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ABSTRACT 

This paper proposes a new econometric formulation and an associated estimation method for a 

finite discrete mixture of normals (FDMN) version of the multiple discrete-continuous probit 

(MDCP) model. To our knowledge, this is the first such formulation and application of an 

MDCP model in the econometric literature. Using the New Zealand Domestic Travel Survey 

data set, the model is applied to analyze individual-level decisions regarding recreational 

destination locations and the number of trips to each destination. The results provide insights into 

the demographic and other factors that influence individuals’ preferences for different 

destinations, and show that the FDMN MDCP model is able to identify different segments of the 

sample, each one of them with different effects of the exogenous variables on destination choice.  

 

Keywords: multiple discrete-continuous models, finite discrete mixture of normals, MACML 

approach, endogenous segmentation, recreational trips, long distance trips, tourism travel. 
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1. INTRODUCTION 

There are several approaches to understanding the decision process when consumers have to 

choose an alternative from a set and then determine the amount of the chosen alternative to 

consume. Classical discrete choice models assume that alternatives are mutually exclusive and 

only one alternative can be chosen. Alternatively, multiple discrete-continuous (MDC) models 

expand the decision by allowing consumers to choose multiple alternatives at the same time, 

along with the continuous dimension of the amount of consumption. MDC models have been 

applied not only in the case of consumer brand choice and purchase quantity, but also in contexts 

such as household vehicle type and usage, recreational destination choice and number of trips, 

land-use type and intensity, and stock portfolio selection choice and investment amounts. 

The MDC model that has dominated the recent literature is based on a utility 

maximization framework that assumes a non-linear (but increasing and continuously 

differentiable) utility function to accommodate the relationship between the decreasing marginal 

utility (satiation) and the increasing investment in an alternative. Consumers maximize this 

utility within their budget constraints. The optimal consumption quantities are obtained by 

writing the Karush-Kuhn-Tucker (KKT) first-order conditions of the utility function with respect 

to the investment quantities. A very general utility form for this KKT approach was proposed by 

Bhat (2008). In Bhat’s utility function form, stochasticity is introduced in the baseline preference 

for each alternative to acknowledge the presence of unobserved factors that may impact the 

utility of each alternative (the baseline preference is the marginal utility of each alternative at the 

point of zero consumption of the alternative). The most common distributions used for the kernel 

stochastic error term (across alternatives) are the generalized extreme value (GEV) distribution 

(see Bhat, 2008; Pinjari, 2011; Castro et al., 2012) and the multivariate normal distribution (see 

Kim et al., 2002 and Bhat et al., 2013). The first distribution leads to a closed-form MDC GEV 

model structure, while the second leads to an MDC probit (MDCP) model structure. 

Researchers have also introduced random structures for the coefficients on the exogenous 

variables (or response coefficients) that allow heterogeneity (across individuals) in the sensitivity 

to exogenous variables in discrete choice models. There are three possible approaches to 

introduce randomness in the response coefficients. The first approach uses continuous random 

structures for the coefficients on the exogenous variables. Within this approach, the most 

common assumption is that the random response coefficients are realizations from a multivariate 
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normal distribution.1 But this can lead to a misspecification if some other non-normal 

distribution characterizes the taste heterogeneity for one or more coefficients (see Train, 1998; 

Amador et al., 2005; Train and Sonnier, 2005; Hensher et al., 2005; Fosgerau, 2005; Greene et 

al., 2006; Balcombe et al., 2009; and Torres et al., 2011). The second approach uses a discrete 

distribution for the response coefficients. This approach leads to the familiar latent class model 

with an endogenous segmentation that allocates individuals probabilistically to segments as a 

function of exogenous variables (see Bhat, 1997; Greene and Hensher, 2003; Train, 2008; Bastin 

et al., 2010; Cherchi et al., 2009; and Sobhani et al., 2013). The problem with this approach, 

however, is that homogeneity in response is assumed within each latent class. The third approach 

uses a hybrid semi-parametric approach that combines a continuous response surface for the 

coefficients with a latent class approach (see, for example, Campbell et al., 2010; Bujosa et al., 

2010; Greene and Hensher, 2013; and Xiong and Mannering, 2013). In this approach, the 

response coefficients are typically assumed to be realizations of a discrete mixture of 

multivariate normal distributions. That is, the relationship between the propensity variable and 

exogenous variables is assumed to belong to one of several latent (discrete) classes. Within each 

of these classes, the coefficients are drawn from a continuous multivariate normal distribution. 

The resulting finite discrete mixture of normal (FDMN) model generalizes the heterogeneity 

form because the normally distributed random parameters approach and the latent class approach 

consist of special cases—the first approach resulting when there is only one latent class and the 

                                                 
1 To put things in context within the broader literature on accommodating non-normal coefficients, note that the 
second latent segmentation approach is equivalent to a non-parametric approach in which all random coefficients are 
assumed to have the same number of nodal points, with the number of nodal points being equal to the number of 
latent segments. The nodal points correspond to the segment-specific values (for each coefficient) in the latent 
segmentation set-up, and the probability masses at these nodal points for each individual correspond to the segment 
membership probabilities for that individual. This latent segmentation set-up is a restrictive version of a more 
general non-parametric specification in which the number of nodal points is allowed to vary across coefficients and 
both the nodal points and probability masses are separately estimated for each coefficient (see, for example, Bastin 
et al., 2010). However, this general non-parametric approach is seldom used because consistency is achieved only in 
very large samples and parameter estimates generally have high variance (Mittelhammer and Judge, 2011).  On the 
other hand, a continuous distribution offers substantial efficiency in the number of mixing parameters. In this regard, 
the paper by Bhat and Sidharthan (2012) is of particular note because it enables a non-normal (skew) continuous 
distribution to be used. However, their approach still enforces a unimodal distribution for the coefficients. The finite 
discrete mixture of normals (FDMN) is a good hybrid semi-parametric approach that combines the flexibility of the 
discrete mixture distribution with the efficiency advantage of the continuous distributions. It is by far the most 
widely used semi-parametric approach in the statistical and econometric literature because of this good balance 
between flexibility and efficiency (see Geweke and Keane, 1999, Frühwirth-Schnatter, 2011, and Ferdous et al., 
2011).  
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second resulting when the multivariate normal distribution becomes degenerate within each 

latent class.  

Several earlier studies have included heterogeneity in the sensitivity to exogenous 

variables in the MDC context. Bhat et al. (2013) proposed an estimation approach for the MDCP 

model that allows taste variation through the inclusion of random parameters. They demonstrated 

the ability to recover the parameters based on a simulation experiment, using both cross-sectional 

and panel data, and applied the model to analyze recreational long-distance travel. On the same 

topic of recreational travel, Kuriyama et al. (2010) proposed a latent class KKT model based on 

the linear expenditure system with translated constant elasticity of substitution utility functions 

proposed by Hanemman (1978). Sobhani et al. (2013) and Wafa et al. (2015) use a latent class 

approach with the MDCEV kernel structure. In Sobhani et al. (2013), the authors propose an 

estimation approach combining the full information maximum likelihood and the expectation 

maximization approaches. The latent class MDCEV model is applied to study non-workers’ 

daily decisions regarding vehicle type and usage in conjunction with activity type and 

accompaniment choice decisions. Wafa et al. (2015) proposed a latent class MDCEV model to 

study the spatial transferability of activity-travel models. 

In this paper, we propose an FDMN version of the MDCP model. To our knowledge, this 

is the first such formulation and application of an MDCP model in the econometric literature. We 

also propose the use of Bhat’s (2011) maximum approximate composite marginal likelihood 

(MACML) inference approach for the estimation. This approach is computationally efficient and 

does not involve quasi-Monte Carlo simulation techniques of the type proposed in Bhat (2000) 

and Bhat (2001). The advantage of the MACML approach relative to simulation techniques is 

that it involves only univariate and bivariate cumulative normal distribution function evaluations 

in the likelihood function, regardless of the number of alternatives or segments in the latent 

classification. Using a 2012 New Zealand Domestic Travel Survey data set, the model is applied 

to analyze individual-level decisions regarding recreational destination locations and the number 

of trips to each destination. The results provide insights into the demographic and other factors 

that influence individuals’ preferences for different recreational destinations, and show that the 

FDMN MDCP model is able to identify different discrete segments of the sample, each one of 

them with different stochastic effects of the exogenous variables on destination choice (and the 

effects varying across the discrete segments). 
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2. METHODOLOGY 

2.1 Model Formulation 

Following Bhat (2008), consider a choice scenario where a consumer q (q = 1, 2,…, Q) 

belonging to a segment g (g = 1, 2,…, G) maximizes his/her utility subject to a binding 

constraint, as shown in Equation (1): 
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where the utility function )( qqU x , given that consumer q belongs to segment g, is quasi-concave, 

increasing and continuously differentiable; qx  is the consumption quantity (vector of dimension 

K×1 with elements qkx  so that 0qkx  for all k; k is an index for good k), and qgk , qgk , and 

qgk  are parameters associated with good k and consumer q, given that consumer q belongs to 

segment g.2 In the budget constraint, qE  is the total expenditure (or income) of consumer q, and 

qkp  is the unit price of good k as experienced by consumer q. Assume, for now, that there is no 

essential outside good, so that corner solutions (zero consumptions) are possible for all goods k 

(relaxing this assumption is straightforward and simplifies the analysis considerably). The 

parameter qgk  represents the baseline marginal utility for good k, given that the individual q
 

belongs to population segment g (i.e., qgk  is the marginal utility of good k at the point of no 

consumption of good k, given that q belongs to segment g). The parameter qgk  allows a corner 

solution for good k and also serves as a translation-based satiation parameter, while qgk  serves 

as an exponential-based satiation parameter. As discussed in detail in Bhat (2008), only one 

parameter of the set qgk  or qgk  will be empirically identified, so the analyst will have to 

estimate a  -profile (in which 0qgk ) or an  -profile (in which the qgk  terms are 

normalized to the value of one). Both these profiles can be estimated, and the one that provides a 
                                                 
2 Though we will refer to the alternatives for consumption as “goods” in this section, it is important to note that the 
consumption alternatives can also refer to consumption of different types of activities or, as in the empirical analysis 
of the current paper, to “consumption” of different destination regions for leisure trips.  
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better data fit may be selected. Also, for the  -profile, we will need kqgk  0 , and, for the  -

profile, we will need 1qgk k   . In the current paper, we will retain the general utility form of 

Equation (1) to keep the presentation general. 

In Equation (2) we introduce observed heterogeneity across individuals within segment g 

and stochasticity through the baseline marginal utility function qgk : 

exp( ),qgk qg qk  β z   (2) 

where qkz  is a D-dimensional vector of attributes that characterizes good k and the consumer q 

(including a constant for each good except one, to capture intrinsic preferences for each good 

relative to a base good); qgβ  is a consumer-specific vector of coefficients (of dimension D×1) 

that allows unobserved taste variation across all consumers q in segment g and allows different 

observed responsiveness across all consumers q based on different values of the elements of the 

vector qkz . In the current paper, we consider qgβ  to be a realization from a multivariate normal 

distribution: ~ ( , )qg D g gf Ωβ b . For future reference, we also write
 qg g qg  β b β , where 

~ ( , )qg D D gf 0 Ωβ .  

The optimal consumption vector qx  can be solved based on the constrained optimization 

problem of Equation (1) by forming the Lagrangian function and applying the KKT conditions, 

conditional on the individual belonging to segment g. The Lagrangian function for the problem is 

provided in Equation (3): 
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where qg  is a segment g-specific Lagrangian multiplier associated with the expenditure 

constraint. The KKT first-order conditions for the optimal consumption *
qkx , given that consumer 

q belongs to segment g, are as shown in Equation (4): 
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The optimal demand, conditional on individual q belonging to segment g, satisfies the 

above conditions and the budget constraint .
1

*
q

K

k
qkqk Exp 



 The budget constraint implies that 

only K–1 of the *
qkx  values need to be estimated. To accommodate this singularity, let qm  be, 

without loss of generality, the consumed good with the lowest value of k for the qth consumer 

(note that the consumer must consume at least one good given 0qE ). For this th
qm  good, 

* 0
qqmx  , which implies Equation (5) from the first set of KKT conditions in Equation (4): 

1*exp( )
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Substituting back in Equation (4) for the other goods k ( Kk ,...,2,1 ; qmk  ), and taking 

logarithms and simplifying, we may write the KKT conditions as Equation (6): 
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q qqgkm qgk qgmy y y  ; *
qgk qgk qg qky V   β z ; and 
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b z . 

The above conditions are conditional on individual q belonging to segment g. Within this 

context, two important identification considerations need to be noted (additional identifications 

considerations due to multiple segments will be noted later). First, a dummy variable (or 

constant) corresponding to one of the K goods should not be introduced, since only differences in 

the *
qgky  terms matter (this is similar to a standard discrete choice model). Similarly, consumer-

specific variables that do not vary across goods can be introduced only for (K–1) goods, with the 

remaining alternative being the base. Let the first alternative be the base for the dummy variable 

and for consumer-specific variables that do not vary across goods. That is, let 01 constantqz  (and 

correspondingly, the element in gb  corresponding to this first alternative’s constant is fixed at 0 

and the variance element contribution in gΩ  corresponding to this alternative’s constant is also 

fixed at 0; in addition, all covariance elements in gΩ  corresponding to this first alternative’s 

constant also are set to zero). Also, let 01 lqz  for all consumer-specific variables l that do not 
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vary across goods (and correspondingly, the elements in gb  for these variables for the first 

alternative are fixed at zero and so are all variances/covariances in gΩ  for these variables for the 

first alternative). 

 

2.2 Consumer Role in a Finite Mixture of Segments 

The derivation thus far is based on the notion that consumer q belongs to a single segment g. But 

now consider the case that consumer q belongs to a finite mixture of segments—that is, the 

actual assignment of consumer q to a specific segment is not observed, but we are able to 

attribute different probabilities ( 1, 2, , )qg g G    to consumer q belonging to different 

segments. We require that 0 1qg  , and 
1

1
G

qg
g




 . To enforce these restrictions, and 

following Bhat (1997), we use the logit link function shown in Equation (7): 
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where qw  is a vector of individual exogenous variables, and 01μ  serves as a vector 

identification condition. This probabilistic assignment to segments is tantamount to using a 

mixture of multivariate normal distributions for qβ : 



G

g
ggDqgq f

1

),;(,|)( ΩaΩa bbβ  , 

where ( .; , )D g gf Ωb  is the multivariate normal density function with mean vector gb  and 

covariance matrix gΩ . b  is a vector obtained by stacking the gb  vectors vertically, and Ω  is the 

matrix obtained by block-diagonally stacking the gΩ  matrices. Specifically, one may write 

),exp( qkqqk zβ  which, with the mixture of MVN distributions as above for qβ , leads to the 

segment-specific baseline utility functions of the form of Equation (2) with a probabilistic 

segment assignment qg . The mixture of normal distributions is a semi-parametric distribution 

that relaxes the normal distribution for qβ  commonly used in typical MDC models, while 

allowing the distribution itself to be a function of individual-level attributes through the qg  

terms. The mixture distribution effectively combines the flexibility of the latent class model with 

the parsimony of the continuous multivariate normal distribution assumption for qβ . In 
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particular, if each individual belongs to a single segment that is known a priori (that is, if qg = 1 

for a specific segment g and zero for all other segments, and if this is known a priori for each 

individual q) and gqkqgk   and ,gqkqgk   the model collapses to a random-coefficient 

MDCP model (or RC-MDCP in the rest of this paper) as in Bhat et al. (2013). On the other hand, 

if the multivariate normal distribution within each segment becomes degenerate (i.e., 0g Ω  for 

all g), then the model collapses to a latent class MDCP (LC-MDCP) model. 

The use of latent classes, as in the current paper, requires labeling restrictions for 

identifiability. In particular, the parameter space includes !G  subspaces, each associated with a 

different way of labeling the mixture components. To prevent the interchange of the mixture 

components, we impose the labeling restriction that the constants specific to the second 

alternative are increasing across the segments, i.e.: b11<b21<b31<…bG1 (b11 refers to coefficient 

on the dummy variable for the second alternative in the first segment, b21 refers to the coefficient 

on the dummy variable for the second alternative in the second segment, and so on until bG1 

refers to the coefficient on the dummy variable for the second alternative in the Gth segment).3 

To implement the labeling restriction, we parameterize the bg1 values as follows: 

)exp(1,11 ggg bb    for g=2,…,G. Such a labeling restriction is needed because the same 

model specification (and likelihood function value) results simply by interchanging the sequence 

in which the segments are numbered. Technically, therefore, multiple sets of parameters 

(corresponding to a swap of segment values) result in the same likelihood function, creating an 

identification problem. This identification problem is resolved through the imposition of the 

labeling restriction above so that the segments become non-interchangeable.4 Finally, an 

additional scale normalization needs to be imposed on gΩ  for one of the g segments if there is 

no price variation across goods for each consumer q (i.e., if qkpp qqk  and~ ). For 

instance, one can normalize the variance of the second alternative’s constant in the first segment 

                                                 
3 As clearly indicated earlier, the constant coefficients for the first alternative are set to zero in every segment g (g = 
1, 2, …, G) for identification. 
4 Of course, the labeling restriction discussed above, which we use in the simulation experiments in the current 
paper, is only one of several possible restrictions to identify the model, Thus, in our empirical analysis, where we do 
not use constants in the baseline utilities of the alternatives (for reasons discussed in the empirical section), we 
implement another version of the labeling restriction by requiring that the constant in the first segment in the 
segment membership model has a maintained value of zero, and there is a descending order of magnitudes of the 
constants for the other segments in the segment membership model. 
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( 1g  ) to the value of one. But, if there is price variation across even a subset of goods for a 

subset of consumers, there is no need for this additional scale normalization (see Bhat, 2008). 

 

2.3 Model Estimation 

If a  -profile is used, the parameter qgk  may be parameterized as )
~

exp( qkgaθ , where qka  is a 

vector of explanatory variables and gθ
~

 is a corresponding vector of parameters. On the other 

hand, if an  -profile is used, the parameter qgk  may be parameterized as )~exp(1 qkgaθ 


 (to 

maintain the restriction that 1qgk ) or as 
)~exp(1

1

qkgaθ



 (to maintain the stronger restrictions 

that 10  qgk ; this stronger restriction often helps create stability in estimation). 

Let )
~

,,
~

,
~

;,,,;,,,;,,,( 21212121  GGGG θθθμμμbbbθ  ΩΩΩ  if a  -profile is 

estimated and ),,,;,,,;,,,;,,,( 21212121  GGGG θθθμμμbbbθ





 ΩΩΩ  if an  -profile is 

estimated, with gΩ  representing the row vectorization of the upper diagonal elements of gΩ . To 

formulate the estimation procedure, we will use the following notation: ),;(. ΣηSf  for the 

multivariate normal density function of dimension S with mean vector η  and covariance matrix 

Σ ; Σω  for the diagonal matrix of standard deviations of Σ  (with its rth element being rω ,Σ ); 

);(. *ΣS  for the multivariate standard normal density function of dimension S and correlation 

matrix *Σ —such that 11  ΣΣ ΣωωΣ* , ),;(. ΣηSF  for the multivariate normal cumulative 

distribution function of dimension S with mean vector η  and covariance matrix Σ—and 

);(. *ΣS  for the multivariate standard normal cumulative distribution function of dimension S 

and correlation matrix .*Σ  

To develop the likelihood function, define qM  as an identity matrix of size K–1 with an 

extra column of “–1” values added at the th
qm  column. Also, stack qgky  and qgkV  into K×1 vectors

)',...,,( 21 qgKqgqgqg yyyy  and )',...,,( 21 qgKqgqgqg VVVV  respectively, and let 

),...,,( 21  qKqqq zzzz  be a K×D matrix of variable attributes. Then, we may write, in matrix 

notation, qgqqgqg βVy
~

z  and )(~ ,1
*

qgqgKqgqqg MVN ΨHM  yy , where qgqqg VMH   and
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qqgqqqg MzΩzMΨ  . Next, partition the vector *
qgy  into a sub-vector *

,
~

NCqgy  of length NCqL , ×1 

10( ,  KL NCq ) for the non-consumed goods, and another sub-vector *
,

~
Cqgy  of length CqL , ×1 

10( ,  KL Cq ) for the consumed goods ( 1,,  KLL CqNCq ). Let    







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 *
,

*
,

* ~,~~
CqgNCqgqg yyy , 

which may be obtained from *
qgy  as **~

qgqqg yy R , where qR  is a re-arrangement matrix of 

dimension (K–1)×(K–1) with zeros and ones. For example, consider a consumer q who chooses 

among five goods (K=5), and selects goods 2, 3, and 5 for consumption. Thus, 2qm , 2, NCqL  

(corresponding to the non-consumed goods 1 and 4), and 2, CqL  (corresponding to the 

consumed goods 3 and 5, with good 2 serving as the base good needed to take utility 

differentials). Then, the re-arrangement matrix qR  (for goods 1, 3, 4, and 5) is provided in 

Equation (8): 

,

1000

0010

0100

0001

,

,





































Cq

NCq

q

R

R
R    (8) 

where the upper sub-matrix NCq ,R  corresponds to the non-consumed goods (of dimension 

)1(,  KL NCq ) and the lower sub-matrix Cq ,R  corresponds to the consumed goods (of 

dimension )1(,  KL Cq ). Note also that *
,

*
,

~
qgNCqNCqg yy R  and *

,
*

,
~

qgCqCqg yy R . NCq ,R  has as 

many rows as the number of non-consumed alternatives and as many columns as the number of 

alternatives minus one (each column corresponds to an alternative, except the th
qm  alternative). 

Then, for each row, NCq ,R  has a value of “1” in one of the columns corresponding to an 

alternative that is not consumed, and the value of “0” everywhere else. A similar construction is 

involved in creating the Cq ,R  matrix. 

Consistent with the above re-arrangement, define qgqqg HRH ~  , qgNCqNCqg HRH ,,

~  , 

qgCqCqg HRH ,,

~  , and 










 


CqgCNCqg

CNCqgNCqg
qqgqqg

,,,

,,,
~~

~~
~

ΨΨ

ΨΨ
RΨRΨ , where 

NCqqgNCqNCqg ,,,

~
RΨRΨ  , CqqgCqCqg ,,,

~
RΨRΨ  , and CqqgNCqCNCqg ,,,,

~
RΨRΨ  . Then, the 



11 

likelihood function corresponding to the consumption quantity vector *xq  for consumer q may be 

obtained from the KKT conditions in Equation (6), provided as Equation (9): 

  ,
~

,
~

|,)det(
,

, ,,1



0

h

ΨH0J
NCq

Cq NCqqgqgLNCqKqgqg fL dhh   (9) 

where )det( qgJ  is the determinant of the Jacobian of the transformation from *
qgy  to the 

consumption quantities *xq  (see Bhat, 2008), as Equation (10) indicates: 

,
1

1
)det(

*

*






















































 
 q qq k qm

qk

qgk

qgkqk

k qgkqk

qgk
qg p

px

x CC 





J   (10) 

where qC  is the set of goods consumed by consumer q (including good qm ). 

Using the marginal and conditional distribution properties of the multivariate normal 

distribution, the above likelihood function can be written as shown in Equation (11): 

   ),),(()
~

),
~

(()det(

),;()
~

,
~

;()det(

*
,,

1
~

*
,,

1
~

1

1
,

~

,,,,

,,,,

,

,

,,,,

NCqgNCqgLCqgCqgL

L

s
sqg

NCqgNCqgLLCqgCqgLLqgqg

NCqgNCqCqgCq

Cq

Cqg

NCqNCqCqCq
FfL

ΨHωΨHωJ

ΨH0ΨH0J

ΨΨΨ
























 

  (11) 

where )
~

()
~

(
~~

,
1

,,,,, CqgCqgCNCqgNCqgNCqg HHH  ΨΨ


, 1
~,

1
~

*
,

,,

~~ 
CqgCqg

CqgCqg ΨΨ
ωΨωΨ ,

CNCqgCqgCNCqgNCqgNCqg ,,
1

,,,,,

~
)

~
(

~~
ΨΨΨΨΨ  


, 1

,
1*

,
,,


NCqgNCqg

NCqgNCqg ΨΨ
ωΨωΨ 


, and Ξω  represents 

the diagonal matrix of standard errors corresponding to matrix Ξ . 

Then, the likelihood function for observation q is: 

, )()(
1




G

g
qgqgq LL θθ    (12) 

and the likelihood function is then given as: 

. )()( 
q

qLL θθ    (13) 

The multivariate normal cumulative distribution (MVNCD) function in Equation (11) is 

of dimension NCqL , , which can have a dimensionality of up to (K–1). As indicated in Section 1, 

typical simulation-based methods to approximate this MVNCD function can become inaccurate 

and time-consuming as K increases. An alternative is to use the MACML approach (Bhat, 2011), 
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in which the multiple integrals are evaluated using a fast analytic approximation method.5 The 

MACML estimator is based solely on univariate and bivariate cumulative normal distribution 

evaluations, regardless of the dimensionality of integration, which considerably reduces 

computation time compared to other simulation techniques used to evaluate multidimensional 

integrals (see Bhat et al., 2013 for an extended simulation analysis of the ability of the MACML 

method to recover parameters in the simple MDCP model).  

One very important issue still needs to be dealt with: the positive definiteness of 

covariance matrices. The positive-definiteness of qgΨ
~

 in the likelihood function can be ensured 

by applying a Cholesky decomposition to the matrices g (g = 1, 2,…, G), and estimating these 

Cholesky-decomposed parameters.6 

 

3. SIMULATION EVALUATION 

The simulation exercises undertaken in this section examine the ability of the MACML estimator 

to recover parameters from finite samples in an FDMN MDCP model by generating simulated 

data sets with known underlying model parameters. To examine the robustness of the MACML 

approach when applied to different numbers of mixtures, we consider both two- and three-

                                                 
5 Note that in the current case, we use only the analytic approximation for the cumulative standard multivariate 
normal distribution embedded in the MACML; however, we will continue to refer to the approach as MACML for 
ease in presentation and also because the composite marginal likelihood (CML) inference approach subsumes the 
maximum likelihood (ML) inference approach used here as a special case. 
6 Previous research in latent segmentation (see, for example, Bhat, 1997 and Sobhani et al., 2013) has highlighted 
several estimation challenges in terms of stability and convergence. Most of these studies recommend the 
Expectation Maximization (EM) method to find good initial values to start the full information likelihood function 
iterations. However, the EM method also leads to long estimation times. In this paper, to obtain good start values as 
well as minimize estimation time, we implemented the following steps to estimate a model with S segments, with 
the parameters at the end of each step serving as the initial start values for the iterations associated with the 
subsequent step. In particular, we first estimated an MDCP model with only a single vector of constants in the 
baseline utilities of the alternatives (that is, we estimated a constants-only model as though there were only one 
latent segment). Second, we used the constants from the first step as initial values for the baseline utility constants  
in the first segment, made a random perturbation of these values by increasing or decreasing these values between 
5% to 10% for the baseline utility constants in the remaining S-1 segments, used a constants-only specification for 
the segment membership probabilities with the constant for the first segment constrained to zero, and the other 
constants perturbed from zero in a way that adheres to the labeling restriction as discussed at the top of Section 4.3, 
and estimated a latent segmentation MDCP model (with only constants and no random parameters). Third, we used 
the results of the previous step as a starting point and added exogenous variables to the segment membership model 
to get a good segment membership specification. Fourth, we introduced exogenous variables in the baseline utilities 
of the MDCP-specific models for each segment to obtain a good latent segmentation model simultaneously with a 
refined segment membership model specification. Finally, we estimated the FDMN version of the model, allowing 
randomness in the parameters. The entire process was also aided and speeded up by the fact that we coded our own 
analytic gradient function.  



13 

mixture models. In addition, we examine the effects of (a) assuming that coefficients are fixed 

and not stochastic within each segment (that is, using the LC-MDCP model), and (b) assuming 

normality of the response coefficient when non-normality is present and thus using a single 

segment when multiple segments are present (that is, using the RC-MDCP model). 

 

3.1 Experimental Design 

In the design, we consider the case with three alternatives. In each of the two- and three-mixture 

cases, we consider two independent variables in the qkz  vector in the baseline utility for each 

alternative. That is, consider the following for the qkz  vectors: 

      ,,,1,0 and , ,,0,1  , ,,0,0 2,31,332,21,222,11,11 qqqqqqqqq zzzzzz  zzz  (14) 

where the last two variables in each qkz  (k=1,2,3) correspond to the two independent variables. 

The first variable in 2qz  is the constant specific to alternative 2, while the second variable in 3qz   

is the constant specific to alternative 3. The values of the two independent variables for each 

alternative (i.e., 1,1qz  and 2,1qz  for the first alternative; 1,2qz  and 2,2qz  for the second alternative; 

and 1,3qz  and 2,3qz  for the third alternative) are drawn from standard univariate normal 

distributions. In particular, a synthetic sample of 5000 realizations of the exogenous variables is 

generated corresponding to Q=5000 consumers. Additionally, we generate budget amounts qE  

),...,2,1( Qq   from a univariate normal distribution with a mean of 150, and truncated between 

the values of 100 and 200 (the prices of all goods are fixed at the value of one across all 

consumers). Once generated, the independent variable values and the total budget are held fixed 

in the rest of the simulation exercise.  

 

3.1.1 Two-Segment Case 

For the coefficients on the qkz  variables, we assume hybrid coefficients as follows: 

),,;(),;()( 22421141 ΩΩ babaaβ ffq                                                                   (15) 

where )5.0,6.0,0.2,0.1()
~

,,,( 1312111  bbbbb  for segment 1, and 

)5.0,2.0,5.1,0.2()
~

,,,( 2322212  bbbbb  for segment 2. Note that the dimension of b1 and b2 are 

the same as zq1, zq2, and zq3 (all of these are 4×1 vectors). That is, b11 is the mean constant 
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coefficient on the second alternative in segment 1, b12 is the mean constant coefficient on the 

third alternative in segment 1, b13 is the mean coefficient on the first independent variable in the 

first segment, and b
~

 is the mean coefficient on the second independent variable in the first 

segment. b21 through b23 are similar to b11 through b13 but for the second segment, and we 

maintain the same coefficient b
~

 in both segments for the second independent variable. For the 

covariance matrices 1  and 2  of the coefficients we assume:  


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
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
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As indicated earlier, the positive definiteness of the 1  and 2  matrices is ensured in the 

estimations by reparameterizing the likelihood function in terms of the lower Cholesky factor 

matrices 
1ΩL  and 

2ΩL , and estimating the associated Cholesky matrix parameters. As should be 

obvious from the specification of 1  and 2 , we assume that the coefficient on the second 

independent variable (i.e., b
~

) is fixed in the simulations (note the zero entries in the last row and 

column of 1  and 2 ).7 Then, in the two-mixture case, there are 11 Cholesky parameters to be 

estimated: 5.02,1
Ωl , 866.03,1

Ωl , 7.04,1
Ωl , 519.05,1

Ωl , 374.06,1
Ωl , 9.01,2

Ωl , 

6.02,2
Ωl , 8.03,2

Ωl , 8.04,2
Ωl , 4.05,2

Ωl , and 3.06,2
Ωl . 

The weight mixture values 1  and 2  are set by specifying the vector qw  to include a 

constant and an independent variable 1qw  drawn from a standard univariate normal distribution. 

That is,   1,1 qq ww . Also we specify   0,01μ  for normalization and   1.0,6.02μ  for the 

                                                 
7 We use the general presentation convention that the lower Cholesky matrix of a covariance matrix with a 
row/column with all zero values (that is, corresponding to a fixed parameter) is obtained by stripping out that 
row/column from the covariance matrix, obtaining the lower Cholesky matrix for the remaining sub-matrix, and then 
adding a row/column of zero values to the resulting lower Cholesky matrix. 
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second segment. Finally, we use a  -profile in our estimations, and set the satiations parameters 

for all three alternatives to 1 in both segments. That is, 1131211    for the first segment, 

and 1232221    for the second segment.  

 Overall, the parameters to be estimated in the two-mixture case include the following: 

b11=1, b12=2, b13=0.6, b21=2, b22=1.5, b23=0.2, b
~

=0.5, 5.02,1
Ωl , 866.03,1

Ωl , 7.04,1
Ωl , 

519.05,1
Ωl , 374.06,1

Ωl , 9.01,2
Ωl , 6.02,2

Ωl , 8.03,2
Ωl , 8.04,2

Ωl , 4.05,2
Ωl , and 

3.06,2
Ωl , 6.021  , 1.022  , 111  , 112  , 113  , 121  , 122  , and 123  . 

 

3.1.2 Three-Segment Case 

In this case, we assume the hybrid coefficients as follows: 

),,;(),;(),;()( 334
*
3224

*
2114

*
1

*** ΩΩΩ *** bababaaβ fffq                                     (16) 

where 11 bb*  , 22 bb*  , and )5.0,0.2,0.1,0.3(3 *b , 1 
 , 2 

 , and 
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000.15.0

0000.2

0000

081.11.12.1

01.125.10.1

02.10.10.4

33

*
3 ΩΩ LL . 

The mixture weights *
1 , *

2 , and *
3  are set by specifying 1

*
1 μμ  , 2

*
2 μμ  , and 

  0,4.03μ . Then, the parameters to be estimated in this three-mixture case include: 1*
11 b , 

2*
12 b , 6.0*

13 b , 2*
21 b , 5.1*

22 b , 2.0*
23 b , 2*

31 b , 5.0*
32 b , 1.0*

33 b , 5.0
~* b , 5.02,

*
1 Ωl , 

866.03,
*

1 Ωl , 7.04,
*

1 Ωl , 519.05,
*

1 Ωl , 374.06,
*

1 Ωl , 9.01,
*

2 Ωl , 6.02,
*

2 Ωl , 8.03,
*

2 Ωl , 

8.04,
*

2 Ωl , 4.05,
*

2 Ωl , 3.06,
*

2 Ωl , 21,
*

3 Ωl , 5.02,
*

3 Ωl , 0.13,
*

3 Ωl , 6.04,
*

3 Ωl , 8.05,
*

3 Ωl

,  9.06,
*

3 Ωl , 6.0*
21  , 1.0*

22  , 4.0*
31  , 0.0*

32   1*
11  , 1*

12  , 1*
13  , 1*

21  , 1*
22 

, 1*
23  , 1*

31  , 1*
32  , 1*

33  . 
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3.1.3 Data Generation 

Using the design presented in the previous sections, we generate the consumption quantity vector 

*xq  for each individual using the forecasting algorithm proposed by Pinjari and Bhat (2011). The 

above data generation process is undertaken 100 times with different realizations of the qβ  

vector to generate 100 different data sets each for the two- and three-mixture cases.  

We estimate two additional models on each of the 100 generated data sets for each of the 

two- and three-mixture cases. The first model ignores random coefficients on the independent 

variables in each mixture (latent segment), allowing random coefficients only on the constants. 

This corresponds to the Latent Class-MCDP (or LC-MDCP) model. Thus, the only Cholesky 

parameters estimated for the two-mixture case are 5.02,1
Ωl , 866.03,1

Ωl , 9.01,2
Ωl , 

6.02,2
Ωl , and 8.03,2

Ωl . All other Cholesky parameters are effectively held to the value of 

zero. In Table 2b, for the LC-MDCP model, the only Cholesky parameters estimated are 

5.02,
*

1 Ωl , 866.03,
*

1 Ωl ,  9.01,
*

2 Ωl , 6.02,
*

2 Ωl , 8.03,
*

2 Ωl , 21,
*

3 Ωl , 5.02,
*

3 Ωl , and 

0.13,
*

3 Ωl .  

The second model assumes away non-normality by using a single segment for the entire 

sample (that is, assumes that 21  in the two-mixture case, and *
21  and *

31  in the three-segments 

case, all go to the value of ) . This is the traditional normally-distributed random-coefficients 

MDCP (or RC-MDCP) model. Also, in this case 9.01,2
Ωl  in the two-segment case, and 

9.01,
*

2 Ωl  and 21,
*

3 Ωl  in the three-segment case, are not estimable and fixed at 1.0. 

Additionally, in the two segment case, the following constraints are imposed: b11= b21, b12= b22, 

b13= b23, 2,2, 21 ΩΩ ll  , 3,3, 21 ΩΩ ll  , 4,4, 21 ΩΩ ll  , 5,5, 21 ΩΩ ll  , 6,6, 21 ΩΩ ll  , ,2111   , ,2212   and 

.2313    In the three-segment case, the following constraints are imposed: *
31

*
21

*
11 bbb  , 

*
32

*
22

*
12 bbb  , *

33
*
23

*
13 bbb  , ,2,

*
2,

*
2,

*
321 ΩΩΩ lll  ,3,

*
3,

*
3,

*
321 ΩΩΩ lll  ,4,

*
4,

*
4,

*
321 ΩΩΩ lll 

,5,
*

5,
*

5,
*

321 ΩΩΩ lll  ,6,
*

6,
*

6,
*

321 ΩΩΩ lll  ,*
31

*
21

*
11   ,*

32
*
22

*
12    and .*

33
*
23

*
13    

We make the comparison between the proposed FDMN-MDCP model and the two 

restrictive formulations above (that is, the LC-MDCP and the RC-MDCP based on the ability to 

accurately recover model parameters as well as usual nested likelihood ratio tests).  
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The analytic approximation embedded in the MACML estimator is applied to two of the 

datasets 10 times with different permutations to obtain the approximation error. The 

approximation error is negligible, so only one set of permutations for computing the 

approximation will be considered in each of the 100 datasets. The performance of the MACML 

inference approach in estimating the parameters of the MDCP model and their standard errors is 

evaluated as follows: 

(1) Estimate the parameters using the analytic approximation in the MACML for each data set s. 

Estimate the standard errors using the Godambe (sandwich) estimator.  

(2) Compute the mean estimate for each model parameter across the data sets to obtain a mean 

estimate. Compute the absolute percentage (finite sample) bias (APB) of the estimator as: 

.100
 valuetrue

 valuetrue-estimate mean
(%) APB 8 

(3) Compute the standard deviation for each model parameter across the data sets, and label this 

as the finite sample standard error or FSSE (essentially, this is the empirical standard 

error). 

(4) Compute the median standard error for each model parameter across the data sets and label 

this as the asymptotic standard error or ASE (essentially, this is the standard error of the 

distribution of the estimator as the sample size increases). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute the APB associated 

with the ASE of the estimator as: 

100
FSSE

FSSE-ASE
(%) APBASE  

 

3.2 Simulation Results 

3.2.1 Recoverability of Parameters in the MDCP with the Mixture Model 

Tables 1a and 1b present the results for the simulation. Table 1a corresponds to the two-segment 

case, while Table 1b corresponds to the three-segment case. The second column presents the true 

values used in generating the data samples. The third column labeled “Parameter Estimates” 

provides the mean value (across the data sets) of each parameter as well as the corresponding 
                                                 
8 In case a true parameter value is zero, the APB is computed by taking the difference of the mean estimate from the 
true value (= 0), dividing this difference by the value of 1 in the denominator, and multiplying by 100. 
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APB measure, while the fourth broad column labeled “Standard Error Estimates” provides the 

ASE, FSSE, and the APBASE values for the parameter standard errors.  

The APB values for the parameter estimates (third column) show that the MACML 

method does very well in recovering the parameters. The overall mean APB value across all 

parameters is 3.2% in the two-segment case (see the last row of the column labeled “APB” in 

Table 1a). The APB values are in general higher for the three-segment case (Table 1b), with an 

overall mean value of 6.4% across all parameters, probably due to the many additional 

parameters that have to be estimated relative to the two-segment model. In general, across the 

parameters, the APB values are relatively high for the γ satiation parameters in both the two- and 

three-segment cases. The satiation parameters are an important source of non-linearity in the 

overall utility function (see Equation 1), and make the likelihood surface more difficult to track 

computationally. The APB values of the µ parameters are also relatively high in both cases (two 

and three segments) relative to the APB values of the rest of the parameters. These µ parameters 

appear in the likelihood function through the mixture (π) probabilities, and it is well established 

in the literature (see, for example, Sobhani et al., 2013) that these mixture probabilities are 

difficult to pin down because the likelihood surface can be relatively flat for a number of 

different combinations of the mixture probabilities near the likelihood optimal point.  

The finite sample standard errors and the asymptotic standard errors (in the fourth broad 

column of Tables 1a and 1b) are close; the average absolute difference is 0.007 and 0.013 for the 

two- and three-segment cases, respectively. The mean APBASE value across all parameters is 

7.8% for the two-segment case and 8.7% for the three-segment case. In both the two- and three-

segment cases, the finite sample standard error estimates are generally higher (as a percentage of 

the mean estimates) for the γ and µ parameters relative to other sets of parameters, reinforcing 

the finding earlier that the γ and µ parameters are more difficult to recover than other parameters. 

Some elements of the Cholesky matrix also are difficult to pin down, again because the Cholesky 

elements enter the likelihood function in a very non-linear fashion as part of the evaluation of the 

cumulative multivariate normal density and distribution functions.  

 Overall, the MACML inference approach does well in accurately and precisely 

recovering parameters in both the two-segment and three-segment FDMN-MDCP model. The 

reported model estimation times are based on scaling to a desktop computer with an Intel(R) 
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Pentium(R) D CPU@3.20GHz processor and 4GB of RAM. The statistical software GAUSS 

was used for all the estimations reported in this paper. 

 

3.2.2 Comparison between the Proposed Model and More Restrictive MDCP Models 

Tables 2a and 2b present the results for the simulation exercise focusing on the comparison 

between the proposed FDMN MDCP model and two other, more restrictive versions of the 

model: the LC-MDCP and the RC-MDCP models. Table 2a corresponds to the two-segment 

case, while Table 2b corresponds to the three-segment case. The APB values of the parameters 

are in general higher in both cases (two and three segments) and in both alternative models 

relative to the APB values of the parameters in the original model (Tables 1a and 1b). In the two-

segment model, the overall mean APB values across parameters are 28.5% and 26.0% for the 

LC-MDCP and RC-MDCP models, respectively—significantly higher in comparison with the 

mean APB value of 3.2% in the proposed model. The difference is even higher in the three-

segment model with the overall mean APB values across parameters being 30.8% and 82.9% for 

the LC-MDCP and RC-MDCP models, respectively, relative to the overall mean APB value of 

6.4% in the original model. The superior performance of the FDMN-MDCP model is also 

evidenced in the higher log-likelihood value, on average, for the FDMN-MDCP model across the 

100 estimations (on the 100 data sets). In addition, for each of the 100 data sets, a likelihood 

ratio test comparing the FDMN-MDCP model with the two other models clearly rejects the other 

two model in favor of the FDMN-MDCP model (see last row of Tables 2a and 2b).   

 

4. AN APPLICATION 

In this paper, we demonstrate an application of the proposed model to analyze individual-level 

decisions regarding recreational destination locations and the number of trips to each destination, 

using data drawn from the 2012 New Zealand Domestic Travel Survey (DTS). 

 

4.1 Background 

Tourism has been an important contributor to New Zealand’s economy, thanks to the natural and 

beautiful landscape of the compact island country that also offers an extensive coastline for 

trekking, swimming, fishing, other water-based activities, and sports. In addition, New Zealand 

also boasts of some excellent wine factories, offers volcanic/geothermal excursion opportunities, 
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and its forests and pristine landscape have made it a much sought-after location for mainstream 

Hollywood movies (for example, the Fiordland and Southern Lakes in the southern part of New 

Zealand were the locations for the mythical Middle Earth in the "Lord of the Rings" trilogy). 

Overall, tourism contributes 9% of New Zealand’s gross domestic product and is also an 

important source of employment; 10% of New Zealanders work in the tourism industry (see New 

Zealand Tourism Strategy 2015).  

Although the international popularity of New Zealand has increased enormously in the 

past few years, domestic tourism continues to remain a significant source of income for the 

tourism industry. According to the New Zealand Tourism Industry Association (TIA, 2012), 

domestic travelers (New Zealand residents traveling within New Zealand) accounted for about 

57% of New Zealand’s total tourism industry spend of $23 billion in 2012 (see Statistics New 

Zealand, 2013). The substantial amount of domestic tourism may be attributed to increased 

marketing efforts of leisure activity opportunities within the island nation and more control of the 

leisure vacation experience through on-line sites. However, it is also a result of a general trend 

across all countries around the globe of an increasingly compact geographic footprint of leisure 

travel, spurred by a shift from the traditional long period vacations undertaken during holidays or 

over the summer to short period leisure travel built around the work weeks (see, for example, 

White, 2011 and LaMondia and Bhat, 2012). This shift itself may be traced to easier schedule 

coordination opportunities for short duration leisure pursuits around work weeks, especially for 

the increasing number of families with multiple working individuals with school-going children.  

The growing amount of short distance leisure trips, mostly undertaken using the personal 

auto mode, has led to increased attention on this leisure travel market among urban 

transportation planners because of the increased weekend day traffic on city streets and between 

cities in close proximity, and the concomitant effects on traffic congestion and air quality. 

Understanding these travel flow patterns can help planning and policy efforts to reduce the 

negative externalities of such travel. At the same time, unraveling the “push and pull’ factors 

associated with individual and household leisure activity decisions helps cities and regions 

position themselves as unique and even exotic destinations, with an eye on generating jobs and 

revenue. This confluence of interest on leisure travel from the transportation and tourism 

domains has led to many studies in this space in the past decade, with a particular emphasis on 

destination choice for leisure pursuits. While the early literature in the area considered leisure 
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destination choices as repeated isolated (and independent) decision events for each leisure trip, 

the more recent literature has moved toward the more realistic representation of destination 

choices as inter-related decisions for multiple leisure trips over a longer-term period of a month 

or even a year. Examples of the latter string of multiple discrete-continuous (MDC) studies (with 

the discrete component being the choice of destination region, and the continuous component 

being the number of trips to each chosen destination region) include Kuriyama et al. (2010), 

(2011), Van Nostrand et al. (2013), von Haefen (2007), Whitehead et al. (2010), LaMondia et al. 

(2010), and Bhat et al. (2013). These studies explicitly accommodate variety-seeking and loyalty 

behavior by considering satiation effects based on Iso-Ahola’s (1983) theory of vacation 

participation in which the individual/family balances needs for familiarity and novelty, within 

long period budget constraints, to provide an “optimally arousing experience” (see LaMondia et 

al., 2008 for a detailed discussion). In this paper, we contribute to leisure destination choice 

modeling using the proposed FDMN MDCP model. To our knowledge, this is the first such 

application in the leisure travel literature.9   

 

4.2 The Data 

The data for this study is derived from three sources. The primary source, as mentioned earlier, is 

the 2012 New Zealand DTS, which asked survey respondents (New Zealand’s residents) to 

provide information on all one-way trips 40 kilometers or longer from home, overnight trips 

from home, and flight or ferry trips from home made up to four weeks prior to the survey date 

(see Ministry of Business, Innovation and Employment, 2013). The survey was targeted at 

                                                 
9As with all the earlier MDC leisure studies, this study too focuses on the count of the number of times each leisure 
destination is visited. Thus, the “continuous” quantity used is actually a count variable, as opposed to a truly 
continuous measure as required by the theoretical model. But, as demonstrated by von Haefen and Phaneuf (2003), 
treating the integer count of trips as a continuous variable (within an MDC framework) does not lead to substantial 
bias in the results or the behavioral implications. This forms the basis for the use of the MDC framework in earlier 
studies, as well as in the current study, of leisure destination choices over a period of time. Similarly, as in earlier 
studies, the budget in the MDC formulation is the total number of leisure trips made over a given time period. This 
budget is “allocated” to the different possible discrete leisure destination locations. While a more reasonable 
approach would be to allocate a money budget, the operationalization of this alternative approach is extremely 
difficult because of the many assumptions that need to be made regarding monetary costs of participation per trip. 
Besides, a more practical problem is that expenditure information is rarely obtained in travel surveys. On the other 
hand, the number of trips to each destination is readily available from a sample of individuals in a survey, and the 
total trips (or “budget”) is readily obtained by aggregating across the possible destination locations. A related issue 
in the use of total trips as the “budget” is that the MDC models of leisure destination choice focus on the count of 
trips to each destination, given the total number of leisure trips during a specified period. In forecasting mode, the 
latter “budget quantity” is itself predicted in an earlier “trip generation” step, including the choice of making no 
leisure trips at all.  
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individuals and not households in that only one randomly selected individual (over the age of 15 

years) from each sampled household was interviewed.  Telephone interviewing was used for the 

DTS and household telephone numbers were randomly selected from the white pages. Interviews 

were carried out according to pre-specified quotas for age, sex and region of origin. The process 

of data collection took place continuously throughout the year. 

The survey obtained information on the resident city of the respondent, the city of 

destination for each trip, the primary reason of each trip, and the primary mode of transportation 

used to reach the destination. Additionally, the survey also obtained individual and household 

socio-demographic information. A second data source is a network level of service file that 

provided information on land travel distance and highway travel time between each city pair 

within New Zealand (see additional details in the next paragraph). The third data source is a 

disaggregate spatial land-cover characteristics data obtained from the 2012 Land Cover Database 

(LCDB) of the Land Resource Information System (LRIS) of New Zealand. The LCDB provides 

land-cover information at a 30 meters by 30 meter resolution. From this data, using a geographic 

information system based procedure, we developed total land area and acreage information for 

each 30x30 meter2 grid and by six broadly defined land-cover categories: urban area (including 

central business districts, commercial and industrial areas, urban parklands, urban dumps, and 

housing and transportation-related land cover), water area (including rivers, land/ponds, 

freshwater, and estuarine open water), wetland area (context-dependent combinations of areas 

such as herbaceous freshwater vegetation, flaxland, and saline vegetation), agricultural area 

(including vineyards and orchards, perennial crops, short rotation cropland, and grasslands), 

bare-land area, and forest area (pine forests, mangroves, deciduous hardwoods and other 

exotic/indigenous forest areas). 

The sample formation comprised several steps. First, we selected only leisure trips to 

primary destinations within New Zealand undertaken by a personal auto (personal auto trips 

comprise around 90% of all leisure domestic trips within New Zealand; see Ministry of Business, 

Innovation and Employment, 2008). Second, the leisure destination cities in New Zealand were 

mapped into one of 16 aggregate destination regions in the current analysis, as identified in 

Figure 1. Nine regions are in the North Island, while seven are in the South Island. This regional 

classification scheme is the same as that used by the Department of Tourism of New Zealand for 

its marketing campaigns, and is also the commonly used geo-political partitioning of the country. 
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Third, the total number of trips made by each individual to each region was obtained by 

appropriate aggregation across trips to cities within each region, and the individual-level trip 

budget is obtained as the total number of trips of the individual across all regions during the four 

week period. Fourth, we identified a centroidal city for each of the 16 destination regions, based 

on the city that attracted the most travelers within each region, and converted the city-to-city 

land-based travel distance and land-based travel time data to corresponding residence city-to-

destination region skims. But travel from one region in one island to another region in another 

island by auto is possible only through the use of a ferry service (that transports vehicles too) 

across the Cook Strait between Wellington in the North (located in the Wellington region) and 

Picton in the South (located in the Marlborough region). On the other hand, the land-based travel 

time between two regions in different islands from earlier includes only the travel time from the 

origin point to one of the two ferry terminals plus the travel time from the other ferry terminal to 

the destination region. Thus, the total travel time between two regions in different islands should 

include the 3 hour 15 minute cruise (including ferry terminal times) between the north and south 

islands.  At the end of this step, we obtain the land-based travel distance and the total travel time 

for each residence city-destination region pairing. Fifth, the travel cost skims were computed as a 

function of the respondent’s reported household income, the estimated cost of vehicle fuel on 

land, the ferry cost if a ferry crossing is involved, and the land-based distance and total travel 

time skims (obtained in the previous step) between the respondent’s residence city and the 

centroidal city of each destination region. To calculate the travel cost, we followed the standard 

approach of valuing travel time at a fixed proportion of one-half of the wage rate (see Hanemann 

et al., 2004 for a detailed discussion). Specifically, the travel cost was computed as: 

Cost (in NZ$) = 2 * (one-way land travel distance in miles * fuel cost per mile  + one-way 

total travel time in hours * (0.5 * hourly wage)) + round-trip ferry cost (as applicable).  

The fuel cost per mile is computed at NZ$0.149 per mile based on a fuel cost of NZ$1.75 per 

liter and a rather high vehicle efficiency factor of 5.3 liters for 100 km (5.3 liters for 62.1 miles 

or about 44 miles per gallon), given the long distance nature of trips under consideration. The 

round-trip ferry cost is NZ$145. Sixth, the grid-based land-cover data were translated to a 

destination region-based land-cover data by suitable aggregation over cells within each 

destination region. Seventh, individual and household socio-demographic, as well as land cover 

data by region, were appended to the long distance travel records.  
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The final data sample used in the estimation included 3508 individuals. Table 3 provides 

the distribution of these individuals by the number of leisure trips made during the four week 

period before they were surveyed and by the number of distinct leisure destination regions 

visited. Although a sizeable fraction (72.3%) of the individuals in the sample make only one trip, 

a non-insignificant percentage of individuals (27.7%) make more than one trip. Most of the 

individuals who undertake more than one trip during the survey period prefer to travel to 

multiple destinations (see the second row and beyond in Table 3). For example, 53.3% of 

individuals making two trips during the survey period visit more than one distinct destination 

region, while 65% of individuals making three trips visit more than one distinct region. The 

corresponding numbers are 70.2% and 78.6% for individuals who make four and five or more 

trips, respectively, during the survey period. Clearly, this is a case of multiple discreteness for 

individuals who make more than one trip.  

Table 4 provides descriptive statistics for each of the 16 destination regions. The third 

broad column presents the mean and standard deviations for the travel impedance skim measures 

of total travel time, travel distance, and travel cost for each destination region (computed from 

the residence city-destination region skims developed as discussed earlier in this section). Not 

surprisingly, the travel impedance measures are the highest for the Northland region in the North 

Island (the northernmost region) and the Southland region in the South Island (the southernmost 

region). As expected, the impedance measures decrease as one gets closer to the center of the 

country. Interestingly, the impedance measures are lower for the North Island regions compared 

to the South Island regions. This is because of two-interrelated factors. First, the North Island is 

more populated relative to the South Island (the North Island’s population is about 3.2 million, 

while that of the South Island is about 1 million), which should result in more leisure trips 

generated from the North Island due to a sheer population size effect. Second, because of the 

compact nature of the North Island, there are more leisure trips generated per capita in the North 

than in the South, and most of these trips are destined to within the compact North Island. The 

net result is that, if one were to draw a horizontal “residential center of gravity” (RCG) line of 

tourists, it would go through the boundary of the Waikato and Manawaku-Wanganul (MW) 

regions in the North Island (see Figure 1). This is also evidenced in Table 4 in that the 

impedance measures are the smallest for the Waikato and MW regions, and increase as one goes 

farther away from the horizontal RCG line. Additionally, we should also note that, of the 3508 
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individuals in the sample, 2588 (73.7%) percent reside in the North Island, and 662 (18.9%) 

reside in the Waikato-MW regions. The fourth broad column in Table 4 provides the percentage 

of land in each region in each of the six land cover categories (the sum across all columns for 

each row add up to 100%). Of all the regions, Auckland has the highest percentage of urban 

land-cover, with Nelson and Wellington being the regions with the second and third highest 

urban land cover percentages. As we will see later, the high urban land cover is correlated with 

the intensity of tourist draw. In terms of wetland cover percentages, the highest are for Tasman, 

West Coast, Otago, and Southland. Nelson is the region with the highest forest land cover.  

Table 5 provides additional descriptive statistics of the area of each region and 

destination region characteristics. The third column of the table presents the area of each region. 

As can be observed from this column and also from Figure 1, Canterbury in the south island is 

the largest region by size across all regions, while Waikato and MW are the largest regions in the 

North Island. The fourth column shows the number (and the corresponding percentage) of 

individuals who visited each region at least once. The Waikato region is clearly the one 

patronized by the most number of individuals, but Auckland, Bay of Plenty, and Canterbury also 

draw quite a few individuals. However, to get a better picture of attractiveness, the fifth column 

normalizes the number of people visiting by the area of each region (to accommodate for the fact 

that there are likely to be size effects here; that is, the larger a region, the more likely it is to be a 

destination). This column shows that on a per unit area basis, Auckland is by far the most 

popular destination, followed by Wellington and Nelson. Interestingly, as indicated earlier, these 

are the three destinations with the highest percentages of urban land cover, and Nelson is the 

region with the highest forest cover. The Auckland region includes the famous urban tourist 

attraction of the City of Auckland as well as such attractions as the Tiritiri Matangi Islands, a 

haven for nature hikers who want to experience the rich flora and fauna of the region up close 

(especially of a host of endangered species of birds, each with a unique bird call pattern). The 

Wellington region, with Wellington City that serves as the capital of the North Island, is well 

known for Mt. Victoria (that provides a nice walk trail and panoramic views of the city and the 

Wellington harbor), massage and waxing boutiques in the Lower Hutt area also overlooking the 

Wellington harbor, and an interactive national museum of New Zealand culture and heritage. 

Finally, the Nelson region in the north of the South Island, the smallest of all the regions but also 

the sunniest in all of New Zealand, includes the city of Nelson. Nelson is renowned for its Maori 
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(indigenous Polynesian tribe of New Zealand) arts and craftsmanship, water sports and activities 

(the Nelson region has the second largest amount of land percentage covered by water, and is 

liberally sprinkled with freshwater springs, especially near Takaka), and hiking/biking trails in 

the Abel Tasman National Park and other pristine forest land. Also interesting to note is that 

Tasman, West Coast, Otago, and Southland are some of the regions with the lowest number of 

visiting individuals per unit area, and these regions all have a relatively high wetland cover 

percentage as identified earlier, suggesting an inverse relationship between wetland cover 

percentage and tourist draw (perhaps because there is little to do within wetlands). The sixth 

broad column presents statistics on the number of visits to a destination region among those who 

visited the destination region at least once. The mean and maximum values from this column 

suggest that Auckland, Waikato, Bay of Plenty, Wellington, Canterbury, and Otago have the 

most loyal following.  

 
4.3 Variable Specification and Model Formulation 

The number of destination region alternatives in the MDCP model is 16. Thus, rather than 

including 15 alternative-specific constants in the baseline preference and 16 region-specific 

satiation parameters (in addition to other explanatory variables) in each latent segment, we 

adopted an “unlabeled” MDCP specification in which the baseline preferences and satiations are 

captured through attributes of the individual regions. For identification in this unlabeled 

alternatives context, the constant for the first segment is constrained to zero, and the constants 

for other segments are constrained to be descending from the second segment forward. 

 

4.3.1 Baseline Preference Specification 

The first independent variable we used in the baseline preference (that is, as part of the qkz vector 

in Equation (2)) is the logarithm of the area of each region, to proxy for the number of elemental 

destination opportunities within each aggregate region (see Bhat et al., 1998). The expectation is 

that large regions are more likely to be chosen as a recreation destination based on a sheer 

“volume of opportunities” effect. The coefficient on this size variable may be viewed as an 

inclusive value characterizing the presence of common unobserved destination region attributes 

affecting the utility of elemental alternatives within each region. As in traditional discrete choice 

models, we expect this coefficient to be positive and less than one. If less than one, the 
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implication is that there are common unobserved region attributes that lead to higher sensitivity 

across elemental alternatives within a region than across different regions. The net effect is that 

there is an inelastic influence of increasing region size on the region’s baseline utility. That is, 

compared to the case when the coefficient is one, the rise in the baseline utility of a region due to 

an increase in the region’s size is much less when the coefficient is estimated to be less than one 

in magnitude (because of more redistribution of leisure trips across elemental destinations within 

the same region rather than across different regions).   

The next set of variables we considered are land-cover effects, captured by interacting the 

land-cover percentage by category in each destination region with the travel time from each 

individual’s residence city to the centroidal city of each destination region. We computed a land-

cover accessibility measure of the Hansen-type (Fotheringham, 1983) for individual q and land-

cover type i as presented by destination region k as ACqki=LCki/[f(TTqk)], where LCki is the 

percentage area in land-cover category i (i = urban, water, wetland, agricultural, bare-land, and 

forest) in destination region k, TTqk  is the travel time (in hours) from individual q’s residence 

city to the centroid of destination region k, and f(.) is a function.10 The accessibility measures 

proxy the intensity of opportunities for recreational participation specific to each land-use 

category in a destination region normalized by a measure of impedance (function of travel time) 

for individual q to reach those opportunities. In the empirical analysis, a host of functional forms 

can be tested for the travel time measure. In our specifications, we considered both a linear form, 

qkqk TTTTf )( , as well as a logarithmic form, ).ln()( qkqk TTTTf   The logarithmic form 

penalizes destination regions less for being far away from the residential location of the 

individual. In both cases, a positive coefficient on an accessibility measure implies that 

individuals are attracted toward proximal destination regions with a substantial percentage of  

area in the corresponding land use. Our expectation, based on the descriptive statistics, is a 

positive coefficient on the urban land cover accessibility variable, though things are less clear 

from the descriptive analysis regarding the nature of effects of other accessibility variables. 

Based on our specification tests, the linear form is the preferred functional form for )( qkTTf . 

                                                 
10 We do not introduce the land-cover percentages themselves directly in the baseline preference because these 
percentages do not vary across individuals in the sample. Thus, destination region land-cover percentages by 
themselves do not provide adequate variation to estimate parameters (because there are only 16 destination regions). 
But, by interacting these land cover percentages with individual-specific travel times to each region, we obtain rich 
variation across individuals in the resulting accessibility measures. 
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The land cover-based accessibility effects (which are specific to each land cover 

category) capture any preferences individuals have for specific types of activities that may be 

featured in each destination region (as manifested in the land-cover category percentages). 

However, these effects do not capture an overall diversity index for each destination region. That 

is, it is possible that some individuals may be drawn to destination regions that have a good 

diversity of activity participation opportunities as well as are relatively close by. We proxy this 

effect by constructing a diversity index of land-cover types for each destination region, based on 

generalizing a similar index proposed originally by Bhat and Gossen (2004). This land cover 

diversity index is computed as a fraction between 0 and 1 for each destination region. Regions 

with a value closer to one have a richer land-cover mix than regions with a value closer to zero. 

The actual form of the land-cover diversity index for destination region k is: 
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where LCki  is the percentage area in land-cover category i in destination region k (as earlier) and 

I=6 (that is, we have six land cover categories) in our empirical context. The functional form 

would assign the value of zero if a region’s land-cover is only in one category, and would assign 

a value of 1 if a region’s land-cover is equally split among the different land-cover categories. 

However, as in the case of the land-cover percentages, there is no variation in the diversity index 

for a region across individuals, and the only variation in the index is across the 16 destination 

regions. This is inadequate to estimate a parameter on the diversity index, and thus we introduce 

the diversity accessibility index by normalizing the diversity index by a function of travel time to 

obtain individual-specific diversity accessibility indices: ).(/ qkkqk TTfDDA  As earlier, we test 

both a linear form and a logarithmic form for the effect of travel time in the denominator of this 

expression. The best data fit results were again obtained consistently with the linear form. 

 Another variable considered in the specifications was the travel cost to each destination 

region, with the expectation that a higher cost would deter visiting the corresponding region. 

Again, both a simple linear form as well as a logarithmic form were tested for this cost effect, 

with the linear form winning out as the preferred one in our empirical tests. In addition, we 
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included a dummy variable for the presence of a ferry ride. This accommodates any positive 

leisure/relaxation value of the ferry ride itself, after accounting for the total travel time effect.  

A continuous random coefficient specification is considered on all of the above variables 

in the baseline preference for each discrete mixture (that is, each latent segment). 

Finally, there is one other important issue with regard to the baseline preference 

specification. As discussed earlier, we use an unlabeled system for the alternatives, which 

essentially means that we constrain the mean coefficients on the alternative specific constants to 

be zero in the baseline utility for each destination region alternative. That is, the elements of gb

(in the notation of Section 2.2) corresponding to the 15 alternative-specific dummy variables for 

each latent segment g in qkz  are set to zero. However, we allow random covariance about this 

mean of zero. That is, the 15 elements of qgβ
~

 corresponding to the alternative-specific constants 

are included with a covariance matrix. Assume that the random coefficients on the alternative-

specific constants (ASCs) are independent of the random coefficients on other independent 

variables. Let ASCg ,

~
β  be a vector that collects the random coefficients corresponding to the 15 

ASCs for each segment g. Then, the simplest specification for the covariance matrix of the 15 

ASCs (for each segment g) obtained as differences of the original 16 ASCs from the first ASC 

(corresponding to the Northland region) would be as below (which originates from a 

specification of independently and identically distributed (IID) random errors with a variance of 

0.5 for each of the original 16 ASCs): 
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However, there is likely to be spatial correlation across the utilities of the different regions 

because of similarity in unobserved attributes across proximally located regions. But, we have to 

assume that one region is not spatially correlated with all the other regions (because only 

differences in the baseline utilities matter). In our analysis, the first region (that is, the Northland 

region) will play this base role. We then accommodate spatial correlation across other regions 
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using a spatial autoregressive (SAR) error structure of order one for the random components of 

the ASCs of the other 15 regions as follows: 

),10(,
~~

,,,   ASCgASCgASCg εββ W    (19) 

where   is the spatial autoregressive coefficient, W  is a distance-based spatial weight matrix 

with elements 
kk

w 
corresponding to regions k and k  (with 0kkw  and 


 

k
kkw 1). With the 

specification above, and defining   ]matrix 1515[1
15  WIDENS  , where KIDEN  is the 

identity matrix of size K (K=15 in our case), we may then write: 

),(
~

and,
~

15,,, SSΛ0S  f~ASCgASCgASCg βεβ     (20) 

In the above expression, technically, we can allow the distribution of ASCg ,

~
β  to vary across 

segments g by allowing a general specification for Λ  that varies across segments (the only 

normalization requirement is that the first element for the first segment  be 1) and/or by allowing 

the spatial autoregressive coefficient to vary across segments. However, the first specification 

leads to proliferation in the number of parameters (especially given the number of alternatives), 

while the second one is not intuitive because there is no reason for the intensity of spatial 

correlation in unobserved attributes to vary across segments. Thus, from a pragmatic standpoint, 

we use the same simple covariance matrix across all segments for the ASCg ,

~
β  vector (as in 

Equation (18)). Doing so also allows a comparison of the magnitude of the mean of coefficients 

in the baseline preference across segments, as long as there are no substantial differences in the 

variance elements of the coefficients. A point to note in this discussion is that the expression in 

Equation (20) collapses to that of Equation (18) if there is no spatial correlation, as should be the 

case.  

 This leaves the specification of the weight matrix W. Several weight matrix 

specifications were considered in our empirical analysis to characterize the nature of the 

dynamics of the spatial dependence across regions. These included (1) a contiguity specification 

that generates spatial dependence between the destination region alternatives based on whether 

or not two regions are contiguous (we considered the Marlborough and Wellington regions as 

being contiguous because they are the ferry landing points for travel between the two islands), 

(2) the inverse of a continuous travel time specification where the time between regions is 



31 

obtained from the skims discussed earlier, and (3) the inverse of the square of the continuous 

distance specification. In addition, for all the three specifications above, we also examined a 

specification that confines the spatial correlation to only the regions within each island (with zero 

spatial correlation between regions in different islands). Overall, the best data fit results were 

obtained consistently with the inverse of the continuous distance specification, which is the one 

used in the results discussed in the next section. 

 

4.3.2 Satiation and Segmentation Specification 

In our estimations, we considered both a  -profile as well as an  -profile for introducing 

satiation. In all cases, the  -profile provided superior results, so we will only discuss the 

specification for the  -profile here. As discussed earlier, the parameter qgk  may be 

parameterized as )exp( qkgaθ , where qka  is a vector of explanatory variables and gθ  is a 

corresponding vector of parameters specific to segment g in the mixture model. It is the 

specification of the qka  vector that we discuss here. In addition to a constant, we considered all 

the other variables discussed in the previous section. We particularly examined the effect of 

wetland land-cover accessibility on satiation behavior, based on the suggestion from the 

descriptive statistics that a higher wetland cover percentage leads to higher satiation effects (less 

trips).  

All the variables associated with demographics characteristics were considered for 

characterizing different discrete segments (see Equation 7 earlier). These demographic variables 

included respondent age, respondent’s household income, respondent’s household size by 

number of adults (>18 years of age) and number of children (18 years or less), respondent’s 

household structure (single person, couple, nuclear family, single parent, multi-family 

household, and non-family household), and respondent gender. Of these, the respondent’s 

household structure provided a very good indication of the travel group, because almost all trips 

were made with family members in couple, nuclear family, single parent, and multi-family 

households. Also, in our specifications, we considered respondent gender only for single person, 

single parent, and non-family households, because the decision in other households is likely to be 

jointly made (and gender simply provides information on which respondent happened to be 

picked in the survey in these households, and should not provide any preference information). 
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All the segmentation variables were introduced as alternative-specific variables in the logit link 

function of Equation (7) with the first segment being the base.   

 

4.4 Model Estimation Results 

A number of different specifications were explored, with different sets of variables, different 

functional forms of variables, and different groupings. The final specification was based on 

having adequate observations in each category of categorical independent variables (such as for 

household structure), a systematic process of rejecting statistically insignificant effects, 

combining effects when they made sense and did not degrade fit substantially, and, of course, 

judgment and insights from earlier studies.  To identify the optimal value for the number of 

latent segments (G), we estimated the model for increasing values of G (G =1,2,3,4,...) until we 

reached a point where an additional segment did not significantly improve model fit. The 

evaluation of model fit was based on the Bayesian Information Criterion (BIC): 

).ln(5.0)(BIC NRL  θ 11 (21) 

The first term on the right side is the negative of the log-likelihood value at convergence; 

R is the number of parameters estimated and N is the number of observations (see Allenby, 1990, 

Bhat, 1997). As the number of segments, G, increases, the BIC value keeps declining till a point 

is reached where an increase in G results in an increase in the BIC value. Estimation is 

terminated at this point and the number of segments corresponding to the lowest value of BIC is 

considered the appropriate number for G. In our analysis, based on the Bayesian Information 

Criterion (BIC), the three-segment model was clearly the model with the best performance (the 

log-likelihood value at convergence for this model was -8,499.78 and, with 46 model parameters, 

the BIC was 8,687.52; the corresponding values for the model with one segment (that is, no 

                                                 
11 Many measures have been suggested in the literature to evaluate model fit, especially in the context of the number 
of segments in latent segmentation models. These include the Akaike Information Criterion (AIC), the BIC, and 
many variants of both of these (see Fonseca, 2010 for a listing and description of these information criteria). In 
general, the criteria based on the AIC tend to favor complex models with many segments as the sample size 
increases, leading to potential overfit. On the other hand, the criteria based on the BIC tend to favor simpler models, 
with an adjustment for sample size (such as the ln(N) appearing in Equation (21)), to avoid overfit. More simply 
speaking, the BIC-based measures demand a higher strength of evidence to add complexity than do the AIC-based 
measures, and thus the BIC-based measures favor more parsimonious models with fewer segments than do the AIC-
based measures (see Neath and Cavanaugh, 2012). In the context of latent segmentation models, where the number 
of parameters explodes as the number of segments increases, parsimony is a much desired property from an 
interpretation and simplicity perspective. Thus, most latent segment models adopt the BIC as the model selection 
criterion, as we also do in the current paper. 
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latent segmentation), two segments, and four segments were 8,872.21, 8,711.36, and 8,780.14, 

respectively.   

 The estimation results for the three-segment mixture MDCP model are presented in Table 

6. The first panel corresponds to the probabilistic assignment of individuals to each of the three 

segments (the first segment is the base segment). The second presents the parameter estimates on 

the independent variables in the baseline utility specifications of the MDCP model corresponding 

to each segment. The third provides the parameters in the satiation component. Each of these is 

discussed in turn in the next three sections.  

 

4.4.1 Assignment of Individuals to Discrete (Latent) Segments 

In the top panel of Table 6, the constants in the segmentation model contribute to the size of each 

segment and do not have any substantive interpretation. The other results in the top panel of 

Table 6 indicate that the second segment, relative to the other two segments, is more likely to 

consist of individuals with children (that is, the individuals are more likely to belong to nuclear 

or single parent households) and low-income individuals. This second segment also is less likely 

to comprise single person households relative to the first segment. The third segment comprises 

individuals who tend to be in couple households of middle age (48 years) or older, the least 

likely to be single person households, and less likely to be in the “lower than NZ$50,000” annual 

income range relative to the second segment, but more likely to be in this income range relative 

to the first segment. A more intuitive way to characterize the different segments is to estimate the 

percentages of individuals in each category of the demographic variables in each segment (see 

Bhat, 1997 for the formula to do so). The results are presented in Table 7. For example, the first 

numerical value in the table indicates that 60.2% of individuals in the first segment are younger 

than 48 years, while the corresponding percentages are 61.8% and 35.7% in the second and third 

segments, respectively. In the overall sample, 46.4% of individuals are younger than 48 years.  

The figures in Table 7 support our previous observations regarding segment characteristics. 

Based on the relative characterizations of the segments, we will refer to the first segment as the 

“high-flyer low family commitments” (HFLFC) segment, the second as the “low income 

parents” (LIP) segment, and the third as the “couple baby-boomer” (CBB) segment (most 

individuals over 48 years of age in the sample were born between 1943 and 1964 and represent 

the post-war baby-boom generation of New Zealand).  In terms of the relative sizes of the three 
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segments, this can also be estimated in a straightforward way by aggregating the individual 

segment-level probabilities (Equation 7) across all individuals. The sizes are estimated to be 

11.4%, 57.9% and 30.7% for the HFLFC, LIP, and CBB segments, indicating a domination of 

the LIP segment in the population.   

 

4.4.2 Baseline Utility Parameters 

Referring back to Table 6, the effect of size (see the second panel) in the baseline utility function 

is positive and less than one. We specified different size coefficients across the segments, but the 

coefficients were not statistically different and were constrained to be equal. This was also our 

theoretical expectation, because we saw no reason that the size coefficient (representing the 

magnitude of region-specific unobserved factors affecting all elemental opportunities within the 

region) should vary across segments. The coefficient is statistically different from one, indicating 

the inelastic effect of size growth on the baseline utility.  

The effect of the ferry dummy variable in the baseline utility is positive for the HFLFC 

and LIP segments, but not significant for the CBB segment. The absence of effect on the CBB 

segment may be a reflection of the relative lack of families with children in this segment, and the 

possibly intrinsic and positive “adventure” value of a ferry ride for families with children. The 

effect of travel cost on baseline utility is, as expected and on average, negative in all the 

segments. The LIP segment is the most cost-sensitive, followed by the CBB segment, in an 

inverse relationship of cost sensitivity to household income earnings of families across the 

segments. The results also show statistically significant heterogeneity (across individuals) in the 

responsiveness to cost within each latent segment, as manifested in the standard deviation 

estimates on the cost coefficient. The normal distribution assumption implies that some 

individuals do have a positive utility for cost, but the vast majority have a negative cost 

sensitivity. In particular, the mean and standard deviation estimates indicate that cost has a 

negative impact for 92% of individuals in the first and second segments, and for 96.5% of 

individuals in the final segment.  

The land cover accessibility measures reinforce the findings from our descriptive 

analysis. Specifically, regions with high urban land cover “pull” leisure trips with about equal 

intensity from all three segments, though there is heterogeneity in the magnitude of the “pull” 

within each segment (as indicated by the statistically significant standard deviations on the urban 



35 

land cover variable in Table 6). Cities clearly offer a much higher density of tourism 

opportunities from regional events and festivals during the year to gastronomic indulgence 

opportunities, art galleries, museums, theaters and shopping centers. The effect of forest land-

cover on baseline utility is also positive, suggesting a preference for destination regions with 

high forest land cover. This preference varies across the three discrete segments, with the 

HFLFC segment having the highest preference for forest-oriented leisure pursuits and the CBB 

having the lowest. The high preference of the first segment for regions with forest land cover is 

presumably a reflection of young, single individuals (with relatively little familial commitments) 

seeking adventurous hiking and bicycling trails through New Zealand’s rough and rugged forest 

terrain. On the other hand, the relatively older CBB segment group may not prefer such 

physically-intensive leisure pursuits to the extent that their younger counterparts do. Also, there 

is a clear and generic tendency across all segments to stay away from regions with high wetland 

land cover. This is not surprising, given that wetlands offer little attraction for tourism and, in 

New Zealand, are typically associated with negative externalities such as pollution, drainage 

problems, and presence of invasive plant species (see Peters and Clarkson, 2010). The effect of 

the agricultural land-cover accessibility varies across segments; while the individuals in the third 

segment are attracted to agricultural areas, the individuals in the first and second segments tend 

to avoid agricultural areas. This is perhaps an indication of couple baby-boomers (CBB) being 

drawn to activities such as visiting vineyards for a relaxed wine-tasting escapade, activities that 

may not interest individuals with children (the LIP segment) or may be considered too “docile” 

by young individuals with little family commitments (the HFLFC segment).   

The effects of the land-cover diversity accessibility index on the baseline function 

indicate that high-flying young individuals prefer regions with a good diversity of activities, 

while those in the LIP and CBB segments prefer regions with focused activities. Another 

interpretation is that those in the LIP and CBB segments are inclined  to pursue very specific 

types of leisure activities (such as perhaps park entertainment for the LIP segment and wine 

tasting trips for CBBs), and then select regions that are heavily invested in opportunities of that 

specific leisure type.  

Finally, the covariance estimate (not shown in Table 6) between the travel cost and urban 

accessibility random coefficients was 0.040 (t-statistic of 2.21), 0.035 (t-statistic of 2.28), and 

0.042 (t-statistic of 2.03) for segments one, two and three respectively. This suggests that 
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individuals who are less sensitive (more sensitive) to travel costs also prefer (dislike) urban 

destination zones. That is, individuals who prefer recreation pursuits based on man-made urban 

settings (amusement parks or leisure shopping complexes) appear not to mind spending 

additional time to get to their destinations, while those who prefer natural and pristine settings 

are the ones who would rather travel to close destinations to pursue their recreational interests. 

 

4.4.3 Satiation Effects 

These effects are presented toward the bottom panel of Table 6. As indicated earlier, the satiation 

parameter is parameterized as qgk = )
~

exp( qkgaθ , and the satiation coefficients in Table 6 are the 

gθ
~

 parameters for each segment g. A positive parameter on a variable implies that an increase in 

the variable has the effect of increasing the qgk  parameter and decreasing satiation (that is, 

increasing repeat trips of the individual to a destination region), while a negative parameter has 

the effect of decreasing the qgk  parameter and increasing satiation (that is, decreasing repeat 

trips of the same individual to a destination region).  

Everything else being equal, the constants indicate that satiation in the context of a 

destination region sets in fastest for the third CBB segment and slowest for the first HFLFC 

segment. That is, in general, individuals in the HFLFC segment are more willing to make repeat 

trips to a destination region than individuals in the LIP segment, and individuals in the LIP 

segment are more willing to make repeat trips to the same destination region than individuals in 

the CBB segment. The wetland land-cover accessibility measure has a negative effect in all 

segments, i.e., destinations with higher wetland land cover lead to a higher satiation effect (less 

repeat visits to such regions by the same individual) than destinations regions with a lower 

wetland land cover. This is not surprising, given the negative characteristics associated with 

wetland areas in New Zealand, Finally, among the satiation parameters, the effect of the land-

cover diversity accessibility index variable indicates that individuals in the first HFLFC segment 

get less satiated with (willing to make more repeat visits to) destination regions with a high 

diversity in activity type opportunities (as proxied by land cover percentages), while individuals 

in the third CBB segment get satiated very quickly with (are unlikely to make repeat visits to) 

destination regions with a high diversity.  
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4.4.4 Spatial Dependence 

The spatial autoregressive coefficient, as expected, is positive, of the order of 0.10, and is 

different from zero at about the 7% level of significance for a one-tailed test.  

  

4.4.5 Summary and Implications for Increasing Destination Competitiveness 

A number of summary observations may be made from the model. First, the presence of a ferry 

leg appears to increase the attractiveness of a destination region for young single individuals and 

young parents (individuals in the HFLFC and LIP segments), but has relatively little attractive 

value for older baby-boomers. Of course, this is after controlling for the total cost of travel, 

which itself does have a very significant negative impact on destination region choice (especially 

for the LIP segment). Second, regions with high urban land cover are in general very attractive as 

a leisure trip destination. This is also true of regions with good forest cover; such regions have 

the highest attractive value for individuals in the first HFLFC segment and the least attractive 

value for individuals in the CBB segment.  Third, regions with high wetland land cover lowers 

attractive value across the board, while regions with high agricultural land cover appeal 

substantially to middle-aged couples (individuals in the CBB segment) but “push away” young 

individuals in general and young parents in particular, presumably because agricultural lands in 

New Zealand correspond quite a bit to vineyards. Finally, the combined effects of the land-cover 

diversity index on the baseline and satiation function, as well as the constant coefficients in the 

satiation function, imply that individuals in the HFLFC segment place a premium on diversity of 

opportunities in terms of the types of activities offered by a destination region, and are much 

more willing to be loyal to a destination region that offers that diversity (if they make multiple 

leisure trips). On the other hand, the LIP and CBB segments are much less interested in diversity 

of activity type opportunities within a destination region, though they also look more for 

diversity in terms of destination regions visited in general. The individuals in the CBB group in 

particular are averse to repeat-visiting regions with high diversity of activity opportunities.  

The kinds of insights above offered by our proposed model can be valuable in branding 

and marketing campaigns. As a simple illustration, consider two of the most popular destination 

regions: Auckland and Nelson. Auckland has a higher diversity in activity opportunities as 

proxied by land-cover percentages (a diversity index of 0.38) than does Nelson (a diversity index 
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of 0.29) which is heavily invested in forest land cover. Our results suggest that these two regions 

should use different strategies in their marketing and branding, as we discuss below.  

Auckland should emphasize its “diversity uniqueness” when targeting the HFFLC group, 

perhaps by broadcasting customized media advertisements in high income neighborhoods all 

over New Zealand and having promotional flyers at bars and clubs where young singles spend 

quite a bit of time. This will serve Auckland well given that individuals in the HFFLC segment 

desire diversity and can be very loyal to regions that offer that diversity. While doing so, 

Auckland should also highlight its forest and urban land cover very specifically, because these 

will make the region more attractive in the perception map of individuals in the HFFLC group. 

At the same time, given the LIP and CBB segments are much larger in size, Auckland has to also 

target these segments appropriately. For the LIP and CBB groups, the strategy would be similar 

to the HFLFC group in its emphasis on urban and forest-related tourism opportunities. However, 

unlike promotions targeted at the HFLFC group, the Auckland promotion campaigns toward 

these two groups would do well not to speak about the diversity of types of activity 

opportunities, and retain a high intensity of coverage of the urban and forest-related tourism 

opportunities. For the CBB group, it would behoove Auckland campaigns to play up the 

vineyards and orchards for wine-tasting and consuming tours (Auckland, in addition to its 

diversity, has a large percentage of its land area invested in agricultural land-use).  

Nelson is mainly invested in forest land-cover, with substantial opportunities for 

adventurous pursuits in rough and rugged forest terrain. This should be the main focus of 

promotional campaigns in all three segments as opposed to any diversity campaigns. In the CBB 

segment, Nelson can play up its vineyards and wine-tasting tourism outlets. Another important 

marketing strategy for Nelson is to highlight its geographic proximity to the ferry landing in 

Picton, which is only a two-hour drive on the Queen Charlotte Drive that also happens to be one 

of the most picturesque drives in all of New Zealand. When promoting the region to the first 

HFLFC segment and the second LIP segment, Nelson should play up the ferry crossing 

experience, given that the ferry experience has a positive influence on destination region choice 

for the first two segments. Playing up the scenic experience also can temper negative travel time 

effects in general.  

Of course, in addition to targeting appropriate individuals for promoting current 

destination attributes, each region can also consider enhancing the accessibility to opportunities 
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located within the region. For instance, take the case of Waikato, and consider ways that Waikato 

can make itself more competitive. But before investing in changing the number and type of 

offerings, Waikato needs to undertake a cost-benefit analysis including an estimation of the 

additional tourism share that may be “pulled” to Waikato in response to such an investment. The 

proposed model can be used to provide information for such a cost-benefit analysis. Specifically, 

consider the case where Waikato realizes that it is not very much invested in urban activity 

opportunities, which, based on our model results, is a significant determinant of tourist “pull”.  

The model can then be used to evaluate the increase that may be expected in total tourist trip 

share to Waikato (including repeat trips) due to a 20% increase in its urban land cover (through 

additional urban activity opportunities). To do so, for each individual in the sample, we predict 

the number of trips attracted to Waikato in the base case and in the case of an increased urban 

land cover in the following steps: (1) for the base case, draw 500 realizations for all the 

stochastic terms in the utility function of Equation (1), (2) predict the number of trips to Waikato 

for each of the realizations using the prediction method of Pinjari and  Bhat (2011), (3) average 

the predicted trips across the 500 realizations to obtain the individual prediction of the number of 

trips to Waikato, and (4) for the scenario case, increase the urban land cover percentage by 20%, 

drawing away an equivalent amount from agricultural land-use, (5) redo steps (1), (2), and (3) 

using the scenario sample, keeping the same 500 realizations for all the stochastic terms as in the 

base case.  Then, from the individual-level predictions for the base and scenario cases, obtain the 

total Waikato trips in the two cases by aggregating across all individuals in the sample. Finally, 

we can obtain a pseudo-elasticity effect by taking the change in total trips to Waikato between 

the scenario and base cases as a percentage of the total trips to Waikato in the base case. This 

percentage turns out to be 16.1% (standard error of 1.7%) from the proposed model. As a point 

of reference, the corresponding percentage is estimated to be 13.3% (standard error of 1.2%) in 

the LC-MDCP model and 11.5% (standard error of 1.5%) in the RC-MDCP model.12 Clearly, 

there are important differences among the models in the policy predictions, with the LC-MDCP 

and RC-MDCP models under-predicting the effectiveness of an increase in urban opportunities 

relative to the proposed FDMN-MDCP model. As we will see next, given that the proposed 

                                                 
12 To be sure, in this part of the analysis, we did not just consider random coefficients on the variables in the 
baseline utility function, but also tested demographic variable interactions with the variables to obtain a RC-MDCP 
model that accommodates systematic heterogeneity (when found statistically significant) in the coefficients. This 
RC-MDCP specification is a much more appropriate “strawman” to compare with the proposed FDMN-MDCP 
model than a pure random coefficients specification that does not consider these interactions.  
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model fits the data much better than the other two models, the implication is that tourism policies 

to increase urban opportunities may be inappropriately discarded if the simpler LC-MDCP and 

RC-MDCP models were to be used. 

 

4.5 Data Fit Comparisons with the LC-MDCP and the RC-MDCP Models 

The difference in policy sensitivity results between the FDMN-MDCP, LC-MDCP, and RC-

MDCP models suggests the need to apply formal statistical tests to determine the structure that is 

most consistent with the data. In this section, we provide measures of fit for these models.  For 

the RC-MDCP model, as we already indicated in a footnote earlier, we consider both observed 

and unobserved heterogeneity in the “strawman” specification  

The LC-MDCP and the proposed model can be compared using the familiar likelihood 

ratio test, since the former is a restricted version of the latter with no continuous random 

heterogeneity in coefficients within each segment. For the test between the RC-MDCP and the 

proposed model, one can compute the adjusted likelihood ratio index with respect to the log-

likelihood at equal shares: 

)(

)ˆ(
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c

M
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 L 


θ , (22) 

where )ˆ(θ L  is the log-likelihood function at convergence, )(c L  is the log-likelihood for the 

naïve unsegmented model with only the size measure in the baseline function, only the constant 

in the satiation function, no spatial dependence, and IID errors across regions as in Equation 

(18), and M is the number of parameters estimated in the model minus two (that is, minus the 

single size coefficient in the baseline utility and the single satiation constant estimated in the 

naïve unsegmented model). To test the performance of the two non-nested models (i.e. the 

proposed FDMN-MDCP and RC-MDCP models) statistically, the non-nested adjusted likelihood 

ratio test may be used. This test determines if the adjusted likelihood ratio indices of two non-

nested models are significantly different. In particular, if the difference in the indices is 

  )( 2
1

2
2  , then the probability that this difference could have occurred by chance is no 

larger than  5.0
12 )]()(2[ MMc  L   in the asymptotic limit. A small value of the 

probability of chance occurrence indicates that the difference is statistically significant and that 

the model with the higher value of adjusted likelihood ratio index is to be preferred. 
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The likelihood ratio test (for the comparison of the LC-MDCP and FDMN-MDCP 

models) and non-nested adjusted likelihood ratio test (for the comparison of the RC-MDCP and 

FDMN-MDCP models) constitute disaggregate measures of fit that consider performance at the 

multivariate and disaggregate level of all combinations of regions, While the best data fit 

measures, these are not very intuitive. So, we also evaluate the performance of the three models 

intuitively and informally at an aggregate level. However, since there are too many multivariate 

combinations possible of leisure trip-making to the destination regions and it is impossible to 

provide fit statistics for all these combinations, we compare the aggregate marginal bivariate 

predictions (with the true sample values) for combinations of two of the most visited regions – 

Waikato and Auckland. Specifically, we focus on the percentage of individuals who, during the 

four-week survey period, visit Waikato but not Auckland, Auckland but not Waikato, both 

Auckland and Waikato, and neither of the two.  The prediction procedure is similar to the one 

used for undertaking the sensitivity analysis in the previous section, except that, for each 

individual, we compute the probability of visiting each of the four combinations of regions as the 

percentage of times in the 500 realizations that each of the combinations has a non-zero number 

of visits. The probabilities for each combination are added up across individuals to obtain the 

predicted number of individuals falling into each combination category and compared with the 

actual percentages using the mean absolute percentage error (MAPE) statistic.   

The results of the data fit comparisons are presented in Table 8. The first row provides 

the log-likelihood for the naïve unsegmented model (that is, the )(c L  value), which is, of 

course, the same across the three models. The second row indicates the superior performance of 

the proposed FDMN-MDCP model in terms of the convergent log-likelihood value, as does the 

adjusted likelihood ratio index in the fifth row (note that the small magnitude of this index is not 

surprising, given the multitude of different possible multivariate combinations). The sixth row 

formally shows the likelihood ratio test result of the comparison of the FDMN-MDCP model 

with the LC-MDCP model, indicating the clear dominance of the FDMN-MDCP data fit. The 

same result is obtained in the next row through a non-nested adjusted likelihood ratio test 

comparing the FDMN-MDCP model with the RC-MDCP model; the probability that the adjusted 

likelihood ratio index difference between these models could have occurred by chance is literally 

zero. Finally, the last panel of the table first shows the actual percentages of individuals falling in 

each combination of visiting/not visiting the Waikato and Auckland regions, followed by the 
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predicted percentages from the three different models. The MAPE values from the three models 

are provided in the last row of the table. The LC-MDCP models has a MAPE value that is about 

three times that of the FDMN-MDCP, while the RC-MDCP model has a MAPE that is about 3.5 

times that of the FDMN-MDCP.  

All the fit measures discussed thus far are based on model fit on the overall sample used 

in estimation. While taken together, these fit measures reveal the superiority of the proposed 

FDMN-MDCP model, there is still a small possibility that the better performance of our model is 

simply an artifact of overfitting and may not translate to predictive accuracy in other samples. To 

accommodate for this, we also evaluated the performance of the three models on various market 

segments of the estimation sample (such predictive fit tests are sometimes referred to as market 

segment prediction tests). The intent of using such predictive tests is to examine the performance 

of different models on sub-samples that do not correspond to the overall sample used in 

estimation. Effectively, the sub-samples serve a similar role as an out-of-sample for validation. 

The advantage of using the sub-sample approach rather than an out-of-sample approach to 

validation is that there is no reduction in the size of the sample for estimation. This is particularly 

an issue in models of the type estimated in this paper because of the need to use as much 

information as possible given the number of parameters to be estimated. If a model shows 

superior performance in the subsamples in addition to the overall estimation sample, it is 

indication that the model indeed provides a better data fit. To do so, we computed the mean 

absolute percentage error (MAPE) for the percentage of individuals predicted to visit the same 

four combinations of the two destinations as in Table 8 and for three segmentations of 

demographic variables: (1) income less than NZ$50,000 and income greater than NZ$50,000, (2) 

nuclear and non-nuclear households, and (3) age less than 48 years and age more than 48 years. 

The overall MAPE values for percentage of individuals predicted to visit the four destination 

combinations in the two income segments were 10.4% and 10.8% from the FDMN-MDCP 

model, 28.7% and 28.8% from the LC-MDCP model, and 36.1% and 36.3% from the RC-MDCP 

model. The corresponding values for the household structure segmentation were 10.7% and 

10.6% from the FDMN-MDCP model, 29.0% and 28.7% from the LC-MDCP model, and 36.2% 

and 35.3% from the RC-MDCP model, and for the age segmentation were 9.8% and 9.5% from 

the FDMN-MDCP model, 28.3% and 27.9% from the LC-MDCP model, and 36.0% and 35.1% 
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from the RC-MDCP model. All in all, the FDMN-MDCP model clearly outperforms the other 

two models even in such a predictive exercise. 

 

5. CONCLUSIONS 

This paper has proposed a new econometric formulation and a complete blueprint of an 

associated estimation method for a finite discrete mixture of normals version of the multiple 

discrete-continuous probit (or FDMN-MDCP) model. The model allows consumers to choose 

multiple alternatives at the same time, along with the continuous dimension of the amount of 

consumption, and captures heterogeneity in the response coefficients of the baseline utility 

function. This is a very general way of including heterogeneity in the sensitivity to exogenous 

variables in the multiple discrete-continuous context, with the normally distributed random 

parameters approach and the latent class approach constituting special cases. 

A simulation exercise is undertaken to evaluate the ability of the proposed approach to 

recover parameters from simulated datasets. The results from the experiments show that the 

proposed inference approach, which is computationally fast and straightforward to implement, 

does very well in recovering the true parameters used in the data generation. Also, the simulation 

results show that ignoring the continuous component of the mixing (as reflected in the LC-

MDCP model) or ignoring the discrete component of the mixing (as in the RC-MDCP model) 

when the true data is generated using an FDMN MDCP structure leads to substantial parameter 

bias. The average absolute percentage bias (APB) for the LC-MDCP model is about 28.5%, and 

for the RC-MDCP model is 26%, relative to the APB for the correct FDMN-MDCP model which 

is of the order of 3%. Clearly, the repercussion of imposing incorrect restrictions is very severe 

on parameter bias.   

The paper demonstrates the application of the proposed approach through a study of 

individuals’ recreational (i.e., long distance leisure trips of over 25 miles one-way) choice among 

alternative destination locations and the number of trips to each recreational destination location, 

using data drawn from the 2012 New Zealand Domestic Travel Survey (DTS). The Bayesian 

Information Criterion indicates that the preferred specification is a three-segment solution, with 

one segment loading on high flying low family commitment (HFLFC) individuals, the second on 

low income parents (LIP), and the third on couple baby-boomers (CBB). In a comparative 
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empirical assessment of the FDMN-MDCP with the simpler LC-MDCP and RC-MDCP models, 

the FDMN-MDCP came out clearly as the winner in terms of data fit.  

The results of the preferred three-segment solution showed heterogeneity (in the form of 

a continuous normal distribution) in sensitivity to cost and urban land cover within each latent 

segment, and differences (across the three latent segments) in the response to the presence of a 

ferry ride, travel cost, land cover accessibility measures, and the land cover diversity 

accessibility index. These differences, in combination with the socio-demographic characteristics 

of individuals in each segment, provide important information for effective targeting and 

strategic positioning to increase destination competitiveness. More generally, the FDMN-MDCP 

formulation appears to be a valuable methodology for marketing and positioning in markets that 

are characterized by multiple discreteness. Future research should focus on applying the FDMN-

MDCP formulation to other multiple discrete contexts. Also, while the application to recreational 

destination choice in this paper demonstrates the value of the formulation, future work should 

consider a much richer set of destination region attributes.  
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Table 1a. Evaluation of the ability to recover true parameters for the two-segment case 

Parameter 
True 
Value 

MACML Method 

Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 
Bias (APB) 

Asymptotic 
Standard Error 

(ASE) 

Finite Sample 
Standard Error 

(FSSE) 

Absolute Percentage 
Bias of Asymptotic 

Standard Error 
(APBASE) 

11b  1.000 1.063 6.3% 0.157 0.136 14.8% 

12b  2.000 1.997 0.2% 0.387 0.438 11.7% 

13b  0.600 0.586 2.4% 0.063 0.061 3.2% 

21b  2.000 1.901 4.9% 0.419 0.407 2.9% 

22b  1.500 1.503 0.2% 0.141 0.136 3.5% 

23b  0.200 0.196 2.2% 0.032 0.035 8.2% 

b
~

 0.500 0.500 0.0% 0.013 0.012 12.4% 

2,1Ω
l  0.500 0.476 4.7% 0.055 0.057 2.5% 

3,1Ωl  0.866 0.865 0.2% 0.040 0.044 9.6% 

4,1Ωl  0.700 0.666 4.9% 0.049 0.036 35.6% 

5,1Ωl  0.519 0.529 2.0% 0.051 0.049 3.0% 

6,1Ωl  0.374 0.378 1.0% 0.026 0.028 5.9% 

1,2Ωl  0.900 0.898 0.2% 0.023 0.021 10.7% 

2,2Ωl  0.600 0.598 0.4% 0.031 0.032 3.5% 

3,2Ωl  0.800 0.796 0.5% 0.021 0.020 4.0% 

4,2Ωl  0.800 0.795 0.6% 0.025 0.025 0.8% 

5,2Ωl  0.400 0.392 2.1% 0.021 0.018 17.2% 

6,2Ωl  0.300 0.299 0.3% 0.015 0.014 4.5% 

21  0.600 0.505 15.8% 0.206 0.183 12.9% 

22  0.100 0.112 11.9% 0.046 0.050 8.2% 

1  1.000 1.038 3.8% 0.125 0.115 8.4% 

2  1.000 1.008 0.8% 0.146 0.136 7.0% 

3  1.000 1.103 10.3% 0.396 0.395 0.2% 

Overall Mean Value 
Across Parameters 

3.2% (for APB) 0.115 0.113 7.8% 

Mean Time (mins) 18.3 

Std. dev of Time 7.5 

% of Runs Converged 100% 
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Table 1b. Evaluation of the ability to recover true parameters for the three-segment case 

Parameter True Value 

MACML Method 

Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage Bias 

(APB) 

Asymptotic 
Standard Error 

(ASE) 

Finite Sample 
Standard Error 

(FSSE) 

Absolute Percentage Bias of 
Asymptotic Standard Error 

(APBASE) 
*
11b  1.000 1.003 0.3% 0.296 0.285 4.0% 
*
12b  2.000 1.885 5.8% 0.433 0.421 2.7% 
*
13b  0.600 0.547 8.8% 0.215 0.192 11.7% 
*
21b  2.000 1.844 7.8% 0.599 0.566 5.9% 
*
22b  1.500 1.432 4.5% 0.295 0.282 4.5% 
*
23b  0.200 0.206 3.2% 0.093 0.092 1.3% 
*
31b  3.000 3.378 12.6% 0.082 0.080 3.0% 
*
32b  1.300 1.235 5.0% 0.032 0.038 14.1% 
*
33b  0.300 0.346 15.3% 0.175 0.155 12.7% 
*~

b  0.500 0.499 0.3% 0.023 0.024 3.5% 

2,
*

1Ωl  0.500 0.506 1.3% 0.137 0.124 10.1% 

3,
*

1Ωl  0.866 0.863 0.4% 0.109 0.104 4.5% 

4,
*

1Ωl  0.700 0.675 3.5% 0.082 0.072 14.7% 

5,
*

1Ωl  0.519 0.500 3.7% 0.081 0.090 9.6% 

6,
*

1Ωl  0.374 0.383 2.4% 0.056 0.052 7.6% 

1,
*

2Ωl  0.900 0.920 2.3% 0.098 0.093 5.4% 

2,
*

2Ωl  0.600 0.582 3.1% 0.075 0.074 0.4% 

3,
*

2Ωl  0.800 0.790 1.3% 0.047 0.054 13.1% 

4,
*

2Ωl  0.800 0.784 2.0% 0.105 0.084 24.5% 

5,
*

2Ωl  0.400 0.401 0.3% 0.087 0.086 1.4% 

6,
*

2Ωl  0.300 0.304 1.3% 0.058 0.057 0.9% 

1,
*

3Ωl  2.000 2.030 1.5% 0.057 0.061 6.1% 

2,
*

3Ωl  0.500 0.575 14.9% 0.067 0.053 25.8% 

3,
*

3Ωl  1.000 0.986 1.4% 0.070 0.072 3.7% 

4,
*

3Ωl  0.600 0.580 3.3% 0.050 0.067 25.5% 

5,
*

3Ωl  0.800 0.886 10.7% 0.341 0.400 14.7% 

6,
*

3Ωl  0.900 1.060 17.8% 0.060 0.055 8.5% 
*
21  0.600 0.687 14.6% 0.541 0.503 7.6% 
*
22  0.100 0.112 12.3% 0.148 0.149 1.0% 
*
31  0.400 0.342 14.4% 0.225 0.201 11.9% 
*
32  0.000 0.010 10.0% 0.008 0.007 14.2% 

1  1.000 1.041 4.1% 0.267 0.255 4.7% 

2  1.000 1.145 14.5% 0.329 0.308 6.8% 

3  1.000 1.156 15.6% 0.520 0.473 9.8% 

Overall Mean Value 
Across Parameters 

6.4% (for APB) 0.172 0.165 8.7% 

Mean Time (mins) 72.4 
Std. dev of Time 19.6 
% of Runs Converged 100% 



52 

Table 2a. Effects of ignoring continuous heterogeneity and non-normality in the two-segment model  

Parameter True Value 
Latent Class MDCP (LC-MDCP) Model Random Coeffs. MDCP (RC-MDCP) Model

Mean Estimate 
Absolute Percentage 

Bias (APB) 
Mean Estimate 

Absolute Percentage 
Bias (APB) 

11b  1.000 1.203 20.3% 1.349 34.9% 

12b  2.000 1.543 22.9% 1.690 15.5% 

13b  0.600 0.890 48.3% 0.337 43.8% 

21b  2.000 1.293 35.4% 1.349 32.6% 

22b  1.500 1.402 6.5% 1.690 12.7% 

23b  0.200 0.289 44.5% 0.337 68.7% 

b
~

 0.500 0.654 30.8% 0.427 0.4% 

2,1Ω
l  0.500 0.592 18.4% 0.376 24.8% 

3,1Ωl  0.866 0.965 11.4% 0.572 34.0% 

4,1Ωl  0.700 --a -- 0.942 34.6% 

5,1Ωl  0.519 --a -- 0.626 20.6% 

6,1Ωl  0.374 --a -- 0.407 8.8% 

1,2Ωl  0.900 0.782 13.1% --b -- 

2,2Ωl  0.600 0.329 45.2% 0.376 37.3% 

3,2Ωl  0.800 0.764 4.5% 0.942 17.8% 

4,2Ωl  0.800 --a -- 0.572 28.5% 

5,2Ωl  0.400 --a -- 0.626 56.4% 

6,2Ωl  0.300 --a -- 0.407 35.6% 

21  0.600 0.431 28.2% --c -- 

22  0.100 0.140 40.0% --c -- 

1  1.000 1.209 20.9% 1.030 3.0% 

2  1.000 1.823 82.3% 1.405 40.5% 

3  1.000 1.117 11.7% 1.017 1.7% 

Overall Mean Value Across 
Parameters 

28.5% (for APB) 26.0% (for APB) 

Mean (across 100 data sets) 
log-likelihood value at 
convergence 

-39,517.923 -39,561.115 

Number of times the 
likelihood ratio test statistic 
favors the FDMN-MDCP 
modeld 

All one hundred times when compared 
with ߯଺,଴.ଽହ

ଶ ൌ 12.59 
All one hundred times when compared with 

 ߯ଵଷ,଴.ଽହ
ଶ ൌ 22.36 

a These parameters are not estimated and are fixed at 0.0 (see Section 3.1.3). 
b This parameter is fixed to 1.0 for identification. 
c These parameters are implicitly fixed to the value of minus infinity. 
d The mean (across data sets) log-likelihood value at convergence for the FDMN-MDCP model with a two-segment mixture is -38,927.438. 
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Table 2b. Effects of ignoring continuous heterogeneity and non-normality in the three-segment model 

Parameter True Value 
Latent Class MDCP Model Random Coeff. MDCP (RC-MDCP) Model 

Mean Estimate 
Absolute Percentage 

Bias (APB) 
Mean Estimate 

Absolute Percentage 
Bias (APB) 

*
11b  1.000 1.543 54.3% 1.738 73.8% 
*
12b  2.000 1.276 36.2% 1.277 36.1% 
*
13b  0.600 0.320 46.7% 0.246 59.0% 
*
21b  2.000 1.652 17.4% 1.738 13.1% 
*
22b  1.500 1.724 14.9% 1.277 14.9% 
*
23b  0.200 0.102 49.0% 0.246 23.1% 
*
31b  3.000 1.592 46.9% 1.738 42.1% 
*
32b  1.300 1.035 20.4% 1.277 1.8% 
*
33b  0.300 0.472 57.3% 0.246 17.9% 
*~

b  0.500 0.366 26.8% 0.418 16.4% 

2,
*

1Ωl  0.500 0.411 17.8% 0.063 87.4% 

3,
*

1Ωl  0.866 0.599 30.8% 0.926 6.9% 

4,
*

1Ωl  0.700 --a -- 0.322 54.0% 

5,
*

1Ωl  0.519 -- a -- 0.618 19.1% 

6,
*

1Ωl  0.374 -- a -- 0.546 46.1% 

1,
*

2Ωl  0.900 0.724 19.6% --b -- 

2,
*

2Ωl  0.600 0.326 45.7% 0.063 89.5% 

3,
*

2Ωl  0.800 0.598 25.3% 0.322 59.7% 

4,
*

2Ωl  0.800 -- a -- 0.926 15.7% 

5,
*

2Ωl  0.400 -- a -- 0.618 54.5% 

6,
*

2Ωl  0.300 -- a -- 0.546 82.1% 

1,
*

3Ωl  2.000 1.396 30.2% --b -- 

2,
*

3Ωl  0.500 0.398 20.4% 0.063 87.4% 

3,
*

3Ωl  1.000 0.733 26.7% 0.322 67.8% 

4,
*

3Ωl  0.600 -- a -- 0.926 54.3% 

5,
*

3Ωl  0.800 -- a -- 0.618 22.7% 

6,
*

3Ωl  0.900 -- a -- 0.546 39.3% 
*
21  0.600 0.467 22.2% --c -- 
*
22  0.100 0.156 56.0% --c -- 
*
31  0.400 0.298 25.5% --c -- 
*
32  0.000 0.017 17.0% --c -- 

1  1.000 1.327 32.7% 2.723 172.3% 

2  1.000 1.201 20.1% 2.959 195.9% 

3  1.000 1.102 10.2% 2.871 187.1% 

Overall Mean Value Across 
Parameters 30.8% (for APB) 82.9% (for APB) 

Mean (across 100 data sets) log-
likelihood value at convergence -39,599.201 -39,797.634 

Number of times the likelihood ratio 
test favors the FDMN-MDCP modeld 

All one hundred times when compared 
with ߯ଽ,଴.ଽହ

ଶ ൌ 16.92 
All one hundred times when compared with 

߯ଶ଻,଴.ଽହ
ଶ ൌ 40.11 

a These parameters are not estimated and are fixed at 0.0  (see Section 3.1.3). 
b This parameter is fixed to 1.0 for identification. 
c These parameters are implicitly fixed to the value of minus infinity. 
d The mean (across data sets) log-likelihood value at convergence for the FDMN-MDCP model with a three-segment mixture is -39,001.232.
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Table 3. Recreational Travel Number of Trips 

Number of 
trips 

Number of 
individuals 

Number (%) of individuals visitinga 

1 region 2 regions 3 regions 4 regions 5 regions 

1 2,535 
(72.3%) 

2,535 
(100%) 

0 
 

0 
 

0 
 

0 
 

2 732 
(20.9%) 

342 
(46.7%) 

390 
(53.3%) 

0 
 

0 
 

0 
 

3 180 
(5.0%) 

63 
(35%) 

87 
(48.3%) 

30 
(16.7%) 

0 
 

0 
 

4 47 
(1.3%) 

14 
(29.8%) 

23 
(48.9%) 

7 
(14.9%) 

3 
(6.4%) 

0 
 

5 7 
(0.2%) 

1 
(14.3%) 

2 
(28.6%) 

3 
(42.8%) 

0 
 

1 
(14.3%) 

6 3 
(0.1%) 

2 
(66.7%) 

1 
(33.3%) 

0 
 

0 
 

0 
 

7 2 
(0.1%) 

0 
 

1 
(50%) 

1 
(50%) 

0 
 

0 
 

10 2 
(0.1%) 

0 
 

0 
 

2 
(100%) 

0 
 

0 
 

a Percentages add up to 100% in each row.  
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Table 4. Destination Region Characteristics 

Island Region 
Travel Impedance Measures (Std. Dev.) Land Cover Percentage 

Travel Time 
(hours) 

Travel Distance 
(miles) 

Cost (NZ$) Urban Water Wetland Agricultural Bare-land Forest 

N
O

R
T

H
 I

S
L

A
N

D
 

Northland   8.31 (6.53)  397.6 (303.9) 314.1 (334.2) 0.75 2.44 0.92 47.92 1.18 46.79 

Auckland   6.53 (6.64)  306.4 (295.6) 265.8 (316.4)     10.68 2.85 0.62 49.04 0.92 35.90 

Waikato   5.98 (5.97) 273.9 (257.8) 241.0 (281.3) 1.14 3.57 0.88 53.10 0.70 40.61 

Bay of Plenty   6.74 (5.60) 313.3 (237.2) 276.9 (272.4) 1.32 2.39 0.27 23.17 0.28 72.57 

Gisborne   7.82 (4.95) 366.2 (205.5) 322.1 (260.1) 0.35 0.36 0.41 46.44        1.55 50.89 

Taranaki   6.41 (4.32) 294.5 (169.9) 261.9 (219.1) 0.98 0.39 0.08 53.81 0.43 44.31 

Manawatu-Wanganui   6.07 (3.72) 279.7 (152.5) 249.2 (198.3) 0.67 0.48 0.32 60.22 0.82 37.50 

Hawke´s Bay   6.30 (4.40) 290.5 (175.1) 258.7 (222.5) 0.59 0.92 0.22 53.93 0.64 43.70 

Wellington   6.46 (3.19) 301.5 (151.4) 266.7 (195.5) 2.53 1.34 0.23 47.82 0.72 47.36 

S
O

U
T

H
 I

S
L

A
N

D
 

Tasman   9.70 (3.74) 392.2 (162.5) 386.1 (266.7) 0.34 1.34 1.29 19.58 3.37 74.08 

Nelson   9.58 (3.61) 388.0 (161.0) 381.6 (261.8) 6.48 3.12 0.25 13.72 0.93 75.49 

Marlborough   8.34  (3.43) 337.4 (156.3) 332.1 (237.3) 0.28 0.56 0.20 43.34 9.97 45.65 

West Coast 10.86 (4.83) 474.7 (210.6) 447.2 (322.4) 0.14 1.43 1.35 15.79 9.41 71.88 

Canterbury 10.48 (5.52) 443.6 (241.6) 425.3 (338.6) 0.71 2.09 0.36 65.67      12.12 19.05 

Otago 14.07 (6.56) 629.5 (291.1) 580.0 (425.9) 0.45 2.76 1.50 73.49 4.73 17.07 

Southland 16.40 (6.86) 749.7 (307.3) 680.9 (471.0) 0.24 2.99 0.98 43.97 4.50 47.32 
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Table 5. Recreational Travel Destination Choice and Number of Trips 

Island Destination Region Area (miles2) 

Total number (%) 
of individuals 
visiting each 

region* 

Number of visiting 
individuals per 
unit area (per 

miles2) 

Number of trips among those who visit each destination 

Mean Min. Max. Std. Dev. 

N
O

R
T

H
 I

S
L

A
N

D
 

Northland   5,383 290 (  8.3%) 0.0539 1.16 1 4 0.44 

Auckland   2,162 575 (16.4%) 0.2660 1.17 1 6 0.49 

Waikato   9,883 788 (22.5%) 0.0798 1.19 1 7 0.53 

Bay of Plenty   4,806 454 (12.9%) 0.0945 1.20 1 8 0.61 

Gisborne   3,224   42 (  1.2%) 0.0129 1.17 1 4 0.53 

Taranaki   2,808 104 (  3.0%) 0.0370 1.12 1 3 0.35 

Manawatu-Wanganui   8,577 288 (  8.2%) 0.0337 1.13 1 4 0.38 

Hawke´s Bay   5,469 185 (  5.3%) 0.0339 1.09 1 3 0.31 

Wellington   3,137 328 (  9.4%) 0.1046 1.18 1 4 0.47 

S
O

U
T

H
 I

S
L

A
N

D
 

Tasman   3,778   70 (  2.0%) 0.0186 1.16 1 3 0.50 

Nelson     172   31 (  0.9%) 0.1805 1.06 1 2 0.25 

Marlborough   4,820   74 (  2.1%) 0.0153 1.07 1 2 0.25 

West Coast   9,010   77 (  2.2%) 0.0085 1.13 1 4 0.47 

Canterbury 17,508 465 (13.3%) 0.0267 1.21 1 6 0.52 

Otago 12,351 260 (  7.4%) 0.0210 1.22 1 6 0.56 

Southland 13,261   80 (  2.3%) 0.0060 1.06 1 2 0.24 

* Total percentage across all rows in this column add up to more than 100% because some travelers visit more than one destination region.  
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Table 6. Three Segments FDMN-MDCP Model Estimation Results 

Variable 
First Segment Second Segment Third Segment 

Estimate t-stat+ Estimate t-stat Estimate t-stat 

Segment Probabilities       

    Alternative specific constant - - 1.020 3.50 0.314 2.33 

    Age: 48 years or older - - - - 0.880 3.40 

    Single person household - - -0.501     -3.69   -0.646  -3.50 

    Couple household - - - - 0.467 2.70 

    Nuclear family household - - 0.542 4.77 - - 

    Single parent household - - 0.229 2.61 - - 

    Income less than NZ $50,000 - - 1.250 2.30 0.604 3.12 

Baseline utilities            

    Logarithm of the area (miles2) – mean   0.797*   4.72*    0.797*   4.72*   0.797*   4.72* 

    Ferry (dummy) – mean 0.102     2.40    0.121      3.20 - - 

    Travel cost ($/100) –mean    -0.700  -15.22   -0.821   -35.04    -0.780   -4.95 

    Travel cost ($/100) – standard deviation 0.501     3.00 0.573      2.89 0.442 3.14 

    Land cover accessibility measure specific to           
         Urban (/104) –mean 0.431     2.43  0.429  2.09 0.457 2.64 

         Urban (/104) – standard deviation 0.119     2.28  0.100 2.23 0.091 2.17 

         Forest (/104) –mean 0.450     5.09  0.360  6.66 0.210 4.44 

         Wetland (/104) –mean    -4.210    -3.23 -4.195 -5.10   -4.030  -2.69 

         Agricultural (/104) –mean    -0.112    -4.91 -0.498 -9.15 0.212 3.59 

    Land-cover diversity accessibility  index  0.270     2.69 -0.443 -2.32   -0.213 -2.16 

Satiation parameters (
gθ

~  parameters)       

    Constant 1.802   27.20  1.789 25.42  1.672  23.11 

    Land cover accessibility measure specific to       

         Wetland (/104) –mean -2.535    -3.56 -2.367 -4.10    -2.055 2.17 

    Land-cover diversity accessibility index 0.770     2.09 - -    -0.231 -2.04 

Spatial autoregressive coefficient (t-stat) 0.096 (1.56) 

Log-Likelihood at Convergence -8,499.78 

* The size coefficient (coefficient corresponding to the logarithm of the area in miles2) is constrained to be equal across all 
segments. The t-statistic for this coefficient is with respect to the hypothesis that the coefficient is equal to one. 

+ All coefficients are different from zero (or different from one in the case of the size variable) at the 95% confidence 
level or higher (or a p-value of 0.05 or lower). The 95% confidence level corresponds to an absolute t-statistic value of 
1.96. 
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Table 7. Quantitative Characterization of the Three Segments 

Segmentation Variable First Segment Second Segment Third Segment Overall Market 

Age 
Younger than 48 60.2% 61.8% 35.7% 46.4% 

48 years or older 39.8% 38.2% 64.3% 53.6% 

Household structure 

Single person 15.4% 13.8% 13.7% 14.0% 

Couple 22.9% 18.3% 41.5% 26.0% 

Nuclear family 45.0% 52.1% 31.6% 45.0% 

Single parent 5.1% 7.4% 4.7% 6.3% 

Multi family or non-family 11.6% 8.4% 8.5% 8.7% 

Income 
Less than NZ$50,000 22.9% 42.6% 34.5% 37.8% 

NZ$50,000 or more 77.1% 57.4% 65.5% 62.2% 
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Table 8. Measures of Fit    0001.022.16   

Summary Statistic 
Estimation Sample 

FDMN-MDCP LC-MDCP RC-MDCP 

Log-likelihood of the naïve unsegmented model  -15,783.21 

Log-likelihood at convergence -8,499.78 -8,550.03   -8,648.46 

Number of parameters 49 40 15 

Number of observations 3,508 

Adjusted likelihood ratio index  0.458 0.455 0.451 

Predictive likelihood ratio test between FDMN-MDCP and 
LC-MDCP models 

Test statistic [-2*(LLLC-MDCP-LLFDMN-MDCP)]=102 > Chi-Squared statistics with 9 
degrees of freedom at any reasonable level of significance 

Non-nested adjusted likelihood ratio test between the FDMN-
MDCP and RC-MDCP models 

  0001.022.16   

Percentage of individuals (trips) 
predicted to visit…. 

Actual percentage Predicted percentage 

Individuals  Trips Individuals Trips Individuals Trips Individuals Trips 

Waikato but not Auckland  16.9 17.9 17.6  18.4   20.0 20.5 21.4 22.3 

Auckland but not Waikato 10.8   8.1 12.3   9.5 14.0 11.8 14.5 12.4 

Both Auckland and Waikato   5.6   6.4   6.7   7.7   8.6   9.4  9.3   9.7 

Neither Auckland nor Waikato 66.7 67.6 63.4 64.4 57.4 58.3 54.8 55.6 

Mean Absolute Percentage Error   10.7%   11.3%     28.9% 30.2%     36.2%   36.7% 

 


