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ABSTRACT 

This paper makes both a methodological contribution as well as an empirical contribution. From 

a methodological perspective, we propose a new econometric approach for the estimation of joint 

mixed models that include a multiple discrete choice outcome and a nominal discrete outcome, 

in addition to the count, binary/ordinal outcomes, and continuous outcomes considered in 

traditional structural equation models. These outcomes are modeled together by specifying latent 

underlying unobserved individual lifestyle, personality, and attitudinal factors that impact the 

many outcomes, and generate the jointness among the outcomes. From an empirical perspective, 

we analyze residential location choice, household vehicle ownership choice, as well as time-use 

choices, and investigate the extent of association versus causality in the effects of residential 

density on activity participation and mobility choices. The sample for the empirical application is 

drawn from a travel survey conducted in the Puget Sound Region in 2014. The results show that 

residential density effects on activity participation and motorized auto ownership are both 

associative as well as causal, emphasizing that accounting for residential self-selection effects 

are not simply esoteric econometric pursuits, but can have important implications for land-use 

policy measures that focus on neo-urbanist design.  

 

Keywords: latent factors, mixed dependent variables, structural equations models, MACML 

estimation approach, residential self-selection effect, activity time-use. 
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1. INTRODUCTION 

The joint modeling of multiple outcomes is of substantial interest in several fields. In 

econometric terminology, this jointness may arise because of the impact (on the multiple choice 

outcomes) of common underlying exogenous observed variables, or common underlying 

exogenous unobserved variables, or a combination of the two. For instance, consider the choice 

of residential location, motorized vehicle ownership (or simply auto ownership from hereon), 

and activity time-use in recreational pursuits (such as going to the movies/opera, going to the 

gym, playing sports, and camping). In this setting, it is possible (if not very likely) that 

individuals from households who have a high green lifestyle propensity (an unobserved variable) 

may search for locations that are relatively dense (with good non-motorized and public 

transportation facilities and high accessibility to activity locations), may own fewer cars, may 

travel less and so pursue more in-home (IH) activities, and pursue less of what they may perceive 

as activities that correlate with  extravagant living and indulgence such as out-of-home (OH) 

personal care/grooming, shopping, and dining out. In this case, when one or more unobserved 

factors (for example, green lifestyle) affect(s) the multiple outcomes, independently modeling 

the outcomes results in the inefficient estimation of covariate effects for each outcome (because 

such an approach fails to borrow information on other outcomes; see Teixeira-Pinto and 

Harezlak, 2013). But, more importantly, if some of the endogenous outcomes are used to explain 

other endogenous outcomes (such as examining the effect of density of residence on auto 

ownership, or the effect of density of residence on OH activity time-use, or the effect of auto 

ownership on time-use in activities), and if the outcomes are not modeled jointly in the presence 

of unobserved exogenous variable effects, the result is inconsistent estimation of the effects of 

one endogenous outcome on another (see Bhat and Guo, 2007, and Mokhtarian and Cao, 2008). 

In the next section, we position the current paper within this broader methodological context of 

modeling multiple outcomes jointly. 

 

1.1.The Methodological Context 

The joint modeling of multiple outcomes has been a subject of interest for many years, 

dominated by the joint modeling of multiple continuous outcomes (see de Leon and Chough, 

2013). However, in many cases, the outcomes of interest are not all continuous, and will be non-

commensurate (that is, a mix of continuous, count, and discrete variables). The joint modeling of 
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non-commensurate outcomes makes things more difficult because of the absence of a convenient 

multivariate distribution to jointly (and directly) represent the relationship between discrete and 

continuous outcomes. This is particularly the case when one of the dependent outcomes is of a 

multiple discrete-continuous (MDC) nature. An outcome is said to be of the MDC type if it 

exists in multiple states that can be jointly consumed to different continuous amounts. In the 

example presented in the earlier paragraph, activity time-use is an MDC variable, assuming a 

daily or weekly or monthly period of observation. Thus, in a given day, an individual may 

participate in multiple types of non-work activities (shopping, personal business, child-care, 

recreation, and so on) and invest different amounts of time in each activity types (see Bhat et al., 

2009 and Pinjari and Bhat, 2014 for detailed reviews of MDC contexts).   

In this paper, we introduce a joint mixed model that includes an MDC outcome and a 

nominal discrete outcome, in addition to count, ordinal, and continuous outcomes. Each non-

continuous outcome is cast in the form of a latent underlying variable regression, wherein the 

latent “dependent” stochastic variable is assumed to manifest itself through an a priori 

transformation rule in the observed non-continuous outcomes. Next, the continuous observed 

outcome and the latent continuous manifestations of the non-continuous dependent outcomes 

themselves are tied together using a second layer of common latent underlying unobserved 

decision-maker variables (such as individual lifestyle, personality, and attitudinal factors) that 

impact the outcomes. The presence of this second layer of latent “independent” is what generates 

jointness among the outcomes. Reported subjective ordinal attitudinal indicators for the latent 

“independent” variables help provide additional information and stability to the model system. In 

this manner, we build on Bhat’s (2015) Generalized Heterogeneous Data Model (GHDM) that 

expressly acknowledges the presence of latent “independent” variables (or sometimes referred to 

as latent psychological constructs in the social sciences and in this paper as well) affecting 

choice, and assumes that these latent “independent” variables get manifested in observed 

psychological indicators as well as the observed dependent outcomes. In particular, we develop a 

powerful and parsimonious way of jointly analyzing mixed outcomes including an MDC 

outcome. In addition, we formulate and implement a practical estimation approach for the 

resulting GHDM (GHDM including an MDC outcome) model using Bhat’s (2011) maximum 

approximate composite marginal likelihood (MACML) inference approach. This approach is not 

simulation-based (see Bhat, 2000 and Bhat, 2001 for such simulation approaches, but which can 
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lead to convergence issues as well as be computationally intensive). Rather, the MACML 

approach requires only the evaluation of bivariate or univariate cumulative normal distribution 

functions regardless of the number of latent variables or the number and type of dependent 

variable outcomes. Many structural equation models (SEMs) and similar models in the past, on 

the other hand, are estimated using  simulation-based methods or, alternatively, sequential 

estimation methods (see Temme et al., 2008 and Katsikatsou et al., 2012 for discussions of these 

sequential methods). The problem with the latter sequential methods is that they do not account 

for sampling variability induced in earlier steps in the later steps, leading to inefficient 

estimation. In addition, the use of such sequential methods will, in general, also lead to 

inconsistent estimation (see Daziano and Bolduc, 2013 for discussions of the reasons). The 

MACML approach is a practical way to obtain consistent estimators even in high dimensional 

mixed multivariate model systems.  

 To our knowledge, this is the first formulation and application of such an integrated 

model system in the econometric and statistical literature. The model should be applicable in a 

wide variety of fields where MDC variables appear as elements of package choices of different 

types of outcomes of interest. For example, in the health field, in addition to binary, count, and 

continuous variables related to the occurrence, frequency, and intensity, respectively, of specific 

health problems, it is not uncommon to obtain ordinal information on quality of life 

outcomes/perceptions and there may be interest in associating these variables with an MDC 

variable representing the type and intensity of participation in different types of physical 

activities and the durations in each participated physical activity. Other fields where the proposed 

model should be of interest include biology, developmental toxicology, finance, economics, 

epidemiology, and social science (see a good synthesis of potential applications of mixed models 

in De Leon and Chough, 2013). However, to make clear the application potential of the 

methodology presented here, we will further motivate the methodology with a specific 

application context originating in the land use-trasnportation domain, as we discuss next.  

 

1.2. The Empirical Context 

An issue that has received particular attention within the broad land use-transportation literature 

is whether any effect of the BE on travel demand is causal or merely associative (or some 

combination of the two; see Bhat and Guo, 2007, Mokhtarian and Cao, 2008, Pinjari et al., 2008, 
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Bohte et al., 2009, Van Wee, 2009, and Van Acker et al., 2014). Commonly labeled as the 

residential self-selection problem, the underlying problem is that the data available to assess the 

potential effects of land-use on activity-travel (AT) patterns is typically of a cross-sectional 

nature. In such observational data, the residential location of households and the activity-travel 

patterns of household members are jointly observed at a given point in time. Thus, the data 

reflects household residential location preferences co-mingled with the AT preferences of the 

households. On the other hand, from a policy perspective, the emphasis is on analyzing whether 

(and how much) a neo-urbanist design (compact BE design, high bicycle lane and roadway street 

density, good land-use mix, and good transit and non-motorized mode accessibility/facilities) 

would help in reducing motorized travel. To do so, the conceptual experiment that reveals the 

“true” effect of the BE features of the residential location on AT patterns is the one that 

randomly locates households in residential locations. The problem then, econometrically 

speaking, is that the analyst has to extract out the “true” BE effect from a potentially non-

randomly assigned (to residential locations) observed cross-sectional sample. If the non-random 

assignment can be completely captured by observed non-travel characteristics of households and 

the BE (such as, say, poor households locating in areas with low housing cost), then a 

conventional travel model accommodating the observed non-AT characteristics of households 

and the BE characteristics would suffice to extract the “true” BE effect on AT patterns. 

However, it is quite possible (if not likely) that there are some antecedent personality, attitude, 

and lifestyle characteristics of households that are unobserved to the analyst and that impact both 

residential location choice and activity-travel behavior, as discussed earlier. Ignoring such self-

selection effects in residence choices can lead to a “spurious” causal effect of neighborhood 

attributes on activity-travel behavior, and potentially lead to misinformed BE design policies. 

 Many different approaches may be used to account for residential self-selection effects, a 

detailed review of which is beyond the scope of this paper (the reader is referred to Bhat and 

Guo, 2007, Bhat and Eluru, 2009, Mokhtarian and Cao, 2008, and Bhat, 2015). But, within the 

context of cross-sectional data, one broad direction is to more explicitly capture what is 

traditionally “unobserved” (latent) in typical travel survey data sets, and include these as 

“independent” variables. It is here that our proposed GHDM model comes into play.   

Another important point of departure of the current empirical study from most earlier 

studies in the land use-transportation domain is that we examine residential self-selection (and 
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more generally integrated land use-transportation modeling) in the context of an activity-based 

modeling (ABM) paradigm (see, for example, Bhat and Koppelman, 1993). As pointed out by 

Pinjari et al. (2009) and more recently by Chen et al. (2014), despite the fact that the ABM 

paradigm is increasingly now accepted even in practice as the approach of choice for travel 

analysis, there has been little consideration of residential self-selection issues within the ABM 

modeling paradigm. The central basis of the ABM paradigm is that individuals' activity-travel 

patterns are a result of their time-use decisions; individuals have 24 hours in a day (or multiples 

of 24 hours for longer periods of time) and decide how to use that time among activities and 

travel (and with whom) subject to their sociodemographic, spatial, temporal, transportation 

system, and other contextual constraints; see Bhat et al. (2004) and Pinjari and Bhat (2011). In 

the activity-based approach, the impact of land-use and demand management policies on time-

use behavior is an important precursor step to assessing the impact of such polices on individual 

travel behavior. Accordingly, in this paper, we jointly model residential location-related choices 

along with auto ownership and activity time-use in different activities.  

The rest of this paper is structured as follows. The next section presents the modeling 

framework. Section 3 describes the data source employed, the sample formation procedures, the 

empirical estimation results, and then implications for integrated land use-transportation 

planning. The final section summarizes the findings and main conclusions. 

 

2. THE GHDM MODEL FORMULATION INCLUDING MDC VARIABLES 

For ease in notation, consider a cross-sectional model. As appropriate and convenient, we will 

suppress the index q for decision-makers (q=1,2,…,Q) in parts of the presentation.  

 

2.1. Latent Variable Structural Equation Model 

In the usual structural equation model set-up, we specify the latent “independent” variable or 

latent construct *
lz  (l=1,2,…,L) as a linear function of covariates: 

,~*
lllz  wα       (1) 

where w is a )1
~

( D  vector of observed covariates (not including a constant), lα
~  is a 

corresponding )1
~

( D  vector of coefficients, and l  is a random error term assumed to be 

standard normally distributed for identification purposes (see Stapleton, 1978). Next, define the 
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)
~

( DL  matrix )~,...~,~(~
21  Lαααα , and the )1( L  vectors ),...,,( **

2
*
1  Lzzz*z  and 

)'.,,,,( 321 L η  Let ],[~ Γ0η LLMVN , where L0  is an )1( L  column vector of zeros, and 

Γ  is an )( LL correlation matrix. In matrix form, we may write Equation (1) as: 

η wαz* ~ .          (2) 

 

2.2. Latent Variable Measurement Equation Model Components 

Consider a combination of continuous, ordinal, count, nominal, and MDC outcomes of the 

underlying latent variable vector *z . Note that, in the GHMD, the actual mixed outcomes of 

interest (“endogenous” variables, including continuous, count, nominal, and MDC outcomes) as 

well as any subjective indicators (all ordinal in the current paper) of the latent vector *z  are 

together (and simultaneously) used to estimate the structural Equation (2) that relates the latent 

constructs with exogenous covariates (through a reduced form of the measurement equation 

system; see Appendix A). That is, the fact that we have additional ordinal indicators of the latent 

constructs helps provide stability to the estimation of Equation (2) in the model system, but does 

not play a central role in identifying the latent constructs per se. In other words, there is no 

distinction between the traditional subjective indicators (usually ordinal) and other actual 

endogenous variables of interest in the GHDM. All of these indicators/outcomes together are 

treated identically as marker manifestations of the underlying latent construct vector *z . Thus, in 

the GHDM, there is even no need for any subjective indicators, since the actual endogenous 

outcomes themselves serve as indicators of the latent constructs. The latent constructs are 

identified based on theory and earlier studies, as in all earlier land use-transportation studies that 

incorporate latent psychological constructs in the modeling framework (please see Section 3.3 

for a more complete discussion of this point). Once estimated, the relationship between the latent 

constructs and the subjective indicators can be discarded (these purely help in efficiently 

estimating Equation (2), and in identifying Equation (2) if the number of endogenous outcomes 

present are not adequate). The focus is on (a) the measurement relationship between the actual 

endogenous outcomes with (i) exogenous covariates, (ii) other actual endogenous outcomes, and 

(iii) the latent constructs, and (b) the structural equation system of Equation (2). In the former 

relationship, the inter-relationships among the endogenous variables are “uncorrupted causal” 

influences after controlling for error correlations across the many dimensions (engendered by the 
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latent effects). These endogenous effects correspond to recursive influences among the 

dependent variable outcomes.1  

In the following presentation, we will use the term “outcome” to refer to both the actual 

endogenous outcomes of interest as well as subjective ordinal indicators of the latent constructs. 

We also allow more than one outcome for the continuous and ordinal variable types, but confine 

attention to only one outcome each for the count, nominal and MDC variable types. This is 

purely for ease in presentation, and is by no means methodologically restrictive. Indeed, the 

extension to more than one count, and/or one nominal and/or one MDC outcome is 

straightforward.  

Let there be H continuous outcomes ) ,..., ,( 21 Hyyy  with an associated index h 

) ,...,2 ,1( Hh  . Let hhhhy  *zdxγ
 
in the usual linear regression fashion, where x  is an 

)1( A -vector of exogenous variables (including a constant) as well as the observed values of 

other endogenous outcomes. hγ  is the corresponding compatible coefficient vector. hd  is an 

)1( L  vector of latent variable loadings on the hth continuous outcome, and h  is a normally 

distributed measurement error term. Define the following two )1( H  vectors: 

) ,..., ,( 21  Hyyyy  and ) ,..., ,( 21  Hε , with ),( Σ0HHMVN~ε  (that is, the vector ε  is 

assumed to be H-variate normally distributed with zero means for all its elements and a 

covariance matrix Σ ). Σ  is restricted to be diagonal to aid in identification because the latent 

variable vector *z  already serves as a vehicle to generate covariance between the outcome 

variables. Define the )( AH   matrix ),...,,( 21  Hγγγγ  and the )( LH   matrix of latent variable 

loadings   .,...,, 21
 Hdddd  Then, one may write the following vector measurement equation for 

the continuous outcomes: 

εdzγxy *  .                               (3) 

Next, let there be N  ordinal outcomes (indicator variables in this paper) for the 

individual, and let n be the index for the ordinal outcomes ) ..., ,2 ,1( Nn  . Also, let nJ  be the 

                                                 
1 In joint limited-dependent variables systems in which one or more dependent variables are not observed on a 
continuous scale, such as the joint system considered in this paper that has discrete dependent, count, and MDC 
variables, the structural effects of one limited-dependent variable on another can only be in a single direction. See 
Maddala, (1983) and Bhat (2015) for a more detailed explanation.  
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number of categories for the nth ordinal outcome )2( nJ  and let the corresponding index be nj

) ..., ,2 ,1( nn Jj  . Let *~
ny  be the latent underlying variable whose horizontal partitioning leads to 

the observed outcome for the nth ordinal variable. Assume that the individual under consideration 

chooses the th
na  ordinal category. Then, in the usual ordered response formulation, we may 

write: 

,~~~and,~~~~
,

*
1,

*

nn annannnnn yy   
*zdxγ

 

 (4) 

where x  is as defined earlier, nγ
~

 is a corresponding vector of coefficients to be estimated, nd
~

 is 

an )1( L vector of latent variable loadings on the nth continuous outcome, the ~  terms represent 

thresholds (for each n,   nnn JnnnJnJnnnn ,1,0,,1,2,1,0,
~and,0~ ,~  ;~~...~~~  ), 

and n~  is the standard normal random error for the nth ordinal outcome. For later use, let 

)~,...,~,~(~and)~,...,~,~(~
211,3,2,   NJnnnn n

ψψψψψ  . Stack the N underlying continuous variables 

*~
ny  into an )1( N  vector *y~ , and the N error terms n~  into another )1( N  vector ε~ . Define 

)~,...,~,~(~
21  Hγγγγ  [ )( AN   matrix]  and  Ndddd

~
,...,

~
,

~~
21  [ )( LN   matrix], and let NIDEN  be 

the identity matrix of dimension N representing the correlation matrix of ε~ ; 

 NNNMVN IDEN0 ,~~ε . Finally, stack the lower thresholds for the decision-maker 

 Nn
nan  ..., ,2 ,1~

1, 
 
into an )1( N  vector lowψ~  and the upper thresholds  Nn

nan  ..., ,2 ,1~
,   

into another vector upψ~ . Then, in matrix form, the measurement equation for the ordinal 

outcomes (indicators) for the decision-maker may be written as: 

uplow ψyψ εzdxγy *** ~~~,~~~~  .                   (5) 

For the count variable, let the index be g for the count categories ),...,2 ,1 ,0( g  and let 

r be the actual observed count value for the household. Then, a generalized version of the 

negative binomial count model may be written as (see Castro, Paleti, and Bhat, or CPB, 2012 and 

Bhat et al., 2013):  

,, *
1

*
rr yy    

*zd  (6) 

    r

r

t

t
r t

tΓ

Γ



























 
 





0

1

!

)(

)(

1
, 







 , and xγ 


e .  (7) 
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In the above equation, *y


 is a latent continuous stochastic propensity variable that maps into the 

observed count r through the ψ


 vector (which is a vertically stacked column vector of thresholds

.),... ,,,( 2101   
 d


 is an )1( L  vector of latent variable loadings on the count outcome, and 

  is a standard normal random error term. γ


 is a column vector corresponding to the vector x  

(including a constant) of exogenous observable covariates and endogenous outcomes. 1  in the 

threshold function of Equation (7) is the inverse function of the univariate cumulative standard 

normal.   is a parameter that provides flexibility to the count formulation, and is related to the 

dispersion parameter in a traditional negative binomial model ;0(  if , the general 

negative binomial structure collapses to a general Poisson structure). )(Γ  is the traditional 

gamma function; 





0~

~1 ~~)(
t

t tdetΓ  . The threshold terms in the ψ


 vector satisfy the ordering 

condition (i.e., )....2101   
 as long as  .....2101    The presence 

of the 
 
terms in the thresholds provides substantial flexibility to accommodate high or low 

probability masses for specific count outcomes (see CPB, 2012 for a detailed discussion). For 

identification, set 1  and 00  . In addition, we identify a count value *e  

......}),2 ,1 ,0{( *e  above which ......}),2 ,1{( gg is held fixed at *e
 ; that is, *eg    if 

,*eg   where the value of *e  can be based on empirical testing. Doing so is the key to allowing 

the count model to predict beyond the count range available in the estimation sample. For later 

use, let ),,( *21 
e

   ( 1* e  vector) (assuming )0* e .  

Next, consider the nominal (unordered-response) outcome for the individual, and let i be 

the corresponding index ( i  = 1, 2, 3,…, I). Let the individual under consideration choose the 

alternative m . Also, assume the usual random utility structure for each alternative i.  

,~)(
~

iiiii ςU  *zβxb                            (8) 

where x  is the same fixed vector of exogenous variables as earlier, ib
~

 is an )1( A  column 

vector of corresponding coefficients, and iς
~  is a normal random error term. iβ  is a )( LNi 

matrix of variables interacting with latent variables to influence the utility of alternative i, and i  
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is an )1( iN  column vector of coefficients capturing the effects of latent variables and their 

interaction effects with other exogenous variables. If each of the latent variables impacts the 

utility of the alternatives for each nominal variable purely through a constant shift in the utility 

function, iβ  will be an identity matrix of size L , and each element of i  will capture the effect 

of a latent variable on the constant specific to alternative i (see Bhat and Dubey, 2014). To move 

forward, let )~,...,~,~(~
21  I  ( 1I  vector), and ),(~~ Λ0IIMVN . Taking the difference with 

respect to the first alternative, only the elements of the covariance matrix Λ


of the covariance 

matrix of the error differences, ),...,,( 32 I    (where 1
~~   ii


, 1i ), is estimable.2  

Further, the variance term at the top left diagonal of Λ


 is set to one to account for scale 

invariance. Λ  is constructed from Λ


 by adding an additional row on top and an additional 

column to the left. All elements of this additional row and column are filled with values of zeros.  

Next, define ),...,,( 21  IUUUU  1( I  vector), )
~

,...,
~

,
~

,
~

(
~

321  Ibbbbb  AI (  matrix), and 

),...,, 21  Iββββ  






 


LN
I

i
i

1

 matrix. Also, define the 











I

i
iNI

1

 matrix   which is 

initially filled with all zero values. Then, position the )1( 1N  row vector in the first row to 

occupy columns 1 to 1N  , position the )1( 2N  row vector in the second row to occupy columns 

1N +1 to ,21 NN   and so on until the )1( IN  row vector  is appropriately positioned.  Further, 

define )(~ β  LI (  matrix). Then, in matrix form, we may write: 

.~~~   *zxbU                 (9) 

Next, note that, under the utility maximization paradigm, miim UUu   must be less than zero 

for all mi  , since the individual chose alternative m. Stack the latent utility differentials into a 

vector   



 


 miuuu Immm ;,...,, 21u .  To write this utility differential vector compactly in terms 

of the original utilities, define a matrix M of size    II 1 . Insert an identity matrix of size 

                                                 
2 Also, in MNP models, identification is tenuous when only individual-specific covariates are used in the vector x 
(see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in the form of at 
least one individual characteristic being excluded from each alternative’s utility in addition to being excluded from a 
base alternative (but appearing in some other utilities). But these exclusion restrictions are not needed when there 
are alternative-specific variables.  
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)1( 1 I  after supplementing with a column of ‘-1’ values in the column corresponding to the 

chosen alternative m. Then, we may write the following: 

,~~~   ** zbxzxbUu MMMM  with .~and,~,
~  MMM   bb  

 Finally, consider the MDC outcome. Following Bhat (2005) and Bhat (2008), consider a 

choice scenario where the decision maker maximizes his/her time utility subject to a binding 

time budget constraint: 

K

k

KK
K

K

k k

k
k

k

k t
t

U 









)(
1

11)(
~

max
1

1























 





t   (10) 





K

k
k Ttts

1

 .. , 

where the utility function )(
~

tU  is quasi-concave, increasing and continuously differentiable, t is 

the time investment vector of dimension K×1 with elements )0( kk tt , k , k , and k  are 

parameters associated with activity purpose k, and T represents the time budget to be allocated 

among the K activity purposes. The utility function form in Equation (10) allows corner solutions 

(i.e., zero consumptions) for activity purposes 1 through 1K  through the parameters k , which 

allow corner solutions for these alternatives while also serving the role of satiation parameters     

( : 0k 1..., ,2 ,1  Kk ). On the other hand, the functional form for the final activity purpose 

ensures that some time is invested in activity purpose K (for example, activity purpose K may 

refer to in-home activities such as eating, watching TV, and relaxing; activity purpose K is 

usually referred to as an essential outside good in the microeconomics literature; see Bhat, 2008). 

The role of k  is to capture satiation effects, with a smaller value of k  implying higher 

satiation for activity purpose k. k  represents the stochastic baseline marginal utility; that is, it is 

the marginal utility at the point of zero time investment for alternative k. 

The utility function in Equation (10) constitutes a valid utility function if, in addition to 

the constraints on the k  parameters as discussed above, 1k , and 0k  for all k. Also, as 

indicated earlier, k  
and k  influence satiation, though in quite different ways: k  controls 

satiation by translating consumption quantity, while k  controls satiation by exponentiating 

consumption quantity. Empirically speaking, it is difficult to disentangle the effects of k  and 
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k  separately, which leads to serious empirical identification problems and estimation 

breakdowns when one attempts to estimate both parameters for each good. Thus, Bhat (2008) 

suggests estimating a  -profile (in which 0k  for all alternatives, and the k  
terms are 

estimated) and an  -profile (in which the k  terms are normalized to the value of one for all 

alternatives, and the k  terms are estimated), and choose the profile that provides a better 

statistical fit.3 However, we will retain the utility form of Equation (10) to keep the presentation 

general. Next, to complete the model structure, the baseline utility is specified to be a function of 

the latent variable vector, the A-dimensional exogenous variable vector x, and a random error 

term as follows:  

,
~~~

)ln(or  )
~~~

exp()
~

,,exp( *
kkkkkkkkkk   *** zμxδzμxδzx   (11) 

where kδ
~

 and kμ
~  are A-dimensional and L-dimensional column vectors, respectively, and k

~
 

captures the idiosyncratic characteristics that impact the baseline utility of activity purpose k. We 

assume that the error terms k
~

 are multivariate normally distributed across alternatives: 

)
~

,(~)
~

,...,
~

,
~

(
~

21 Ω0KKK MVN ξ . But only differences in the logarithm of the baseline utilities 
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with the formulation as in Equation (10), where the sum of the time investments across activity 
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Further, for ease in interpretation of the covariance matrix Ω , we assume that the error term of 

the “outside” alternative K  is independent of the error terms of the “inside” alternatives 

).1 ,...,2 ,1(  Kkk  With this assumption, each covariance matrix element of Ω  can then 

immediately be interpreted as a direct indicator of the extent of variance and covariance in the 

utilities of the inside alternatives.4 

The analyst can solve for the optimal consumption allocations corresponding to Equation 

(10) by forming the Lagrangian and applying the Karush-Kuhn-Tucker (KKT) conditions. The 

Lagrangian function for the problem, after substituting )exp( kk    (equal to 

1 ,...,2 ,1for)exp(  Kkkkk *zμxδ  and equal to Kk  for1)0exp( ) in Equation (10) is: 
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where ~  is the Lagrangian multiplier associated with the time budget constraint (that is, it can be 

viewed as the marginal utility of total time). The KKT first-order condition for the “optimal” 

investment *
Kt  in the last activity purpose (which is always positive) implies the following: 
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4 In particular, assume that the variance of K  is 0.5. Then, to normalize 
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Substitute   1*~
 


 K

Kt
 into the above equations, take logarithms, and rewrite the KKT conditions 

as:  

0~  kkkk Vu *zμ , if 0* kt , 1 ..., ,2 ,1  Kk  (15) 

0~  kkkk Vu *zμ , if 0* kt , 1 ..., ,2 ,1  Kk ,   
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xδ  for 1 ..., ,2 ,1  Kk . Define

)~,...,~,~(~
121  Kuuuu  [ 1)1( K  vector], ),...,,( 121  Kδδδδ  [ AK  )1(  vector],  

),...,,( 121  KVVVV  [ 1)1( K  vector], ),...,,( 121  Kμμμμ  AK  )1[(  matrix], 

),...,,(,),...,,( 2121  KK  τα and ).,(~),...,,( 11121 Ω0   KKK MVNξ  Then, we 

may write, in matrix form, the following equation: 

ξzμVu * ~ ,                        (16) 

with the elements of u~  adhering to the conditions in Equation (15). Also, for later use, let CF  be 

the set of consumed alternatives not including the last alternative (with cardinality CF
~

), and NCF  

be the set of non-consumed alternatives (with cardinality NCF
~

). 

The parameter vector to be estimated is ),~(vech),(vech),(vech),(vech),~(vech[ γdγαθ Γ


)](vech,or ),(vech ),(vech),
~

(vech, , ),(vech),(vech),(vech),
~

(vech ΩΣ ταbγdd θ
, where 

vech(Δ ) implies a row vector of all the unique and non-fixed elements of matrix Δ . The 

maximum likelihood estimation of the model involves the evaluation of an )
~

( NCFIN  -

dimensional rectangular integral for each decision-maker, which can be computationally 

expensive. So, we use the Maximum Approximate Composite Marginal Likelihood (MACML) 

approach of Bhat (2011). The estimation approach is very notation-intensive, and so we relegate 

the details of the approach to Appendix A. Also, in a figure of the online supplement 

(http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf), 

we provide a diagrammatic representation of the entire model system, including the notations 

used in this section for easy association.   
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3. AN APPLICATION 

In this paper, as discussed in Section 1.2, we apply the proposed model to examine households’ 

residential location (characterized by commute distance and the density or number of households 

per square mile in the Census block group of the household’s residence, as obtained from the 

2010 decennial Census data), auto ownership level, and time spent on a typical weekday on (a) 

in-home (IH) non-work, non-educational, and non-sleep activities and (b) out-of-home (OH) 

non-work non-educational pursuits. In the analysis, the OH activities are classified into one of 

six types: personal business (including family or personal obligations, going to day care, and 

medical appointments), shopping (including buying food and goods), eating out, social activities 

(including visiting friends or relatives and attending parties), recreation (including visiting 

cultural/arts centers, going to the movies, attending sports events, going to the gym, pursuing 

physical activities such as running, walking, swimming, and playing sports), and “other” 

activities (including picking up or dropping off someone, and “other” non-work, non-education, 

and non-sleep activities. A further investigation of this “other” activity category indicated that it 

was dominated by serve passenger activity. Specifically, 80% of the “other” activities 

corresponded to serve passenger activity. Hence, to make our labeling easy and comprehensible, 

we will refer to the “other” category as the “serve passenger” category in the rest of this paper.  

 

3.1. Data Source and Sample Formation 

The data source used in this study is the Puget Sound household travel survey conducted by the 

Puget Sound Regional Council (PSRC) in the spring (April–June) of 2014 in the four county 

PSRC planning region (the four counties are King, Kitsap, Pierce, and Snohomish) in the State of 

Washington. Households were randomly sampled, with the intent of obtaining a representative 

sample of households from the region for analyzing activity-travel patterns. The survey was 

administered by recruiting households using a stratified address-based sampling method based 

on the US Post Office’s Computerized Delivery Sequence File (CDSF) that is a compilation of 

all mailing addresses in the US, providing coverage for approximately 97% of all households. 

Households were initially contacted using a “recruit survey” through which information on 

household-level socio-demographics (including motorized vehicle ownership by type, and home 

location address, housing type, and tenure status) and person-level information (including work 

and student status) was obtained.  Only one adult household member (age 18 or older) was asked 
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to complete the “recruit survey”, and the corresponding household respondent was designated as 

the household reference person. The “recruit survey” also elicited information from the 

household reference person on the factors that influenced the current residential choice. This 

included the importance of the following six factors: (1) having a walkable neighborhood and 

being near local activities, (2) being close to public transit, (3) being within a 30-minute 

commute to work, (4) quality of schools in the neighborhood, (5) having space and separation 

from others, and (6) being close to the highway. Another part of the survey was a “retrieval 

survey” that comprised a comprehensive travel diary for a pre-defined household-specific mid-

weekday (Tuesday, Wednesday, or Thursday) that each individual in the household (5 years or 

older) was asked to fill in at a “dashboard” web site generated for the household. Following the 

24-hour diary portion of the retrieval survey, respondents were asked a series of questions about 

their typical transportation behaviors (to provide additional information beyond a single day’s 

travel). Additional details of the survey recruitment and administration procedures are available 

in RSG (2014).  

The survey collected information from a total of 6,036 households, of which 4,631 

households had at least one worker employed in the household and with a work location outside 

the residential dwelling unit. The focus of the current analysis is on these 1+-worker households, 

to acknowledge the rather substantial differences in household residence and activity-travel 

patterns between zero-worker households (retired couples, unemployed individual households, 

and student households) and 1+-worker households (see, for example, Rajagopalan et al., 2009). 

After further screening to remove households with incomplete residence, travel, attitude, or 

demographic information, the final sample used in the current analysis included 3,637 

households. In an online supplement to this paper, we provide descriptive characteristics of the 

socioeconomic characteristics of the sample (see the online supplement at: 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf).  

 

3.2. Dependent Variable Characteristics 

The dependent variables in our model system include a combination of a continuous variable, 

multiple ordinal indicators, a count variable, a nominal variable, and an MDC variable. The 

construction of each of these variables is discussed in turn in the subsequent paragraphs. Table 1 

provides descriptive statistics of the dependent variables. 
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Commute distance, the continuous variable, was not reported directly by members of the 

household; it was derived by the Puget Sound Regional Council from shortest-path distance 

skims based on the home and primary work locations of each individual. We then computed a 

household average commute distance (miles) as the average one-way distance in miles between 

the home and the primary workplace across those individuals working outside the home (for 

brevity, from here on, we will refer to this variable as household commute distance). As may be 

observed from Table 1, the minimum and maximum household commute distances in the sample 

are 0.05 miles and 99.95 miles, respectively. The 95th percentile value for the household 

commute distance is 41.7 miles. In our estimation, we used the natural logarithm of household 

commute distance as the continuous dependent variable.  

As indicated in the previous section, the household reference person was asked a series of 

questions to elicit preferences regarding residential choices. The responses to these questions 

were all collected on a five-point ordinal Likert scale. These questions and the distribution of the 

corresponding responses are shown in the second panel of Table 1. The statistics reveal, not 

surprisingly, that being within 30 minutes of work and proximity/walkability to local activities 

are “important” or “very important” considerations to more than 75% of the respondents when 

making residential choices.5  

The number of motorized personal vehicles in the household (that is, auto ownership), as 

reported in the survey by the household reference person, is a count dependent variable. The 

distribution of this variable (see the third panel of Table 1) indicates that most households have 

one or two cars (75.0%) and the average number of autos per household is 1.69.  

Each household’s residential location was assigned to one of the following nominal 

density categories: (a) 0–749 households per square mile, (b) 750–1,999 households per square 

mile, (c) 2,000–2,999 households per square mile, and (d) ≥ 3,000 households per square mile. 

The descriptive statistics in Table 1 for this nominal variable indicate that half of the households 

in the sample are located in high density areas, while about 13.2% are located in the lowest 

density areas. In the estimation, the highest density category is considered the base category. The 

                                                 
5 “Quality of schools” is rated quite low in the overall. To examine if there is a substantial difference between 
households with children and without children, we examined the ratings on this question by presence or absence of 
children. The percentage of households that rated this attribute as being important or very important in the segment 
of households with children was 72.1%, relative to 22.0% in the segment without children. Clearly, as expected, 
there is a difference in the quality of school ratings based on the presence of children. This effect is captured in our 
analysis, as discussed later.  
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use of density, along with commute distance, to characterize residential choice makes the 

definition of the residential choice alternatives clear and manageable. It also provides a 

convenient way to capture land-use/BE effects on auto ownership levels and activity time-use 

patterns, particularly because of the strong association between density and other BE elements. 

Indeed, there is a long and strong precedent for using residential density as a proxy for land-

use/BE elements in the transportation literature (see, for example, Bhat and Singh, 2000, Chen et 

al., 2008, Kim and Brownstone, 2013, Paleti et al., 2013, and Cao and Fan, 2012). 

The MDC alternatives include in-home (IH) activity and six purposes of out-of-home 

(OH) activity: personal business, shopping, eating out, social activities, recreation, and serve 

passenger. The discrete component corresponds to household-level participation in these 

different activity purposes, while the continuous component corresponds to the amount of 

household time invested in these activity purposes. The following two step process was used to 

obtain the time spent on different activities by each household: (1) The activity episodes 

undertaken by each individual during the survey day were collected together by each of the 

seven activity purposes, and the total individual daily time-investment in each activity purpose 

was computed across all episodes of the activity purpose, (2) The activity times by purpose were 

aggregated across all individuals in each household to obtain household-level participations and 

time investments in IH activity and the six OH activity purposes. The total household time 

budget in the MDC model corresponds to the sum across the seven activity purposes (that is, this 

corresponds to total household time, or 24 hours times the number of individuals in the 

household, minus the time (across all individuals) spent on work, education, and sleep; see 

footnote in the first paragraph of Section 3). In our analysis, for convenience, we use the 

household-level participations and fractions of time investments in each activity purpose as the 

dependent variables (that is, we effectively are normalizing the household time investments in 

each purpose by the total household budget, so that the continuous components correspond to 

fractions, and the total budget is 1 for each household).6  

The final panel of Table 1 provides descriptive statistics of the time-use of households in 

the sample. All households participate in IH activity, which constitutes the outside good in the 

MDC model. Among the OH activity purposes, there is a relatively high participation level in 

                                                 
6 The determination of how the OH participations and times are allocated across individuals in the household can be 
determined in a downstream allocation model, as in Gliebe and Koppelman, 2002.  
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personal business activity (44.2% of households) and shopping activity (45.8% of households), 

suggesting relatively high intrinsic baseline preferences for these two activity purposes. The 

social activity purpose and the serve passenger activity purpose, on the other hand, have the least 

participation rates, suggesting relatively low intrinsic baseline preferences for these two activity 

purposes. The third column indicates the fraction of time spent on each activity purpose, as 

averaged across households that participate in the corresponding activity purpose. For example, 

the first entry for IH activity shows that, on average, 78.0% of the total household time budget is 

spent on IH activity, while the entry for personal business activity reveals that, on average across 

the 44.2% of households who actually participate in personal business activity, 20.2% of the total 

household budget is spent on personal business activity. The implication from this third column 

is that, if participated in, the shopping, dining out, and serve passenger activity purpose are the 

ones on which the least time is spent, suggesting high satiation rates for these activity purposes.7 

The final two columns highlight the multiple-discrete nature of activity participations. The first 

row for IH activity shows that 14.7% of households participate in only IH activity (and no OH 

activity), while 85.3% of households participate in IH activity as well as one or more OH activity 

purposes. The second row for personal business reveals that 13.4% of households partake in 

personal business as the only OH activity (in addition to IH activity, which all households 

participate in), while 86.6% of households pursue personal business and at least one other OH 

activity purpose.   

The discussions above are helpful to get a general idea of the patterns of preferences and 

satiation. However, the final baseline preference and satiation parameters for the activity 

purposes in the MDC model are based on a combination of participation rates, conditional-upon-

participation durations, and the split between sole participations and participations with other 

activity purposes.  

 

3.3. Latent Constructs 

In developing the latent variables to characterize attitudes and lifestyles, we examined earlier 

studies investigating (directly or indirectly) lifestyle-related characteristics affecting residential 

                                                 
7 Note that the mean fractions in this third column sum to greater than one across all activity purposes because the 
means are computed for each activity purpose conditional on households participating in that activity purpose. But 
the reader will note that the participation-weighted fractions in this third columns sum to 1: that is, 
1*0.78+0.442*0.202+0.458*0.06+0.278*0.131+0.300*0.081+0.181*0.18+0.206*0.047=1 (after accounting for 
rounding). 
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choice decisions, auto ownership choice, and activity time-use decisions (see, for example, 

Schwanen and Mokhtarian, 2007, Walker and Li, 2007, Van Acker et al., 2014, Bohte et al., 

2009, de Abreu e Silva et al., 2012, and Bhat et al., 2014 for reviews of this literature). Some of 

these studies are based on intensive qualitative focus group interviews and/or ethnographic 

studies that tease out underlying psycho-social factors. These earlier studies, while labeling the 

factors sometimes differently, converge to two basic lifestyle-related factors: (1) Green lifestyle 

propensity and (2) luxury lifestyle propensity. The first latent variable drives the overall attitude 

and concern toward the environment, while the second reflects a penchant for consuming more, 

marked by a desire for privacy, spaciousness, and exclusivity. From a residential choice 

standpoint, the first latent variable has sometimes been referred to as “urban living propensity”, 

while the second has been associated with “suburban/rural living propensity” and better quality 

public schools. From an auto ownership/modal standpoint, the first is sometimes referred to as 

“pro-public transportation” attitude, while the second has been associated with “pro-driving” 

attitude. From an activity time-use standpoint, the first latent variable has typically been 

associated with active recreation and non-motorized mode use, while the second has been 

associated with increased time investments in shopping and dining out activity participations. 

While one can justifiably argue that the latent variables above specific to each of the residential 

choice, modal/car ownership, and activity time-use dimensions are not perfectly correlated in the 

way suggested above, there are clearly very strong associations to the two basic lifestyle factors 

of green lifestyle propensity and luxury lifestyle propensity. So, from the standpoint of 

parsimony, as well as from the viewpoint of mapping the six ordinal attitudinal indicators and 

other dependent variable outcomes (see previous section) with the latent variable constructs, we 

decided to work with the two factors of (1) green lifestyle propensity (GLP) and (2) luxury 

lifestyle propensity (LLP). The first latent variable is a measure of the overall attitude and 

concern toward the environment, while the second reflects a penchant for consuming more, 

marked by a desire for privacy, spaciousness, and exclusivity. Our expectation is that households 

with a GLP disposition will prefer to reside in high density neighborhoods close to their 

workplace, own few or no vehicles, and engage more in IH activities and OH social and active 

recreation activities, while those with an LLP disposition will be inclined to locate in low to 

medium density neighborhoods, own many vehicles, and potentially be engaged in more OH 
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shopping and dining out activities. However, these will be tested empirically in the measurement 

equation model during the specification and statistical testing process, as discussed later.  

The reader will note that, as discussed above, we use earlier ethnographic and qualitative 

studies investigating (directly or indirectly) general lifestyle-related characteristics that affect 

residential choice, auto ownership, and activity time-use decisions as the basis to identify our 

latent variables (or constructs).  As stated by Golob (2003), “Theory and good sense must guide 

model specification”. The fact that we have additional ordinal indicators related to residential 

choice preferences helps provide stability to the model system, but does not play a central role in 

identifying the latent constructs per se. This is different from studies in psychology that collect a 

battery of tens (and sometimes hundreds) of indicators, and use exploratory factor analysis to 

identify a much fewer number of factors (or latent constructs) through analytic variance 

minimization. In our case, we identify plausible latent constructs first based on intuition and the 

findings from previous studies, and then use both the ordinal indicators as well as the actual 

endogenous variable outcomes together to help relate observed covariates to the latent constructs 

in the structural equation system. Once the latent constructs are identified, the final specification 

in the structural equation system and the measurement equation system (for the loadings of the 

latent constructs, and the effects of observed covariates, on the ordinal indicators and the 

dependent outcomes) is based on statistical testing using nested predictive likelihood ratio tests 

and non-nested adjusted predictive likelihood ratio tests.8 For additional details, please see how 

the structural and measurement equation systems in Equation (A.1) of the Appendix are 

converted to the joint reduced form system of Equation (A.2) for estimation.  

 

3.4. Model Estimation Results 

The final variable specification was obtained based on a systematic process of eliminating 

statistically insignificant variables, supplemented with a healthy dose of judgment and results 

from earlier studies. In the MDC activity time-use model, the  -profile came out to be 

consistently superior to the  -profile for all variable specifications, and so is the one used.   
                                                 
8 Indeed, almost all applications in the transportation literature that collect a handful of indicators use a combination 
of intuitiveness, judgment, and earlier studies to identify the latent constructs, rather than undertake a factor analysis 
of any kind to identify the latent factors (see, for example, Daly et al., 2012, Bolduc et al., 2005, de Abreu e Silva et 
al., 2014, La Paix et al., 2013, Temme et al., 2008). But we acknowledge that there is some level of subjectivity in 
the number and “labels” of the latent variables, and these constructs can be questioned. But model building will 
always retain that element of judgment and subjectivity. The important point is that we have provided a conceptual 
basis for our selection of latent variables. 
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3.4.1. Latent Variable Structural Equation Model Results 

The results of the structural equation model that relate the two latent psycho-social constructs of 

GLP and LLP as a function of demographic attributes are presented in Table 2.  

 

Green Lifestyle Propensity (GLP) 

The results suggest that lower income households have a higher GLP relative to higher income 

households (note that the highest income category is the base category in Table 2, and the 

coefficients for the other income categories are all positive with the magnitude being the highest 

for the lowest income category and decreasing thereafter). Table 2 also indicates that households 

with a high fraction of young adults (less than the age of 34 years) have a higher GLP relative to 

those with a low fraction of young adults. This latter effect is consistent with the environmental 

sociology literature (see, for example, Liu et al., 2014), which attributes this effect to young 

adults (especially the millennials) being increasingly exposed to environmental issues in the past 

decade through both school curricula and social media. Interestingly, age appears to have a U-

shaped effect on GLP, with households with a high fraction of senior adults (65 years or older) 

having a higher GLP than households with a high fraction of middle-aged adults. Overall, 

households with a high fraction of adults in the 35-54 years age group seem to be the least 

“green”. During the late 1990s, the Puget Sound Region succeeded in attracting young, well-

educated workers into their region’s workforce (Council, 2005). These young and highly-skilled 

“creative class” workers played a key role in the development of new technologies and 

industries, the creation of startup firms, and associated job growth during the technology boom 

of the late 90s. This creative class should be aged 35-54 years now and their past context of 

economic growth may explain their relatively low environmental consciousness (for an analysis 

of the inverse relationship between green life-style tendency and economic growth in the late 

1990s, see Diekmann and Franzen, 1999).  

The results also suggest a higher GLP associated with households with a high fraction of 

women (relative to a low fraction of women) and a high fraction of well-educated individuals in 

the household (relative to a low fraction of well-educated individuals).   
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Luxury Lifestyle Propensity (LLP) 

The Table 2 results corresponding to LLP show that LLP increases with household income, the 

number of children in the household, and the age of household members in the household. The 

effect of income is very intuitive, because higher incomes provide not only the financial 

wherewithal to indulge, but an explicit show of indulgence may be viewed as a socio-cultural 

vehicle to signal wealth, power and status, and privileged access to limited resources.  

The effect of children on LLP may be attributed to the desire for more privacy and 

separation from others to “protect” children from perceived unsafe levels of traffic and social 

environments (including safety from crime), a felt need to provide spacious indoor and outdoor 

play room for children, a desire for good quality schools (as observed in the descriptive statistics 

section), and an increase in motorized access to chauffeur children to activities, all of which are 

indicators of LLP (see next section).  

Finally, the association between age and LLP may be related to the decrease in familial 

responsibilities with age, an increasing awareness of one’s decreasing lifespan in which to 

expend any accumulated wealth, and a desire to experience the “unexperienced” (see Cleaver 

and Muller, 2001, and Twitchell, 2013). In earlier studies, age has been linked to luxury fashion 

consumption (see for example Li et al., 2012), luxury cars purchases (Rosecky and King 1996), 

and luxury trips, such as cruises or exotic destinations (Hwang and Han, 2014).   

 

Correlation 

The correlation coefficient between the GLP and LLP latent constructs is statistically significant 

at any reasonable level of significance, with a value of -0.16 and a t-statistic of -5.4. This 

negative correlation is reasonable, since a green lifestyle is associated with careful and 

conservative consumption of resources, while a luxury lifestyle correlates with extravagant living 

and indulgence beyond an indispensable minimum.  

 

3.4.2. Measurement Equation Results for Non-Nominal Variables 

The results for the non-nominal variables are presented in Table 3. The dependent variables are 

organized column-wise and the independent variables are arranged row-wise.  

The standard error corresponding to the natural logarithm of the household commute 

distance is 1.333 with a t-statistic of 3.28. The constants in the many equations, as well as the 
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thresholds (note that in the model formulation, the first threshold ( 1,
~

nψ ) and the first flexibility 

parameter ( 00  ) for the ordinal and count variable have been fixed to zero), do not have any 

substantive interpretations. For the auto ownership variable, the dispersion parameter ( ) 

became quite large during the estimation and was fixed at the value of 5.0 for estimation 

stability. The resulting specification is effectively the same as a flexible Poisson-based 

specification. The flexibility arises because we estimated two flexibility parameters for the auto 

ownership count to accommodate spikes in ownership of one car and two cars (see Table 2). 

These came out to be very statistically significant as follows: 832.01   (t-statistic of 10.22) and 

710.12   (t-statistic of 11.09), and are not reported in Table 3.  

The “number of children” effects in Table 3 (corresponding to elements of the coefficient 

vectors d
~

 and d


 in Section 2.2 and the figure in the online supplement) suggest that the 

presence of a child leads to a shorter household commute distance compared to the case without 

a child. Further, as the number of children increases, there is a continued linear reduction effect 

on household commute distance.  In contrast to the negative relationship between number of 

children and household commute distance, there is a positive relationship between number of 

children and auto ownership propensity, presumably due to additional mobility needs placed 

upon the household to chauffeur children from one activity to another (see also Potoglou and 

Susilo, 2008 and Ma and Srinivasan, 2010 for a similar result).  

The latent construct effects in Table 3 indicate, not surprisingly, that “green” households 

have a lower household commute distance relative to their peers, as such households are likely to 

consciously locate themselves closer to work locations to enable the use of non-motorized forms 

of transportation. The loadings of the latent constructs on the ordinal indicator variables are 

intuitive, and indicate that “green” households are likely to value, in terms of importance in 

residential choice decisions, being in a walkable neighborhood in proximal reach of activity 

opportunities, and being close to public transit and the work place. On the other hand, 

households with a high LLP propensity value prefer neighborhoods with good quality of schools 

perhaps as a means to signal exclusivity as neighborhoods with good quality schools are 

typically synonymous with relatively wealthy neighborhoods with a good tax base (note also that 

the number of children does affect LLP propensity). Households with high LLP propensity also 

value space and privacy, have a preference to be in close proximity of highways (presumably as 
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a means to retain the ability to reach activities quickly even while maintaining a very private, 

spacious, and exclusive living quarter), and have a penchant for owning more cars. 

The endogenous effects in Table 3 are discussed together with the endogenous effects in 

Table 4 in Section 3.4.4.  

 

3.4.3. Residential density Choice Model and Activity Time-Use Results 

The estimation results for residential density and activity time use are presented in Table 4. The 

constant parameters do not have any substantive interpretation because of the presence of the 

continuous latent variables.  

The effects of the family structure variables indicate that single person households are 

most likely to stay away from the lowest density neighborhoods, while households with children 

(in particular, nuclear and single parent families) are most likely to live in the lowest density 

neighborhoods. Earlier research (see Kim and Chung, 2011) does suggest that single person 

households tend to locate themselves in denser neighborhoods, enabling easy access to social and 

related activity opportunities. Interestingly, single person households also appear to prefer 

medium-high density (2000-2,999 households per square mile) neighborhoods relative to the 

highest density neighborhoods, perhaps as a way of balancing space/privacy with activity 

accessibility and social networking opportunities in the immediate vicinity. The effects of the 

family structure variables on activity time-use indicate that single person households have the 

highest preference for in-home activities, while nuclear families and single-parent families, 

relative to other household types, have a clear higher baseline preference for OH shopping and 

serve passenger activities. On the other hand, there is an indication that single parent households, 

relative to nuclear families, are time poor (lack of time for leisure, sports, and relaxation 

activities) and have the danger of social exclusion (broadly defined as the “inability to participate 

fully in society”, one aspect of which is not being able to participate in the “normal activities of 

daily life”; see Farber et al., 2011).  

The next set of variables relate to the fraction of part-time, self-employed, and non-

workers in the household, with the fraction of full-time workers in the household constituting the 

base category. Overall, these coefficients indicate a pattern where households with a high 

fraction of full-time workers have a clear preference to reside in the highest density areas, with a 

generally increasing tendency of households with higher fractions of part-time, self-employed, 
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and non-workers to locate in progressively lower density areas. This result may be a reflection of 

the benefits of knowledge spillovers through networking opportunities in highly dense urban 

regions, which enable full time workers to retain (and enhance) their competitive edge in the 

market place (see Autant-Bernard and LeSage, 2011).  

In terms of the latent constructs, “green” households tend to locate themselves in the 

highest density neighborhoods (>3000 households per square mile) and shy away from the 

medium density categories (750–1,999 or 2,000-2,999 households per square mile), while 

households with a high LLP tend to locate themselves in the medium density categories. The 

latter effect may be attributed to seeking a good balance between less dense, exclusive 

neighborhoods and good auto-based accessibility to OH activity opportunities. In addition, the 

effects of the latent constructs in the activity time-use model suggest that households with a high 

GLP, relative to their peers with a low GLP, spend more time at home, are less likely to pursue 

the more money-consuming (and potentially viewed as less “green”) personal business, 

shopping, and dining out activities, and are more likely to seek social networking opportunities 

as well as pursue active recreation and other recreation activities (such as going to sports events, 

theaters, cinemas or art galleries). Finally, in terms of the latent construct effects, households 

with a high LLP spend more time than their peers with a low LLP on shopping and dining out. 

This is reasonable, because such individuals not only have the financial wherewithal to consume 

goods and services, but may also use shopping and dining activities at fancy places as a way to 

seek social differentiation and signal power and wealth.  

The satiation parameters in Table 4, along with the baseline preference constants and 

baseline parameters, are estimated for each activity purpose (except the IH activity purpose) to 

best replicate the combination of participation rates, conditional-upon-participation durations, 

and the split between sole and joint participations with other activity purposes. The satiation 

parameters in Table 4 correspond to the  -profile. Satiation increases for purpose k as k  goes 

closer to zero ( 0k  for the IH activity in the  -profile by construction, because the IH 

activity is always participated in and has a high baseline constant that has to be compensated by 

the high satiation). As expected initially from the descriptive statistics, the shopping, dining out, 

and serve passenger activity purposes have high satiation rates (low values of k ) among the OH 

activity purposes. The social activity purpose has a low participation rate, but a high duration 
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conditional on participation, which leads to the low satiation (high value of k ) for this purpose 

given its high negative baseline constant. For the personal business purpose, while it has both a 

high participation rate and a high duration conditional on participation, it has the lowest 

participation all by itself as an OH activity purpose excepting for the social and serve passenger 

purposes (see Table 1). The result is that the satiation parameter has to accommodate this high 

tendency for non-solo personal business participations, which leads to a relatively high satiation 

(low value of k ) parameter for the personal business purpose.  

In each of the residential density and activity time use models, we also allowed a general 

error covariance matrix but we could not reject the hypothesis that the error covariance matrix 

was different from an independent and identically distributed error structure.  

 

3.4.4. Endogenous Effects 

Tables 3 and 4 also present the endogenous effects. The final directions of the recursive 

endogenous effects were obtained in the current paper after extensive testing of various model 

specifications, and choosing the specification that provided the best data fit in terms of the 

composite marginal log-likelihood value (note, however, that regardless of the presence or 

absence of recursive effects, the model is a joint model because of the presence of latent 

variables that impact the many dependent variables).  

Figure 1 presents the overall directions of the endogenous relationships, while also 

including the effects of the GLP and LLP latent constructs on the endogenous outcomes, as 

discussed in the previous two sections. Further, the figure presents the sign of the effects of the 

GLP and LLP constructs on the residential density, commute distance, and auto ownership 

endogenous outcomes (but not on the activity time-use variable, because this is a multiple 

discrete variable with differing effects of the latent constructs on different activity purposes). All 

of the latent constructs and the endogenous outcomes in Figure 1 are affected by demographic 

factors, which we do not show in Figure 1 to focus on the endogenous effects. Our results (see 

Figure 1 as well as Tables 3 and 4) of the endogenous effects indicate that, after accommodating 

the jointness among the dependent variables caused by the latent (and stochastic) GLP and LLP 

latent constructs, the choice of residential density impacts both auto ownership and activity time-

use.  In particular, residing in lower (higher) density neighborhoods leads to a higher (lower) 

auto ownership level, as has been well established in much of the earlier literature (see, for 
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example, Bhat and Guo, 2007; Bhat et al., 2009; Aditjandra et al., 2012, Bhat et al., 2014, and 

Brownstone and Fang, 2014). Also, lower (higher) density tends to result in lower (higher) 

baseline preferences for (i.e., participations and time investments in) OH recreational activities, 

shopping, and dining out. These impacts may be attributed to higher densities being strongly 

correlated with more walk and bicycle infrastructure, better public transit services, and more 

opportunities for OH activities, and are consistent with earlier studies on time-use and physical 

activity. For example, Forsyth et al. (2009) and McCormack et al. (2014) indicate that higher 

density and mixed land-use increase time spent in neighborhood physical activity (primarily 

walking), while Wendel-Vos et al. (2007) and Ding et al. (2013) identify proximity to 

recreational activities (such as parks and exercise facilities) and even shopping locations as 

promoters of leisure time and overall physical activity. Also, Bhat et al. (2013) and Born et al. 

(2014) find, consistent with our findings, that households in urban areas and high OH activity 

accessibility areas participate more in recreation, shopping, and dining out than peer households 

residing in other areas. On the other hand, the increased preference for OH social activities in the 

most sparsely populated neighborhoods is presumably because social activities are the easiest to 

pursue in locations with few to no activity centers (shopping places, restaurants, gyms, etc.). 

Further, as discussed in earlier studies (see Coleman, 2009, Romans et al., 2011, and Bernardo et 

al., 2015), this result is suggestive of a business-like culture in urban areas that is moving away 

from the relatively close-knit, informal, and social networks, but that still exists in non-urban 

areas for visiting and social get-togethers. Finally, in terms of residential location effects on 

time-use, time investment in serve passenger activity increases as one moves from the highest 

density neighborhoods to progressively lower density neighborhoods. 

Interestingly, we did not find any statistically significant evidence of a direct causal 

relationship between residential (household) density and commute distance, or auto ownership 

and commute distance. The former result suggests that simply building compact cities will not 

necessarily translate to more sustainable travel in terms of shorter commute distance, contrary to 

some other studies that suggest there are commuting-based sustainability benefits of compact 

cities (see, for example, Boussauw et al., 2012). That is, while building compact neighborhoods 

may lead to shorter commutes for households who choose to reside in these compact 

neighborhoods, our results suggest that this is because households with a green lifestyle 

propensity self-select to live in such neighborhoods while those who are not green move out of 
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such neighborhoods and have long commute distances. Thus, in the population as a whole, 

compact developments may not lead to shorter commute distances. The results in Figure 1 also 

indicate that auto ownership, by itself, has no impact on activity time-use. The implication, as in 

Bhat and Steed (2002) and Grigolon et al. (2013), is that lifestyles, demographics, and activity 

opportunities are the main drivers of activity-travel patterns.  

Commute distance, causally speaking, impacts only time use (Figure 1 and Table 4); 

households with longer commute distances spend more time on shopping, recreation, and dining 

out. This may the result of two reinforcing effects. First, as household commute distance 

increases, the number of opportunities for shopping, recreation, and dining out increases. 

Second, as household commute distance increases, it puts more time pressure on the household, 

which may be released by shopping more for easy-to-prepare meals and dining out. Some earlier 

studies, including Wang et al. (2013) and Castro et al. (2011), have suggested the reverse -- that 

households with shorter commute distances participate more in non-work activities because of 

denser non-work activity locations and less time pressure. However, these earlier studies do not 

consider residential self-selection effects as we do. But this subject of the relationship between 

commute distances and non-work activity participation certainly deserves more exploration and 

the disentangling of multiple push-pull effects, as also acknowledged by the earlier studies just 

identified.  

 

3.4.5. Model Data Fit Comparisons 

To assess the importance of considering jointness across choice dimensions, we also estimated 

an Independent Heterogeneous Data Model (IHDM) that does not consider such jointness (that 

is, the covariances engendered by the stochastic latent constructs in the GHDM model are 

ignored). In this IHDM model, we introduce the exogenous variables (sociodemographic 

variables) used to explain the latent constructs as exogenous variables in the choice dimension 

equations. This way, the contribution to the observed part of the utility due to sociodemographic 

variables is still maintained (and is allowed to vary relative to the GHDM to absorb, to the extent 

possible, the GHDM covariances due to unobserved effects). The resulting IHDM may be 

compared to the GHDM using the composite likelihood information criterion (CLIC) introduced 

by Varin and Vidoni (2005). The CLIC takes the following form (after replacing the composite 

marginal likelihood (CML) with the maximum approximate CML (MACML)): 
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The model that provides a higher value of CLIC is preferred. The )ˆ(log θ


MACMLL  values for the 

GHDM and IHDM models were estimated to be -227,321.0 and -253,231.1, respectively, with 

the corresponding CLIC statistic values of -227,504.0 and -253,432.0. These CLIC statistics 

clearly favor the GHDM over the IHDM.  

All the ordinal variables used in the measurement equation are included solely for the 

purpose of model identification and do not serve any purpose in predicting the choice bundle 

once the model is estimated. Therefore, we can also use the familiar non-nested likelihood ratio 

test to compare the two models. To do so, we evaluate a predictive log-likelihood value of both 

the GHDM and IHDM models using the parameter values at the MACML convergent values by 

excluding the six ordinal variables. The same is also done to obtain to the constants-only log-

likelihood value. Then, one can compute the adjusted likelihood ratio index of each model with 

respect to the log-likelihood with only the constants as follows: 
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 L  and )(c L  are the predictive log-likelihood functions at convergence and at 

constants, respectively, and M is the number of parameters (not including the constant(s) for each 

dimension and not including the ordinal indicators) estimated in the model. This test determines 

if the adjusted likelihood ratio indices of two non-nested models are significantly different. In 

particular, if the difference in the indices is   )( 2
1

2
2 , then the probability that this 

difference could have occurred by chance is no larger than  5.0
12 )]()(2[ MMc  L  in 

the asymptotic limit. A small value for the probability of chance occurrence indicates that the 

difference is statistically significant and that the model with the higher value for the adjusted 

likelihood ratio index is to be preferred. The )ˆ(θ


 L  values (number of parameters) for the 

GHDM and IHDM models were computed to be -21,322.1 (number of parameters = 89) and       

-32,028.1 (number of parameters = 152), respectively. The )(c L  value was -44,402.1, with the 

corresponding predictive 2  values of 0.518 and 0.275 for the GHDM and IHDM models, 

respectively.  The non-nested adjusted likelihood ratio test returns a value of )147( , which is 
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literally zero, clearly rejecting the IHDM model in favor of the GHDM model and underscoring 

the importance of considering the stochastic latent constructs that engender covariation among 

the choice dimensions. 

 

3.5. Examining “True” Effects of Neo-Urbanist Densification Efforts 

To demonstrate the value of the proposed model, consider the GLP-caused associations among 

the many dimensions and, for now, ignore the LLP-caused associations. Also, we confine our 

attention to residential density, auto ownership, and OH recreational activity. According to our 

GHDM results, households with a high GLP have a generic preference (due to unobserved 

factors) to reside in the highest density neighborhoods, have low auto ownership levels, and are 

likely to pursue more OH recreational pursuits. Thus, because of GLP, households who happen 

to reside in the highest density neighborhoods tend to be there already because they are 

generically auto-disinclined and like to pursue recreational activities. But, even after capturing 

these pre-dispositions (or associations) due to residential self-selection caused by unobserved 

factors, the GHDM indicates, through the endogenous effects, that the higher density “truly 

causes” households to own fewer cars and partake more in recreation pursuits. But if the 

residential self-selection effects were ignored (as is done by the IHDM model), the effect of 

moving a random household from a low density neighborhood to a high density neighborhood 

(or, equivalently, densifying an existing low density neighborhood) would be magnified in terms 

of auto ownership reduction (because the low auto ownership predisposition of the people living 

in the highest density neighborhoods would get tagged on to the “true” negative causal effect). 

Similarly, the positive effect of residential density on OH recreational pursuits would also be 

magnified (because the high OH recreational participation of the people living in the highest 

density neighborhood would again get tagged on to the “true” positive causal effect. In both 

these cases, there would be an overestimation of auto ownership reduction and OH recreational 

activity participation increase attributable to densification. Of course, how these impact 

motorized travel and traffic patterns will have to be determined through downstream models in 

an activity-based modeling system. The important point is that ignoring residential self-selection 

could lead to incorrect conclusions on the effects on auto ownership and activity time-use.  

 The intuitive explanation above does not consider the LLP-caused associations. Also, in 

the IHDM model, we allow explanatory demographic variables to impact the many choice 
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dimensions directly. Thus, the final “net” effect of not accommodating residential self-selection 

cannot be gleaned as easily as described above. But to show a cumulative effect of capturing 

versus not capturing residential self-selection effects, we compute average treatment effects 

(ATEs) from the GHDM and IHDM models. The ATE measure for a variable provides the 

expected difference in that variable for a random household if it were located in a specific 

density configuration i as opposed to another density configuration ii  . We compute this 

measure for auto ownership and activity time-use as discussed in the online supplement (see 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf).   

The analyst can compute the ATE measures for all the pairwise combinations of 

residential density category relocations. Here, we focus on the case when a household in the 

lowest density neighborhood (<750 households per square mile) is transplanted to the highest 

density neighborhood (>3000 households per square mile). For ease in discussion, in the rest of 

this section, we will refer to the former neighborhood type as a low density neighborhood, and 

the latter neighborhood type as a high density neighborhood. Table 5 presents the estimated ATE 

values (and standard errors) for auto ownership and out-of-home activities for both the GHDM 

and IHDM models. The first row under the “GHDM model” heading indicates that a random 

household that is shifted from the low density category location to the high density category 

location is, on an average, likely to reduce its auto ownership level by 0.143 vehicles (standard 

error of 0.011). Equivalently, if 100 random households are relocated from the low density 

neighborhood to the high density neighborhood, the point estimate indicates a reduction in auto 

ownership by about 14 vehicles. On the other hand, the IHDM model estimate predicts a 

reduction of 0.340 vehicles (standard error of 0.021). That is, if 100 random households are 

relocated from the low density neighborhood to the high density neighborhood, the independent 

model point estimate projects a reduction in motorized vehicle ownership by about 34 vehicles. 

The exaggeration in the reduction in auto ownership based on the IHDM model (because of the 

change in residence from the low density to the high density neighborhood) is readily apparent, 

and is a reflection of unobserved residential self-selection effects not being controlled for. The t-

statistic value for the hypothesis of equality in the ATE estimates is 9.4, much higher than the 

table value even at the 0.005 level of significance, strongly rejecting equality between the two 

models. 
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The other rows of the table provide the ATE values with respect to each of the OH 

activity purposes. For example, the ATE for the GHDM corresponding to personal business 

indicates that a random household that is shifted from the low density category location to the 

high density category location is, on average, likely to reduce its participation probability in 

personal business activity by 0.037. Equivalently, if 100 random households are relocated from 

the low density neighborhood to the high density neighborhood, the point estimate indicates a 

reduction in personal business activity by 3.7 participations during the course of the day. Other 

values may be similarly interpreted. The results show that the IHDM model exaggerates the ATE 

for every OH purpose, whether positive or negative. The ATEs for all OH activity purposes and 

both models are statistically significant at least at the 0.1 level of significance, and generally at a 

much lower level of significance. The t-statistics for testing the differences in the ATE estimates 

between the two models are in the range of 1.0-2.3 for the shopping, recreation, dining out, and 

social activities, though there is literally no statistically significant difference the personal 

business and serve passenger purposes. Overall, the results show that, if self-selection effects are 

ignored, the result is exaggerated effects of densification.  

One can also quantify the magnitude of the “true” effect and the spurious residential self-

selection effect because the IHDM model comingles these effects, while the joint model 

estimates the “true” effect. Because the IHDM model consistently exaggerates the ATE, the 

“true” effect may be computed as a percentage of the GHDM ATE relative to the IHDM ATE, 

while the self-selection effect may be computed as the difference of the ATE of the two models 

as a percentage of the IHDM ATE. The last two columns of Table 5 indicate that unobserved 

self-selection effects are estimated, based on the point estimates, to constitute about 58% of the 

difference in the number of autos between low density and high density households, while “true” 

built environment effects constitute the remaining 42% of the difference. Clearly, the self-

selection effect is larger than the “true” effect, showing that ignoring self-selection will 

substantially overestimate the benefits of densification from an auto ownership reduction 

standpoint. Among the OH activity purposes, the self-selection effect is highest for the shopping, 

recreation, and social purposes, and the lowest for the serve passenger and personal business 

purposes. While the self-selection effect is lower than the “true density effect” for the OH 

activity purposes, it is still of the order of 30% for the shopping, recreation, and social purposes.  
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4. CONCLUSION 

In this paper, we introduce a joint mixed model that includes an MDC outcome and a nominal 

discrete outcome, in addition to count, binary/ordinal outcomes, and continuous outcomes. The 

outcomes are modeled jointly in a parsimonious fashion by specifying latent underlying 

unobserved individual lifestyle, personality, and attitudinal factors. Reported subjective 

attitudinal indicators for the latent variables help provide additional information and stability to 

the model system. In addition, we formulate and implement a practical estimation approach for 

the resulting model using Bhat’s (2011) maximum approximate composite marginal likelihood 

(MACML) inference approach.  

From an empirical standpoint, we focus on examining residential self-selection in the 

context of an activity-based modeling (ABM) paradigm. In the activity-based approach, the 

impact of land-use and demand management policies on time-use behavior is an important 

precursor step to assessing the impact of such polices on travel behavior. Accordingly, in this 

paper, we jointly model residential location-related choices (density of residential location and 

commute distance), along with auto ownership and activity time-use, in a way that has a social-

psychological underpinning through latent variables while also explicitly considering residential 

self-selection issues.  

The empirical application uses data from the 2014 Puget Sound Household Travel 

Survey. Two basic lifestyle-related factors; Green lifestyle propensity and luxury lifestyle 

propensity; are used to explain the multiple mixed dependent variables. These two latent and 

stochastic psycho-social constructs impact the dependent variables and engender covariation 

among them. The proposed generalized heterogeneous data model (GHDM) model with an MDC 

variable clearly rejects a simpler independent heterogeneous data model (IHDM) that ignores the 

effects of the latent constructs. Effectively, this implies the presence of self-selection effects 

(endogeneity), and suggests that modeling the choice processes independently will not capture 

true relationships that exist across the choice dimensions. This is also evidenced in the ATE 

measures, which emphasize that accounting for residential self-selection effects are not simply 

esoteric econometric pursuits, but can have important implications for land-use policy measures 

that focus on neo-urbanist design.  

 To summarize, this paper proposes and applies an integrated framework to model 

multiple types of variables, including continuous, ordinal, count, nominal, and multiple discrete-
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continuous (MDC) variables. The paper also contributes to disentangling residential self-

selection effects from “true” density effects on activity pursuits and auto ownership. We hope 

that the elegant way of tying the mixed types of dependent variables, including an MDC 

variable, through a parsimonious latent structure approach will open new doors in the exploration 

of the nexus between land use and activity-based travel modeling, as well as contribute to 

empirical research in many other fields where MDC variables occur frequently.  
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Table 1. Sample Characteristics of Dependent Variables 

Dependent variable: Continuous variable 

Variable Mean Std. Dev. Min. Max. 

Household commute distance 14.47 13.78 0.05 99.95 

Indicator variable: Ordinal variables 

Attitudinal Question 

Response rate 

Very 
Unimportant 

1 2 3 4 

Very 
Important 

5 
How important when choosing current home: 
  
   Having a walkable neighborhood and being 

near to local activities 
 5.5% 7.6% 11.1% 32.3% 43.5% 

   Being close to public transit 15.4% 12.0% 17.0% 24.8% 30.8% 

   Being within a 30-minute commute to work  6.6% 6.5% 10.0% 24.4% 52.5% 

   Quality of schools (K-12) 31.2% 7.5% 26.7% 14.6% 20.0% 

   Having space and separation from others  9.2% 13.7% 21.8% 34.3% 21.0% 

   Being close to the highway 12.7% 16.0% 21.4% 38.0% 11.9% 

Dependent variable: Count variable 

Motorized Vehicle 
Count 

Frequency 

0 1 2 3 4 5 >6 

Number 304 1,378 1,354 413 135 36 17 

% 8.4 37.8 37.2 11.4 3.7 1.0 0.5 

Dependent variable: MNP variable 

Residential Density 
(households per sq. mile) 

Number of observations (%) 

<750   478 (13.2) 

750-2,000   866 (23.8) 

2,000-3,000   525 (14.4) 

>3,000 1,768 (48.6) 

Dependent variable: MDC variables 

Activity Participation (%) Mean* fraction 

Number of households (% of total 
number) spent time… 

Only in activity 
type**  

In other activity 
types too** 

In home (IH)  3,637 (100.0) 0.780 533 (14.7) 3,104 (85.3) 

Personal Business 1,607 ( 44.2) 0.202 216 (13.4) 1,391 (86.6) 

Shopping 1,664 ( 45.8) 0.060 355 (21.3) 1,309 (78.7) 

Recreation 1,011 ( 27.8) 0.131 148 (14.6)   863 (85.4) 

Dining Out 1,092 ( 30.0) 0.081 203 (18.6)   889 (81.4) 

Social   659 ( 18.1) 0.180   82 (12.4)   557 (87.6) 

Serve Passenger   751 ( 20.6) 0.047 26 (  3.5)   725 (96.5) 

*: The mean duration of activities reported in the table are for only those who participated. 

**: For the IH activity, the splits refer to participation only in IH activity and participation in IH activity and at least one OH 
activity purpose. For each OH activity purpose, the splits refer to participation in that OH activity purpose as well as another OH 
activity purpose (in addition to IH activity)     
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Table 2. Estimation Results of Structural Equation 

Variable Coefficient T-stat 

Green Lifestyle Propensity (GLP) 

Household income (base: 75,000 or more)    

    Less than 25,000 0.702 12.001 

    25,000 – 34,999 0.523 7.234 

    35,000 – 49,999 0.401 6.944 

    50,000 – 74,999 0.198 7.104 

Age (base: fraction of adults in the age group 18-34)   

    Fraction of adults in the age group 35-54 -0.478 -9.623 

    Fraction of adults in the age group 55-64 -0.331 -4.978 

    Fraction of adults in the age group 65 or more -0.132 -1.941 

Gender (base: fraction of female adults in the household)    

    Fraction of male adults in the household -0.029 -1.850 

Education status (base: fraction of adults with less than a bachelor’s degree)   

    Fraction of adults with a bachelor’s degree 0.160 4.101 

    Fraction of adults with an MS or PhD degree  0.203 2.103 

Luxury Lifestyle Propensity (LLP) 

Household income (base: 75,000 or more)    

    Less than 25,000 -0.201 -11.933 

    25,000 – 34,999 -0.322 -8.000 

    35,000 – 49,999 -0.431 -7.924 

    50,000 – 74,999 -0.472 -6.424 

Number of children (less than 18 years old) in the household 0.473 11.926 

Age (base: fraction of adults in the age group 18-34)   

    Fraction of adults in the age group 35-54 0.130 3.553 

    Fraction of adults in the age group 55-64 0.412 3.567 

    Fraction of adults in the age group 65 or more 0.450 2.210 

Correlation coefficient between ‘active living/pro-environment attitude’ and 
‘travel affinity/privacy desire’ latent constructs 

-0.168 -5.421 
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Table 3. Estimation Results for Non-Nominal Variables of Measurement Equation 
 

Independent variables 

Continuous 
variable 

Ordinal variables Count variable

Natural 
logarithm of 
household 
commute 
distance* 

Having a 
walkable 

neighborhood 
and being near 
local activities 

Being close to 
public transit 

Being within 
a 30-minute 
commute to 

work 

Having space 
and 

separation 
from others 

Quality of 
schools 

Being close 
to the 

highway 
Auto ownership

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat

Constants  1.881 11.78 1.461 4.49 0.910 4.10 1.382 8.67 1.071 7.12 0.333 7.21 0.865 6.30  0.899  6.34 

Thresholds for ordinal indicators                 
Somewhat unimportant & not 
important 

  0.462 15.65 0.418 13.00 0.375 20.00 0.591 15.56 0.732 18.26 0.573 14.52   

Not important & somewhat 
important 

  0.822 15.10 0.873 20.01 0.717 14.61 1.184 18.32 3.640 19.33 1.110 15.68   

Somewhat important and very 
important 

  1.678 14.10 1.513 11.89 1.374 13.20 2.142 14.22 5.722 19.69 2.295 17.21   

Household characteristics                 
Number of children in the 
household 

-0.334 -6.23 ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------  0.070  2.190 

Latent constructs                 

Green Lifestyle Propensity (GLP) -0.761 -12.12 0.203 13.72 0.262 11.81 0.297 14.71 ------ ------ ------ ------ ------ ------ -0.292 -11.41

Luxury Lifestyle Propensity (LLP) ------ ------ ------ ------ ------ ------ ------ ------ 0.251 4.66 3.800 17.82 0.201 5.08  0.110  2.19 

Endogenous Effects                 
Residential density (base: >3000 
hh/sq-mile) 

                

Less than 750 hh/sq-mile ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ 0.511 6.145 

750-1999 hh/sq-mile ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ 0.438 5.793 

2000-3000 hh/sq-mile ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ 0.311 5.454 

------: Not significant in the case of the effect of residential density on commute distance, and not applicable in the case of the effects of residential density on the 
ordinal indicators (note that these ordinal indicators serve purely the purpose of better pinning down the latent constructs and the relationship between the 
latent constructs and exogenous covariates in the structural equation system).   

*: Estimated variance of commute distance is 1.333 and the associated t-stat is 3.281. 
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Table 4. Estimation Results for Nominal Variables of Measurement Equation 
 

Independent 
Variables 

Residential location (base: >3000 hh/sq-mile) Fraction of time spent on various activities by household  (base: In-home) 
Less than 750 

hh/sq-mile 
750-1999  
hh/sq-mile 

2000-3000 
hh/sq-mile 

Personal 
Business 

Shopping Recreation Dining Out Social 
Serve 

Passenger 
Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Constant -0.680 -6.73 -0.393 -4.88 -0.636 -9.53 -0.143 -3.64 -0.43 -7.70 -0.69 -12.66 -0.567 -14.05 -1.344 -17.48 -1.549 -19.99 

Family structurea                    
  Single person HH -0.180 -3.21 ------ ------  0.088 2.10 ------ ------ -0.596 -6.94 -0.565 -5.89 -0.144 -1.86 -0.405 -3.50 -1.411 -7.87 
  Nuclear family  0.355 10.23 ------ ------ ------ ------ ------ ------  1.611 23.13  0.446 5.49 ------ ------ 0.312 3.13 1.923 22.29 
  Single parent family  0.619  7.43 ------ ------  0.312 9.08 ------ ------  2.472 13.58 ------ ------ ------ ------ ------ ------ 1.392 5.61 
Fraction of adults by 
work status in HHb 

                  

  Part-time workers  0.256  2.19  0.282 2.26  0.110 2.00  0.365   3.06  0.679 5.73 ------ ------ ------ ------ 0.493 2.88 0.492 3.07 
  Self-employed 
  Workers 

 0.320  3.04  0.284 4.82  0.132 2.16 ------ ------  0.274 1.98 ------ ------ ------ ------ 0.394 2.06 ------ ------ 

  Non-workers  0.410  2.87  0.290 3.32  0.187 3.21  0.762   5.85  1.167 8.80  0.391 2.51 ------ ------ 0.771 4.09 1.122 6.56 
Latent constructs                   
  Green Lifestyle 
  Propensity (GLP) 

-0.051 -2.22 -0.152 -6.09 -0.098 -3.62 -0.720 -2.42 -0.681 -5.72  0.089 4.68 -1.030 -8.39 0.124 2.26 ------ ------ 

  Luxury Lifestyle 
  Propensity (LLP) 

-0.190 -2.17  0.073 2.90  0.051 2.82 ------ ------  0.265 2.29 ------ ------  0.125 2.20 ------ ------ ------ ------ 

Satiation parameters        0.029 24.23  0.075 20.62  0.092 18.33 0.038 19.22 0.168 14.26 0.017 15.98 
Endogenous Effects                   
Commute distance ------ ------ ------ ------ ------ ------ ------ ------  0.203 7.67 0.152 5.42 0.268 3.28 ------ ------ ------ ------ 
Residential density 
(base: >3000 hh/sq-
mile) 

                  

Less than 750 hh/sq-
mile 

------ ------ ------ ------ ------ ------ ------ ------ -0.681 -7.90 -0.203 -2.38 -0.456 -4.15 0.269 2.33 0.971 8.81 

750-1999  hh/sq- 
mile 

------ ------ ------ ------ ------ ------ 0.177  2.66 -0.517 -7.16 ------ ------ -0.423 -4.88 ------ ------ 0.614 6.19 

2000-3000 hh/sq-
mile 

------ ------ ------ ------ ------ ------ ------ ------ -0.234 -2.72 -0.245 -2.41 -0.493 -4.76 ------ ------ 0.510 4.42 

------: Not significant 
a: base is couple family and multi-adult households  
b: base is full-time workers 
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Table 5. Treatment Effects Corresponding to Transplanting a Random Household from a 
Lowest Density Neighborhood (<750 hh/sq. mile) to Highest Density Neighborhood (>3000 

hh/sq. mile) (standard error in parenthesis) 

 

Variable ATE from GHDM ATE from IHDM 
% Difference Attributable to 

“True” Effect 
Self-Selection 

Effect 

Vehicle ownership 0.143 (0.011)    0.340 (0.021) 42 58 

Participation on 

Personal business -0.037 (0.013)  -0.041 (0.013)  90 10 

Shopping 0.011 (0.004)   0.019 (0.007) 65 35  

Recreation 0.134 (0.021)   0.190 (0.014) 71 29  

Dining out 0.094 (0.020)   0.119 (0.021) 79 21  

Social -0.056 (0.014)  -0.078 (0.017) 72 28  

Serve Passenger -0.156 (0.033)  -0.162 (0.025) 96 4  
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Appendix A: Model Estimation 
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of dimension 1A . We will assume that the error vectors η, ε


, ξ , and ς  are independent of 

each other. While not strictly necessary (and can be relaxed in a very straightforward manner 

within the estimation framework of our model system as long as the resulting model is 

identified), the assumption aids in developing general sufficiency conditions for identification of 

parameters in a mixed model when the latent variable vector *z  already provides a mechanism to 

generate covariance among the mixed outcomes. Further, define the following: ,)~,,(  uuyyu
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  Then, we may write the continuous 

(observed or latent) components of the structural and the measurement equations of the model 

system compactly as: 
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To develop the reduced form equations, replace the right side for *z  in the second part of 

Equation (A.1) to obtain the following system: 

 πηwπVκηwπVκπzVyu * αα
~

)(
~~

. (A.2) 

Then ),,(2 ΘBMVN ~yu K-IE    where ,
~

wπVB α  and Θ = ΣΓ


ππ .                                   

The question of identification relates to whether all the elements in the model system are 

estimable from the elements of B  and Θ . One may analyze this by starting from Stapleton’s 

(1978) sufficiency conditions for multiple-indicator multiple-cause (MIMIC) models. 

Conforming with the set-up of Stapleton and earlier MIMIC models, we will assume that the 

number of measurement equations without the nominal and non-MDC variables exceeds the 
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number of latent factors. Then, sufficiency conditions may be developed for the GHDM-MDC 

model following the same line of argument as in Bhat et al. (2014) for the GHDM. In particular, 

all parameters are estimable under the following conditions: (1) diagonality is maintained across 

the elements of the error term vector ε


 (that is, Σ


 is diagonal), (2) Γ  in the structural equation 

is specified to be a correlation matrix, (3) for each latent variable, there is at least one outcome 

variable that loads only on that latent variable and no other latent variable (that is, there is at least 

one factor complexity one outcome variable for each latent variable) (see also Reilly and 

O’Brien, 1996), (4) the element corresponding to the effect of each variable is zero in either the 

γ


 vector or the α  vector or both vectors, (5)  if an element of ib
~

corresponding to a specific 

variable in the vector x  is non-zero, a sufficient condition for identification is that the utility of 

alternative i  in the nominal variable model not depend on any latent variable that contains that 

specific variable as a covariate in the structural equation system, (6) endogenous variable effects 

can be specified only in a single direction and when a continuous observed endogenous variable 

appears as a right side variable in the regression for another continuous observed endogenous 

variable, or as a right side variable in the latent regression underlying another count or ordinal 

endogenous variable, each latent variable appearing in the regression/latent regression for the 

other endogenous continuous/count/ordinal variable (say variable A) should have two factor 

complexity one outcome variables after excluding the equation for variable A, and (7) If an 

element of kδ  corresponding to a specific variable in the vector x  is non-zero, a sufficient 

condition for identification is that the utility of alternative k in the MDC model not depend on 

any latent variable that contains that specific variable as a covariate in the structural equation 

system. Of course, there may be much less restrictive situations under which the parameters are 

all still identified, but the number of such specific situations is too numerous to list here.   

To estimate the model, one can use a maximum simulated likelihood approach by writing 

the multivariate normal density function for the vector yu  as the product of the marginal 

distribution of the continuous components in yu  (corresponding to the H continuous outcomes 

and the consumed alternatives from among the K–1 MDC inside alternatives) and the conditional 

distribution of the remaining components in yu  given the continuous components. Then, the 

conditional density function can be integrated appropriately. Specifically, define a EE
~~   matrix 
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[  KIEE , and fill it with all zeros. Then, place an identity matrix of size H in the 

first H rows and first H columns. Then, in the next CF
~

 rows, place an element of ‘1’ in the  

thH )1(   row and the th
CFIE ])1[1(   column, an element of ‘1’ in the  thH )2(   row and 

the th
CFIE ])2[1(  column, and so on until an element of ‘1’ in the  th

CFH )
~

(   row and the 

th
CC FFIE ])

~
[1(   column. Also, in the th

CFH )1
~

(   row through the th
C EFH )1

~
( 

row, place an identity matrix of size ,1E starting from the thH )1(   column and ending at the 

thIE )1(   column. Finally, in the last NCF
~

 rows, place an element of ‘1’ in the  th
C IFE )

~
(   

row and the th
NCFIE ])1[1(   column, an element of ‘1’ in the  th

C IFE )1
~

(   row and 

the th
NCFIE ])2[1(  column, and so on until an element of ‘1’ in the  thKIE )2(   row 

and the th
CC FFIE ]

~
[1(   column. Define ),(

~~ yuuy M  ,
~~

BB M  and MΘMΘ  ~~~
. Next, 

partition the vector uy~  into two components: ]
~

:1[~~
1 CFH  uyuy  and 

],
~

:1
~

[~~
2 EFH C  uyuy  where ]

~
:1[~

CFH uy is the sub-vector of  uy~  corresponding to the 

first through the th
CFH )

~
(   element, and ]

~
:1

~
[~ EFH C uy  is the sub-vector of uy~  

corresponding to the th
CFH )1

~
(   element through the last element E

~
.  Next, partition the 

vector B
~

 into two components: ]
~

:1[ 
~~

1 CFH  BB  and ]
~

:1
~

[ 
~~

2 EFH C  BB . 

Correspondingly partition Θ
~

: ]
~

:1,
~

:1[
~

 
~

1 CC FHFH ΘΘ , ]
~

:1
~

,
~

:1
~

[
~

 
~

2 EFHEFH CC ΘΘ , 

and ]
~

:1,
~

:1
~

[
~

 
~

12 CC FHEFH ΘΘ . 

Then, we may write: 

,~

~
~

2

1
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uy
uy and,~

~
~

2
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B
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12
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~

~
~

Θ

Θ

Θ

Θ
Θ  vector,       (A.3) 

Further, define  1111222

~~~~~
BuyBB  ΘΘ


, .

~~~~
1211222 ΘΘΘΘΘ 
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 vector) and 
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   NCFIupupup FIN
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0ψψψ



 

vector), where  
NCFI

~
1  is a 1)

~
1(  NCFI -
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column vector of negative infinities, and NCFI
~

10  is another 1)
~

1(  NCFI -column vector of 

zeros. Then, the likelihood function may be written as: 

  ,~ Pr)
~

 ,
~

) ,(()det()( 211~~ uplowFFH CC
fL ψuyψB|yθ


  Θ0J                                         (A.4)   

rdff
NCCC FIN

D
FFH

),|()
~

 ,
~

) ,(()det(  22~11~~ ΩΘ0J


BrB|y
r

 
     

 

where )det(J  is the determinant of the Jacobian given by  

,
1

1
)det(

*
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kk

k kk

k t
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J C  is the set of activity purposes invested in by the 

individual (including activity purpose K), and

 

the integration domain }:{ uplowrD ψrψr


  is 

simply the multivariate region of the elements of the 2
~uy  vector. )

~
,

~
) ,( 11~~ Θ0 B|y

CC FFH
f   is the 

multivariate normal density function of dimension CFH
~  with a mean of 1

~
B  and a covariance 

of 1

~
Θ , and evaluated at ) ,( ~

CF
0y . The likelihood function for a sample of Q decision-makers is 

obtained as the product of the individual-level likelihood functions. 

 The likelihood function in Equation (A.4) involves the evaluation of an )
~

( NCFIN  -

dimensional rectangular integral for each decision-maker, which can be computationally 

expensive. So, the Maximum Approximate Composite Marginal Likelihood (MACML) approach 

of Bhat (2011) is used.  

 

The Joint Mixed Model System and the MACML Estimation Approach 

Consider the following (pairwise) composite marginal likelihood function formed by taking the 

products (across the N ordinal variables, the count variable, and  the nominal variable) of the 

joint pairwise probability of the chosen alternatives for a decision-maker, and computed using 

the analytic approximation of the multivariate normal cumulative distribution (MVNCD) 

function. 
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 (A.5) 

In the above CML approach, the multivariate normal cumulative distribution (MVNCD) function 

appearing in the CML function is of dimension equal to (1) two for the second component 

(corresponding to the probability of each pair of observed ordinal outcomes), (2) two for the 

third component (corresponding to the probability of each pair of an observed ordinal outcome 

and the observed count outcome), (3) I for the fourth component (corresponding to the 

probability of each combination of the observed nominal outcome with an observed ordinal 

outcome), (5) I for the fifth component (corresponding to the probability of the observed nominal 

outcome and the observed count outcome), (6) 1
~ NCF  for the sixth component (corresponding 

to a the probability of each combination of the observed MDC outcome of the observed time 

investment vector *t  and an observed ordinal outcome), and (7) 1
~ NCF  for the seventh 

component (corresponding to the combination of the MDC outcome and the count outcome), and 

(8) 1
~  IFNC  for the eighth component (corresponding to the probability of the observed MDC 

and observed nominal outcome).  

To explicitly write out the CML function, define ω  as the diagonal matrix of standard 

deviations of matrix Δ , h  as the hth diagonal element of ω , );(. **
ΔR  for the multivariate 

standard normal density function of dimension R and correlation matrix *Δ  ( 11* 



 ωΔωΔ ), and 

);(. *ΔR  for the multivariate standard normal cumulative distribution function of dimension R 

and correlation matrix *Δ . Define two selection matrices as follows: (1) vD  is an 

)
~~

( CFHEI   selection matrix with an entry of ‘1’ in the first row and the thv column, and an 

identity matrix of size 1I  occupying the last 1I  rows and the thN )2(  through thIN ][ 

columns, and entries of ‘0’ everywhere else, (3) vA  is a )
~

()1
~

( CNC FHEF   selection 
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matrix, with an entry of ‘1’ in the first row and the thv  column; in the next NCF
~

 rows, place an 

identity matrix of size NCF
~

 occupying columns thIN )1(   through th
NCFIN )

~
(  column; all 

other elements of vA  take a value of zero, and (4) C  is a )
~

()1
~

( CNC FHEIF   selection 

matrix as follows: Position an identity matrix of size ( 1I ) occupying the first ( 1I ) rows and 

the thN )2(   through thIN )(   columns, and another identity matrix of size NCF
~

 occupying 

columns  thIN )1(   through th
NCFIN )

~
(   column; all other elements of C take a value of 

zero.  

Let ,ˆ,ˆ
22 vvvvv DDBDB  ΘΘ


 ,, 22 vvvvv AABAB  ΘΘ





  ,, 22 CCBCB  ΘΘ
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 , 

where  
vupψ


 represents the thv  element of  upψ


 (and similarly for other vectors), and   vv 2Θ



represents the thvv   element of the matrix 2Θ


.   
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                (A.6)

 

In the MACML approach, all MVNVD function evaluation greater than two dimensions are 

evaluated using an analytic approximation method rather than a simulation method. This 

combination of the CML with an analytic approximation for the MVNCD function is effective 

because the analytic approximation involves only univariate and bivariate cumulative normal 

distribution function evaluations. The MVNCD analytic approximation method used here is 
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based on linearization with binary variables (see Bhat, 2011). Write the resulting equivalent of 

Equation (A.6) computed using the analytic approximation for the MVNCD function as 

)(, θ


qMACMLL , after introducing the index q for individuals. The MACML estimator is then 

obtained by maximizing the following function:  

log 



Q

q
qMACMLMACML LL

1
, )(log)( θθ


.           (A.7) 

The covariance matrix of the parameters θ


 may be estimated by the inverse of 

Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005, and Bhat, 2015).  
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  (A.9) 

 

Positive Definiteness 

The )( LL  correlation matrix Γ , the  )1()1(  II  covariance matrix, and the )( KK   

covariance matrix have to be all  positive definite. An easy way to ensure the positive-

definiteness of these matrices is to use a Cholesky-decomposition and parameterize the CML 

function in terms of the Cholesky parameters. Further, because the matrix Γ  is a correlation 

matrix, we write each diagonal element (say the aath element) of the lower triangular Cholesky 

matrix of Γ  as 





1

1

21
a

j
ajp , where the ajp  elements are the Cholesky factors that are to be 

estimated.  

 


