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An Overview of the Generalized Heterogeneous Data Model 

Latent Variable Structural Equation Model  

Let l be an index for latent variables (l=1,2,3,4). Consider the latent variable *
lz  and write it as a 

linear function of covariates: 

,*
llz  wαl                                                                                                                           (1) 

where w is a )1
~

( D  vector of observed covariates (excluding a constant), lα  is a corresponding 

)1
~

( D  vector of coefficients, and l  is a random error term assumed to be standard normally 

distributed for identification purposes (See Bhat, 2015). Next, define the (4 )D  matrix 

1 2 3 4( , , , )α α α α α , and the (4 1) vectors * * * *
1 2 3 4( , , , )z z z z *z  and 1 2 3 4( , , , ) '.   η To 

accommodate interactions among the unobserved latent variables, we allow a  MVN correlation 

structure for η , that is 4 4~ [ , ],MVNη 0 Γ whue Γ  is (4 4) correlation matrix. A general 

covariance structure is adopted because in our study there are no conceptual reasons to establish 

causal relationships between the latent variables. In matrix form, we may write Equation (1) as: 

η αwz* .                                                                                                                             (2) 

Latent Variable Measurement Equation Model Components  

As mentioned earlier, we consider a combination of ordinal and nominal outcomes explained by 

a latent variable vector *z and, when relevant, a set of other endogeneous and exogenous 

variables as well.  

Consider N ordinal outcomes for the individual, and let n be the index for the ordinal 

outcomes ) ..., ,2 ,1( Nn  , in our application N=13 for 906 individuals and N=12 for the 

remainder of the sample. Also, let nJ  be the number of categories for the nth ordinal outcome 

)2( nJ  and let the corresponding index be nj ) ..., ,2 ,1( nn Jj  . Let *~
ny  be the latent 



underlying variable whose horizontal partitioning leads to the observed outcome for the nth 

ordinal variable. Assume that the individual under consideration chooses the th
na  ordinal 

category. Then, in the usual ordered response formulation, for the individual, we may write: 
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where x  is a vector of exogenous and possibly endogenous variables as defined earlier, nγ
~

 is a 

corresponding vector of coefficients to be estimated, nd
~

 is an (4 1) vector of latent variable 

loadings on the nth continuous outcome, the ~  terms represent thresholds, and n~  is the standard 

normal random error for the nth ordinal outcome. For each ordinal outcome, 

nn JnJnnnn ,1,2,1,0,
~~...~~~    ; 0,
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1, n , and 
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For later use, let )~...,~,~(~
1,3,2,  nJnnn nψ  and .)~,...,~,~(~  Nψψψψ 21  Stack the N underlying 

continuous variables *~
ny  into an )1( N vector *y~ , and the N error terms n~  into another )1( N

vector ε~ .  Define 1 2( , ,..., )N    γ γ γ γ  [ )( AN   matrix] and  N, dddd
~

,...,
~

,
~~

21  [ ( 4)N   matrix], 

and let NIDEN  be the identity matrix of dimension N representing the correlation matrix of ε~  

(so,  NIDEN0 ,~~
NNMVNε ; again, this is for identification purposes, given the presence of the 

unobserved *z  vector to generate covariance. Finally, stack the lower thresholds for the decision-

maker  Nn
nan  ..., ,2 ,1~

1, 
 

into an )1( N  vector lowψ~  and the upper thresholds 

 Nn
nan  ..., ,2 ,1~

,   into another vector .~
upψ  Then, in matrix form, the measurement equation for 

the ordinal outcomes (indicators) for the decision-maker may be written as: 

up
*

low
** ψyψεzdxγy ~~~ ,~~~~  .                                                                                        (4) 

Next, let there be G nominal (unordered-response) variables for an individual, and let g 

be the index for the nominal variables, in our application G=2. Also, let Ig be the number of 

alternatives corresponding to the gth nominal variable (Ig 3) and let gi be the corresponding 

index. Both nominal outcomes in our application have Ig=3. Consider the gth nominal variable 

and assume that the individual under consideration chooses the alternative gm . Also, assume the 

usual random utility structure for each alternative gi .  

,
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where x  is as defined earlier, 
ggib  is an )1( A  column vector of corresponding coefficients, and 

ggi is a normal error term, and 
ggi  is an )1( 

ggiN -column vector of coefficients capturing the 

effects of latent variables. Let ),...,( 21 
ggIgg g   1( gI  vector), and ),(~ gΛ0

gIMVNg . 

Taking the difference with respect to the first alternative, the only estimable elements are found 

in the covariance matrix gΛ


 of the error differences, ),...,,( 32 ggIgg   g  (where 

)1,1  iggigi  . Further, the variance term at the top left diagonal of gΛ


 ( 1,  2)g   is set to 

1 to account for scale invariance. gΛ  is constructed from gΛ


 by adding a row on top and a 

column to the left. All elements of this additional row and column are filled with values of zero. 

In addition, the usual identification restriction is imposed such that one of the alternatives serves 

as the base when introducing alternative-specific constants and variables that do not vary across 

alternatives (that is, whenever an element of x  is individual-specific and not alternative-specific, 

the corresponding element in 
ggib is set to zero for at least one alternative ).gi   

To proceed, define 1 2 3( , , )g g g gU U U U  and 1 2 3( , , )g  g g gb b b b . Also, define the 
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matrix g , which is initially filled with all zero values. Then, position the )1( 1gN  row vector 

1g  in the first row to occupy columns 1 to 1gN  , position the )1( 2gN  row vector 2g  in the 

second row to occupy columns 1gN +1 to 1 2 ,g gN N and 3g  to occupy columns 2gN +1 to 

1 2 3g g gN N N  .  Further, define  
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gIG
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,  1 2,

 U U U   1( G


 vector), ),...,( 21  G

1( G


vector), 1 2( , )  b b b AG 


( matrix), and 1 2Vech( , )    (that is,   is a column vector 

that includes all elements of the matrices 1  and 2 ). Then, in matrix form, we may write 

Equation (3) as: 

  *U bx z ς                                                                              (6) 

where ),(~ Λ0
GG

MVN  .  As earlier, to ensure identification, we specify Λ  as follows: 
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In the general case, this allows the estimation of 
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matrix. 

 

To develop the reduced form equations, replace the right side of Equation (2) for *z in Equations 

(4) and (6) to obtain the following system: 

( )                   * *y γx dz ε γx d αw η ε γx dαw dη ε ,                                                    (8)                         

( )          *U bx z ς bx αw η ς bx αw η ς    .   (9) 

Now, consider the [( ) 1)]N G 


 vector ',


   *yU y U . Define 
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Then ( , ). Ω
N G

yU ~ MVN B    

The model estimation is performed using Bhat’s (2011) MACML. We refer the reader to Bhat 

(2015) for the detailed explanation as well as information on model identification criteria.  
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Table 1. Thresholds and constants of indicators and loadings of latent variables on indicators 

 
Attitudinal and lifestyle indicators 

Threshold 2 Threshold 3 Threshold 4 Constant 
Latent variable 

loading 
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Privacy-sensitivity  
I don’t mind sharing a ride with strangers if it 
reduces my costs (inverse scale) 

2.523 19.85 3.598 21.06 5.123 19.08 2.504 12.84 1.792 14.09 

Having privacy is important to me when I 
make a trip  

0.922 12.13 1.799 22.17 3.076 33.69 2.101 23.01 0.575 16.21 

I feel uncomfortable sitting close to strangers  0.954 17.55 1.737 25.04 2.777 25.44 1.409 22.24 0.427 6.19 

Tech-savviness           

I frequently use online banking services  1.133 8.67 2.606 18.136 4.099 28.56 2.559 12.83 1.601 55.44 

I frequently purchase products online  0.506 6.475 1.017 11.17 1.849 19.27 1.861 14.69 0.681 26.15 
Learning how to use new smartphone apps is 
easy for me  

1.138 9.685 1.993 16.22 2.859 23.18 2.255 15.08 0.787 30.61 

Variety-seeking lifestyle propensity (VSLP)           

I think it is important to have all sorts of new 
experiences and I am always trying new 
things 

1.159 13.78 2.374 26.41 3.676 35.80 2.631 19.33 0.930 22.40 

Looking for adventures and taking risks is 
important to me 

1.195 2.45 2.468 2.33 3.834 2.17 1.739 2.67 1.033 23.83 

I love to try new products before anyone else 0.910 6.67 1.859 7.37 2.934 7.38 1.908 6.88 0.704 2.69 

Green lifestyle propensity (GLP)           

When choosing my commute mode, there are 
many things that are more important than 
being environmentally friendly (inverse scale) 

1.045 15.37 1.860 16.49 2.746 15.00 0.988 12.66 0.158 1.84 

I don’t give much thought to saving energy at 
home (inverse scale) 

0.708 10.87 1.182 16.44 2.203 25.18 1.910 21.34 0.132 1.80 

 

 


