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ABSTRACT 

This paper compares the performance of the maximum-simulated likelihood (MSL) approach 

with the composite marginal likelihood (CML) approach in multivariate ordered-response 

situations. The ability of the two approaches to recover model parameters in simulated data sets 

is examined, as is the efficiency of estimated parameters and computational cost. Overall, the 

simulation results demonstrate the ability of the Composite Marginal Likelihood (CML) 

approach to recover the parameters very well in a 5-6 dimensional ordered-response choice 

model context. In addition, the CML recovers parameters as well as the MSL estimation 

approach in the simulation contexts used in the current study, while also doing so at a 

substantially reduced computational cost. Further, any reduction in the efficiency of the CML 

approach relative to the MSL approach is in the range of non-existent to small. When taken 

together with its conceptual and implementation simplicity, the CML approach appears to be a 

promising approach for the estimation of not only the multivariate ordered-response model 

considered here, but also for other analytically-intractable econometric models.  

 

Keywords: Composite marginal likelihood, multivariate ordered-response model system, 

maximum simulated likelihood, pairwise marginal likelihood, statistical efficiency. 
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1. INTRODUCTION 

Ordered response model systems are used when analyzing ordinal discrete outcome data that 

may be considered as manifestations of an underlying scale that is endowed with a natural 

ordering. Examples include ratings data (of consumer products, bonds, credit evaluation, movies, 

etc.), or likert-scale type attitudinal/opinion data (of air pollution levels, traffic congestion levels, 

school academic curriculum satisfaction levels, teacher evaluations, etc.), or grouped data (such 

as bracketed income data in surveys or discretized rainfall data), or count data (such as the 

number of trips made by a household, the number of episodes of physical activity pursued by an 

individual, and the number of cars owned by a household). In all of these situations, the observed 

outcome data may be considered as censored (or coarse) measurements of an underlying latent 

continuous random variable. The censoring mechanism is usually characterized as a partitioning 

or thresholding of the latent continuous variable into mutually exclusive (non-overlapping) 

intervals. The reader is referred to McKelvey and Zavoina (1971) and Winship and Mare (1984) 

for some early expositions of the ordered-response model formulation, and Liu and Agresti 

(2005) for a survey of recent developments. The reader is also referred to a forthcoming book by 

Greene and Hensher (2010) for a comprehensive history and treatment of the ordered-response 

model structure. These recent reviews indicate the abundance of applications of the ordered-

response model in the sociological, biological, marketing, and transportation sciences, and the 

list of applications only continues to grow rapidly.  

While the applications of the ordered response model are quite widespread, much of these 

are confined to the analysis of a single outcome, with a sprinkling of applications associated with 

two and three correlated ordered-response outcomes. Some very recent studies of two correlated 

ordered-response outcomes include Scotti (2006), Mitchell and Weale (2007), Scott and 

Axhausen (2006), and LaMondia and Bhat (2009).1 The study by Scott and Kanaroglou (2002) 

represents an example of three correlated ordered-response outcomes. But the examination of 

more than two to three correlated outcomes is rare, mainly because the extension to an arbitrary 

number of correlated ordered-response outcomes entails, in the usual likelihood function 

approach, integration of dimensionality equal to the number of outcomes. On the other hand, 

                                                            
1 The first three of these studies use the bivariate ordered-response probit (BORP) model in which the stochastic 
elements in the two ordered-response equations take a bivariate normal distribution, while the last study develops a 
more general and flexible copula-based bivariate ordered-response model that subsumes the BORP as but one 
special case. 
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there are many instances when interest may be centered around analyzing several ordered-

response outcomes simultaneously, such as in the case of the number of episodes of each of 

several activities, or satisfaction levels associated with a related set of products/services, or 

multiple ratings measures regarding the state of health of an individual/organization (we will 

refer to such outcomes as cross-sectional multivariate ordered-response outcomes). There are 

also instances when the analyst may want to analyze time-series or panel data of ordered-

response outcomes over time, and allow flexible forms of error correlations over these outcomes. 

For example, the focus of analysis may be to examine rainfall levels (measured in grouped 

categories) over time in each of several spatial regions, or individual stop-making behavior over 

multiple days in a week, or individual headache severity levels at different points in time (we 

will refer to such outcomes as panel multivariate ordered-response outcomes).  

In the analysis of cross-sectional and panel ordered-response systems with more than 

three outcomes, the norm until very recently has been to apply numerical simulation techniques 

based on a maximum simulated likelihood (MSL) approach or a Bayesian inference approach. 

However, such simulation-based approaches become impractical in terms of computational time, 

or even infeasible, as the number of ordered-response outcomes increases. Even if feasible, the 

numerical simulation methods do get imprecise as the number of outcomes increase, leading to 

convergence problems during estimation. As a consequence, another approach that has seen 

some (though very limited) use recently is the composite marginal likelihood (CML) approach. 

This is an estimation technique that is gaining substantial attention in the statistics field, though 

there has relatively little coverage of this method in econometrics and other fields. The CML 

method, which belongs to the more general class of composite likelihood function approaches, is 

based on forming a surrogate likelihood function that compounds much easier-to-compute, 

lower-dimensional, marginal likelihoods. The CML method is easy to implement and has the 

advantage of reproducibility of results. Under usual regularity assumptions, the CML estimator is 

consistent and asymptotically normal distributed. The maximum CML estimator should lose 

some efficiency from a theoretical perspective relative to a full likelihood estimator, but this 

efficiency loss appears to be empirically minimal (see Zhao and Joe, 2005; Lele, 2006; Joe and 
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Lee, 2009).2 Besides, the simulation estimation methods for evaluating the analytically 

intractable likelihood function also leads to a loss in estimator efficiency.  

The objective of this paper is on introducing the CML inference approach to estimate 

general panel models of ordered-response. We also compare the performance of the maximum-

simulated likelihood (MSL) approach with the composite marginal likelihood (CML) approach 

in ordered-response situations when the MSL approach is feasible. We use simulated data sets 

with known underlying model parameters to evaluate the two estimation approaches. The ability 

of the two approaches to recover model parameters is examined, as is the sampling variance and 

the simulation variance of parameters in the MSL approach relative to the sampling variance in 

the CML approach. The computational costs of the two approaches are also presented.  

The rest of this paper is structured as follows. In the next section, we present the 

structures of the cross-sectional and panel multivariate ordered-response systems. Section 3 

discusses the simulation estimation methods (with an emphasis on the MSL approach) and the 

CML estimation approach. Section 4 presents the experimental design for the simulation 

experiments, while Section 5 discusses the results. Section 6 concludes the paper by highlighting 

the important findings. 

 

2. THE MULTIVARIATE ORDERED RESPONSE SYSTEM 

2.1 The Cross-Sectional Multivariate Ordered-Response Probit (CMOP) Formulation 

Let q be an index for individuals (q = 1, 2, …, Q, where Q denotes the total number of 

individuals in the data set), and let i be an index for the ordered-response variable (i = 1, 2, …, I, 

where I denotes the total number of ordered-response variables for each individual). Let the 

observed discrete (ordinal) level for individual q and variable i be mqi (mqi may take one of Ki 

values; i.e., mqi ∈{1, 2, …, Ki} for variable i). In the usual ordered response framework notation, 

we write the latent propensity ( *
qiy ) for each ordered-response variable as a function of relevant 

covariates and relate this latent propensity to the observed discrete level mqi through threshold 

bounds (see McKelvey and Zavoina, 1975): 

                                                            
2 A handful of studies (see Hjort and Varin, 2008; Mardia et al., 2009; Cox and Reid, 2004) have also theoretically 
examined the limiting normality properties of the CML approach, and compared the asymptotic variance matrices 
from this approach with the maximum likelihood approach. However, such a precise theoretical analysis is possible 
only for very simple models, and becomes much harder for models such as a multivariate ordered-response system.  
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  qiqiqiqiiqi myxy =+= ,'* εβ  if  qiqi m
iqi

m
i y θθ <<− *1 , (1) 

where qix  is a (L×1) vector of exogenous variables (not including a constant), iβ  is a 

corresponding (L×1) vector of coefficients to be estimated, qiε  is a standard normal error term,  

and qim
iθ  is the upper bound threshold for discrete level mqi of variable i 

( +∞=−∞=<<<< − iii K
ii

K
i

K
iiii θθθθθθθ   ,  ;... 01210  for each variable i). The qiε  terms are 

assumed independent and identical across individuals (for each and all i). For identification 

reasons, the variance of each qiε  term is normalized to 1. However, we allow correlation in the 

qiε  terms across variables i for each individual q. Specifically, we define 
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qε ~ [ ],N 0 Σ  

 The off-diagonal terms of Σ capture the error covariance across the underlying latent 

continuous variables; that is, they capture the effects of common unobserved factors influencing 

the underlying latent propensities. These are the so-called polychoric correlations between pairs 

of observed ordered-response variables. Of course, if all the correlation parameters (i.e., off-

diagonal elements of Σ), which we will stack into a vertical vector Ω, are identically zero, the 

model system in Equation (1) collapses to independent ordered response probit models for each 

variable. Note that the diagonal elements of Σ are normalized to one for identification purposes.   

The parameter vector (to be estimated) of the cross-sectional multivariate probit model is 

,)  ; ..., , ,  ; ..., , ,( 2121 ′Ω′′′′′′′= II θθθβββδ  where ) ,... , ,( 121 ′= −iK
iiii θθθθ  for Ii ..., ,2 ,1= . The 

likelihood function for individual q may be written as follows: 
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where Iφ  is the standard multivariate normal density function of dimension I. The likelihood 

function above involves an I-dimensional integral for each individual q. 

 

2.2 The Panel Multivariate Ordered-Response Probit (PMOP) Formulation 

Let q be an index for individuals as earlier (q = 1, 2, …, Q), but let j now be an index for the jth 

observation (say at time qit ) on individual q (j = 1, 2, …, J, where J denotes the total number of 

observations on individual q).3 Let the observed discrete (ordinal) level for individual q at the jth 

observation be mqj (mqj may take one of K values; i.e., mqi ∈{1, 2, …, K}). In the usual random-

effects ordered response framework notation, we write the latent variable ( *
qjy ) as a function of 

relevant covariates as: 

qjqjqjqqjqj myuxy =++= ,'* εβ  if  qjqj m
qj

m y θθ <<− *1 , (4) 

where qjx  is a (L×1) vector of exogenous variables (not including a constant), β  is a 

corresponding (L×1) vector of coefficients to be estimated, qjε  is a standard normal error term 

uncorrelated across observations j for individual q and also uncorrelated across individuals q, and 
qjmθ  is the upper bound threshold for discrete level mqj 

( +∞=−∞=<<<< − KKK θθθθθθθ   ,  ;... 01210 ).  The term qu  represents an individual-

specific random term, assumed to be normally distributed with mean zero and variance .2σ The 

term qu  is independent of 'qu  for '.qq ≠  The net result of the specification above is that the joint 

                                                            
3 In this paper, we assume that the number of panel observations is the same across individuals. Extension to the 
case of different numbers of panel observations across individuals does not pose any substantial challenges. 
However, the efficiency of the composite marginal likelihood (CML) approach depends on the weights used for 
each individual in the case of varying number of observations across individuals (see Kuk and Nott, 2000; Joe and 
Lee, 2009 provide a recent discussion and propose new weighting techniques). But one can simply put a weight of 
one without any loss of generality for each individual in the case of equal number of panel observations for each 
individual. In our paper, the focus is on comparing the performance of the maximum simulated likelihood approach 
with the CML approach, so we steer clear of issues related to optimal weights for the CML approach by considering 
the “equal observations across individuals” case.  
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distribution of the latent variables ),...,( **
2

*
1 qJqq yyy  for the qth subject is multivariate normal with 

standardized mean vector ( )μβμβμβ /,.../,/ 21 qJqq xxx ′′′  and a correlation matrix with constant 

non-diagonal entries 22 / μσ , where 21 σμ += .  

The standard random-effects ordered-response model of Equation (4) allows easy 

estimation, since one can write the probability of the sequence of observed ordinal responses 

across the multiple observations on the same individual, conditional on qu , as the product of 

standard ordered-response model probabilities, and then integrate the resulting probability over 

the range of normally distributed qu  values for each individual. This results in only a one-

dimensional integral for each individual, which can be easily computed using numerical 

quadrature methods. However, the assumption of equal correlation across the multiple 

observations on the same individual is questionable, especially for medium-to-long individual-

specific series. An alternative would be to allow serial correlation within each subject-specific 

series of observations, as proposed by Varin and Czado (2010). For instance, one may adopt an 

autoregressive structure of order one for the error terms of the same individual so that 

qkqj tt
qkqjcorr −= ρεε ),( , where qjt  is the measurement time of observation qjy .4 The 

autoregressive error structure specification results in a joint multivariate distribution of the latent 

variables ),...,( **
2

*
1 qJqq yyy  for the qth individual with standardized mean vector 

( )μβμβμβ /,.../,/ 21 qJqq xxx ′′′  and a correlation matrix qR  with entries such that 

,/)(),( 22** μρσ qgqj tt
qgqj yycorr −+=  where 21 σμ += . The cost of the flexibility is paid dearly 

though in terms of computational difficulty in the likelihood estimator. Specifically, rather than a 

single dimension of integration, we now have an integral of dimension J for individual q. The 

parameter vector (to be estimated) of the panel multivariate probit model is 

,),  ; ..., , ,  ;( 121 ′′= − ρσθθθβδ K  and the likelihood for individual q becomes: 

                                                            
4 Note that one can also use more complicated autoregressive structures of order p for the error terms, or use more 
general structures for the error correlation. For instance, while we focus on a time series context, in spatial contexts 
related to ordered-response modeling, Bhat et al. (2010) developed a specification where the correlation in physical 
activity between two individuals may be a function of several measures of spatial proximity and adjacency. 



 

7 

) ..., , ,Pr()( 2211 JJ qqqqqqq mymymyL ====δ  

JqJJ

vvv

q dvdvdvRvvvL
J

J
J

qm

qm

qm

qm

qm

qm

...)|..., ,,(   )( 2121
11

1

11

2

2
21

φδ
α

α

α

α

α

α
∫∫∫

−−−
===

= "  (5) 

where ./)( μβθα qj
mm xqjqj ′−=  

The likelihood function above entails a J-dimensional integral for each individual q. The 

above model is labeled as a mixed autoregressive ordinal probit model by Varin and Czado 

(2010).  

 

3. OVERVIEW OF ESTIMATION APPROACHES 

As indicated in Section 1, models that require integration of more than three dimensions in a 

multivariate ordered-response model are typically estimated using simulation approaches, though 

some recent studies have considered a composite marginal likelihood approach. Sections 3.1 and 

3.2 provide an overview of each of these two approaches in turn. 

 

3.1 Simulation Approaches 

Two broad simulation approaches may be identified in the literature for multivariate ordered 

response modeling. One is based on a frequentist approach, while the other is based on a 

Bayesian approach. We provide an overview of these two approaches in the next two sections 

(Section 3.1.1 and Section 3.1.2), and then (in Section 3.1.3) discuss the specific simulation 

approaches used in the current paper for estimation of the multivariate ordered-response model 

systems.  

 

3.1.1 The Frequentist Approach 

In the context of a frequentist approach, Bhat and Srinivasan (2005) suggested a maximum 

simulated likelihood (MSL) method for evaluating the multi-dimensional integral in a cross-

sectional multivariate ordered response model system, using quasi-Monte Carlo simulation 

methods proposed by Bhat (2001; 2003). In their approach, Bhat and Srinivasan (BS) partition 

the overall error term into one component that is independent across dimensions and another 

mixing component that generates the correlation across dimensions. The estimation proceeds by 

conditioning on the error components that cause correlation effects, writing the resulting 
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conditional joint probability of the observed ordinal levels across the many dimensions for each 

individual, and then integrating out the mixing correlated error components. An important issue 

is to ensure that the covariance matrix of the mixing error terms remains in a correlation form 

(for identification reasons) and is positive definite, which BS maintain by writing the likelihood 

function in terms of the elements of the Cholesky decomposed-matrix of the correlation matrix 

of the mixing normally distributed elements and parameterizing the diagonal elements of the 

Cholesky matrix to guarantee unit values along the diagonal. Another alternative and related 

MSL method would be to consider the correlation across error terms directly without partitioning 

the error terms into two components. This corresponds to the formulation in Equations (1) and 

(2) of the current paper. Balia and Jones (2008) adopt such a formulation in their eight-

dimensional multivariate probit model of lifestyles, morbidity, and mortality. They estimate their 

model using a Geweke-Hajivassiliou-Keane (GHK) simulator (the GHK simulator is discussed 

in more detail later in this paper). However, it is not clear how they accommodated the 

identification sufficiency condition that the covariance matrix be a correlation matrix and be 

positive definite. But one can use the GHK simulator combined with BS’s approach to ensure 

unit elements along the diagonal of the covariance matrix.  Yet another MSL method to 

approximate the multivariate rectangular (i.e., truncated) normal probabilities in the likelihood 

functions of Equation (3) and (5) is based on the Genz-Bretz (GB) algorithm (also discussed in 

more detail later).  In concept, all these MSL methods can be extended to any number of 

correlated ordered-response outcomes, but numerical stability, convergence, and precision 

problems start surfacing as the number of dimensions increase.  

 

3.1.2 The Bayesian Approach 

Chen and Dey (2000), Herriges et al. (2008), Jeliazkov et al. (2008), and Hasegawa (2010) have 

considered an alternate estimation approach for the multivariate ordered response system based 

on the posterior mode in an objective Bayesian approach. As in the frequentist case, a particular 

challenge in the Bayesian approach is to ensure that the covariance matrix of the parameters is in 

a correlation form, which is a sufficient condition for identification. Chen and Dey proposed a 

reparametization technique that involves a rescaling of the latent variables for each ordered-

response variable by the reciprocal of the largest unknown threshold. Such an approach leads to 

an unrestricted covariance matrix of the re-scaled latent variables, allowing for the use of 
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standard Markov Chain Monte Carlo (MCMC) techniques for estimation. In particular, the 

Bayesian approach is based on assuming prior distributions on the non-threshold parameters, 

reparameterizing the threshold parameters, imposing a standard conjugate prior on the 

reparameterized version of the error covariance matrix and a flat prior on the transformed 

threshold, obtaining an augmented posterior density using Baye’s Theorem for the 

reparameterized model, and fitting the model using a Markov Chain Monte Carlo (MCMC) 

method. Unfortunately, the method remains cumbersome, requires extensive simulation, and is 

time-consuming. Further, convergence assessment becomes difficult as the number of 

dimensions increase. For example, Muller and Czado (2005) used a Bayesian approach for their 

panel multivariate ordered-response model, and found that the standard MCMC method exhibits 

bad convergence properties. They proposed a more sophisticated group move multigrid MCMC 

technique, but this only adds to the already cumbersome nature of the simulation approach. In 

this regard, both the MSL and the Bayesian approach are “brute force” simulation techniques 

that are not very straightforward to implement and can create convergence assessment problems.  

 

3.1.3 Simulators Used in the Current Paper 

In the current paper, we use the frequentist approach to compare simulation approaches with the 

composite marginal likelihood (CML) approach. Frequentist approaches are widely used in the 

literature, and are included in several software programs that are readily available. Within the 

frequentist approach, we test two MSL methods with the CML approach, just to have a 

comparison of more than one MSL method with the CML approach. The two MSL methods we 

select are among the most effective simulators for evaluating multivariate normal probabilities. 

Specifically, we consider the Geweke-Hajivassiliou-Keane (GHK) simulator for the CMOP 

model estimation in Equation (3), and the Genz-Bretz (GB) simulator for the PMOP model 

estimation in Equation (5).  

 

3.1.3.1 The Geweke-Hajivassiliou-Keane Probability Simulator for the CMOP Model 

The GHK is perhaps the most widely used probability simulator for integration of the 

multivariate normal density function, and is particularly well known in the context of the 

estimation of the multivariate unordered probit model. It is named after Geweke (1991), 

Hajivassiliou (Hajivassiliou and McFadden, 1998), and Keane (1990, 1994). Train (2003) 
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provides an excellent and concise description of the GHK simulator in the context of the 

multivariate unordered probit model. In the current paper, we adapt the GHK simulator to the 

case of the multivariate ordered-response probit model. 

 The GHK simulator is based on directly approximating the probability of a multivariate 

rectangular region of the multivariate normal density distribution. To apply the simulator, we 

first write the likelihood function in Equation (3) as follows:    

 ... ),|(Pr )|(Pr  )Pr()( 221133112211 qqqqqqqqqqqqq mymymymymymyL =======δ   
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The error terms qiv  are drawn d times (d = 1, 2, …, D) from the univariate standard normal 

distribution with the lower and upper bounds as above. To be precise, we use a randomized 

Halton draw procedure to generate the d realizations of qiv , where we first generate standard 

Halton draw sequences of size 1×D  for each individual for each dimension i (i = 1, 2,…, I), and 

then randomly shift the 1×D  integration nodes using a random draw from the uniform 

distribution (see Bhat, 2001 and 2003 for a detailed discussion of the use of Halton sequences for 

discrete choice models). These random shifts are employed because we generate 10 different 

randomized Halton sequences of size 1×D  to compute simulation error. Gauss code 

implementing  the Halton draw procedure is available for download from the home page of 

Chandra Bhat at http://www.caee.utexas.edu/prof/bhat/halton.html. For each randomized Halton 

sequence, the uniform deviates are translated to truncated draws from the normal distribution for 

qiv  that respect the lower and upper truncation points (see, for example, Train, 2003; page 210).  

An unbiased estimator of the likelihood function for individual q is obtained as: 

∑
=

=
D

d

d
qqGHK L

D
L

1
, )(1)( δδ     (9) 

where )(δd
qL  is an estimate of Equation (6) for simulation draw d. A consistent and 

asymptotically normal distributed GHK estimator GHKδ̂  is obtained by maximizing the logarithm 

of the simulated likelihood function )()( , δδ qGHK
q

GHK LL ∏= . The covariance matrix of 

parameters is estimated using the inverse of the sandwich information matrix (i.e., using the 

robust asymptotic covariance matrix estimator associated with quasi-maximum likelihood; see 

McFadden and Train, 2000).      
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The likelihood function (and hence, the log-likelihood function) mentioned above is 

parameterized with respect to the parameters of the Cholesky decomposition matrix L rather than 

the parameters of the original covariance parameter Σ. This ensures the positive definiteness of 

Σ, but also raises two new issues: (1) the parameters of the Cholesky matrix L should be such 

that Σ should be a correlation matrix, and (2) the estimated parameter values (and asymptotic 

covariance matrix) do not correspond to Σ, but to L. The first issue is overcome by 

parameterizing the diagonal terms of L as shown below (see Bhat and Srinivasan, 2005):   
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L  (10) 

The second issue is easily resolved by estimating Σ from the convergent values of the 

Cholesky decomposition parameters (Σ=LL'), and then running the parameter estimation 

procedure one more time with the likelihood function parameterized with the terms of Σ.  

 

3.1.3.2 The GB Simulator for the PMOP Model 

An alternative simulation-based approximation of multivariate normal probabilities is provided 

by the Genz-Bretz algorithm (Genz and Bretz, 1999). At the first step, this method transforms the 

original hyper-rectangle integral region to an integral over a unit hypercube, as described in 

Genz (1992). The transformed integral region is filled in by randomized lattice rules using a 

number of points depending on the integral dimension and the desired precision.  Robust 

integration error bounds are then derived by means of additional shifts of the integration nodes in 

random directions (this is similar to the generation of randomized Halton sequences, as described 

in Bhat, 2003, but with randomized lattice points rather than Halton points). The additional 

random shifts are employed to compute simulation errors using 10 sets of randomized lattice 

points for each individual. The interested reader is referred to Genz (2003) for details.  

More recently, Genz’s algorithm has been further developed by Genz and Bretz (2002). 

Fortran and Matlab code implementing the Genz-Bretz algorithm is available for download from 

the home page of Alan Genz http://www.math.wsu.edu/faculty/genz/homepage. Furthermore, the 

Fortran code has been included in an R (R Development Core Team, 2009) package called 

mvtnorm freely available from the repository http://cran.r-project.org/. For a brief description of 
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package mvtnorm, see Hothorn et al. (2001) and Mi et al. (2009). Technically, the algorithm 

allows for computation of integrals up to 1,000 dimensions. However, the computational cost for 

reliable integral approximations explodes with the raising of the integral dimension, making the 

use of this algorithm impractical for likelihood inference except for low-dimensions. 

In the PMOP model, a positive-definite correlation matrix qR  should result as long as 

0>σ  and .10 << ρ  The GB approach implemented in the R routine is based on a check to 

ensure these conditions hold. If they do not hold (that is, the BHHH algorithm implemented in 

the R routine is trying to go outside the allowed parameter space), the algorithm reduces the 

"Newton-Raphson step" by half size to return the search direction within the parameter space. 

       

3.2 The Composite Marginal Likelihood Technique – The Pairwise Marginal Likelihood 

Inference Approach 

The composite marginal likelihood (CML) estimation approach is a relatively simple approach 

that can be used when the full likelihood function is near impossible or plain infeasible to 

evaluate due to the underlying complex dependencies. For instance, in a recent application, Varin 

and Czado (2010) examined the headache pain intensity of patients over several consecutive 

days. In this study, a full information likelihood estimator would have entailed as many as 815 

dimensions of integration to obtain individual-specific likelihood contributions, an infeasible 

proposition using the computer-intensive simulation techniques. As importantly, the accuracy of 

simulation techniques is known to degrade rapidly at medium-to-high dimensions, and the 

simulation noise increases substantially. This leads to convergence problems during estimation. 

In contrast, the CML method, which belongs to the more general class of composite likelihood 

function approaches (see Lindsay, 1988), is based on forming a surrogate likelihood function that 

compounds much easier-to-compute, lower-dimensional, marginal likelihoods. The CML 

approach can be applied using simple optimization software for likelihood estimation. It also 

represents a conceptually and pedagogically simpler simulation-free procedure relative to 

simulation techniques, and has the advantage of reproducibility of the results. Finally, as 

indicated by Varin and Vidoni (2009), it is possible that the “maximum CML estimator can be 

consistent when the ordinary full likelihood estimator is not”. This is because the CML 

procedures are typically more robust and can represent the underlying low-dimensional process 
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of interest more accurately than the low dimensional process implied by an assumed (and 

imperfect) high-dimensional multivariate model. 
 The simplest CML, formed by assuming independence across the latent variables 

underlying the ordinal outcome variables (in our paper context), entails the product of univariate 

probabilities for each variable. However, this approach does not provide estimates of correlation 

that are of interest in a multivariate context. Another approach is the pairwise likelihood function 

formed by the product of likelihood contributions of all or a selected subset of couplets (i.e., 

pairs of variables or pairs of observations). Almost all earlier research efforts employing the 

CML technique have used the pairwise approach, including Apanasovich et al. (2008), Bellio  

and Varin (2005), de Leon (2005), Varin and Vidoni (2009), Varin et al. (2005), and Engle et al. 

(2007). Alternatively, the analyst can also consider larger subsets of observations, such as triplets 

or quadruplets or even higher dimensional subsets (see Engler et al., 2006 and Caragea and 

Smith, 2007). In general, the issue of whether to use pairwise likelihoods or higher-dimensional 

likelihoods remains an open, and under-researched, area of research. However, it is generally 

agreed that the pairwise approach is a good balance between statistical and computation 

efficiency.  

The properties of the CML estimator may be derived using the theory of estimating 

equations (see Cox and Reid, 2004). Specifically, under usual regularity assumptions 

(Molenberghs and Verbeke, 2005, page 191), the CML estimator is consistent and 

asymptotically normal distributed (this is because of the unbiasedness of the CML score 

function, which is a linear combination of proper score functions associated with the marginal 

event probabilities forming the composite likelihood).5 Of course, the maximum CML estimator 

loses some asymptotic efficiency from a theoretical perspective relative to a full likelihood 

estimator (Lindsay, 1988; Zhao and Joe, 2005). On the other hand, there is also a loss in 
                                                            
5 Intuitively, in the pairwise CML approach used in the current paper, the surrogate likelihood function represented 
by the CML function is the product of the marginal likelihood functions formed by each pair of ordinal variables. In 
general, maximization of the original likelihood function will result in parameters that tend to maximize each 
pairwise likelihood function. Since the CML is the product of pairwise likelihood contributions, it will therefore 
provide consistent estimates. Another equivalent way to see this is to assume we are discarding all but two randomly 
selected ordinal variables in the original likelihood function. Of course, we will not be able to estimate all the model 
parameters from two random ordinal variables, but if we could, the resulting parameters would be consistent 
because information (captured by other ordinal variables) is being discarded in a purely random fashion. The CML 
estimation procedure works similarly, but combines all ordinal variables observed two at a time, while ignoring the 
full joint distribution of the ordinal variables.  
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asymptotic efficiency in the maximum simulated likelihood (MSL) estimator relative to a full 

likelihood estimator (see McFadden and Train, 2000). Given the full likelihood estimator has to 

be approximated using simulation techniques in a multivariate ordered-response system of 

dimensionality more than 3, it is of interest to compare the MSL and CML estimators in terms of 

asymptotic efficiency. 

Earlier applications of the CML approach (and specifically the pairwise likelihood 

approach) to multivariate ordered-response systems include de Leon (2005) and Ferdous et al. 

(2010) in the context of cross-sectional multivariate ordered-response probit (CMOP) systems, 

and Varin and Vidoni (2006) and Varin and Czado (2010) in the context of panel multivariate 

ordered-response probit (PMOP) systems. Bhat et al. (2010) also use a CML approach to 

estimate their multivariate ordered-response probit system in the context of a spatially dependent 

ordered response outcome variable. In this study, we do not use the high multivariate 

dimensionality of most of these earlier studies. Rather, we consider relatively lower multivariate 

dimensionality simulation situations, so that we are able to estimate the models using MSL 

techniques too.  

 

3.2.1 Pairwise Likelihood Approach for the CMOP Model 

The pairwise marginal likelihood function for individual q may be written for the CMOP model 

as follows: 
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where )(.,.,2 igρΦ  is the standard bivariate normal cumulative distribution function with 

correlation igρ . The pairwise marginal likelihood function is )()( , δδ CMOP
qCML

q

CMOP
CML LL ∏= . 

 The pairwise estimator ĈMLδ  obtained by maximizing the logarithm of the pairwise 

marginal likelihood function with respect to the vector δ  is consistent and asymptotically 
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normal distributed with asymptotic mean δ  and covariance matrix given by the inverse of 

Godambe’s (1960) sandwich information matrix )(δG  (see Zhao and Joe, 2005): 

,)]()[()]([)]([)( 111 −−− == δδδδδ HJHGVCML  where 
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In general, and as confirmed later in the simulation study, we expect that the ability to recover 

and pin down the parameters will be a little more difficult for the correlation parameters in Σ 

(when the correlations are low) than for the slope and threshold parameters, because the 

correlation parameters enter more non-linearly in the likelihood function.  

 

3.2.2 Pairwise Likelihood Approach for the PMOP Model 

The pairwise marginal likelihood function for individual q may be written for the PMOP model 

as follows: 
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where ,/)( μβθα qj
mm xqjqj ′−=  21 σμ += , and ./)( 22 μρσρ qgqj tt

jg
−+= The pairwise 

marginal likelihood function is )()( , δδ PMOP
qCML

q

PMOP
CML LL ∏= . 

The pairwise estimator ĈMLδ  obtained by maximizing the logarithm of the pairwise 

marginal likelihood function with respect to the vector δ  is consistent and asymptotically 

normal distributed with asymptotic mean δ . The covariance matrix of the estimator may be 

computed in a fashion similar to that for the CMOP case, with )(, δCMOP
qCMLL   being replaced by 

)(, δPMOP
qCMLL .  

As in the CMOP case, we expect that the ability to recover and pin down the parameters 

will be a little more difficult for the correlation parameter ρ  (when ρ  is low) than for the slope 

and threshold parameters.   

 

3.2.3 Positive-Definiteness of the Implied Multivariate Correlation Matrix  

A point that we have not discussed thus far in the CML approach is how to ensure the positive-

definiteness of the symmetric correlation matrix Σ  (in the CMOP model) and qR  (in the PMOP 

model). This is particularly an issue for Σ  in the CMOP model, so we will discuss this mainly in 

the context of the CMOP model. Maintaining a positive-definite matrix for qR  in the PMOP 

model is relatively easy, so we only briefly discuss the PMOP case toward the end of this 

section. 

There are three ways that one can ensure the positive-definiteness of the Σ  matrix. The 

first technique is to use Bhat and Srinivasan’s technique of reparameterizing Σ  through the 

Cholesky matrix, and then using these Cholesky-decomposed parameters as the ones to be 

estimated. Within the optimization procedure, one would then reconstruct the Σ  matrix, and then 
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“pick off” the appropriate elements of this matrix for the igρ  estimates at each iteration. This is 

probably the most straightforward and clean technique. The second technique is to undertake the 

estimation with a constrained optimization routine by requiring that the implied multivariate 

correlation matrix for any set of pairwise correlation estimates be positive definite. However, 

such a constrained routine can be extremely cumbersome. The third technique is to use an 

unconstrained optimization routine, but check for positive-definiteness of the implied 

multivariate correlation matrix. The easiest method within this third technique is to allow the 

estimation to proceed without checking for positive-definiteness at intermediate iterations, but 

check that the implied multivariate correlation matrix at the final converged pairwise marginal 

likelihood estimates is positive-definite. This will typically work for the case of a multivariate 

ordered-response model if one specifies exclusion restrictions (i.e., zero correlations between 

some error terms) or correlation patterns that involve a lower dimension of effective parameters 

(such as in the PMOP model in the current paper).  Also, the number of correlation parameters in 

the full multivariate matrix explodes quickly as the dimensionality of the matrix increases, and 

estimating all these parameters becomes almost impossible (with any estimation technique) with 

the usual sample sizes available in practice. So, imposing exclusion restrictions is good 

econometric practice. However, if the above simple method of allowing the pairwise marginal 

estimation approach to proceed without checking for positive definiteness at intermediate 

iterations does not work, then one can check the implied multivariate correlation matrix for 

positive definiteness at each and every iteration. If the matrix is not positive-definite during a 

direction search at a given iteration, one can construct a “nearest” valid correlation matrix (see 

Ferdous et al., 2010 for a discussion).  

In the CMOP CML analysis of the current paper, we used an unconstrained optimization 

routine and ensured that the implied multivariate correlation matrix at convergence was positive-

definite. In the PMOP CML analysis of the current paper, we again employed an unconstrained 

optimization routine in combination with the following reparameterizations: 

)],exp(1/[1 ψρ −+=  and )exp(πσ = . These reparameterizations were used to guarantee 0>σ  

and 10 << ρ , and therefore the positive-definiteness of the qR  multivariate correlation matrix. 

Once estimated, the πψ  and  estimates were translated back to estimates of .  and  σρ  
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4. EXPERIMENTAL DESIGN  

4.1 The CMOP Model 

To compare and evaluate the performance of the GHK and the CML estimation techniques, we 

undertake a simulation exercise for a multivariate ordered response system with five ordinal 

variables. Further, to examine the potential impact of different correlation structures, we 

undertake the simulation exercise for a correlation structure with low correlations and another 

with high correlations. For each correlation structure, the experiment is carried out for 20 

independent data sets with 1000 data points. Pre-specified values for the δ  vector are used to 

generate samples in each data set.  

In the set-up, we use three exogenous variables in the latent equation for the first, third, 

and fifth ordered-response variables, and four exogenous variables for the second and fourth 

ordered-response variables. The values for each of the exogenous variables are drawn from a 

standard univariate normal distribution. A fixed coefficient vector iβ  )5 ,4 ,3 ,2 ,1( =i  is assumed 

on the variables, and the linear combination qii xβ ′  (q = 1, 2, …, Q, Q = 1000; i = 1, 2, 3, 4, 5) is 

computed for each individual q and category i. Next, we generate Q five-variate realizations of 

the error term vector ),,,,( 54321 qqqqq εεεεε
 

with predefined positive-definite low error 

correlation structure ( lowΣ ) and high error correlation structure ( highΣ ) as follows: 
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=

185.80.72.75.
85.187.90.82.
80.87.185.80.
72.90.85.190.
75.82.80.90.1

highΣ    (15) 

The error term realization for each observation and each ordinal variable is then added to 

the systematic component )( qii xβ ′  as in Equation (1) and then translated to “observed” values of 

qiy  (0, 1, 2, ...) based on pre-specified threshold values. We assume four outcome levels for the 

first and the fifth ordered-response variables, three for the second and the fourth ordered-

response variables, and five for the third ordered-response variable. Correspondingly, we pre-

specify a vector of three threshold values [ ),,,( 321
iiii θθθθ =  where i = 1 and 5] for the first and 

the fifth ordered-response equations, two for the second and the fourth equations [ ),,( 21
iii θθθ =  



 

20 

where i = 2 and 4], and four for the third ordered-response equation [ ),,,,( 4321
iiiii θθθθθ =  where 

i = 3] .  

As mentioned earlier, the above data generation process is undertaken 20 times with 

different realizations of the random error term to generate 20 different data sets. The CML 

estimation procedure is applied to each data set to estimate data-specific values of the δ vector.  

The GHK simulator is applied to each dataset using 100 draws per individual of the randomized 

Halton sequence.6 In addition, to assess and to quantify simulation variance, the GHK simulator 

is applied to each dataset 10 times with different (independent) randomized Halton draw 

sequences. This allows us to estimate simulation error by computing the standard deviation of 

estimated parameters among the 10 different GHK estimates on the same data set.  

A few notes are in order here. We chose to use a setting with five ordinal variables so as 

to keep the computation time manageable for the maximum simulated likelihood estimations 

(going to, for example, 10 ordinal variables will increase computation time substantially, 

especially since more number of draws per individual may have to be used; note also that we 

have a total of 400 MSL estimation runs just for the five ordinal variable case in our 

experimental design). At the same time, a system of five ordinal variables leads to a large enough 

dimensionality of integration in the likelihood function where simulation estimation has to be 

used. Of course, one can examine the effect of varying the number of ordinal variables on the 

performance of the MSL and CML estimation approaches. In this paper, we have chosen to focus 

on five dimensions, and examine the effects of varying correlation patterns and different model 

formulations (corresponding to cross-sectional and panel settings). A comparison with higher 

numbers of ordinal variables is left as a future exercise. However, in general, it is well known 

that MSL estimation gets more imprecise as the dimensionality of integration increases. On the 

other hand, our experience with CML estimation is that the performance does not degrade very 

much as the number of ordinal variables increases (see Ferdous et al., 2010). Similarly, one can 

examine the effect of varying numbers of draws for MSL estimation. Our choice of 100 draws 

per individual was based on experimentation with different numbers of draws for the first data 

                                                            
6 Bhat (2001) used Halton sequence to estimate mixed logit models, and found that the simulation error in estimated 
parameters is lower with 100 Halton draws than with 1000 random draws (per individual). In our study, we carried 
out the GHK analysis of the multivariate ordered-response model with 100 randomized Halton draws as well as 500 
random draws per individual, and found the 100 randomized Halton draws case to be much more accurate/efficient 
as well as much less time-consuming. So, we present only the results of the 100 randomized Halton draws case here. 
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set. We found little improvement in ability to recover parameters or simulation variance beyond 

100 draws per individual for this data set, and thus settled for 100 draws per individual for all 

data sets (as will be noted in the results section, the CMOP MSL estimation with 100 draws per 

individual indeed leads to negligible simulation variance). Finally, we chose to use three to four 

exogenous variables in our experimental design (rather than use a single exogenous variable) so 

that the resulting simulation data sets would be closer to realistic ones where multiple exogenous 

variables are employed.  

 

4.2 The PMOP Model 

For the panel case, we consider six observations (J = 6) per individual, leading to a six-

dimensional integral per individual for the full likelihood function. Note that the correlation 

matrix qR  has entries such that ,/)(),( 22** μρσ qgqj tt
qgqj yycorr −+=  where 21 σμ += . Thus, 

in the PMOP case, qR  is completely determined by the variance 2σ  of the individual-specific 

non-varying random term qu  and the single autoregressive correlation parameter ρ  determining 

the correlation between the qkqj εε  and  terms: qkqj tt
qkqjcorr −= ρεε ),( . To examine the impact of 

different magnitudes of the autoregressive correlation parameter, we undertake the simulation 

exercise for two different values of ρ : 0.3 and 0.7. For each correlation parameter, the 

experiment is carried out for 100 independent data sets with 200 data points (i.e., individuals).7 

Pre-specified values for the δ  vector are used to generate samples in each data set.  

In the set-up, we use two exogenous variables in the latent equation. One is a binary time-

constant variable ( 1qx ) simulated from a Bernoulli variable with probability equal to 0.7, and 

another ( 2qjx ) is a continuous time-varying variable generated from the autoregressive model 

shown below: 

                                                            
7  Note that we use more independent data sets for the panel case than the cross-sectional case, because the number 
of individuals in the panel case is fewer than the number of individuals in the cross-sectional case. Essentially, the 
intent is to retain the same order of sampling variability in the two cases across individuals and data sets (the product 
of the number of observations per data set and the number of data sets is 20,000 in the cross-sectional and the panel 
cases). Further, the lower number of data sets in the cross-sectional case is helpful because maximum simulated 
likelihood is more expensive relative to the panel case, given that the number of parameters to be estimated is 
substantially more than in the panel case. Note also that the dimensionality of the correlation matrices is about the 
same in the cross-sectional and panel cases. We use T = 6 in the panel case because the serial correlation gets 
manifested in the last five of the six observations for each individual. The first observation error term εq1 for each 
individual q is randomly drawn from the normal distribution with variance σ2. 
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A fixed coefficient vector β  is assumed, with 11 =β  (coefficient on 1qx ) and 12 =β  

(coefficient on 2qjx ). The linear combination qjxβ ′ ( )',( 21 qjqqj xxx = ;  q = 1, 2, …, 200) is 

computed for each individual q’s jth observation. Next, we generate independent time-invariant 

values of qu  for each individual from a standard normal distribution (that is, we assume )12 =σ , 

and latent serially correlated errors for each individual q as follows: 
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The error term realizations for each individual’s observation is then added to the 

systematic component )( qjxβ ′  as in Equation (4) and then translated to “observed” values of  

qjy  based on the following pre-specified threshold values: ,5.11 =θ  ,5.22 =θ  and 0.33 =θ .  

The above data generation process is undertaken 100 times with different realizations of the 

random error terms qu  and qjε  to generate 100 different data sets. The CML estimation 

procedure is applied to each data set to estimate data-specific values of the δ vector.  The GB 

simulator is applied to each data set 10 times with different (independent) random draw 

sequences. This allows us to estimate simulation error by computing the standard deviation of 

estimated parameters among the 10 different GB estimates on the same data set. The algorithm is 

tuned with an absolute error tolerance of 0.001 for each six-dimensional integral forming the 

likelihood. The algorithm is adaptive in that it starts with few points and then increases the 

number of points per individual until the desired precision is obtained, but with the constraint 

that the maximal number of draws is 25,000.  

 

5. PERFORMANCE COMPARISON BETWEEN THE MSL AND CML APPROACHES 

In this section, we first identify a number of performance measures and discuss how these are 

computed for the MSL approach (GHK for CMOP and GB for PMOP) and the CML approach. 

The subsequent sections present the simulation and computational results. 
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5.1 Performance Measures 

The steps discussed below for computing performance measures are for a specific correlation 

matrix pattern. For the CMOP model, we consider two correlation matrix patterns, one with low 

correlations and another with high correlations. For the PMOP model, we consider two 

correlation patterns, corresponding to the autoregressive correlation parameter values of 0.3 and 

0.7.    

 

MSL Approach 

(1) Estimate the MSL parameters for each data set s (s = 1, 2, …, 20 for CMOP and s = 1, 2, 

…, 100 for PMOP; i.e., S = 20 for CMOP and S = 100 for PMOP) and for each of 10 

independent draws, and obtain the time to get the convergent values and the standard 

errors. Note combinations for which convergence is not achieved. Everything below refers 

to cases when convergence is achieved. Obtain the mean time for convergence (TMSL) and 

standard deviation of convergence time across the converged runs and across all data sets 

(the time to convergence includes the time to compute the covariance matrix of parameters 

and the corresponding parameter standard errors). 

(2) For each data set s and draw combination, estimate the standard errors (s.e.) of parameters 

(using the sandwich estimator).  

(3) For each data set s, compute the mean estimate for each model parameter across the draws. 

Label this as MED, and then take the mean of the MED values across the data sets to obtain 

a mean estimate. Compute the absolute percentage bias (APB) as: 

100
 valuetrue

 valuetrue-estimatemean 
×=APB   

(4) Compute the standard deviation of the MED values across the data sets and label this as the 

finite sample standard error (essentially, this is the empirical standard error). 

(5) For each data set s, compute the median s.e. for each model parameter across the draws. 

Call this MSED, and then take the mean of the MSED values across the R data sets and 

label this as the asymptotic standard error (essentially this is the standard error of the 

distribution of the estimator as the sample size gets large). Note that we compute the 

median s.e. for each model parameter across the draws and label it as MSED rather than 

computing the mean s.e. for each model parameter across the draws. This is because, for 
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some draws, the estimated standard errors turned out to be rather large relative to other 

independent standard error estimates for the same dataset. On closer inspection, this could 

be traced to the unreliability of the numeric Hessian used in the sandwich estimator 

computation. This is another bothersome issue with MSL -- it is important to compute the 

covariance matrix using the sandwich estimator rather than using the inverse of the cross-

product of the first derivatives (due to the simulation noise introduced when using a finite 

number of draws per individual in the MSL procedure; see McFadden and Train, 2000). 

Specifically, using the inverse of the cross-product of the first derivatives can substantially 

underestimate the covariance matrix. But coding the analytic Hessian (as part of computing 

the sandwich estimator) is extremely difficult, while using the numeric Hessian is very 

unreliable. Craig (2008) also alludes to this problem when he states that “(...) the 

randomness that is inherent in such methods [referring here to the GB algorithm, but 

applicable in general to MSL methods] is sometimes more than a minor nuisance.” In 

particular, even when the log-likelihood function is computed with good precision so that 

the simulation error in estimated parameters is very small, this is not always adequate to 

reliably compute the numerical Hessian. To do so, one will generally need to compute the 

log-likelihood with a substantial level of precision, which, however, would imply very high 

computational times even in low dimensionality situations. Finally, note that the mean 

asymptotic standard error is a theoretical approximation to the finite sample standard error, 

since, in practice, one would estimate a model on only one data set from the field.  

(6) Next, for each data set s, compute the simulation standard deviation for each parameter as 

the standard deviation in the estimated values across the independent draws (about the 

MED value). Call this standard deviation as SIMMED. For each parameter, take the mean 

of SIMMED across the different data sets. Label this as the simulation s.e. for each 

parameter.  

(7) For each parameter, compute a simulation adjusted standard error as follows: 

22 )error standard simulation()error standard asymptotic( +   

 

CML Approach 

(1) Estimate the CML parameters for each data set s and obtain the time to get the convergent 

values (including the time to obtain the Godambe matrix-computed covariance matrix and 
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corresponding standard errors). Determine the mean time for convergence (TCML) across 

the S data sets.8 

(2) For each data set s, estimate the standard errors (s.e.) (using the Godambe estimator).  

(3) Compute the mean estimate for each model parameter across the R data sets. Compute 

absolute percentage bias as in the MSL case. 

(4) Compute the standard deviation of the CML parameter estimates across the data sets and 

label this as the finite sample standard error (essentially, this is the empirical standard 

error). 

 

5.2 Simulation Results 

5.2.1 THE CMOP Model 

Table 1a presents the results for the CMOP model with low correlations, and Table 1b presents 

the corresponding results for the CMOP model with high correlations. The results indicate that 

both the MSL and CML approaches recover the parameters extremely well, as can be observed 

by comparing the mean estimate of the parameters with the true values (see the column titled 

“parameter estimates”). In the low correlation case, the absolute percentage bias (APB) ranges 

from 0.03% to 15.95% (overall mean value of 2.21% - see last row of table under the column 

titled “absolute percentage bias”) across parameters for the MSL approach, and from 0.00% to 

12.34% (overall mean value of 1.92%) across parameters for the CML approach. In the high 

correlation case, the APB ranges from 0.02% to 5.72% (overall mean value of 1.22% - see last 

row of table under the column titled “absolute percentage bias”) across parameters for the MSL 

approach, and from 0.00% to 6.34% (overall mean value of 1.28%) across parameters for the 

CML approach. These are incredibly good measures for the ability to recover parameter 

estimates, and indicate that both the MSL and CML perform about evenly in the context of bias. 

Further, the ability to recover parameters does not seem to be affected at all by whether there is 

low correlation or high correlation (in fact, the overall APB reduces from the low correlation 

case to the high correlation case). Interestingly, the absolute percentage bias values are generally 

much higher for the correlation )(ρ  parameters than for the slope )(β and threshold )(θ  

parameters in the low correlation case, but the situation is exactly reversed in the high correlation 

case where the absolute percentage bias values are generally higher for the slope )(β and 
                                                            
8 The CML estimator always converged in our simulations, unlike the MSL estimator. 
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threshold )(θ  parameters compared to the correlation )(ρ  parameters (for both the MSL and 

CML approaches). This is perhaps because the correlation parameters enter more non-linearly in 

the likelihood function than the slope and threshold parameters, and need to be particularly 

strong before they start having any substantial effects on the log-likelihood function value. 

Essentially, the log-likelihood function tends to be relatively flat at low correlations, leading to 

more difficulty in accurately recovering the low correlation parameters. But, at high correlations, 

the log-likelihood function shifts considerably in value with small shifts in the correlation values, 

allowing them to be recovered accurately.9  

The standard error measures provide several important insights. First, the finite sample 

standard error and asymptotic standard error values are quite close to one another, with very little 

difference in the overall mean values of these two columns (see last row). This holds for both the 

MSL and CML estimation approaches, and for both the low and high correlation cases, and 

confirms that the inverses of the sandwich information estimator (in the case of the MSL 

approach) and the Godambe information matrix estimator (in the case of the CML approach) 

recover the finite sample covariance matrices remarkably well. Second, the empirical and 

asymptotic standard errors for the threshold parameters are higher than for the slope and 

correlation parameters (for both the MSL and CML cases, and for both the low and high 

correlation cases). This is perhaps because the threshold parameters play a critical role in the 

partitioning of the underlying latent variable into ordinal outcomes (more so than the slope and 

correlation parameters), and so are somewhat more difficult to pin down. Third, a comparison of 

the standard errors across the low and high correlation cases reveals that the empirical and 

asymptotic standard errors are much lower for the correlation parameters in the latter case than in 

the former case. This reinforces the finding earlier that the correlation parameters are much 

easier to recover at high values because of the considerable influence they have on the log-

likelihood function at high values; consequently, not only are they recovered accurately, but they 

are also recovered more precisely at high correlation values. Fourth, across all parameters, there 

is a reduction in the empirical and asymptotic standard errors for both the MSL and CML cases 
                                                            
9 One could argue that the higher absolute percentage bias values for the correlation parameters in the low 
correlation case compared to the high correlation case is simply an artifact of taking percentage differences from 
smaller base correlation values in the former case. However, the sum of the absolute values of the deviations 
between the mean estimate and the true value is 0.0722 for the low correlation case and 0.0488 for the high 
correlation case. Thus, the correlation values are indeed being recovered more accurately in the high correlation case 
compared to the low correlation case.  
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between the low and high correlation cases (though the reduction is much more for the 

correlation parameters than for the non-correlation parameters). Fifth, the simulation error in the 

MSL approach is negligible to small. On average, based on the mean values in the last row of the 

table, the simulation error is about 3.9% of the sampling error for the low correlation case and 

10.3% of the sampling error for the high correlation case. The higher simulation error for the 

high correlation case is not surprising, since we use the same number of Halton draws per 

individual in both the low and high correlation cases, and the multivariate integration is more 

involved with a high correlation matrix structure. Thus, as the levels of correlations increase, the 

evaluation of the multivariate normal integrals can be expected to become less precise at a given 

number of Halton draws per individual. However, overall, the results suggest that our MSL 

simulation procedure is well tuned, and that we are using adequate numbers of Halton draws per 

individual for the accurate evaluation of the log-likelihood function and the accurate estimation 

of the model parameters (this is also reflected in the negligible difference in the simulation-

adjusted standard error and the mean asymptotic standard error of parameters in the MSL 

approach).  

The final two columns of each of Tables 1a and 1b provide a relative efficiency factor 

between the MSL and CML approaches. The first of these columns provides the ratio of the 

asymptotic standard error of parameters from the MSL approach and the asymptotic standard 

error of the corresponding parameters from the CML approach. The second of these columns 

provides the ratio of the simulation-adjusted standard error of parameters from the MSL 

approach and the asymptotic standard error of parameters from the CML approach. As expected, 

the second column provides slightly higher values of efficiency, indicating that CML efficiency 

increases when one also considers the presence of simulation standard error in the MSL 

estimates. However, this efficiency increase is negligible in the current context because of very 

small MSL simulation error. The more important and interesting point though is that the relative 

efficiency of the CML approach is as good as the MSL approach in the low correlation case. This 

is different from the relative efficiency results obtained in Renard et al. (2004), Zhao and Joe 

(2005), and Kuk and Nott (2000) in other model contexts, where the CML has been shown to 

lose efficiency relative to a maximum likelihood approach. However, note that all these other 

earlier studies focus on a comparison of a CML approach vis-à-vis a maximum likelihood (ML) 

approach, while, in our setting, we must resort to MSL to approximate the likelihood function. 
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To our knowledge, this is the first comparison of the CML approach to an MSL approach, 

applicable to situations when the full information maximum likelihood estimator cannot be 

evaluated analytically. In this regard, it is not clear that the earlier theoretical result that the 

difference between the asymptotic covariance matrix of the CML estimator (obtained as the 

inverse of the Godambe matrix) and of the ML estimator (obtained as the inverse of the cross-

product matrix of derivatives) should be positive semi-definite would extend to our case because 

the asymptotic covariance of MSL is computed as the inverse of the sandwich information 

matrix.10 Basically, the presence of simulation noise, even if very small in the estimates of the 

parameters as in our case, can lead to a significant drop in the amount of information available in 

the sandwich matrix, resulting in increased standard errors of parameters when using MSL. Our 

results regarding the efficiency of individual parameters suggests that any reduction in efficiency 

of the CML (because of using only pairwise likelihoods rather than the full likelihood) is 

balanced by the reduction in efficiency because of using MSL rather than ML, so that there is 

effectively no loss in asymptotic efficiency in using the CML approach (relative to the MSL 

approach) in the CMOP case for low correlation. However, for the high correlation case, the 

MSL does provide slightly better efficiency than the CML. However, even in this case, the 

relative efficiency of parameters in the CML approach ranges between 90%-99% (mean of 95%) 

of the efficiency of the MSL approach, without considering simulation standard error. When 

considering simulation error, the relative efficiency of the CML approach is even better at about 

96% of the MSL efficiency (on average across all parameters). Overall, there is little to no drop 

in efficiency because of the use of the CML approach in the CMOP simulation context.  

 

5.2.2 The PMOP Model 

Most of the observations made from the CMOP model results also hold for the PMOP model 

results presented in Table 2. Both the MSL and CML approaches recover the parameters 

extremely well. In the low correlation case, the absolute percentage bias (APB) ranges from 
                                                            
10 McFadden and Train (2000) indicate, in their use of independent number of random draws across observations, 
that the difference between the asymptotic covariance matrix of the MSL estimator obtained as the inverse of the 
sandwich information matrix and the asymptotic covariance matrix of the MSL estimator obtained as the inverse of 
the cross-product of first derivatives should be positive definite for finite number of draws per observation. 
Consequently, for the case of independent random draws across observations, the relationship between the MSL 
sandwich covariance matrix estimator and the CML Godambe covariance matrix is unclear. The situation gets even 
more unclear in our case because of the use of Halton or Lattice point draws that are not based on independent 
random draws across observations. 
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0.26% to 4.29% (overall mean value of 1.29%) across parameters for the MSL approach, and 

from 0.65% to 5.33% (overall mean value of 1.84%) across parameters for the CML approach. 

In the high correlation case, the APB ranges from 0.45% to 6.14% (overall mean value of 2.06%) 

across parameters for the MSL approach, and from 0.41% to 5.71% (overall mean value of 

2.40%) across parameters for the CML approach. Further, the ability to recover parameters does 

not seem to be affected too much in an absolute sense by whether there is low correlation or high 

correlation. The CML approach shows a mean value of absolute percentage bias that increases 

about 1.3 times (from 1.84% to 2.40%) between the low and high ρ  values compared to an 

increase of about 1.6 times (from 1.29% to 2.06%) for the MSL approach. It in indeed interesting 

that the PMOP results indicate a relative increase in the APB values from the low to high 

correlation case, while there was actually a corresponding relative decrease in the CMOP case. 

Another result is that the APB increases from the low to the high correlation case for the 

threshold )(θ and variance )( 2σ parameters in both the MSL and CML approaches. On the other 

hand, the APB decreases from the low to the high correlation case for the correlation )(ρ  

parameter, and remains relatively stable between the low and high correlation cases for the slope 

)(β parameters. That is, the recovery of the slope parameters appears to be less sensitive to the 

level of correlation than is the recovery of other parameters. 

The finite sample standard error and asymptotic standard error values are close to one 

another, with very little difference in the overall mean values of these two columns (see last 

row). This holds for both the MSL and CML approaches. Also, as in the CMOP case, the 

empirical and asymptotic standard errors for the threshold parameters are generally higher than 

for the other parameters. The simulation error in the MSL approach is negligible, at about 0.1% 

or less than the sampling error for both the low and high correlation cases. Note that, unlike in 

the CMOP case, the PMOP MSL estimation did not involve the same number of draws per 

individual for the low and high correlation cases; rather, the number of draws varied to ensure an 

absolute error tolerance of 0.001 for each six-dimensional integral forming the likelihood. Thus, 

it is no surprise that the simulation error does not increase much between the low and high 

correlation cases as it did in the CMOP case. A significant difference with the CMOP case is that 

the empirical standard errors and asymptotic standard errors are consistently larger for the high 
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correlation case than for the low correlation case, with a particularly substantial increase in the 

standard error of .2σ   

The final two columns provide a relative efficiency factor between the MSL and CML 

approaches. The values in these two columns are identical because of the very low simulation 

error. As in the CMOP case, the estimated efficiency of the CML approach is as good as the 

MSL approach in the low correlation case (the relative efficiency ranges between 90%-103%, 

with a mean of 97%).  For the high correlation case, the relative efficiency of parameters in the 

CML approach ranges between 82%-96% (mean of 91%) of the efficiency of the MSL approach, 

indicating a reduction in efficiency as the dependence level goes up (again, consistent with the 

CMOP case). Overall, however, the efficiency of the CML approach remains high for all the 

parameters.  

 

5.3 Non-Convergence and Computational Time 

The simulation estimation of multivariate ordered response model can involve numerical 

instability because of possible unstable operations such as large matrix inversions and 

imprecision in the computation of the Hessian. This can lead to convergence problems. On the 

other hand, the CML approach is a straightforward approach that should be easy to implement 

and should not have any convergence-related problems. In the current empirical study, we 

classified any estimation run that had not converged in 5 hours as having non-converged.   

 We computed non-convergence rates in two ways for the MSL approach. For the CMOP 

model, we computed the non-convergence rates in terms of the starting seeds that led to failure in 

a complete estimation of 10 simulation runs (using different randomized Halton sequences) for 

each data set. If a particular starting seed led to failure in convergence for any of the 10 

simulation runs, that seed was classified as a failed seed. Otherwise, the seed was classified as a 

successful seed. This procedure was applied for each of the 20 data sets generated for each of the 

low and high correlation matrix structures until we had a successful seed.11 The non-convergence 

rate was then computed as the number of failed seeds divided by the total number of seeds 

                                                            
11 Note that we use the terminology “successful seed” to simply denote if the starting seed led to success in a 
complete estimation of the 10 simulation runs. In MSL estimation, it is not uncommon to obtain non-convergence 
(because of a number of reasons) for some sets of random sequences. There is, however, nothing specific to be 
learned here in terms of what starting seeds are likely to be successful and what starting seeds are likely to be 
unsuccessful. The intent is to use the terminology “successful seed” simply as a measure of non-convergence rates.  



 

31 

considered. Note that this would be a good reflection of non-convergence rates if the analyst ran 

the simulation multiple times on a single data set to recognize simulation noise in statistical 

inferences. But, in many cases, the analyst may run the MSL procedure only once on a single 

data set, based on using a high level of accuracy in computing the multivariate integrals in the 

likelihood function. For the PMOP model, which was estimated based on as many draws as 

needed to obtain an absolute error tolerance of 0.001 for each six-dimensional integral forming 

the likelihood, we therefore consider another way of computing non-convergence. This is based 

on the number of unsuccessful runs out of the 1000 simulated estimation runs considered (100 

data sets times 10 simulated estimation runs). The results indicated a non-convergence rate of 

28.5% for the low correlation case and 35.5% for the high correlation case in the CMOP model, 

and a non-convergence rate of 4.2% for the low correlation case and 2.4% for the high 

correlation case in the PMOP model (note, however, that the rates cannot be compared between 

the CMOP and PMOP models because of very different ways of computing the rates, as 

discussed above). For both the CMOP and PMOP models, and both the low and high correlation 

cases, we always obtained convergence with the CML approach.  

Next, we examined the time to convergence per converged estimation run for the MSL 

and CML procedures (the time to convergence included the time to compute the standard error of 

parameters). For the CMOP model, we had a very well-tuned and efficient MSL procedure with 

an analytic gradient (written in Gauss matrix programming language). We used naïve 

independent probit starting values for the MSL as well as the CML in the CMOP case (the CML 

is very easy to code relative to the MSL, and was also undertaken in the GAUSS language for 

the CMOP model). The estimations were run on a desktop machine. But, for the PMOP model, 

we used an MSL code written in the R language without an analytic gradient, and a CML code 

written using a combination of C and R languages. However, we used the CML convergent 

values (which are pretty good) as the MSL start values in the PMOP model to compensate for the 

lack of analytic MSL gradients. The estimations were run on a powerful server machine. As a 

consequence of all these differences, one needs to be careful in the computational time 

comparisons. Here, we only provide a relative computational time factor (RCTF), computed as 

the mean time needed for an MSL run divided by the mean time needed for a CML run. In 

addition, we present the standard deviation of the run times as a percentage of mean run time 

(SDR) for the MSL and CML estimations.  
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The RCTF for the CMOP model for the case of the low correlation matrix is 18, and for 

the case of the high correlation matrix is 40. The substantially higher RCTF for the high 

correlation case is because of an increase in the mean MSL time between the low and high 

correlation cases; the mean CML time hardly changed. The MSL SDR in the CMOP model for 

the low correlation case is 30% and for the high correlation case is 47%, while the CML SDR is 

about 6% for both the low and high correlation cases. The RCTF for the PMOP model for the 

case of low correlation is 332, and for the case of high correlation is 231.  The MSL SDR values 

for the low and high correlation cases in the PMOP model are in the order of 16-24%, though 

this small SDR is also surely because of using the CML convergent values as the start values for 

the MSL estimation runs. The CML SDR values in the PMOP model are low (6-13%) for both 

the low and high correlation cases. Overall, the computation time results do very clearly indicate 

the advantage of the CML over the MSL approach – the CML approach estimates parameters in 

much less time than the MSL, and the stability in the CML computation time is substantially 

higher than the stability in the MSL computation times. As the number of ordered-response 

outcomes increase, one can only expect a further increase in the computational time advantage of 

the CML over the MSL estimation approach. 

 

6. CONCLUSIONS 

This paper compared the performance of the maximum-simulated likelihood (MSL) approach 

with the composite marginal likelihood (CML) approach in multivariate ordered-response 

situations. We used simulated data sets with known underlying model parameters to evaluate the 

two estimation approaches in the context of a cross-sectional ordered-response setting as well as 

a panel ordered-response setting. The ability of the two approaches to recover model parameters 

was examined, as was the sampling variance and the simulation variance of parameters in the 

MSL approach relative to the sampling variance in the CML approach. The computational costs 

of the two approaches were also presented.  

Overall, the simulation results demonstrate the ability of the Composite Marginal 

Likelihood (CML) approach to recover the parameters in a multivariate ordered-response choice 

model context, independent of the correlation structure. In addition, the CML approach recovers 

parameters as well as the MSL estimation approach in the simulation contexts used in the current 

study, while also doing so at a substantially reduced computational cost and improved 
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computational stability. Further, any reduction in the efficiency of the CML approach relative to 

the MSL approach is in the range of non-existent to small. All these factors, combined with the 

conceptual and implementation simplicity of the CML approach, makes it a promising and 

simple approach not only for the multivariate ordered-response model considered here but also 

for other analytically-intractable econometric models. Also, as the dimensionality of the model 

explodes, the CML approach remains practical and feasible, while the MSL approach becomes 

impractical and/or infeasible. Additional comparisons of the CML approach with the MSL 

approach for high dimensional model contexts and alternative covariance patterns are directions 

for further research.   
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Table 1a: Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With Low Error Correlation Structure 

Parameter True 
Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error 
Estimates  

CML

MSL

MASE
MASE

 

 

CML

MSL

MASE
SASE

 Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 
Asymptotic 
Standard 

Error 
)( MSLMASE

Simulation 
Standard 

Error 

Simulation 
Adjusted 
Standard 

Error 
)( MSLSASE

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 
Asymptotic 
Standard 

Error 
)( CMLMASE

Coefficients 
β11 0.5000 0.5167 3.34% 0.0481 0.0399 0.0014 0.0399 0.5021 0.43% 0.0448 0.0395 1.0109 1.0116 
β21 1.0000 1.0077 0.77% 0.0474 0.0492 0.0005 0.0492 1.0108 1.08% 0.0484 0.0482 1.0221 1.0222 
β31 0.2500 0.2501 0.06% 0.0445 0.0416 0.0010 0.0416 0.2568 2.73% 0.0252 0.0380 1.0957 1.0961 
β12 0.7500 0.7461 0.52% 0.0641 0.0501 0.0037 0.0503 0.7698 2.65% 0.0484 0.0487 1.0283 1.0311 
β22 1.0000 0.9984 0.16% 0.0477 0.0550 0.0015 0.0550 0.9990 0.10% 0.0503 0.0544 1.0100 1.0104 
β32 0.5000 0.4884 2.31% 0.0413 0.0433 0.0017 0.0434 0.5060 1.19% 0.0326 0.0455 0.9518 0.9526 
β42 0.2500 0.2605 4.19% 0.0372 0.0432 0.0006 0.0432 0.2582 3.30% 0.0363 0.0426 1.0149 1.0150 
β13 0.2500 0.2445 2.21% 0.0401 0.0346 0.0008 0.0346 0.2510 0.40% 0.0305 0.0342 1.0101 1.0104 
β23 0.5000 0.4967 0.66% 0.0420 0.0357 0.0021 0.0358 0.5063 1.25% 0.0337 0.0364 0.9815 0.9833 
β33 0.7500 0.7526 0.34% 0.0348 0.0386 0.0005 0.0386 0.7454 0.62% 0.0441 0.0389 0.9929 0.9930 
β14 0.7500 0.7593 1.24% 0.0530 0.0583 0.0008 0.0583 0.7562 0.83% 0.0600 0.0573 1.0183 1.0184 
β24 0.2500 0.2536 1.46% 0.0420 0.0486 0.0024 0.0487 0.2472 1.11% 0.0491 0.0483 1.0067 1.0079 
β34 1.0000 0.9976 0.24% 0.0832 0.0652 0.0017 0.0652 1.0131 1.31% 0.0643 0.0633 1.0298 1.0301 
β44 0.3000 0.2898 3.39% 0.0481 0.0508 0.0022 0.0508 0.3144 4.82% 0.0551 0.0498 1.0199 1.0208 
β15 0.4000 0.3946 1.34% 0.0333 0.0382 0.0014 0.0382 0.4097 2.42% 0.0300 0.0380 1.0055 1.0061 
β25 1.0000 0.9911 0.89% 0.0434 0.0475 0.0016 0.0475 0.9902 0.98% 0.0441 0.0458 1.0352 1.0358 
β35 0.6000 0.5987 0.22% 0.0322 0.0402 0.0007 0.0402 0.5898 1.69% 0.0407 0.0404 0.9959 0.9961 

Correlation Coefficients 
ρ12 0.3000 0.2857 4.76% 0.0496 0.0476 0.0020 0.0476 0.2977 0.77% 0.0591 0.0467 1.0174 1.0184 
ρ13 0.2000 0.2013 0.66% 0.0477 0.0409 0.0019 0.0410 0.2091 4.56% 0.0318 0.0401 1.0220 1.0231 
ρ14 0.2200 0.1919 12.76% 0.0535 0.0597 0.0035 0.0598 0.2313 5.13% 0.0636 0.0560 1.0664 1.0682 
ρ15 0.1500 0.1739 15.95% 0.0388 0.0439 0.0040 0.0441 0.1439 4.05% 0.0419 0.0431 1.0198 1.0239 
ρ23 0.2500 0.2414 3.46% 0.0546 0.0443 0.0040 0.0445 0.2523 0.92% 0.0408 0.0439 1.0092 1.0133 
ρ24 0.3000 0.2960 1.34% 0.0619 0.0631 0.0047 0.0633 0.3013 0.45% 0.0736 0.0610 1.0342 1.0372 
ρ25 0.1200 0.1117 6.94% 0.0676 0.0489 0.0044 0.0491 0.1348 12.34% 0.0581 0.0481 1.0154 1.0194 
ρ34 0.2700 0.2737 1.37% 0.0488 0.0515 0.0029 0.0516 0.2584 4.28% 0.0580 0.0510 1.0094 1.0110 
ρ35 0.2000 0.2052 2.62% 0.0434 0.0378 0.0022 0.0378 0.1936 3.22% 0.0438 0.0391 0.9662 0.9678 
ρ45 0.2500 0.2419 3.25% 0.0465 0.0533 0.0075 0.0538 0.2570 2.78% 0.0455 0.0536 0.9937 1.0034 
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Table 1a: (Continued) Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With Low Error  
Correlation Structure 

Parameter True 
Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error  
Estimates 

 

CML

MSL

MASE
MASE

 

 

CML

MSL

MASE
SASE

 Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 Asymptotic 
Standard 

Error 
)( MSLMASE  

 

Simulation 
Standard 

Error 

Simulation 
Adjusted 
Standard 

Error 
)( MSLSASE

 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 
Asymptotic 
Standard 

Error 
)( CMLMASE  

 

Threshold Parameters 
θ1

1 -1.0000 -1.0172 1.72% 0.0587 0.0555 0.0007 0.0555 -1.0289 2.89% 0.0741 0.0561 0.9892 0.9893 
θ1

2 1.0000 0.9985 0.15% 0.0661 0.0554 0.0011 0.0554 1.0010 0.10% 0.0536 0.0551 1.0063 1.0065 
θ1

3 3.0000 2.9992 0.03% 0.0948 0.1285 0.0034 0.1285 2.9685 1.05% 0.1439 0.1250 1.0279 1.0282 
θ2

1 0.0000 -0.0172 - 0.0358 0.0481 0.0007 0.0481 -0.0015 - 0.0475 0.0493 0.9750 0.9751 
θ2

2 2.0000 1.9935 0.32% 0.0806 0.0831 0.0030 0.0831 2.0150 0.75% 0.0904 0.0850 0.9778 0.9784 
θ3

1 -2.0000 -2.0193 0.97% 0.0848 0.0781 0.0019 0.0781 -2.0238 1.19% 0.0892 0.0787 0.9920 0.9923 
θ3

2 -0.5000 -0.5173 3.47% 0.0464 0.0462 0.0005 0.0462 -0.4968 0.64% 0.0519 0.0465 0.9928 0.9928 
θ3

3 1.0000 0.9956 0.44% 0.0460 0.0516 0.0011 0.0516 1.0014 0.14% 0.0584 0.0523 0.9877 0.9879 
θ3

4 2.5000 2.4871 0.52% 0.0883 0.0981 0.0040 0.0982 2.5111 0.44% 0.0735 0.1002 0.9788 0.9796 
θ4

1 1.0000 0.9908 0.92% 0.0611 0.0615 0.0031 0.0616 1.0105 1.05% 0.0623 0.0625 0.9838 0.9851 
θ4

2 3.0000 3.0135 0.45% 0.1625 0.1395 0.0039 0.1396 2.9999 0.00% 0.1134 0.1347 1.0356 1.0360 
θ5

1 -1.5000 -1.5084 0.56% 0.0596 0.0651 0.0032 0.0652 -1.4805 1.30% 0.0821 0.0656 0.9925 0.9937 
θ5

2 0.5000 0.4925 1.50% 0.0504 0.0491 0.0017 0.0492 0.5072 1.44% 0.0380 0.0497 0.9897 0.9903 
θ5

3 2.0000 2.0201 1.01% 0.0899 0.0797 0.0017 0.0798 2.0049 0.24% 0.0722 0.0786 1.0151 1.0154 

Overall mean value 
across parameters - 2.21% 0.0566 0.0564 0.0022 0.0564 - 1.92% 0.0562 0.0559 1.0080 1.0092 
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Table 1b: Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With High Error Correlation Structure 

Parameter True 
Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error 
Estimates  

CML

MSL

MASE
MASE

 

 

CML

MSL

MASE
SASE

 Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 
Asymptotic 
Standard 

Error 
)( MSLMASE

Simulation 
Standard 

Error 

Simulation 
Adjusted 
Standard 

Error 
)( MSLSASE

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 Asymptotic 
Standard 

Error 
)( CMLMASE  

 

Coefficients 
β11 0.5000 0.5063 1.27% 0.0300 0.0294 0.0020 0.0294 0.5027 0.54% 0.0292 0.0317 0.9274 0.9294 
β21 1.0000 1.0089 0.89% 0.0410 0.0391 0.0026 0.0392 1.0087 0.87% 0.0479 0.0410 0.9538 0.9560 
β31 0.2500 0.2571 2.85% 0.0215 0.0288 0.0017 0.0289 0.2489 0.42% 0.0251 0.0290 0.9943 0.9961 
β12 0.7500 0.7596 1.27% 0.0495 0.0373 0.0028 0.0374 0.7699 2.65% 0.0396 0.0395 0.9451 0.9477 
β22 1.0000 1.0184 1.84% 0.0439 0.0436 0.0036 0.0437 1.0295 2.95% 0.0497 0.0463 0.9419 0.9451 
β32 0.5000 0.5009 0.17% 0.0343 0.0314 0.0023 0.0315 0.5220 4.39% 0.0282 0.0352 0.8931 0.8955 
β42 0.2500 0.2524 0.96% 0.0284 0.0294 0.0021 0.0294 0.2658 6.34% 0.0263 0.0315 0.9318 0.9343 
β13 0.2500 0.2473 1.08% 0.0244 0.0233 0.0015 0.0234 0.2605 4.18% 0.0269 0.0251 0.9274 0.9293 
β23 0.5000 0.5084 1.67% 0.0273 0.0256 0.0020 0.0256 0.5100 2.01% 0.0300 0.0277 0.9221 0.9248 
β33 0.7500 0.7498 0.02% 0.0302 0.0291 0.0019 0.0291 0.7572 0.96% 0.0365 0.0318 0.9150 0.9170 
β14 0.7500 0.7508 0.11% 0.0416 0.0419 0.0039 0.0420 0.7707 2.75% 0.0452 0.0450 0.9302 0.9341 
β24 0.2500 0.2407 3.70% 0.0311 0.0326 0.0033 0.0327 0.2480 0.80% 0.0234 0.0363 0.8977 0.9022 
β34 1.0000 1.0160 1.60% 0.0483 0.0489 0.0041 0.0491 1.0000 0.00% 0.0360 0.0513 0.9532 0.9566 
β44 0.3000 0.3172 5.72% 0.0481 0.0336 0.0028 0.0337 0.3049 1.62% 0.0423 0.0368 0.9133 0.9165 
β15 0.4000 0.3899 2.54% 0.0279 0.0286 0.0026 0.0288 0.4036 0.90% 0.0274 0.0301 0.9516 0.9554 
β25 1.0000 0.9875 1.25% 0.0365 0.0391 0.0036 0.0393 1.0008 0.08% 0.0452 0.0398 0.9821 0.9862 
β35 0.6000 0.5923 1.28% 0.0309 0.0316 0.0030 0.0317 0.6027 0.45% 0.0332 0.0329 0.9607 0.9649 

Correlation Coefficients 
ρ12 0.9000 0.8969 0.34% 0.0224 0.0177 0.0034 0.0180 0.9019 0.21% 0.0233 0.0183 0.9669 0.9845 
ρ13 0.8000 0.8041 0.51% 0.0174 0.0201 0.0035 0.0204 0.8009 0.11% 0.0195 0.0203 0.9874 1.0023 
ρ14 0.8200 0.8249 0.60% 0.0284 0.0265 0.0061 0.0272 0.8151 0.60% 0.0296 0.0297 0.8933 0.9165 
ρ15 0.7500 0.7536 0.49% 0.0248 0.0243 0.0046 0.0247 0.7501 0.01% 0.0242 0.0251 0.9678 0.9849 
ρ23 0.8500 0.8426 0.87% 0.0181 0.0190 0.0081 0.0207 0.8468 0.38% 0.0190 0.0198 0.9606 1.0438 
ρ24 0.9000 0.8842 1.75% 0.0187 0.0231 0.0097 0.0251 0.9023 0.26% 0.0289 0.0244 0.9484 1.0284 
ρ25 0.7200 0.7184 0.22% 0.0241 0.0280 0.0072 0.0289 0.7207 0.09% 0.0295 0.0301 0.9298 0.9600 
ρ34 0.8700 0.8724 0.27% 0.0176 0.0197 0.0036 0.0200 0.8644 0.65% 0.0208 0.0220 0.8972 0.9124 
ρ35 0.8000 0.7997 0.04% 0.0265 0.0191 0.0039 0.0195 0.7988 0.15% 0.0193 0.0198 0.9645 0.9848 
ρ45 0.8500 0.8421 0.93% 0.0242 0.0231 0.0128 0.0264 0.8576 0.89% 0.0192 0.0252 0.9156 1.0480 
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Table 1b: (Continued) Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – With High Error  
Correlation Structure 

Parameter True 
Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates 
 

CML

MSL

MASE
MASE

 

 

CML

MSL

MASE
SASE

 
Mean 

Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 
Asymptotic 
Standard 

Error 
)( MSLMASE

 

Simulation 
Standard 

Error 

Simulation 
Adjusted 
Standard 

Error 
)( MSLSASE

 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 Asymptotic 
Standard 

Error 
)( CMLMASE  

 

Threshold Parameters 
θ1

1 -1.0000 -1.0110 1.10% 0.0600 0.0520 0.0023 0.0520 -1.0322 3.22% 0.0731 0.0545 0.9538 0.9548 
θ1

2 1.0000 0.9907 0.93% 0.0551 0.0515 0.0022 0.0515 1.0118 1.18% 0.0514 0.0528 0.9757 0.9766 
θ1

3 3.0000 3.0213 0.71% 0.0819 0.1177 0.0065 0.1179 2.9862 0.46% 0.1185 0.1188 0.9906 0.9921 
θ2

1 0.0000 -0.0234 - 0.0376 0.0435 0.0028 0.0436 0.0010 - 0.0418 0.0455 0.9572 0.9592 
θ2

2 2.0000 2.0089 0.44% 0.0859 0.0781 0.0066 0.0784 2.0371 1.86% 0.0949 0.0823 0.9491 0.9525 
θ3

1 -2.0000 -2.0266 1.33% 0.0838 0.0754 0.0060 0.0757 -2.0506 2.53% 0.0790 0.0776 0.9721 0.9752 
θ3

2 -0.5000 -0.5086 1.73% 0.0305 0.0440 0.0030 0.0441 -0.5090 1.80% 0.0378 0.0453 0.9702 0.9725 
θ3

3 1.0000 0.9917 0.83% 0.0516 0.0498 0.0035 0.0499 0.9987 0.13% 0.0569 0.0509 0.9774 0.9798 
θ3

4 2.5000 2.4890 0.44% 0.0750 0.0928 0.0066 0.0930 2.5148 0.59% 0.1144 0.0956 0.9699 0.9724 
θ4

1 1.0000 0.9976 0.24% 0.0574 0.0540 0.0050 0.0542 1.0255 2.55% 0.0656 0.0567 0.9526 0.9566 
θ4

2 3.0000 3.0101 0.34% 0.1107 0.1193 0.0125 0.1200 3.0048 0.16% 0.0960 0.1256 0.9498 0.9550 
θ5

1 -1.5000 -1.4875 0.84% 0.0694 0.0629 0.0056 0.0632 -1.5117 0.78% 0.0676 0.0649 0.9699 0.9737 
θ5

2 0.5000 0.4822 3.55% 0.0581 0.0465 0.0041 0.0467 0.4968 0.64% 0.0515 0.0472 0.9868 0.9906 
θ5

3 2.0000 1.9593 2.03% 0.0850 0.0741 0.0064 0.0744 2.0025 0.12% 0.0898 0.0761 0.9735 0.9771 

Overall mean value 
across parameters - 1.22% 0.0429 0.0428 0.0044 0.0432 - 1.28% 0.0455 0.0449 0.9493 0.9621 
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Table 2: Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches – The Panel Case 

Parameter True 
Value 

MSL Approach CML Approach Relative Efficiency 

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates  

CML

MSL

MASE
MASE

 

 

CML

MSL

MASE
SASE

 
Mean 

Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 
Asymptotic 
Standard 

Error 
)( MSLMASE

Simulation 
Standard 

Error 

Simulation 
Adjusted 
Standard 

Error 
)( MSLSASE

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Finite 
Sample 

Standard 
Error 

 Asymptotic 
Standard 

Error 
)( CMLMASE  

 

ρ = 0.30 

1β  1.0000 0.9899 1.01% 0.1824 0.1956 0.0001 0.1956 0.9935 0.65% 0.1907 0.1898 1.0306 1.0306 

2β  1.0000 1.0093 0.93% 0.1729 0.1976 0.0001 0.1976 1.0221 2.21% 0.1955 0.2142 0.9223 0.9223 
ρ  0.3000 0.2871 4.29% 0.0635 0.0605 0.0000 0.0605 0.2840 5.33% 0.0632 0.0673 0.8995 0.8995 

2σ  1.0000 1.0166 1.66% 0.2040 0.2072 0.0002 0.2072 1.0142 1.42% 0.2167 0.2041 1.0155 1.0155 
1θ  1.5000 1.5060 0.40% 0.2408 0.2615 0.0001 0.2615 1.5210 1.40% 0.2691 0.2676 0.9771 0.9771 
2θ  2.5000 2.5129 0.52% 0.2617 0.2725 0.0002 0.2725 2.5272 1.09% 0.2890 0.2804 0.9719 0.9719 
3θ  3.0000 3.0077 0.26% 0.2670 0.2814 0.0002 0.2814 3.0232 0.77% 0.2928 0.2882 0.9763 0.9763 

Overall mean value 
across parameters - 1.29% 0.1989 0.2109 0.0001 0.2109 - 1.84% 0.2167 0.2159 0.9705 0.9705 

ρ = 0.70 

1β  1.0000 1.0045 0.45% 0.2338 0.2267 0.0001 0.2267 1.0041 0.41% 0.2450 0.2368 0.9572 0.9572 

2β  1.0000 1.0183 1.83% 0.1726 0.1812 0.0001 0.1812 1.0304 3.04% 0.1969 0.2199 0.8239 0.8239 
ρ  0.7000 0.6854 2.08% 0.0729 0.0673 0.0001 0.0673 0.6848 2.18% 0.0744 0.0735 0.9159 0.9159 

2σ  1.0000 1.0614 6.14% 0.4634 0.4221 0.0004 0.4221 1.0571 5.71% 0.4864 0.4578 0.9220 0.9220 
1θ  1.5000 1.5192 1.28% 0.2815 0.2749 0.0002 0.2749 1.5304 2.03% 0.3101 0.3065 0.8968 0.8968 
2θ  2.5000 2.5325 1.30% 0.3618 0.3432 0.0003 0.3432 2.5433 1.73% 0.3904 0.3781 0.9076 0.9076 
3θ  3.0000 3.0392 1.31% 0.4033 0.3838 0.0003 0.3838 3.0514 1.71% 0.4324 0.4207 0.9123 0.9123 

Overall mean value 
across parameters - 2.06% 0.2842 0.2713 0.0002 0.2713 - 2.40% 0.3051 0.2990 0.9051 0.9051 

 
 


