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ABSTRACT 
In this paper, in the spirit of a tour-based frame of analysis, we examine the commute mode choice 
and the number of non-work stops during the commute. Understanding the mode and activity stop 
dimensions of weekday commute travel is important since the highest level of weekday traffic 
congestion in urban areas occurs during the commute periods. The paper employs a copula-based 
joint multinomial logit – ordered modeling framework in which commute mode choice is modeled 
using a multinomial logit formulation and the number of commute stops is modeled using an ordered 
response formulation. The data used in this study are drawn from the “Time use” multipurpose 
survey conducted between 2002 and 2003 by the Turin Town Council and the Italian National 
Institute of Statistics (ISTAT) in the Greater Turin metropolitan area of Italy. The results highlight 
the importance of accommodating the inter-relationship between commute mode choice and 
commute stops behavior. The results also point to the stronger effect of household responsibilities 
and demographic characteristics in the Italian context compared to the US context. 
 
Keywords: Tour analysis, copula-based model, work commute, mode choice, stop making behavior 
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1. INTRODUCTION 
The continual increase in urban travel, and in particular of private vehicle trips, is one of the major 
causes of urban traffic congestion-related problems (such as noise and environmental pollution, 
energy waste, safety decline, and public spaces given over to parking lots). Recent studies suggest 
that, notwithstanding the personal comfort and convenience benefits of private car use, the social 
cost to society in terms of quality of life degradation because of increased private car use can be 
rather substantial, especially considering that the number of vehicles is likely to double in the next 
20 years (1). 

The problems caused by urban traffic congestion are more severe in areas with rapidly 
growing populations, where the urban structure is undergoing a transformation toward sprawled 
forms of spatial expansion. In such a personal vehicle-oriented context, highly complex activity-
travel patterns such as trip-activity chaining are more likely to occur. Trip chaining is usually 
encouraged as a means of reducing vehicle miles travelled (2), but, on the other hand, it also 
represents an impediment to public transport use. Specifically, when chaining of activities becomes a 
means to reduce overall time spent on travel to perform desired activities within a tight time budget, 
public transport services appear less appealing to travelers (3). This is also documented by Bhat (4) 
in a study of commute-related activity chaining, where he states that “chaining of non-work 
activities with the commute makes it difficult to wean commuters away from driving alone to work.”  

In the above context, the effectiveness of demand control policies aimed at modifying 
individual mode choice toward more sustainable (non-drive alone mode) trips is closely interlinked 
with individual activity scheduling and patterns. While mode choice has traditionally played a 
central role in transportation modeling research and applications, the typical trip-based approach 
used in practice fails to recognize the inter-relationship between stop-making and mode choice. For 
instance, a trip-based approach may suggest a substantial shift in commute mode from driving alone 
to a new commuter rail mode that provides very good access/egress accessibility at the home and 
work ends for a sizeable fraction of commuters, but this may not be realized in practice because of 
drop-off/pick-up commitments during the commute (especially if these drop off/pick-up locations 
are not close to the commuter rail mode line).  

The inter-relationship between stop-making and mode choice is particularly of importance in 
the context of the commute. After all, commute-related trips are concentrated in narrow time-
windows of the day, and contribute very substantially to urban traffic congestion in the morning and 
evening peak periods. Besides, the commute serves multiple functionalities today, and is not simply 
a home-to-work or work-to-home trip for a significant fraction of commuters. This is due to several 
reasons, but to a substantial extent because of increased time constraints for out-of-home activity 
participation brought on by such factors as the increasing diversity of household structures [from the 
traditional one-worker couple/nuclear family households to two-worker couple/nuclear family 
households, single adult households, and single parent households; see (3)]. In fact, there is a trend 
of increasing chaining of non-work stops with the commute in the US and other countries [see (5)]. 
In a study by Bhat and Sardesai (6) based on Austin area commuters, the authors found that 30% of 
commuters make a non-work stop during the evening commute on any given workday, and about 
85% of commuters make one or more non-work stops during the commute in the course of their 
work  week.  The association  between non-work stop-making and commute mode choice is also 
clear in their study -- about 70% of commuters making no commute stops drive alone to work as 
compared to 87% of commuters making a commute stop who drive alone to work.  

The importance of explicitly recognizing activity chaining for improved travel forecasting 
and improved travel demand policy formulation has not been lost on travel behavior researchers. 
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Indeed, even the practice of travel demand modeling is beginning to embrace an activity-based 
modeling framework where the unit of analysis is tours (sequences of trips from home-to-home, or 
from work-to-work for mid-day periods).  Several studies in this vein have focused on commute-
related stop-making with or without a joint component to examine commute mode choice [see, for 
example, (7-11)].  

In this paper, we present a tour-based analysis for the joint choice of the commute mode and 
the number of non-work stops during the commute (i.e. the total number of non-work stops made 
during the morning home-to-work commute and evening work-to-home commute; in the rest of this 
paper, we will refer to “non-work commute stops” simply as “commute stops”). Such a model 
provides the ability to examine the effect of demographic changes and policy actions on the joint 
decision of commute mode choice and commute stop-making. As in Bhat (11), a basic premise of 
our modeling system is that the joint nature of mode choice to work and number of commute stops 
arises because the two choices are caused or determined by certain common underlying observed 
and unobserved factors to the analyst [see Train (12), p. 85]. For example, individuals in households 
with high automobile availability may be more likely to choose the drive-alone commute mode and 
may also make more commute stops. In this case, an observed factor (high automobile availability) 
generates the positive association between drive alone mode choice and stop-making. In addition, it 
is possible that individuals who are “dynamic” and “want to be in control” select the drive alone 
mode and also have a high commute stop-making propensity. In this case, an unobserved factor 
(“dynamic” and “wanting to be in control” generates the positive dependence between the drive 
alone mode choice and stop-making. Alternatively, walking or bicycling may provide more 
convenience and opportunity to stop at a way-side shop on the commute (especially in the rich land-
use mix context in Italian cities). If this convenience and opportunity to stop is not adequately 
reflected in the observed variables, the result would be a positive dependence in bicycle/walk mode 
choice and number of commute stops. Thus, the reason for the joint nature of the two choices 
(commute mode choice and commute stops) is because of common underlying factors, not because 
of direct causation between the choices. A different, but related, interpretation is that individuals 
choose a particular combination or “package” of commute mode choice and stops. Since both these 
choices are determined simultaneously, “it is not possible for one choice to cause the other, in a 
strict sense of causality” [(12), p. 85]. 

The joint model takes the form of a flexible copula-based joint multinomial logit – ordered 
logit structure, and captures the observed effects of personal, household, residential location, and 
commute characteristics together with potential unobserved common effects impacting the two 
choices. The copula-based methodology facilitates model estimation without imposing restrictive 
distribution assumptions on the dependency structures between the errors in the discrete unordered 
and ordered choice components. Specifically, the copula approach allows one to test several 
different parametric dependency structures for the joint distribution of the error terms in the two 
equations (as opposed to the usual joint normal distribution used de facto in earlier studies). The 
copula concept has been recognized in the statistics field for several decades now, but it is only 
recently that it has been explicitly recognized and employed in econometrics. It is simple to 
implement and does not restrict the analyst from using rich and comprehensive variable 
specifications, as does a non-parametric dependency formulation. To our knowledge, this is the first 
application of a copula framework to jointly model an unordered choice variable (commute mode 
choice) and an ordered choice variable (number of commute stops).  

The data used in this study are drawn from the “Time use” multipurpose survey conducted 
between 2002 and 2003 by the Turin Town Council and the Italian National Institute of Statistics 
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(ISTAT) in the Greater Turin metropolitan area of Italy. The focus on an Italian context is another 
important aspect of the current study. Most earlier research on commute activity chaining has been 
confined to the United States or an Australian or a North European context. To our knowledge, this 
is the first study to focus on an Italian context.  

The rest of this paper is structured as follows. The next section provides a brief literature 
review of the studies most relevant to the current one. Section 3 describes the methodology 
employed.  Section 4 discusses the data used for model estimation, and Section 5 reports the 
empirical results. Finally, the paper concludes with a summary of findings and further research 
avenues. 
 
2. EARLIER APPROACHES AND THE CURRENT STUDY 
Several studies have focused on the analysis of commute stops [see, for example, (7-9; 13-18)], 
while a substantially higher number of studies have focused on commute mode choice in the 
traditional trip-making frame of analysis. Some of these studies have attempted to make a weak 
linkage between stop-making and mode choice by using one of the variables as an independent 
variable in the other [see, for example, (6, 7, 19, 20)]. These types of linkages, unfortunately, ignore 
the interactions between the number of stops and mode choice decisions, as discussed earlier, and 
therefore may not be adequate to predict the impact of demand control measures aimed at reducing 
personal vehicle use. 
 Some other studies have considered a joint commute mode choice – commute tour 
complexity model, where commute tour complexity is represented as a simple binary variable 
(simple commute tour with no commute stops, or complex commute tour with one or more commute 
stops). A recent study (21) compared the following three structures for representing the interaction 
between commute mode choice and commute stop-making: (1) Commute tour complexity affects 
mode choice, (2) Commute mode choice influences tour complexity, and (3) Commute mode choice 
and tour complexity are modeled simultaneously. The authors find, in their specific empirical 
context, that the best fit is obtained when commute tour complexity affects modal choice. Another 
recent study (22) highlights that even if the order of travel mode choice and activity participation 
may vary, in most cases the decision to makes stops is taken first. This result suggests that mode 
choice and, in particular, the decision of whether to take the car or public transport, is probably 
adjusted to the choice to undertake (or forego) chained non-work stops. However, all the studies in 
this area, like other joint models of modal choice and tour complexity [see (3, 23, 24)] represent 
activity chaining as a binary choice between not making any stops or making one and more stops, 
without specifying the number of stops in a complex tour. 
 Bhat (11) and Bhat and Singh (25) used an econometric structure to jointly model the 
commute mode choice and the number of commute stops in the Boston Metropolitan Area. The 
commute mode was modeled using a multinomial logit model, while the number of stops was 
modeled using an ordered logit model. The joint model explicitly accommodated the jointness 
between the two decisions generated by common unobserved factors, and found the significant 
presence of such common unobserved factors. 
 The model presented in the current research starts from Bhat (11) in that it too jointly 
analyzes commute mode choice and the number of commute stops. However, the methodological 
advance of the proposed model is that it does not consider an a priori bivariate distribution to “tie” 
the error terms in the two choice processes; rather, the copula model proposed here allows the 
analyst to test various different radially symmetric and asymmetric copulas based on data fit. The 
motivation is that one does not know a priori what kind of dependency structure holds between the 
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unobserved factors influencing commute mode choice and number of commute stops. Rather this is 
an empirical issue to be determined based on which dependency surface fits the data best. Of course, 
the examination of commute mode and stop-making for an Italian context (Turin city) in the current 
study also allows us to compare some of the empirical findings with Bhat’s (11) study for the US 
context (Boston). In addition, it also provides independent insights into commuting behavior in a 
large metropolitan area from Italy, using data collected within the past decade (Bhat’s Boston study 
was based on data collected in 1991).    

The data used in this study are drawn from the “Time use” multipurpose survey conducted 
between 2002 and 2003 by the Turin Town Council and the Italian National Institute of Statistics 
(ISTAT) in the Greater Turin metropolitan area. The estimation sample of individuals includes 
active individuals aged 14 and over who are workers or students, undertook at least one work trip or 
one study trip on the survey day, and are able to use at least one motorized mode (i.e. moped, 
scooter, motorcycle, car etc.).  In this regard, it should be noted that the terminology “drive alone” 
used in the current paper should not be interpreted as drive alone in a car (as is the case with Bhat’s 
earlier research and most earlier research in the US), but as travelling alone on any motorized form 
of transportation. Further, an important mode choice alternative in the Italian context corresponds to 
active transport (bicycling and walking). On the other hand, these active forms of transportation 
comprise a very small percentage of the US commute mode share, and are ignored in several US-
based commute mode choice models [including in the paper by Bhat (11)]. Also, as will be indicated 
later on in the paper, the general pattern of inter-relationship between commute modes and number 
of stops is rather different in the US and in Italy. While a higher level of commute stop-making is 
generally associated with the use of the drive alone mode in the US, a higher level of commute stop-
making is associated with the use of the shared-ride mode in Italy. This corresponds to the case 
where colleagues or co-workers or individuals working and living in close proximity share a ride 
together (in a car, or on a moped, or other motorized means) and also make more stops to 
accommodate the activity needs of each person in the ride-share. On the other hand, there is no 
overall aggregate-level inter-relationship between drive alone share (or active transport share) and 
number of stops in the Italian context. However, as in the US context, there is a negative association 
in the Italian context at the aggregate level between stop-making and the share of the public transit 
mode.  
 
3. METHODOLOGY  
In this section, we discuss the structure of the copula-based joint multinomial logit–ordered response 
framework to model commute mode choice and the number of commute stops.  

 
3.1 Model Structure 
The modeling of commute mode choice is undertaken using a traditional multinomial logit model. 
Specifically, let q be the index for individuals and let i be the index for mode choice. Also, let *

qih  be 
the latent (indirect) utility accrued by individual q for choosing travel mode i.  

qiqiqi xh εβ +′=* ,  (1) 

where qix  is a vector of independent variables, β  is a corresponding vector of coefficients to be 
estimated, and qiε  represents a idiosyncratic error term. Assume that the qiε  terms are identically 
and independently Gumbel distributed across alternatives i and individuals q with a location 
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parameter equal to 0 and a scale parameter equal to 1. In the usual random utility set-up, individual q 
selects alternative i if and only if the following condition holds: 

*

     
21

*   max qj,...I,jqi hh
ij≠

=
>  (2) 

Let qir  be a dichotomous variable; 1=qir  if the ith travel mode is chosen by the qth individual, and 
0=qir  otherwise. Defining 

⎭
⎬
⎫

⎩
⎨
⎧−=

≠=

*

 ,,...2,1
max qj

ijIj
qiqi hv ε ,  (3) 

and substituting the right side for h*
qi  from Equation (1) in Equation (2), we can write: 

0ifonly  and if1 >+′ qiqiqi vx   = r β  (4) 

The implied marginal distribution of qiv  can be obtained from Equation (3) and from the 
distributional assumptions on the qiε  terms as follows: 
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)(Prob)( I ,    i = 
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≠    (5) 

Next, let qis  represent the number of commute stops for individual q should s/he choose alternative 

i, and let *
qis  be a corresponding underlying latent propensity for stop-making. Then, in the usual 

ordered-response structure, we may write the following: 

. ) , 3, 2, 1,(  1 ifonly  observed

  if   , ,
*

1,
*

Iir s 

, skszs

qiqi
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…==

≤<=+′= − δδηγ
  (6) 

In the above equation system, qiz  is a vector of independent variables, γ is a corresponding vector of 
coefficients to be estimated, and qiη  represents an idiosyncratic error term assumed to be standard 
logistic distributed with a univariate cumulative distribution function  given by G(.). The ikδ terms 
are the threshold bounds that horizontally partition the latent stop-making propensity ( *

qis ), and 
provide the relationship between the latent stop-making propensity and the observed number of stops 

*
qis . By convention, +∞=−∞= Kii ,0,   and  δδ  for each mode i, where k is an index for number of 

stops (k = 1, 2, 3, ..., K). The probability that an individual q will choose mode i and make k 
commute stops may be written as follows: 

( ).],Pr[],Pr[
)()(

],Pr[]Pr[
],Pr[],1Pr[

1,,

1,,

,1,,1,

,1,

qikiqiqiqiqikiqiqiqi

qikiqiki

qikiqiqikiqiqiqikiqiqiki

qikiqiqikiqiqiqiqi

zxvzxv
zGzG

zzxvzz
zzxvksr

γδηβγδηβ

γδγδ

γδηγδβγδηγδ

γδηγδβ

′−<′−<−′−<′−<

−′−−′−=

′−<<′−′−<−′−<<′−=

′−<<′−′−>===

−

−

−−

−

   (7) 



Portoghese, Spissu, Bhat, Eluru, and Meloni 6 

The above probability depends upon the dependence structure between the random variables 
qiqiv η and for each mode i.  

 
3.2 General Bivariate Copula Structure 
A copula is a device or function that generates a stochastic dependence relationship (i.e., a 
multivariate distribution) among random variables with pre-specified marginal distributions (26-28). 
The precise definition of a copula is that it is a multivariate distribution function defined over the 
unit cube linking uniformly distributed marginals. In the bivariate case, let C be a 2-dimensional 
copula of uniformly distributed random variables U1 and U2 with support contained in [0,1]. Then,  

Cθ (u1, u2) = Pr(U1 < u1, U2 < u2),  (8) 

where θ  is a parameter of the copula commonly referred to as the dependence parameter. A copula, 
once developed, allows the generation of joint bivariate distribution functions with given marginals. 
In the notation of the earlier section, a bivariate distribution ),( ηvJ i can be generated for the two 
random variables qiv (with margin iF ) and qiη  (with margin G ) using the following expression [see 
(29)]: 

)](),([)](),(Pr[),Pr(),( 2121 ηηηηη θ GuvFuCGUvFUvvvJ iiqiqii ===<<=<<=      (9) 

A rich set of bivariate copulas ),( 21 uuCθ are available to generate the dependence between the 
random variables qiv  and qiη , including the Gaussian copula, the Farlie-Gumbel-Morgenstern 
(FGM) copula, and the Archimedean class of copulas (including the Clayton, Gumbel, Frank, and 
Joe copulas). For given functional forms of the margins, the precise bivariate dependence profile 
between the variables qiv  and qiη  is a function of the copula ),( 21 uuCθ used, and the dependence 
parameter θ . But, regardless of the margins, the overall nature of the dependence between qiv  and 

qiη  is determined by the copula. The reader is referred to Bhat and Eluru (27) for a detailed 
discussion of the alternate copulas and the visual plots of their implied dependency. Due to space 
considerations, we are unable to provide additional details on the structures of the different copula 
types here. However, note that both the Gaussian and FGM copulas assume that the dependence 
structure is radially symmetric about the center point in the Gaussian and FGM copulas. That is, for 
a given dependence parameter, the magnitude of dependence is equal in the upper and lower tails. 
But it is also possible in empirical contexts that the magnitude of dependence is asymmetric at the 
upper and lower tails. For instance, environmentally conscious individuals may attribute a very low 
utility to the drive alone mode and may also uniformly have a very low propensity for stop-making 
using the drive alone mode. Assuming that environmental consciousness is an unobserved attribute, 
this would lead to strong clustering of the error term values at the low end of the bi-dimensional 
drive alone utility and stop-making propensity spectrum. On the other hand, assume that people who 
are “dynamic and want to be in control” assign a high utility for the drive alone mode. Some of these 
individuals may have a strong pre-disposition to have a high stop-making propensity (because of 
being energetic and “gung-ho”), but others may not have that high of a stop-making propensity 
(because of not wanting distractions). Assuming that “being dynamic and wanting to be in control” 
is unobserved to the analyst, this situation would lead to a clustering of the error term values at the 
high end of the bi-dimensional drive alone utility and stop-making propensity spectrum, but not at 
the same tightness level of clustering at the low end of the spectrum.  This then leads to an 
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asymmetric dependency surface. Such an asymmetric dependence structure cannot be generated by 
the Gaussian or FGM copulas, but can be generated by the class of Archimedean copulas. Bhat’s 
(11) model pre-imposes the Gaussian copula in the joint model of commute mode choice and 
commute stop-making.  
 
3.3 Estimation Procedure 
The parameters to be estimated in the joint unordered-ordered model include the β vector, the 

( 1−K ) δ ki,  parameters )  and  ( ,0, +∞=−∞= Kii δδ  for each mode i, the vector γ , and the 
dependence parameter θ of the best-fitting copula. The probability of an individual choosing a mode 
i and k commute stops may be obtained from Equation (7) and the appropriate copula expression as: 

[ ] ,),(),()()(],1[ Prob 2,1,12,,11,, −− −−′−−′−=== kqiqikqiqiqikiqikiqiqi uuCuuCzGzGksr θθγδγδ    (10) 

where )(1 qiiqi xFu β ′−=  and )(2,, qikkqi zGu γδ ′−= .  
Next, let [.]1  be an indicator function taking the value of unity if the expression in parenthesis is true 
and 0 otherwise. Also, define the following dummy variables for i = 1, 2, 3, …, I: 

].[1]1[1 ksrM qiqiqik =×==   (11) 

Then, the log likelihood function for the copula model takes the form 

[ ]⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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=

I

i
qiqiqki

K

 = k

Q

1 = q

= k , s= r  M    L
1 1

 )1( Prob   loglog      (12) 

All the parameters in the model are consistently estimated by maximizing the log-likelihood 
function, which is accomplished using the GAUSS matrix programming language.  
 
4. DATA DESCRIPTION 
The source of data used in the current paper is the 2002/2003 Turin Time Use Survey, which was 
designed/administered by the Italian National Institute of Statistics (ISTAT) and sponsored by the 
Turin Town Council and 14 neighboring town councils (Baldissero Torinese, Beinasco, Borgaro 
Torinese, Collegno, Grugliasco, Moncalieri, Nichelino, Orbassano, Pecetto Torinese, Pino Torinese, 
Rivoli, San Mauro Torinese, Settimo Torinese, Venaria Reale). The survey collected a daily activity 
time-use diary from each of 4537 household members aged 3 years and older from 1830 households 
[see Istat (30) for details of the survey design and administration procedures].  

The sample used for model estimation includes 862 active individuals (14 years and older) 
who are workers or students, undertook at least one work trip or one study trip on the survey day, 
and are able to use at least one motorized mode (i.e. moped, scooter, motorcycle, car, etc.). After 
data processing and cleaning, the final sample includes 862 individuals.  
 Four different travel modes have been selected for the MNL estimation: (1) drive alone 
(DA), (2) shared ride (SR), (3) active transport (AT), and (4) public transport (PT). The mode used 
for the final leg to work in the morning is used as the commute mode choice (thus, if a person drops 
off another family member by car during the morning commute and then proceeds alone to work, the 
person’s work mode choice is classified as drive alone). The commute mode split in the sample is as 
follows: 52.3% drive alone, 17.3% shared ride, 10.7% active transport (walk or bike), and 19.7% 
public transport.  
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 A stop during the commute has been defined as any episode occurring for at least 10 minutes, 
at a location other than home or work/study place. No activity purposes have been excluded from 
this definition (thus, for example, buying a newspaper and getting a coffee are expressly coded as 
stops, as long as they are of 10 minutes or longer duration). Further, two consecutive activities 
performed in the same location, with no intermediate trips, are considered as a single stop. In this 
work only the cumulative number of stops is modeled, and no distinction is made by purpose of stop 
or commute direction (that is, whether the stop was made during the home-to-work commute or the 
work-to-home commute, though a very high proportion of the stops are made during the work-to-
home commute in the evening). The split of number of stops in the sample is as follows: 63.5% zero 
stops, 25.0% one stop, 8.0% two stops, and 3.5% with three or more stops. Among those who make 
no stops, the mode split is 52.1% DA, 15% SR, 10.8% AT, and 22.1% PT, while among those who 
make one or more stops, the mode split is 52.7% DA, 21% SR, 10.5% AT, and 15.5% PT. These 
figures reveal the general trend discussed in the paragraph just before Section 3.  

A number of exogenous variables were considered for estimation, including (1) Individual 
socio-demographics (age, gender, marital status, and education level), (2) Household socio-
demographics (number of children, number of children by age, vehicle availability, and household 
income), and (3) Residential location and commute characteristics (location in the Turin area, 
distance from home to work, and the number of commutes in the day - whether the individual does 
not return home in the afternoon for lunch, labeled as a “single commute”, or whether the individual 
returns home in the afternoon for lunch, labeled as a “double commute”). 
 Tables 1 and 2 show the distributions by commute mode and by number of stops for 
individual and household characteristics (Table 1), and for residential location and commute 
characteristics (Table 2). Note that the percentages sum to 100% for each exogenous variable across 
the mode columns and across the number of stops columns. The last column shows the average 
values of the explanatory variables across the entire sample. The discussion below regarding 
variable effects is only suggestive, since Tables 1 and 2 are based on univariate statistics and do not 
control for other exogenous variables when examining the effect of an exogenous variable on 
commute mode choice and number of stops.  
 
4.1 Individual and Household Characteristics 
Males account for 57% of the sample, while females account for the remaining 43% of the sample. 
The results show that men are more likely to drive alone than women (60.7% of men drive alone 
compared to 41% of women who drive alone; see the column labeled “DA” under “Commute 
Mode”), and also make fewer commute stops than women (68.8% of men do not make commute 
stops, while only 56.3% of women do not make commute stops; see the entries in the “0 stops” 
column under “Number of Stops”).  The age category most represented in the sample is individuals 
who are 41 years or older (42%; see last column of table). Only 6% of the sample is aged 14-17 and 
the remainder is almost equally divided into the 18-30 years and 31-40 years categories (24% and 
28% respectively). Young individuals (aged 14-17 years and 18-30 years) are more likely to be 
public transport users than their older peers (note that about 59% of those aged 14-17 years use 
public transport, and about 26.8% of those aged 18-30 years use public transport; these numbers are 
greater than the public transport shares among the other age groups). Further, those who are 31-40 
years of age tend to make more stops than those in other age groups. 

The percentage of individuals with low education (middle school or lower) and medium 
education (high school or undergraduate degree) levels is about the same at about 44%, while the 
percentage of individuals with a high education (Master’s degree or higher) is 13%. The results also 
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show that individuals with high education levels are less likely to take the public transport and active 
transport modes, and more likely to take the drive alone mode, relative to those with low education 
levels. Further, in general, those with high education levels also make more commute stops than 
those with low education levels. The percentage of married individuals in the sample is 53%;  those 
who are married are more likely users of the drive alone and shared-ride modes, and tend to make 
more stops (except for the 3+ stops category).  

About 29% of the individuals in the sample do not have children in their household. The 
numbers corresponding to number of children by age indicate, in general, the lower use of drive 
alone and higher use of public transport among individuals with no children in the household 
(relative to individuals with children in the household). The results also show the higher disposition 
to drive alone among individuals in households with younger children, and a higher predisposition to 
use public transport among individuals in households with older children. Further, individuals in 
households with very young children (0-5 years of age) are more likely to make commute stops than 
those in households with no children or older children. This is to be expected, since young children, 
in particular, will need to be picked up/dropped off by parents from/at child care.  

As expected, the results for vehicle ownership (number of motorized vehicles in the 
household) reveal the higher likelihood of choosing drive alone as the commute mode and making 
more commute stops as vehicle availability increases. The final variable in Table 1 shows that 89% 
of the individuals in the sample are from middle income families, while 8% are from low income 
families and 3% are from high income families.1 Individuals from middle income families are more 
likely to use the drive alone mode, and less likely to use active transport, relative to those from low 
and high income families. In addition, public transport use decreases as family income rises, and 
shared-ride use increases as family income increases.  
 
4.2 Residential Location and Commute Characteristics 
About 45% of the sample resides in the Turin municipality, while the remainder resides in the larger 
metropolitan area outside Turin. As one would anticipate, those residing in the Turin municipality 
are more likely to walk/bicycle and take public transport than those residing outside the 
municipality. Turin residents are more likely to make 1 stop relative to non-Turin residents, while 
the non-Turin residents are more likely to make two or more stops.  

Not surprisingly, those who have very short commute distances (less than 1 km) are most 
likely to use an active transport mode. Also, those who commute long distances (>5 kms) tend to 
make more commute stops. The next variable in the table refers to the number of commutes. Clearly, 
those who double commute shy away from using the public transport mode.  

The day of week of commute does not appear to have much impact on commute mode choice 
or commute stop-making in this univariate analysis.  
 
5.  RESULTS 
As cautioned earlier, the descriptive results in the previous section are only suggestive. In particular, 
the effect of a variable is examined without controlling for the influence of other variables.  To 
obtain a comprehensive picture of the factors affecting commute mode choice and stop-making, 
there is a need for a rigorous multivariate analysis. In the next section, we present results from such 

                                                 
1 The Turin survey did not provide income brackets for individuals to respond in, due to privacy considerations. Rather, 
individuals had to subjectively assign their household incomes into one of three nominal income levels – low, medium, 
and high. 
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an analysis, which involves the estimation and testing of the joint Copula MNL-Ordered Logit using 
a number of dependency structures (Normal, FGM, Frank, Gumbel, Clayton and Joe) as well as the 
independent formulation.  
 The alternative copula models cannot be tested using the traditional likelihood ratio test 
because these copula models are non-nested. So, the Bayesian Information Criterion (BIC) is 
employed to select the best copula model from among the competing non-nested copula models [see 
(28 page 65, 31, 32)]. Using the BIC, the best model fit is obtained with the Gaussian copula that has 
a log-likelihood value of -1652.39 compared to -1657.72 for the independent model.  The second 
best model turned out to be the Frank copula, which yields a log-likelihood value of -1653.01. 
Interestingly, both the first best and second best copula forms are radially symmetric and strongly 
suggest the presence of a symmetric dependency structure. The log-likelihood value for the sample 
shares model is -1860.20. A nested likelihood ratio test between the Gaussian copula model and the 
independent model turns up a test statistic value of 10.7, which is higher than the table chi-squared 
value with one degree of freedom (equal to the restriction that the dependence parameter is zero in 
the Gaussian copula) at any reasonable level of significance. Also, the test between the Gaussian 
copula model and the naïve sample share model rejects the absence of variable effects.  
 In the rest of this section, we only present the model estimation results for the best copula 
model, to conserve on space. The results are shown in Table 3. The first four rows provide the 
copula dependency parameters (t-stats in parentheses) for each trip mode. All parameters are 
significantly different from zero and positive, which indicates the presence of unobserved factors 
common to both mode choice and number of stops behavior. Specifically, a positive correlation (or 
dependence) between the error terms qiv  and qiη  implies that unobserved factors that increase 
(decrease) the propensity to choose a certain mode to work/study also increase (decrease) the 
propensity to make stops. As discussed earlier in this paper, this is an expected result that is now 
confirmed through the rigorous copula-based model. The magnitude of dependence decreases from 
the drive alone mode to the shared-ride mode to the active transport mode to the transit mode, which 
may be related to the greater propensity to prefer the drive alone/shared ride modes when there is an 
intrinsic need to have a flexible arrangement to make stops. The modal constants in the table do not 
have any substantive interpretations; they simply control for the sample mode shares as well as 
control for the range of the exogenous variables in the sample.  
 The effect of other variables on the utility of each mode in the multinomial logit (MNL) 
model and on the propensity to make stops in the ordered logit (OL) model are discussed by variable 
category below. Several functional forms for the variables were considered. For example, age was 
introduced linearly, using a piecewise-linear approach, as well as dummy variables with different 
cut-off points. The final model specification (including the variables included, the functional form of 
variables, and interaction effects of variables) was based on intuitive considerations, insights from 
previous literature, parsimony in specification, and statistical fit/significance considerations. 
 
5.1 Individual and Household Characteristics  
Males are less likely than females to use modes other than driving alone and to undertake stops 
during the commute. The latter result, in particular, has been found in almost all studies of commute 
stop-making [see (7, 9, 18, 25)], and perhaps illustrates the continuing trend of women to be 
primarily responsible for household maintenance activities and for dropping/picking up children 
from day-care. Individuals under 18 years of age are more likely to use active transport and public 
transport than individuals of all other age groups. This could be a reflection of financial constraints, 
or physical ability to use active transport, or environmental awareness among the young, or 
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combinations of these. On the other hand, individuals who are 31-40 years old are the least likely to 
use public transport. However, and interestingly, the results do not show differential stop-making 
propensities based on age. Education level does not seem to affect mode choice, but individuals with 
medium and high education levels are more likely to make stops during the commute compared to 
those who have a low education level. Married individuals are more likely to rideshare than 
unmarried individuals, which is consistent with the results from the univariate analysis in Table 1. 

Moving on to the household variables, individuals in households with several children are 
less likely to use public transport, while individuals in households  with very young children (under 
5 years of age) are more likely to make stops during the commute. These results are not surprising 
since the presence of children, in general, entails a high number of picking up and dropping off 
activities, and these activities are not conveniently undertaken by public transport. As expected, the 
higher availability of vehicles (computed as number of vehicles divided by household size) results in 
lower use of active transport and public transport modes, and higher levels of stop-making 
propensity. Finally, within the group of household characteristics, the results show the higher stop-
making propensity of individuals from high income families relative to individuals from low and 
medium income families. These last two results are also consistent with those found in earlier 
studies [see (3, 9, 11, 20)], and suggest mobility and expenditure “freedom” to pursue non-work 
stops during the commute.  

 
5.2 Residential Location and Commute Characteristics 
As in the case of the univariate analysis, the multivariate analysis also indicates the higher usage of 
active transport and public transport (and the lower usage of the drive alone and shared-ride modes) 
among individuals residing in Turin relative to those residing outside Turin.  Commute distances of 
less than 1 km are more likely to lead to the choice of bicycle and walk modes of travel, but as 
expected individuals are progressively less likely to bicycle or walk as their commute distance 
increases. Also, individuals who double commute (go back home for lunch) are unlikely to use 
public transport because of the need to undertake this midday activity. Finally, individuals are less 
likely to engage in active transport on Saturdays relative to other regular workdays. 

The thresholds listed toward the end of Table 3 do not have any substantial interpretation. 
They simply serve to translate the underlying stop-making latent propensity to the observed ordinal 
categories of number of stops.  
 
5.3 Comparison with Bhat’s (1997) Results 
A comparison of the results obtained in the current paper with those reported by Bhat (11) highlights 
differences between the European (Turin Metropolitan Area, Italy) and United States (Boston 
Metropolitan Area) contexts. The model presented in this research identifies a high positive 
dependency parameter between the error terms in the shared ride mode utility and the stop-making 
propensity. By contrast, Bhat (11) finds a non-significant value for the corresponding dependency. 
This may be explained by cultural differences – it is not uncommon in Italy to make stops to 
accommodate the needs of fellow riders, and the more the fellow riders the more the stops. This may 
explain the general positive tendency (due to unobserved factors) between shared-ride utility and 
stop-making. The result may also be due to family members ride-sharing and taking care of 
household responsibilities. Istat (30) suggests that Italians are less “time-hassled” compared to 
individuals in other Western countries, and this may make Italians more open to ride-sharing and 
more accommodating of the stop-making needs of fellow riders. On the other hand, both Bhat’s 
model and our current model identify a significant positive dependence between the unobserved 
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factors  influencing drive alone utility and stop-making propensity, As expected, the need for control 
and independence increases both the preference for the drive alone mode and stop making 
propensity.  
 The explanatory variables in Bhat’s paper and the current one are somewhat different. But 
the common variables (such as vehicle availability, income, marital status, and gender) do generally 
have the same direction of effect on commute mode choice tendencies and stop-making propensities. 
Bhat included level-of-service variables in his mode choice model, which we could not obtain for 
the Turin area because of lack of network data from the region. However, the list of demographic 
variables is longer in our current paper than in Bhat’s paper. Another important aspect of the current 
research is the accommodation of active transport (walk/bicycle) as a commute mode, which Bhat 
was not able to do in the US context. Our results indicate the significant influences of gender, age, 
vehicle availability, residential location, and commute distance on the utility of the active transport 
mode.  
 Finally, it is interesting that the best copula structure in the current research turned out to be 
the Gaussian copula, which is the one that Bhat (11) imposed a priori in his model. It would be 
interesting to continue to test alternative dependency structures in other empirical contexts, using the 
flexible copula model structure proposed in this paper, to examine if the Gaussian copula structure is 
generically appropriate for modeling commute mode choice and  stop-making behavior, or whether 
the convergence to the Gaussian copula in this paper is specific to the Turin context.  
 
6. CONCLUSIONS  
In this paper, we have developed a copula-based joint framework of tour mode choice and number of 
stops during the commute. The methodology developed here, to the authors’ knowledge, is the first 
formulation and application of the copula approach to the estimation of a joint unordered 
multinomial-ordered discrete choice model. The focus on an Italian context is another important 
aspect of the current study.  
 The results indicate the substantial and statistically significant effects of individual and 
household characteristics on mode choice and stop-making behavior. On the other hand, residential 
location and commute characteristics seem to affect only commute mode choice and not commute 
stop-making behavior. Earlier studies have also pointed out the relatively small or zero effect of 
commute distances and built environment variables on commute stop-making, especially relative to 
the effects of demographic variables [see, for example, (7, 11)].  

The model structure presented in this work is capable of capturing self-selection effects in 
the mode choice decision based on the number of stops during the commute. The presence of self-
selection confirms the importance of jointly modeling the mode choice decision and the number of 
stops, in particular when aggregate percentage changes in each stop category - in response to 
changes in policy relevant exogenous variables - are intended to be calculated.  

There are of course, several avenues to improve and extend the current research. First, the 
current research does not differentiate between the home-to-work and work-to-home commutes, both 
in terms of mode choice and stops behavior. But there may be substitution effects or complementary 
effects in stop-making behavior during the home-to-work and work-to-home commutes. This issue 
may be particularly relevant in the Italian context as it is not uncommon for  Italian workers/students 
to make two round trip commutes a day (returning home for lunch and going back to work in the 
afternoon), increasing the opportunity for interaction effects. Second, the current study does not 
focus on other important dimensions of commute stop-making behavior, including the duration, 
location, and purpose of stops. Third, the effort does not include level-of-service measures and fine 
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measures of land-use/urban form due to the unavailability of such data from the Turin region. 
Further research should focus on expanding the dimensions of commute behavior studied, and 
including a richer set of demographic, transportation network, land-use, urban form, and individual 
attitudinal variables.   
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TABLE 1  Sample Characteristics – Individual and Household Characteristics 

 

 
COMMUTE MODE NUMBER OF STOPS 

Avg 
DA SR AT PT 0 1 2 3+ 

Individual characteristics  
Gender       

Male 60.7% 16.0% 9.3% 14.0% 68.8% 21.9% 6.7% 2.6% 57%
Female 41.0% 19.0% 12.5% 27.5% 56.3% 29.3% 9.8% 4.6% 42%

Age       
Age 14 – 17 5.9% 15.7% 19.6% 58.8% 80.4% 13.7% 3.9% 2.0% 6%
Age 18 – 30 49.8% 16.2% 7.2% 26.8% 65.6% 23.4% 7.2% 3.8% 27%
Age 31 – 40 64.6% 18.5% 8.6% 8.3% 56.0% 30.0% 9.5% 4.5% 28%
Age 41 and more 52.1% 17.3% 12.8% 17.8% 64.9% 24.2% 8.1% 2.8% 42%

Level of Education       
Low Education (middle school 
and lower) 44.5% 19.1% 14.3% 22.1% 70.9% 20.5% 5.9% 2.7% 43%

Medium Education (high school 
or undergraduate degree) 56.2% 15.8% 7.9% 20.1% 61.7% 25.6% 8.4% 4.3% 44%

High Education (Master's 
degree or higher) 65.2% 16.1% 8.0% 10.7% 44.6% 38.4% 13.4% 3.6% 13%

Marital Status       
Unmarried 48.5% 12.7% 10.5% 28.3% 64.7% 24.5% 7.1% 3.7% 47%
Married 55.7% 21.4% 10.8% 12.1% 62.3% 25.6% 8.8% 3.3% 53%

Household characteristics  
Num of children by age        

No kids 50.7% 18.0% 13.7% 17.6% 58.5% 27.8% 8.8% 4.9% 29%
Kids 0 – 5 68.5% 15.3% 9.9% 6.3% 51.4% 33.3% 10.8% 4.5% 16%
Kids 6 – 13 60.2% 20.5% 9.9% 9.4% 65.8% 22.4% 8.1% 3.7% 22%
Kids 14 – 17 58.4% 15.6% 13.0% 13.0% 62.3% 23.4% 11.7% 2.6% 11%
Kids 18+ 49.7% 20.6% 11.6% 18.1% 65.8% 25.2% 7.1% 1.9% 22%

Vehicle Ownership (number of 
motorized vehicles owned)       

0 vehicles 21.6% 13.5% 18.9% 45.9% 51.4% 37.8% 5.4% 5.4% 4%
1 vehicle 44.7% 16.4% 13.8% 25.1% 62.7% 26.7% 7.7% 2.9% 36%
2 vehicles 55.8% 17.7% 9.3% 17.2% 66.8% 22.0% 7.3% 3.9% 41%
3 vehicles and more 66.7% 18.9% 5.7% 8.7% 60.4% 25.8% 10.7% 3.1% 19%

Household Income (as defined by 
the household head)       

Low Income  45.7% 11.4% 14.3% 28.6% 72.9% 21.3% 2.9% 2.9% 8%
Medium Income 53.1% 17.4% 10.2% 19.3% 63.4% 25.6% 7.7% 3.3% 89%
High Income 48.2% 29.6% 14.8% 7.4% 40.7% 18.5% 29.6% 11.2% 3%
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TABLE 2  Sample Characteristics – Residential Location and Commute Characteristics 

 
 COMMUTE MODE NUMBER OF STOPS 

Avg 
 DA SR AT PT 0 1 2 3+ 

Residential Location          

   Turin Municipality  49.0% 15.1% 13.8% 22.1% 60.8% 28.7% 7.2% 3.3% 45%

   Outside Turin Municipality  55.1% 19.1% 8.1% 17.7% 65.7% 22.0% 8.7% 3.6% 54%

Commute Distance       

   Distance ≤ 1 km 31.9% 15.4% 49.5% 3.2% 63.7% 23.1% 11.0% 2.2% 13%

   Distance 1–5 km  61.6% 17.7% 9.6% 11.1% 64.6% 23.2% 8.6% 3.6% 29%

   Distance 5–10 km   55.6% 19.6% 2.1% 22.7% 57.1% 28.6% 9.5% 4.8% 28%

   Distance > 10 km  63.2% 17.2% 2.0% 17.6% 62.3% 27.5% 6.4% 3.8% 30%

Number of commutes       

   Single Commute 52.3% 16.9% 8.6% 22.2% 64.1% 24.2% 7.9% 3.8% 85%

   Double Commute  52.3% 19.2% 22.3% 6.2% 60.0% 30.0% 8.5% 1.5% 15%

Day of the week       

   Workday  52.5% 17.5% 10.7% 19.3% 62.3% 25.6% 8.3% 3.8% 73%

   Saturday  51.7% 16.7% 10.7% 20.9% 66.7% 23.5% 7.3% 2.5% 27%
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TABLE 3  Model Estimates 

Variables 
MNL Ordered 

Logit 
(N°Stop)

Drive 
Alone

Shared 
Ride

Active 
Transport 

Public 
Transit

Copula Dependency Parameter (θ)      

Drive Alone - - - - 0.469 
(2.56) 

Shared Ride - - - - 0.375 
(3.79) 

Active Transport - - - - 0.238 
(2.03) 

Public Transit - - - - 0.194 
(1.82) 

Mode Constants - -0.966
(-5.01) 

-0.626 
(-1.72) 

1.125 
(4.41) - 

Individual Characteristics      

Male - -0.626
(-3.63) 

-0.626 
(-3.63) 

-1.133
(-5.46) 

-0.286
(-3.40) 

Age (age ≥ 41 yrs and age 18-30 yrs are the base)      

Age 14 – 17 - - 1.511 
(4.01) 

1.511 
(4.01) - 

Age 31 – 40 - -  -0.980
(-3.49) - 

Level of Education (Low education is the base)      

Medium Education (High school or undergraduate degree) - - - - 0.190 
(2.14) 

High Education (Master's degree or higher) - - - - 0.411 
(2.99) 

Married - 0.394 
(2.05) - - - 

Household Characteristics      
Number of Kids      

Number of total kids - - - -0.431
(-3.14) - 

Number of kids ≤ 5 years - - - - 0.282 
(2.43) 

Vehicle Availability (# of motorized vehicles/household size) - - -1.485 
(-3.47) 

-1.798
(-7.68) 

0.249 
(2.82) 

Household Income (low and medium income are the base)          

High Income (as defined by the household head) - - - - 0.493 
(2.55) 

Residential Location and Commute Characteristics      

Turin Municipality - - 0.788 
(2.96) 

0.342 
(1.68) - 

Commute Distance (1-5 km is the base)           

Distance ≤ 1 km - - 2.458 
(7.91) - - 

Distance 5 – 10 km - - -1.568 
(-2.97) - - 

Distance > 10 km - - -1.669 
(-2.81) - - 

Double commute (goes back home for lunch) - - - -1.232 - 
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(-2.92) 

Saturday - - -0.481 
(-1.64) - - 

Threshold 0 – 1 stops - - - - 0.886 
(6.27)  

Threshold 1 – 2 stop - - - - 1.752 
(13.56) 

Threshold 2 – 3 and more stops - - - - 2.368 
(17.50) 

 
 


