -0.162 (0.025)
	96
	4 





Appendix A: Model Estimation
















Let. Define  and  where  is a vector of zeros of dimension . We will assume that the error vectors , , , and  are independent of each other. While not strictly necessary (and can be relaxed in a very straightforward manner within the estimation framework of our model system as long as the resulting model is identified), the assumption aids in developing general sufficiency conditions for identification of parameters in a mixed model when the latent variable vector  already provides a mechanism to generate covariance among the mixed outcomes. Further, define the following: and Then, we may write the continuous (observed or latent) components of the structural and the measurement equations of the model system compactly as:

											   (A.1)


, 	

To develop the reduced form equations, replace the right side for  in the second part of Equation (A.1) to obtain the following system:

.	(A.2)




Then   where  and =.                                 	












The question of identification relates to whether all the elements in the model system are estimable from the elements of  and . One may analyze this by starting from Stapleton’s (1978) sufficiency conditions for multiple-indicator multiple-cause (MIMIC) models. Conforming with the set-up of Stapleton and earlier MIMIC models, we will assume that the number of measurement equations without the nominal and non-MDC variables exceeds the number of latent factors. Then, sufficiency conditions may be developed for the GHDM-MDC model following the same line of argument as in Bhat et al. (2014) for the GHDM. In particular, all parameters are estimable under the following conditions: (1) diagonality is maintained across the elements of the error term vector  (that is,  is diagonal), (2)  in the structural equation is specified to be a correlation matrix, (3) for each latent variable, there is at least one outcome variable that loads only on that latent variable and no other latent variable (that is, there is at least one factor complexity one outcome variable for each latent variable) (see also Reilly and O’Brien, 1996), (4) the element corresponding to the effect of each variable is zero in either the  vector or the  vector or both vectors, (5)  if an element of corresponding to a specific variable in the vector  is non-zero, a sufficient condition for identification is that the utility of alternative  in the nominal variable model not depend on any latent variable that contains that specific variable as a covariate in the structural equation system, (6) endogenous variable effects can be specified only in a single direction and when a continuous observed endogenous variable appears as a right side variable in the regression for another continuous observed endogenous variable, or as a right side variable in the latent regression underlying another count or ordinal endogenous variable, each latent variable appearing in the regression/latent regression for the other endogenous continuous/count/ordinal variable (say variable A) should have two factor complexity one outcome variables after excluding the equation for variable A, and (7) If an element of  corresponding to a specific variable in the vector  is non-zero, a sufficient condition for identification is that the utility of alternative k in the MDC model not depend on any latent variable that contains that specific variable as a covariate in the structural equation system. Of course, there may be much less restrictive situations under which the parameters are all still identified, but the number of such specific situations is too numerous to list here.  













































To estimate the model, one can use a maximum simulated likelihood approach by writing the multivariate normal density function for the vector  as the product of the marginal distribution of the continuous components in  (corresponding to the H continuous outcomes and the consumed alternatives from among the K–1 MDC inside alternatives) and the conditional distribution of the remaining components in  given the continuous components. Then, the conditional density function can be integrated appropriately. Specifically, define a  matrix  , and fill it with all zeros. Then, place an identity matrix of size H in the first H rows and first H columns. Then, in the next  rows, place an element of ‘1’ in the   row and the  column, an element of ‘1’ in the   row and the column, and so on until an element of ‘1’ in the   row and the  column. Also, in the  row through the row, place an identity matrix of size starting from the  column and ending at the  column. Finally, in the last  rows, place an element of ‘1’ in the   row and the  column, an element of ‘1’ in the   row and the column, and so on until an element of ‘1’ in the   row and the  column. Define   and . Next, partition the vector  into two components:  and  where is the sub-vector of   corresponding to the first through the  element, and  is the sub-vector of  corresponding to the  element through the last element .  Next, partition the vector  into two components:  and . Correspondingly partition : , , and .
Then, we may write:



 vector,      	(A.3)








Further, define ,   vector) and  vector), where   is a -column vector of negative infinities, and  is another -column vector of zeros. Then, the likelihood function may be written as:

	                                       (A.4)	 

     










where  is the determinant of the Jacobian given by   is the set of activity purposes invested in by the individual (including activity purpose K), and the integration domain  is simply the multivariate region of the elements of the  vector.  is the multivariate normal density function of dimension  with a mean of  and a covariance of , and evaluated at . The likelihood function for a sample of Q decision-makers is obtained as the product of the individual-level likelihood functions. 

The likelihood function in Equation (A.4) involves the evaluation of an -dimensional rectangular integral for each decision-maker, which can be computationally expensive. So, the Maximum Approximate Composite Marginal Likelihood (MACML) approach of Bhat (2011) is used. 

The Joint Mixed Model System and the MACML Estimation Approach
Consider the following (pairwise) composite marginal likelihood function formed by taking the products (across the N ordinal variables, the count variable, and  the nominal variable) of the joint pairwise probability of the chosen alternatives for a decision-maker, and computed using the analytic approximation of the multivariate normal cumulative distribution (MVNCD) function.

	(A.5)




In the above CML approach, the multivariate normal cumulative distribution (MVNCD) function appearing in the CML function is of dimension equal to (1) two for the second component (corresponding to the probability of each pair of observed ordinal outcomes), (2) two for the third component (corresponding to the probability of each pair of an observed ordinal outcome and the observed count outcome), (3) I for the fourth component (corresponding to the probability of each combination of the observed nominal outcome with an observed ordinal outcome), (5) I for the fifth component (corresponding to the probability of the observed nominal outcome and the observed count outcome), (6)  for the sixth component (corresponding to a the probability of each combination of the observed MDC outcome of the observed time investment vector  and an observed ordinal outcome), and (7)  for the seventh component (corresponding to the combination of the MDC outcome and the count outcome), and (8)  for the eighth component (corresponding to the probability of the observed MDC and observed nominal outcome). 


































To explicitly write out the CML function, define  as the diagonal matrix of standard deviations of matrix ,  as the hth diagonal element of ,  for the multivariate standard normal density function of dimension R and correlation matrix  (), and  for the multivariate standard normal cumulative distribution function of dimension R and correlation matrix . Define two selection matrices as follows: (1)  is an  selection matrix with an entry of ‘1’ in the first row and the column, and an identity matrix of size  occupying the last  rows and the through columns, and entries of ‘0’ everywhere else, (3)  is a  selection matrix, with an entry of ‘1’ in the first row and the  column; in the next  rows, place an identity matrix of size  occupying columns  through column; all other elements of  take a value of zero, and (4)  is a  selection matrix as follows: Position an identity matrix of size () occupying the first () rows and the  through  columns, and another identity matrix of size  occupying columns   through  column; all other elements of take a value of zero. 

















Let      , , , , , ,,, where  represents the  element of   (and similarly for other vectors), and represents the  element of the matrix .  

	               (A.6)

In the MACML approach, all MVNVD function evaluation greater than two dimensions are evaluated using an analytic approximation method rather than a simulation method. This combination of the CML with an analytic approximation for the MVNCD function is effective because the analytic approximation involves only univariate and bivariate cumulative normal distribution function evaluations. The MVNCD analytic approximation method used here is based on linearization with binary variables (see Bhat, 2011). Write the resulting equivalent of Equation (A.6) computed using the analytic approximation for the MVNCD function as , after introducing the index q for individuals. The MACML estimator is then obtained by maximizing the following function: 

log.								   (A.7)

The covariance matrix of the parameters  may be estimated by the inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005, and Bhat, 2015). 

	 (A.8)


with	 (A.9)

Positive Definiteness








The  correlation matrix , the  covariance matrix, and the  covariance matrix have to be all  positive definite. An easy way to ensure the positive-definiteness of these matrices is to use a Cholesky-decomposition and parameterize the CML function in terms of the Cholesky parameters. Further, because the matrix  is a correlation matrix, we write each diagonal element (say the aath element) of the lower triangular Cholesky matrix of  as , where the  elements are the Cholesky factors that are to be estimated. 

image42.wmf
n

j


oleObject47.bin

image43.wmf
)

 

...,

 

,

2

 

,

1

(

n

n

J

j

=


oleObject48.bin

image44.wmf
*

~

n

y


oleObject49.bin

image45.wmf
th

n

a


oleObject50.bin

image46.wmf
,

~

~

~

and

,

~

~

~

~

,

*

1

,

*

n

n

a

n

n

a

n

n

n

n

n

y

y

y

y

e

<

<

+

¢

+

¢

=

-

*

z

d

x

γ


oleObject51.bin

image47.wmf
x


oleObject52.bin

image48.wmf
n

γ

~


oleObject53.bin

image49.wmf
n

d

~


oleObject54.bin

oleObject55.bin

image50.wmf
y

~


oleObject56.bin

image51.wmf
+¥

=

=

-¥

=

<

<

<

<

-

n

n

n

J

n

n

n

J

n

J

n

n

n

n

,

1

,

0

,

,

1

,

2

,

1

,

0

,

~

and

,

0

~

 

,

~

  

;

~

~

...

~

~

~

y

y

y

y

y

y

y

y


oleObject57.bin

image52.wmf
n

e

~


oleObject58.bin

image53.wmf
)

~

,...,

~

,

~

(

~

and

)

~

,...,

~

,

~

(

~

2

1

1

,

3

,

2

,

¢

¢

¢

=

¢

=

-

N

J

n

n

n

n

n

ψ

ψ

ψ

ψ

ψ

y

y

y


oleObject59.bin

image54.wmf
*

~

n

y


oleObject60.bin

image55.wmf
)

1

(

´

N


oleObject61.bin

image56.wmf
*

y

~


image1.wmf
*

l

z


oleObject62.bin

image57.wmf
n

e

~


oleObject63.bin

oleObject64.bin

image58.wmf
ε

~


oleObject65.bin

image59.wmf
)

~

,...,

~

,

~

(

~

2

1

¢

=

H

γ

γ

γ

γ


oleObject66.bin

image60.wmf
)

(

A

N

´


oleObject67.bin

oleObject1.bin

image61.wmf
(

)

N

d

d

d

d

~

,...,

~

,

~

~

2

1

=


oleObject68.bin

image62.wmf
)

(

L

N

´


oleObject69.bin

image63.wmf
N

IDEN


oleObject70.bin

image64.wmf
ε

~


oleObject71.bin

image65.wmf
(

)

N

N

N

MVN

IDEN

0

,

~

~

ε


oleObject72.bin

image2.wmf
,

~

*

l

l

l

z

h

+

¢

=

w

α


image66.wmf
(

)

N

n

n

a

n

 

...,

 

,

2

 

,

1

~

1

,

=

-

y


oleObject73.bin

image67.wmf
)

1

(

´

N


oleObject74.bin

image68.wmf
low

ψ

~


oleObject75.bin

image69.wmf
(

)

N

n

n

a

n

 

...,

 

,

2

 

,

1

~

,

=

y


oleObject76.bin

image70.wmf
up

ψ

~


oleObject77.bin

oleObject2.bin

image71.wmf
up

low

ψ

y

ψ

 

ε

z

d

x

γ

y

*

*

*

~

~

~

,

~

~

~

~

<

<

+

+

=


oleObject78.bin

image72.wmf
)

,...,

2

 

,

1

 

,

0

(

¥

=

g


oleObject79.bin

image73.wmf
,

,

*

1

*

r

r

y

y

y

y

e

(

(

(

(

(

(

<

<

+

¢

=

-

*

z

d


oleObject80.bin

image74.wmf
(

)

(

)

r

r

t

t

r

t

t

Γ

Γ

j

u

q

q

u

y

q

+

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

-

F

=

å

=

-

0

1

!

)

(

)

(

1

(


oleObject81.bin

image75.wmf
q

l

l

u

+

=


oleObject82.bin

image3.wmf
)

1

~

(

´

D


image76.wmf
x

γ

¢

=

(

e

l


oleObject83.bin

image77.wmf
*

y

(


oleObject84.bin

image78.wmf
ψ

(


oleObject85.bin

image79.wmf
.

)

,...

 

,

,

,

(

2

1

0

1

¢

-

y

y

y

y

(

(

(

(


oleObject86.bin

image80.wmf
d

(


oleObject87.bin

oleObject3.bin

image81.wmf
)

1

(

´

L


oleObject88.bin

image82.wmf
e

(


oleObject89.bin

image83.wmf
γ

(


oleObject90.bin

image84.wmf
x


oleObject91.bin

image85.wmf
1

-

F


oleObject92.bin

image4.wmf
l

α

~


image86.wmf
q


oleObject93.bin

image87.wmf
;

0

(

>

q


oleObject94.bin

image88.wmf
,

¥

®

q


oleObject95.bin

image89.wmf
)

(

q

Γ


oleObject96.bin

image90.wmf
ò

¥

=

-

-

=

0

~

~

1

~

~

)

(

t

t

t

d

e

t

Γ

q

q


oleObject97.bin

oleObject4.bin

oleObject98.bin

image91.wmf
)

....

2

1

0

1

¥

<

<

<

<

-

y

y

y

y

(

(

(

(


oleObject99.bin

image92.wmf
.

....

2

1

0

1

¥

<

<

<

<

-

j

j

j

j


oleObject100.bin

image93.wmf
j


oleObject101.bin

image94.wmf
-¥

=

-

1

j


oleObject102.bin

image95.wmf
0

0

=

j


oleObject5.bin

oleObject103.bin

image96.wmf
*

e


oleObject104.bin

image97.wmf
......})

,

2

 

,

1

 

,

0

{

(

*

Î

e


oleObject105.bin

image98.wmf
......})

,

2

 

,

1

{

(

Î

g

g

j


oleObject106.bin

image99.wmf
*

e

j


oleObject107.bin

image100.wmf
*

e

g

j

j

=


image5.wmf
l

h


oleObject108.bin

image101.wmf
,

*

e

g

>


oleObject109.bin

image102.wmf
*

e


oleObject110.bin

image103.wmf
)

,

,

(

*

2

1

¢

=

e

j

j

j

K

j


oleObject111.bin

image104.wmf
1

*

´

e


oleObject112.bin

image105.wmf
)

0

*

>

e


oleObject6.bin

oleObject113.bin

image106.wmf
i


oleObject114.bin

image107.wmf
m


oleObject115.bin

image108.wmf
,

~

)

(

~

i

i

i

i

i

ς

U

+

¢

+

¢

=

*

z

β

x

b

J


oleObject116.bin

image109.wmf
x


oleObject117.bin

image110.wmf
i

b

~


image6.wmf
)

~

(

D

L

´


oleObject118.bin

image111.wmf
)

1

(

´

A


oleObject119.bin

image112.wmf
i

ς

~


oleObject120.bin

image113.wmf
i

β


oleObject121.bin

image114.wmf
)

(

L

N

i

´


oleObject122.bin

image115.wmf
i

J


oleObject7.bin

oleObject123.bin

image116.wmf
)

1

(

´

i

N


oleObject124.bin

image117.wmf
i

β


oleObject125.bin

image118.wmf
L


oleObject126.bin

image119.wmf
i

J


oleObject127.bin

image120.wmf
)

~

,...,

~

,

~

(

~

2

1

¢

=

I

V

V

V

V


image7.wmf
)

~

,...

~

,

~

(

~

2

1

¢

=

L

α

α

α

α


oleObject128.bin

image121.wmf
1

´

I


oleObject129.bin

image122.wmf
)

,

(

~

~

Λ

0

I

I

MVN

V


oleObject130.bin

image123.wmf
Λ

(


oleObject131.bin

image124.wmf
)

,...,

,

(

3

2

I

V

V

V

(

(

(

(

=

V


oleObject132.bin

image125.wmf
1

~

~

V

V

V

-

=

i

i

(


oleObject8.bin

oleObject133.bin

image126.wmf
1

¹

i


oleObject134.bin

image127.wmf
Λ

(


oleObject135.bin

image128.wmf
Λ


oleObject136.bin

oleObject137.bin

image129.wmf
)

,...,

,

(

2

1

¢

=

I

U

U

U

U


oleObject138.bin

image8.wmf
)

1

(

´

L


image130.wmf
1

(

´

I


oleObject139.bin

image131.wmf
)

~

,...,

~

,

~

,

~

(

~

3

2

1

¢

=

I

b

b

b

b

b


oleObject140.bin

image132.wmf
A

I

´

(


oleObject141.bin

image133.wmf
)

,...,

,

2

1

¢

¢

¢

¢

(

=

I

β

β

β

β


oleObject142.bin

image134.wmf
÷

ø

ö

ç

è

æ

´

å

=

L

N

I

i

i

1


oleObject143.bin

oleObject9.bin

image135.wmf
÷

÷

ø

ö

ç

ç

è

æ

´

å

=

I

i

i

N

I

1


oleObject144.bin

image136.wmf
J


oleObject145.bin

image137.wmf
)

1

(

1

N

´


oleObject146.bin

image138.wmf
1

N


oleObject147.bin

image139.wmf
)

1

(

2

N

´


oleObject148.bin

image9.wmf
)

,...,

,

(

*

*

2

*

1

¢

=

L

z

z

z

*

z


image140.wmf
1

N


oleObject149.bin

image141.wmf
,

2

1

N

N

+


oleObject150.bin

image142.wmf
)

1

(

I

N

´


oleObject151.bin

image143.wmf
)

(

~

β

J

v

=


oleObject152.bin

image144.wmf
L

I

´

(


oleObject153.bin

oleObject10.bin

image145.wmf
.

~

~

~

V

v

+

+

=

*

z

x

b

U


oleObject154.bin

image146.wmf
m

i

im

U

U

u

-

=


oleObject155.bin

image147.wmf
m

i

¹


oleObject156.bin

image148.wmf
(

)

ú

û

ù

ê

ë

é

¹

¢

=

m

i

u

u

u

Im

m

m

;

,...,

,

2

1

u


oleObject157.bin

image149.wmf
[

]

[

]

I

I

´

-

1


oleObject158.bin

image10.wmf
)'.

,

,

,

,

(

3

2

1

L

h

h

h

h

K

=

η


image150.wmf
)

1

(

1

-

I


oleObject159.bin

image151.wmf
,

~

~

~

V

v

V

v

+

+

=

+

+

=

=

*

*

z

bx

z

x

b

U

u

M

M

M

M


oleObject160.bin

image152.wmf
.

~

and

,

~

,

~

V

V

v

v

M

M

M

=

=

=

 

b

b


oleObject161.bin

image153.wmf
K

k

K

K

K

K

k

k

k

k

k

k

t

t

U

a

a

y

a

t

y

a

t

)

(

1

1

1

)

(

~

max

1

1

+

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

+

=

å

-

=

t


oleObject162.bin

image154.wmf
å

=

=

K

k

k

T

t

t

s

1

 

.

.


oleObject163.bin

oleObject11.bin

image155.wmf
)

(

~

t

U


oleObject164.bin

image156.wmf
)

0

(

³

k

k

t

t


oleObject165.bin

image157.wmf
k

t


oleObject166.bin

image158.wmf
k

a


oleObject167.bin

image159.wmf
k

y


oleObject168.bin

image11.wmf
]

,

[

~

Γ

0

η

L

L

MVN


image160.wmf
1

-

K


oleObject169.bin

oleObject170.bin

image161.wmf
:

 

0

>

k

t


oleObject171.bin

image162.wmf
1

...,

 

,

2

 

,

1

-

=

K

k


oleObject172.bin

image163.wmf
k

a


oleObject173.bin

oleObject174.bin

oleObject12.bin

oleObject175.bin

oleObject176.bin

image164.wmf
1

£

k

a


oleObject177.bin

image165.wmf
0

³

k

y


oleObject178.bin

oleObject179.bin

oleObject180.bin

oleObject181.bin

oleObject182.bin

image12.wmf
L

0


oleObject183.bin

oleObject184.bin

image166.wmf
t


oleObject185.bin

image167.wmf
0

®

k

a


oleObject186.bin

oleObject187.bin

image168.wmf
a


oleObject188.bin

oleObject189.bin

oleObject13.bin

oleObject190.bin

image171.wmf
,

~

~

~

)

ln(

or  

)

~

~

~

exp(

)

~

,

,

exp(

*

k

k

k

k

k

k

k

k

k

k

x

y

y

x

x

y

+

¢

+

¢

=

=

+

¢

+

¢

=

=

*

*

*

z

μ

x

δ

z

μ

x

δ

z

x


oleObject193.bin

image172.wmf
k

δ

~


oleObject194.bin

image173.wmf
k

μ

~


oleObject195.bin

image174.wmf
k

x

~


oleObject196.bin

oleObject197.bin

oleObject14.bin

image175.wmf
)

~

,

(

~

)

~

,...,

~

,

~

(

~

2

1

Ω

0

K

K

K

MVN

¢

=

x

x

x

ξ


oleObject198.bin

image176.wmf
1

-

K


oleObject199.bin

image177.wmf
.

for

0

)

~

~

(

,

~

~

(

),

~

~

(

,

  

)

~

~

(

)

~

~

(

)

~

~

(

*

*

*

*

K

k

K

k

K

K

K

K

k

k

K

k

k

K

k

k

k

k

k

K

k

K

k

K

k

K

k

k

=

=

-

=

¹

"

-

=

-

=

-

=

+

¢

+

¢

=

-

+

¢

-

+

¢

-

=

-

=

y

y

y

x

x

x

x

x

x

y

y

y

)

μ

μ

μ

δ

δ

δ

z

μ

x

δ

z

μ

μ

x

δ

δ

*

*


oleObject200.bin

image178.wmf
Ω


oleObject201.bin

image179.wmf
)

~

~

(

K

k

k

x

x

x

-

=


oleObject202.bin

image13.wmf
Γ


image180.wmf
Ω

~


oleObject203.bin

image181.wmf
Ω


oleObject204.bin

image182.wmf
11

Ω


oleObject205.bin

oleObject206.bin

image183.wmf
K

x


oleObject207.bin

image184.wmf
).

1

 

,...,

2

 

,

1

(

-

=

K

k

k

x


oleObject15.bin

oleObject208.bin

oleObject209.bin

image195.wmf
)

exp(

k

k

y

y

=


oleObject221.bin

image196.wmf
1

 

,...,

2

 

,

1

for

)

exp(

-

=

+

¢

+

¢

K

k

k

k

k

x

*

z

μ

x

δ


oleObject222.bin

image197.wmf
K

k

=

=

for

1

)

0

exp(


oleObject223.bin

image198.wmf
ú

û

ù

ê

ë

é

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

+

+

¢

+

¢

=

å

å

=

-

=

K

k

k

K

K

K

k

k

k

k

k

k

k

k

T

t

t

t

L

K

k

1

1

1

~

)

(

1

1

1

)

exp(

l

a

t

x

a

t

a

a

*

z

μ

x

δ


oleObject224.bin

image14.wmf
)

(

L

L

´


image199.wmf
l

~


oleObject225.bin

image200.wmf
*

K

t


oleObject226.bin

image201.wmf
(

)

;

0

~

 

1

*

=

-

-

l

a

K

K

t


oleObject227.bin

image202.wmf
(

)

1

*

~

 

-

=

K

K

t

a

l


oleObject228.bin

image203.wmf
*

k

t


oleObject229.bin

oleObject16.bin

image204.wmf
)

1

 

...,

 

,

2

 

,

1

-

=

K

k


oleObject230.bin

image205.wmf
0

~

1

 

)

exp(

1

*

=

-

÷

÷

ø

ö

ç

ç

è

æ

+

+

¢

+

¢

-

l

t

x

a

k

k

k

k

k

k

t

*

z

μ

x

δ


oleObject231.bin

image206.wmf
0

*

>

k

t


oleObject232.bin

image207.wmf
1

 

...,

 

,

2

 

,

1

-

=

K

k


oleObject233.bin

image208.wmf
0

~

1

 

)

exp(

1

*

<

-

÷

÷

ø

ö

ç

ç

è

æ

+

+

¢

+

¢

-

l

t

x

a

k

k

k

k

k

k

t

*

z

μ

x

δ


oleObject234.bin

image15.wmf
η

+

=

w

α

z

*

~


image209.wmf
0

*

=

k

t


oleObject235.bin

image210.wmf
1

 

...,

 

,

2

 

,

1

-

=

K

k


oleObject236.bin

oleObject237.bin

image211.wmf
0

~

=

+

¢

+

=

k

k

k

k

V

u

x

*

z

μ


oleObject238.bin

image212.wmf
0

*

>

k

t


oleObject239.bin

oleObject240.bin

oleObject17.bin

image213.wmf
0

~

<

+

¢

+

=

k

k

k

k

V

u

x

*

z

μ


oleObject241.bin

image214.wmf
0

*

=

k

t


oleObject242.bin

oleObject243.bin

image215.wmf
(

)

*

*

ln

)

1

(

1

ln

)

1

(

K

K

k

k

k

k

k

t

t

V

-

-

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

¢

=

a

t

a

x

δ


oleObject244.bin

oleObject245.bin

image216.wmf
)

~

,...,

~

,

~

(

~

1

2

1

¢

=

-

K

u

u

u

u


oleObject246.bin

image16.wmf
*

z


image217.wmf
1

)

1

(

´

-

K


oleObject247.bin

image218.wmf
)

,...,

,

(

1

2

1

¢

=

-

K

δ

δ

δ

δ


oleObject248.bin

image219.wmf
A

K

´

-

)

1

(


oleObject249.bin

image220.wmf
)

,...,

,

(

1

2

1

¢

=

-

K

V

V

V

V


oleObject250.bin

oleObject251.bin

image221.wmf
)

,...,

,

(

1

2

1

¢

=

-

K

μ

μ

μ

μ


oleObject18.bin

oleObject252.bin

image222.wmf
A

K

´

-

)

1

[(


oleObject253.bin

image223.wmf
)

,...,

,

(

,

)

,...,

,

(

2

1

2

1

¢

=

¢

=

K

K

t

t

t

a

a

a

τ

α


oleObject254.bin

image224.wmf
).

,

(

~

)

,...,

,

(

1

1

1

2

1

Ω

0

-

-

-

¢

=

K

K

K

MVN

x

x

x

ξ


oleObject255.bin

image225.wmf
ξ

z

μ

V

u

*

+

+

=

~


oleObject256.bin

image226.wmf
u

~


oleObject19.bin

oleObject257.bin

image227.wmf
C

F


oleObject258.bin

image228.wmf
C

F

~


oleObject259.bin

image229.wmf
NC

F


oleObject260.bin

image230.wmf
NC

F

~


oleObject261.bin

image231.wmf
),

~

(

vech

),

(

vech

),

(

vech

),

(

vech

),

~

(

vech

[

γ

d

γ

α

θ

Γ

=

t


oleObject20.bin

oleObject262.bin

image232.wmf
)]

(

vech

,

or

 

),

(

vech

 

),

(

vech

),

~

(

vech

,

 

,

 

),

(

vech

),

(

vech

),

(

vech

),

~

(

vech

Ω

Σ

τ

α

b

γ

d

d

d

m

j

θ

(

(


oleObject263.bin

image233.wmf
Δ


oleObject264.bin

image234.wmf
Δ


oleObject265.bin

image235.wmf
)

~

(

NC

F

I

N

+

+


oleObject266.bin

image17.wmf
)

 

,...,

 

,

(

2

1

H

y

y

y


oleObject267.bin

image236.wmf
a


oleObject268.bin

image237.wmf
1

,

~

n

ψ


oleObject269.bin

oleObject270.bin

image238.wmf
q


oleObject271.bin

image239.wmf
832

.

0

1

=

j


oleObject21.bin

oleObject272.bin

image240.wmf
710

.

1

2

=

j


oleObject273.bin

image241.wmf
d

~


oleObject274.bin

image242.wmf
d

(


oleObject275.bin

oleObject276.bin

image243.wmf
k

t


oleObject277.bin

image18.wmf
)

 

,...,

2

 

,

1

(

H

h

=


image244.wmf
0

®

k

t


oleObject278.bin

oleObject279.bin

oleObject280.bin

oleObject281.bin

oleObject282.bin

image245.wmf
ú

û

ù

ê

ë

é

-

=

-

1

*

)

ˆ

(

ˆ

)

ˆ

(

ˆ

)

ˆ

(

log

)

ˆ

(

log

θ

H

θ

J

θ

θ

t

t

t

t

tr

L

L

MACML

MACML


oleObject283.bin

image246.wmf
)

ˆ

(

log

θ

t

MACML

L


oleObject284.bin

oleObject22.bin

image247.wmf
)

(

)

ˆ

(

1

2

c

M

 

L

 

L

-

-

=

θ

t

r


oleObject285.bin

image248.wmf
)

ˆ

(

θ

t

 

L


oleObject286.bin

image249.wmf
)

(

c

 

L


oleObject287.bin

image250.wmf
t

r

r

=

-

)

(

2

1

2

2


oleObject288.bin

image251.wmf
{

}

5

.

0

1

2

)]

(

)

(

2

[

M

M

c

-

+

-

-

F

L

t


oleObject289.bin

image19.wmf
h

h

h

h

y

e

+

¢

+

¢

=

*

z

d

x

γ


image252.wmf
)

ˆ

(

θ

t

 

L


oleObject290.bin

oleObject291.bin

image253.wmf
2

r


oleObject292.bin

image254.wmf
)

147

(

-

F


oleObject293.bin

image255.wmf
i

i

¹

¢


oleObject294.bin

oleObject23.bin

image256.wmf
)

1

(

+

+

=

N

H

E


oleObject295.bin

image257.wmf
[

]

[

]

],

vector

1

[

,

~

,

*

*

´

¢

÷

ø

ö

ç

è

æ

¢

¢

¢

=

E

y

(

t

y

y

y


oleObject296.bin

image258.wmf
 

],

matrix

[

)

,

~

,

(

A

E

´

¢

¢

¢

=

A

0

γ

γ

γ

t


oleObject297.bin

image20.wmf
x


image259.wmf
matrix],

[

)

,

~

,

(

L

E

´

¢

¢

¢

¢

=

d

d

d

d

(

t


oleObject298.bin

image260.wmf
)

,

~

,

(

¢

¢

¢

¢

=

e

(

t

ε

ε

ε


oleObject299.bin

image261.wmf
 vector),

1

(

´

E


oleObject300.bin

image262.wmf
A

0


oleObject301.bin

image263.wmf
1

´

A


oleObject302.bin

oleObject24.bin

image264.wmf
η


oleObject303.bin

image265.wmf
ε

t


oleObject304.bin

image266.wmf
ξ


oleObject305.bin

image267.wmf
ς


oleObject306.bin

image268.wmf
*

z


oleObject307.bin

image21.wmf
)

1

(

´

A


image269.wmf
,

)

~

,

,

(

¢

¢

¢

¢

=

u

u

y

yu

t


oleObject308.bin

image270.wmf
,

,

,

(

,

]

,

)

(

,

)

[(

~

)

μ

d

π

V

bx

x

γ

V

¢

¢

¢

¢

=

¢

¢

¢

¢

=

v

t

t


oleObject309.bin

image271.wmf
.

)

,

,

(

¢

¢

¢

¢

=

x

V

ε

t

k


oleObject310.bin

image272.wmf
η

+

=

αw

z

*


oleObject311.bin

image273.wmf
κ

πz

V

yu

*

+

+

=

~


oleObject312.bin

oleObject25.bin

image274.wmf
matrix

)

2

(

)

2

(

1

)

(

Var 

with

-

+

+

´

-

+

+

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

¢

=

=

K

I

E

K

I

E

Ω

0

0

0

0

0

M

Λ

M

0

0

0

0

0

0

0

0

0

0

IDEN

0

0

0

0

0

Σ

Σ

N

t

κ


oleObject313.bin

image275.wmf
*

z


oleObject314.bin

image276.wmf
k

+

+

+

=

+

+

+

=

+

+

=

πη

w

π

V

κ

η

w

π

V

κ

πz

V

yu

*

α

α

~

)

(

~

~


oleObject315.bin

image277.wmf
),

,

(

2

Θ

B

MVN

 

~

yu

K-

I

E

+

+


oleObject316.bin

image278.wmf
,

~

w

π

V

B

α

+

=


oleObject317.bin

image22.wmf
h

γ


image279.wmf
Θ


oleObject318.bin

image280.wmf
Σ

Γ

t

+

¢

π

π


oleObject319.bin

image281.wmf
B


oleObject320.bin

image282.wmf
Θ


oleObject321.bin

image283.wmf
ε

t


oleObject322.bin

oleObject26.bin

image284.wmf
Σ

t


oleObject323.bin

image285.wmf
Γ


oleObject324.bin

image286.wmf
γ

t


oleObject325.bin

image287.wmf
α


oleObject326.bin

oleObject327.bin

image288.wmf
x


image23.wmf
h

d


oleObject328.bin

image289.wmf
i


oleObject329.bin

image290.wmf
k

δ


oleObject330.bin

oleObject331.bin

image291.wmf
yu


oleObject332.bin

oleObject333.bin

oleObject334.bin

oleObject27.bin

image292.wmf
E

E

~

~

´


oleObject335.bin

image293.wmf
M

~


oleObject336.bin

image294.wmf
)]

2

(

~

[

-

+

+

=

K

I

E

E


oleObject337.bin

image295.wmf
C

F

~


oleObject338.bin

image296.wmf
th

H

)

1

(

+


oleObject339.bin

image24.wmf
)

1

(

´

L


image297.wmf
th

C

F

I

E

])

1

[

1

(

+

-

+


oleObject340.bin

image298.wmf
th

H

)

2

(

+


oleObject341.bin

image299.wmf
th

C

F

I

E

])

2

[

1

(

+

-

+


oleObject342.bin

image300.wmf
th

C

F

H

)

~

(

+


oleObject343.bin

image301.wmf
th

C

C

F

F

I

E

])

~

[

1

(

+

-

+


oleObject344.bin

oleObject28.bin

image302.wmf
th

C

F

H

)

1

~

(

+

+


oleObject345.bin

image303.wmf
th

C

E

F

H

)

1

~

(

-

+

+


oleObject346.bin

image304.wmf
,

1

-

E


oleObject347.bin

oleObject348.bin

image305.wmf
th

I

E

)

1

(

-

+


oleObject349.bin

image306.wmf
NC

F

~


image25.wmf
h

e


oleObject350.bin

image307.wmf
th

C

I

F

E

)

~

(

+

+


oleObject351.bin

image308.wmf
th

NC

F

I

E

])

1

[

1

(

+

-

+


oleObject352.bin

image309.wmf
th

C

I

F

E

)

1

~

(

+

+

+


oleObject353.bin

image310.wmf
th

NC

F

I

E

])

2

[

1

(

+

-

+


oleObject354.bin

image311.wmf
th

K

I

E

)

2

(

-

+

+


oleObject29.bin

oleObject355.bin

image312.wmf
th

C

C

F

F

I

E

]

~

[

1

(

+

-

+


oleObject356.bin

image313.wmf
),

(

~

~

yu

u

y

M

=


oleObject357.bin

image314.wmf
,

~

~

B

B

M

=


oleObject358.bin

image315.wmf
M

Θ

M

Θ

¢

=

~

~

~


oleObject359.bin

image316.wmf
u

y

~


image26.wmf
)

1

(

´

H


oleObject360.bin

image317.wmf
]

~

:

1

[

~

~

1

C

F

H

+

=

u

y

u

y


oleObject361.bin

image318.wmf
],

~

:

1

~

[

~

~

2

E

F

H

C

+

+

=

u

y

u

y


oleObject362.bin

image319.wmf
]

~

:

1

[

~

C

F

H

+

u

y


oleObject363.bin

oleObject364.bin

oleObject365.bin

image320.wmf
]

~

:

1

~

[

~

E

F

H

C

+

+

u

y


oleObject30.bin

oleObject366.bin

oleObject367.bin

image321.wmf
th

C

F

H

)

1

~

(

+

+


oleObject368.bin

image322.wmf
E

~


oleObject369.bin

image323.wmf
B

~


oleObject370.bin

image324.wmf
]

~

:

1

[

 

~

~

1

C

F

H

+

=

B

B


oleObject371.bin

image27.wmf
)

 

,...,

 

,

(

2

1

¢

=

H

y

y

y

y


image325.wmf
]

~

:

1

~

[

 

~

~

2

E

F

H

C

+

+

=

B

B


oleObject372.bin

image326.wmf
Θ

~


oleObject373.bin

image327.wmf
]

~

:

1

,

~

:

1

[

~

 

~

1

C

C

F

H

F

H

+

+

=

Θ

Θ


oleObject374.bin

image328.wmf
]

~

:

1

~

,

~

:

1

~

[

~

 

~

2

E

F

H

E

F

H

C

C

+

+

+

+

=

Θ

Θ


oleObject375.bin

image329.wmf
]

~

:

1

,

~

:

1

~

[

~

 

~

12

C

C

F

H

E

F

H

+

+

+

=

Θ

Θ


oleObject376.bin

oleObject31.bin

image330.wmf
,

~

~

~

2

1

ú

û

ù

ê

ë

é

=

u

y

u

y

u

y


oleObject377.bin

image331.wmf
and

,

~

~

~

2

1

ú

û

ù

ê

ë

é

=

B

B

B


oleObject378.bin

image332.wmf
ú

û

ù

ê

ë

é

=

2

12

12

1

~

~

~

~

~

Θ

Θ

Θ

Θ

Θ


oleObject379.bin

image333.wmf
(

)

1

1

1

12

2

2

~

~

~

~

~

B

u

y

B

B

-

+

=

Θ

Θ

t


oleObject380.bin

image334.wmf
.

~

~

~

~

12

1

12

2

2

Θ

Θ

Θ

Θ

Θ

¢

-

=

t


oleObject381.bin

image28.wmf
)

 

,...,

 

,

(

2

1

¢

=

H

e

e

e

ε


image335.wmf
(

)

])

1

)

~

([(

,

,

~

~

1

´

+

+

¢

ú

û

ù

ê

ë

é

¢

-

¢

¢

=

+

-

NC

F

I

low

low

low

F

I

N

NC

¥

ψ

ψ

ψ

(

t


oleObject382.bin

image336.wmf
(

)

])

1

)

~

([(

,

,

~

~

1

´

+

+

¢

ú

û

ù

ê

ë

é

¢

¢

¢

=

+

-

NC

F

I

up

up

up

F

I

N

NC

0

ψ

ψ

ψ

(

t


oleObject383.bin

image337.wmf
NC

F

I

~

1

+

-

-

¥


oleObject384.bin

image338.wmf
1

)

~

1

(

´

+

-

NC

F

I


oleObject385.bin

image339.wmf
NC

F

I

~

1

+

-

0


oleObject386.bin

oleObject32.bin

image340.wmf
1

)

~

1

(

´

+

-

NC

F

I


oleObject387.bin

image341.wmf
[

]

,

~

 

Pr

)

~

 

,

~

)

 

,

((

)

det(

)

(

2

1

1

~

~

up

low

F

F

H

C

C

f

L

ψ

u

y

ψ

B

|

y

θ

t

t

t

£

£

´

´

=

+

Θ

0

J


oleObject388.bin

image342.wmf
r

d

f

f

NC

C

C

F

I

N

D

F

F

H

)

,

|

(

)

~

 

,

~

)

 

,

((

)

det(

 

 

2

2

~

1

1

~

~

Ω

Θ

0

J

t

t

B

r

B

|

y

r

+

+

+

ò

´

´

=


oleObject389.bin

image343.wmf
)

det(

J


oleObject390.bin

image344.wmf
,

1

1

)

det(

*

*

ï

þ

ï

ý

ü

ï

î

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

-

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

+

-

=

å

Õ

Î

Î

C

C

k

k

k

k

k

k

k

k

t

t

a

g

g

a

J


oleObject391.bin

image29.wmf
)

,

(

Σ

0

H

H

MVN

~

ε


image345.wmf
C


oleObject392.bin

image346.wmf
}

:

{

up

low

r

D

ψ

r

ψ

r

t

t

£

£

=


oleObject393.bin

image347.wmf
2

~

u

y


oleObject394.bin

image348.wmf
)

~

,

~

)

 

,

(

1

1

~

~

Θ

0

B

|

y

C

C

F

F

H

f

+


oleObject395.bin

image349.wmf
C

F

H

~

+


oleObject396.bin

oleObject33.bin

image350.wmf
1

~

B


oleObject397.bin

image351.wmf
1

~

Θ


oleObject398.bin

image352.wmf
)

 

,

(

~

C

F

0

y


oleObject399.bin

oleObject400.bin

image353.wmf
(

)

(

)

(

)

(

)

m

i

r

g

a

j

m

i

r

g

m

i

a

j

r

g

a

j

a

j

a

j

f

L

N

n

n

n

N

n

n

n

N

n

n

n

N

n

N

n

n

n

n

n

n

y

y

H

CML

=

´

=

´

÷

÷

ø

ö

ç

ç

è

æ

=

´

=

=

´

÷

÷

ø

ö

ç

ç

è

æ

=

=

´

÷

÷

ø

ö

ç

ç

è

æ

=

=

´

´

÷

÷

ø

ö

ç

ç

è

æ

¢

=

=

´

=

Õ

Õ

Õ

Õ

Õ

=

=

=

-

=

+

=

¢

¢

;

Pr

;

Pr

;

Pr

,

Pr(

)

,

Pr(

)

,

Pr(

)

,

Pr(

)

~

,

~

|

(

)

(

1

1

1

1

1

1

  

'

*

*

*

t

t

t

B

y

θ

Ω

t


oleObject401.bin

image354.wmf
1

~

+

NC

F


image30.wmf
ε


oleObject402.bin

image355.wmf
*

t


oleObject403.bin

image356.wmf
1

~

+

NC

F


oleObject404.bin

image357.wmf
1

~

-

+

I

F

NC


oleObject405.bin

image358.wmf
D

ω


oleObject406.bin

image359.wmf
Δ


oleObject34.bin

oleObject407.bin

image360.wmf
h

D

w


oleObject408.bin

oleObject409.bin

image361.wmf
)

;

(.

*

*

Δ

R

f


oleObject410.bin

image362.wmf
*

Δ


oleObject411.bin

image363.wmf
1

1

*

-

D

-

D

=

ω

Δ

ω

Δ


oleObject412.bin

image31.wmf
Σ


image364.wmf
)

;

(.

*

Δ

R

F


oleObject413.bin

image365.wmf
*

Δ


oleObject414.bin

image366.wmf
v

D


oleObject415.bin

image367.wmf
)

~

~

(

C

F

H

E

I

-

-

´


oleObject416.bin

image368.wmf
th

v


oleObject417.bin

oleObject35.bin

image369.wmf
1

-

I


oleObject418.bin

image370.wmf
1

-

I


oleObject419.bin

image371.wmf
th

N

)

2

(

+


oleObject420.bin

image372.wmf
th

I

N

]

[

+


oleObject421.bin

image373.wmf
v

A


oleObject422.bin

oleObject36.bin

image374.wmf
)

~

(

)

1

~

(

C

NC

F

H

E

F

-

-

´

+


oleObject423.bin

oleObject424.bin

image375.wmf
NC

F

~


oleObject425.bin

oleObject426.bin

image376.wmf
th

I

N

)

1

(

+

+


oleObject427.bin

image377.wmf
th

NC

F

I

N

)

~

(

+

+


oleObject428.bin

image32.wmf
*

z


oleObject429.bin

image378.wmf
C


oleObject430.bin

image379.wmf
)

~

(

)

1

~

(

C

NC

F

H

E

I

F

-

-

´

-

+


oleObject431.bin

oleObject432.bin

oleObject433.bin

image380.wmf
th

N

)

2

(

+


oleObject434.bin

image381.wmf
th

I

N

)

(

+


oleObject37.bin

oleObject435.bin

oleObject436.bin

image382.wmf
th

I

N

)

1

(

+

+


oleObject437.bin

image383.wmf
th

NC

F

I

N

)

~

(

+

+


oleObject438.bin

oleObject439.bin

image384.wmf
,

ˆ

,

ˆ

2

2

v

v

v

v

v

D

D

B

D

B

¢

=

=

Θ

Θ

t

t


oleObject440.bin

image385.wmf
,

,

2

2

v

v

v

v

v

A

A

B

A

B

¢

=

=

Θ

Θ

t

&

&

t

&

&


image33.wmf
)

(

A

H

´


oleObject441.bin

image386.wmf
,

,

2

2

C

C

B

C

B

¢

=

=

Θ

Θ

t

(

t

(


oleObject442.bin

image387.wmf
(

)

÷

÷

ø

ö

ç

ç

è

æ

¢

ú

û

ù

ê

ë

é

¢

¢

¢

=

+

-

NC

F

I

low

low

v

v,low

~

1

,

,

~

ˆ

0

ψ

ψ

D

ψ

(


oleObject443.bin

image388.wmf
up

v

v,up

ψ

D

ψ

t

=

ˆ


oleObject444.bin

image389.wmf
(

)

÷

÷

ø

ö

ç

ç

è

æ

¢

ú

û

ù

ê

ë

é

¢

¢

¢

=

+

-

NC

F

I

low

low

v

v,low

~

1

,

,

~

0

ψ

ψ

A

ψ

(

&

&


oleObject445.bin

image390.wmf
up

v

v,up

ψ

A

ψ

t

&

&

=


oleObject38.bin

oleObject446.bin

image391.wmf
up

up

ψ

C

ψ

t

(

=


oleObject447.bin

image392.wmf
[

]

[

]

[

]

vv

v

v

up

up

v

2

2

,

Θ

t

t

t

B

ψ

-

=

m


oleObject448.bin

image393.wmf
[

]

[

]

[

]

vv

v

v

low

low

v

2

2

,

Θ

t

t

t

B

ψ

-

=

m


oleObject449.bin

image394.wmf
[

]

[

]

[

]

[

]

v

v

vv

v

v

v

v

¢

¢

¢

¢

=

2

2

2

Θ

Θ

Θ

t

t

t

r


oleObject450.bin

image395.wmf
[

]

v

up

ψ

t


image34.wmf
)

,...,

,

(

2

1

¢

=

H

γ

γ

γ

γ


oleObject451.bin

image396.wmf
th

v


oleObject452.bin

image397.wmf
up

ψ

t


oleObject453.bin

image398.wmf
[

]

v

v

¢

2

Θ

t


oleObject454.bin

image399.wmf
th

v

v

¢


oleObject455.bin

image400.wmf
2

Θ

t


oleObject39.bin

oleObject456.bin

image401.wmf
[

]

[

]

(

)

{

}

[

]

{

}

[

]

[

]

{

}

[

]

{

}

[

]

[

]

{

}

[

]

[

]

(

)

*

1

1

1

*

1

1

~

*

1

1

~

1

1

*

1

ˆ

*

1

ˆ

1

1

1

,

,

2

,

,

2

,

,

2

,

,

2

*

1

1

~

1

-

~

1

1

~

;

;

;

ˆ

;

ˆ

ˆ

ˆ

;

ˆ

ˆ

)

,

,

(

)

,

,

(

)

,

,

(

)

,

,

(

~

 

;

~

)

,

(

)

det(

)

(

1

~

1

1

Θ

ω

Θ

ω

Θ

ω

Θ

ω

Θ

ω

Θ

0

ω

J

Θ

Θ

Θ

Θ

Θ

Θ

Θ

(

(

(

&

&

&

&

&

&

&

&

&

&

&

&

t

&

&

&

&

&

&

B

ψ

B

ψ

B

ψ

B

ψ

B

ψ

B

y

θ

-

F

´

÷

÷

ø

ö

ç

ç

è

æ

-

F

-

-

F

´

÷

÷

ø

ö

ç

ç

è

æ

-

F

-

-

F

´

÷

÷

ø

ö

ç

ç

è

æ

ú

ú

û

ù

ê

ê

ë

é

F

+

F

-

F

-

F

´

-

÷

÷

ø

ö

ç

ç

è

æ

´

=

-

+

=

-

+

-

+

+

=

-

-

=

+

+

=

¢

¢

¢

¢

¢

¢

¢

¢

¢

-

+

=

-

+

Õ

Õ

Õ

Õ

Õ

up

N

v

v

v

v,low

F

v

v

v,up

F

N

v

v

v

v,low

I

v

v

v,up

I

N

v

N

v

v

v

v

low

v

low

v

v

v

up

v

low

v

v

v

low

v

up

v

v

v

up

v

up

v

F

H

F

H

h

h

CML

v

I

NC

F

v

NC

v

NC

v

v

C

C

L

r

m

m

r

m

m

r

m

m

r

m

m

f

w


oleObject457.bin

image402.wmf
)

(

,

θ

t

q

MACML

L


oleObject458.bin

image403.wmf
å

=

=

Q

q

q

MACML

MACML

L

L

1

,

)

(

log

)

(

θ

θ

t

t


oleObject459.bin

image404.wmf
θ

t


oleObject460.bin

image405.wmf
[

]

[

]

[

]

[

]

,

ˆ

ˆ

ˆ

ˆ

)

(

1

1

Q

Q

V

-

-

MACML

¢

=

=

H

J

H

θ

(

G

θ

1

-

)

t

t


image35.wmf
)

(

L

H

´


oleObject461.bin

image406.wmf
MACML

q

MACML

Q

q

L

Q

θ

θ

θ

θ

H

ˆ

,

2

1

)

(

log

1

ˆ

t

t

t

t

ú

ú

û

ù

ê

ê

ë

é

¢

¶

¶

¶

-

=

å

=


oleObject462.bin

image407.wmf
MACML

q

MACML

q

MACML

Q

q

L

L

Q

θ

θ

θ

θ

θ

J

ˆ

,

,

1

)

(

log

)

(

log

1

ˆ

t

t

t

t

t

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

¢

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

=

å

=


oleObject463.bin

image408.wmf
)

(

L

L

´


oleObject464.bin

oleObject465.bin

image409.wmf
[

]

)

1

(

)

1

(

-

´

-

I

I


oleObject466.bin

oleObject40.bin

image410.wmf
)

(

K

K

´


oleObject467.bin

image411.wmf
Γ


oleObject468.bin

oleObject469.bin

image412.wmf
å

-

=

-

1

1

2

1

a

j

aj

p


oleObject470.bin

image413.wmf
aj

p


oleObject471.bin

image36.wmf
(

)

.

,...,

,

2

1

¢

=

H

d

d

d

d


oleObject41.bin

image37.wmf
ε

dz

γx

y

*

+

+

=


oleObject42.bin

image38.wmf
N


oleObject43.bin

image39.wmf
)

 

...,

 

,

2

 

,

1

(

N

n

=


oleObject44.bin

image40.wmf
n

J


oleObject45.bin

image41.wmf
)

2

(

³

n

J


oleObject46.bin

image169.wmf
{

}

K

K

k

k

k

K

k

k

t

t

U

ln

1

ln

)

(

~

1

1

y

t

y

t

+

÷

÷

ø

ö

ç

ç

è

æ

+

=

å

-

=

t


oleObject212.bin

image187.wmf
)

1

 

,

...

 

,

3

 

,

2

(

-

=

K

k

k

x


oleObject213.bin

image188.wmf
2

k

s


oleObject214.bin

image189.wmf
k

x


oleObject215.bin

image190.wmf
)

 

;

1

 

...,

 

,

3

 

,

2

 

,

1

,

(

'

k

k

K

k

k

k

¢

¹

-

=

¢

x


oleObject216.bin

image191.wmf
k

k

¢

s


oleObject191.bin

oleObject217.bin

image192.wmf
Ω


oleObject218.bin

image193.wmf
)

~

~

(

K

k

k

x

x

x

-

=


oleObject219.bin

image194.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

=

-

-

-

-

-

-

-

2

1

1

,

3

1

,

2

1

,

1

1

,

3

2

3

23

13

1

,

2

23

2

2

12

1

,

1

13

12

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

5

.

0

1

K

K

K

K

K

K

K

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

L

M

O

M

M

M

L

K

K

Ω


oleObject220.bin

image170.wmf
(

)

{

}

K

k

K

K

K

k

k

k

K

k

t

t

U

a

a

y

a

y

a

1

1

1

1

)

(

~

1

1

+

-

+

=

å

-

=

t


oleObject192.bin

image185.wmf
K

x


oleObject210.bin

oleObject211.bin

image186.wmf
1

x


