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ABSTRACT 
Previous research in crash injury severity analysis has largely focused on level of injury severity 
sustained by the driver of the vehicle or the most severely injured occupant of the vehicle.  While 
such studies are undoubtedly useful, they do not provide a comprehensive picture of the injury 
profile of all vehicular occupants in crash-involved vehicles.  This limits the ability to devise 
safety measures that enhance the safety and reduce the injury severity associated with all 
vehicular occupants.  Moreover, such studies ignore the possible presence of correlated 
unobserved factors that may simultaneously influence and impact the injury severity levels of 
multiple occupants in the vehicle.  This paper aims to fill this gap by presenting a simultaneous 
model of injury severity that can be applied to crashes involving any number of occupants.  A 
copula-based methodology, that can be effectively used to estimate such complex model 
systems, is presented and applied to a data set of crashes drawn from the 2007 General Estimates 
System (GES) in the United States.  The model estimation results provide strong evidence of the 
presence of correlated unobserved factors that affect injury severity levels among vehicle 
occupants.  The correlation exhibits heterogeneity across vehicle types with greater level of inter-
occupant dependency in heavier sport utility vehicles and pickup trucks.  The study also sheds 
light on how numerous exogenous factors including occupant characteristics, vehicle 
characteristics, environmental factors, roadway attributes, and crash characteristics affect injury 
severity levels of occupants in different seat positions.  The findings confirm that rear seat 
passengers are less vulnerable to severe injuries than front row passengers pointing to the need to 
enhance vehicular design features that promote front row occupant safety.   
 
Keywords: statistical methodology, copula-based approach, simultaneous equations model, 
injury severity modeling, vehicle crash analysis 
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1. INTRODUCTION 
The Global Status Report on Road Safety published recently by the World Health Organization 
(1) paints a grim picture of safety statistics on the world’s highways.  Using data derived from a 
2008 survey of 178 countries around the world, the report notes that nearly 1.3 million people are 
killed and between 20 and 50 million people get injured every year around the globe in roadway 
crashes. The estimated cost of highway crashes to governments worldwide is estimated to be 518 
billion US dollars.  In the United States, about 40,000 fatalities and 2.3 million injuries occur on 
the nation’s highways every year (2). While the World Health Organization (WHO) notes that 
enforcement of traffic rules, strict licensing standards, enhanced driver training, and community 
safety education campaigns would enhance roadway safety, it also identifies the need for a 
greater understanding of crash causation, injury severity, and risky road user behavior as one of 
the keys to reducing roadway fatalities and injuries.  This paper aims to directly address this need 
by identifying both observed and unobserved factors that contribute to injury severity of multiple 
occupants in a vehicle, a topic that hitherto has received little attention in the literature.  

In vehicular crashes where there are multiple occupants in a vehicle, the different 
occupants may experience varying levels of injury severity depending on a wide array of factors.  
Some factors may be observed (and therefore measured and reported in crash data sets), for 
example, seat belt use, alcohol involvement, vehicle type, and position of the occupant in the 
vehicle.  Other factors, however, may be unobserved (and therefore go unmeasured and 
unreported in crash data sets).  These factors may include such variables as vehicle condition and 
maintenance record, vehicle speed at the time of crash, condition and effectiveness of the vehicle 
safety equipment, and mental and physical state of the vehicle occupant. Given that there is 
potentially a wide array of factors, both observed and unobserved, that may affect injury severity 
and that injury severity may vary across occupants in a vehicle, the field would benefit from a 
study that models injury severity of multiple vehicle occupants while accounting for common 
observed and unobserved factors that may contribute to injury severity levels experienced by 
different occupants. This paper aims to present such a model system so that safety counter-
measures can be devised to reduce injury severity levels for all vehicle occupants 
simultaneously.   

The study of injury severity resulting from crashes has been of much interest in the 
profession.  There is a large body of literature devoted to modeling injury severity, usually 
adopting some form of ordered response model specification.  These studies typically examine 
the crash injury severity of the driver or the most severely injured vehicle occupant (3-6).  
However, not much attention has been paid to simultaneously modeling injury severity of 
multiple occupants in a vehicle.  A couple of studies that have attempted to model injury severity 
of two occupants of the vehicle (usually the driver and the most severely injured passenger) 
include those by Hutchinson (7) and Yamamoto and Shankar (8).  In both of these studies, a 
bivariate probit model specification is adopted to model injury severity for two vehicle 
occupants.  The bivariate probit model specification incorporates the ability to account for the 
presence of common unobserved factors that influence injury severity across two vehicle 
occupants.  Modeling injury severity simultaneously for more than two vehicle occupants 
presents a methodological challenge, however, due to the computational complexity associated 
with specifying, identifying, and estimating a multivariate probit model with more than two 
dimensions.  This paper overcomes this challenge by presenting a simple and practical modeling 
approach and specification that accommodates the simultaneous analysis of injury severity of 
any number of vehicle occupants by seat position. The focus of this paper on injury severity as 
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related to seat position is motivated by the considerable attention that has been devoted to this 
issue in the literature. There are numerous studies that examine the injury severity levels 
sustained by children seated in different positions in vehicles (9-12).  Virtually all studies report 
findings that children seated in the front are more likely to sustain fatal or severe injuries than 
children seated in the rear.   

The analysis of injury severity of multiple occupants in a vehicle has been limited by the 
methodological challenges associated with modeling such phenomena in a simultaneous (or 
joint) equations framework.  Several studies have employed descriptive statistical analysis 
techniques, logistic regression approaches, or ordered response structures to model injury 
severity of occupants with explicit consideration of seat position, but as an explanatory variable.  
Evans and Frick (13), Smith and Cummings (14,15), Wang and Kockelman (16) Claret et al. 
(17), and Mayrose and Priya (18) constitute examples of such studies.  All of these studies report 
that passengers seated in the rear seat sustain less severe injuries than those seated in the front, 
with those seated in the rear middle position generally sustaining the least severe injuries among 
all occupants. On the other hand, O’Donnell and Connor (3) undertake a comprehensive analysis 
of occupant injury severity using ordered logit and probit models and report that the driver seat 
position is the safest among all seat positions.   

Although the previous literature has shed light on the influence of seat position on 
occupant injury severity, there is very little work on the joint modeling of multiple occupant 
injury severity that accounts for both observed and unobserved factors that simultaneously 
impact injury severity of multiple vehicle occupants. While the studies of Hutchinson (7) and 
Yamamoto and Shankar (8) provided an initial impetus to such simultaneous injury severity 
modeling, further work has been hampered by methodological challenges associated with 
specifying, identifying, and estimating such simultaneous equations models.  This paper aims to 
contribute substantively to this arena by presenting a copula-based methodology that can be 
applied to estimate models of injury severity of any number of occupants in a vehicle 
simultaneously.  The methodology is applied to the 2007 General Estimates System (GES) data 
set from the United States, a database of a sample of crashes from jurisdictions across the 
country.   

The remainder of this paper is organized as follows.  The next section presents the 
copula-based methodology adopted in this paper.  The third section presents a detailed 
description of the data set while the fourth section presents the model estimation and validation 
results.  Concluding thoughts are offered in the fifth and final section.  
 
2. METHODOLOGY 
Consistent with the literature on injury severity analysis, this paper adopts an ordered response 
modeling approach with an implicit assumption that there is an underlying continuous latent 
variable whose horizontal partitioning maps into the observed injury severity level.  The issue 
that receives explicit consideration in this paper is that there is a potential inter-dependence in 
injury severity among different occupants of the same vehicle due to both observed and 
unobserved exogenous factors.  If there are no common unobserved factors affecting injury 
severity across multiple vehicle occupants, then one can estimate independent ordered response 
models of injury severity separately for each vehicle occupant.  However, if there are common 
unobserved factors, then a simultaneous ordered response model of vehicle occupant injury 
severity that accommodates error correlations needs to be specified and estimated.  Common 
unobserved factors may include such variables as vehicle speed at the time of crash, vehicle 



Eluru, Paleti, Pendyala, and Bhat  3 
 

 
 

condition and maintenance record, condition of vehicle safety equipment, vehicle safety features, 
and state of passengers prior to crash.  The simultaneous equations modeling of occupant injury 
severity is a classic case of analyzing clusters of dependent random variables that has widely 
been considered in transportation and other fields (see, for example, 19-21). However, these 
earlier studies a priori place restrictions on the dependency surface characterizing the 
relationship between the dependent random variables (mostly through what amounts to a 
symmetric multivariate normal dependency surface). However, it may be the case that the 
dependence among the injury propensities of vehicle occupants is asymmetric; for instance, one 
may observe vehicle occupants having a simultaneously high propensity for high injury severity 
levels, but not necessarily a propensity for simultaneously low injury severity levels. 
Alternatively, even if symmetric, the specific parametric functional form of the dependency may 
take one of several profiles. In the current paper, we use an approach that enables us to test the 
appropriateness of different parametric dependency surfaces to select the one that empirically fits 
the data best. 

Specifically, this paper adopts a copula-based approach to accommodate the dependence 
in injury severity propensity among multiple vehicle occupants.  In particular, this paper uses the 
Archimedean group of copulas to implement a computationally feasible maximum likelihood 
procedure for parameter estimation.  The copula-based approach offers the ability to formulate a 
closed form likelihood function that eliminates the need to adopt the more computationally 
intensive simulation-based procedures for parameter estimation. Other advantages associated 
with adopting the Archimedean group of copulas for model estimation include the following: 

• The Archimedean copulas can be used to obtain the joint multivariate cumulative 
distribution function of any number of individuals belonging to a cluster.  Further, these 
copulas retain the same form regardless of cluster size, thus accommodating clusters of 
varying sizes in a straightforward manner.  

• The Archimedean group of copulas allows testing a variety of radially symmetric and 
asymmetric joint distributions, as well as testing the assumption of within-cluster 
independence.  

• The approach enables the specification of a variety of parametric marginal distributions 
for individual members in a cluster and preserves these marginal distributions when 
developing the joint probability distribution of the cluster. Further, the approach 
separates the marginal distributions from the dependence structure so that the 
dependence structure is entirely unaffected by the marginal distributions assumed. 

• Finally, the approach allows the level of dependence within a cluster to vary based on 
cluster type.  For example, the level of dependence of injury severity across vehicle 
occupants may be influenced by vehicle type and other vehicle characteristics.  In fact, it 
is possible to allow the dependency structure to be different across cluster types (say, 
vehicle types) by using different copulas for different cluster types.   

The remainder of this section presents the mathematical formulation of the modeling 
methodology.  
 
2.1 Copula-Based Approaches 
A copula is a device or function that generates a stochastic dependence relationship (i.e., a 
multivariate distribution) among random variables with pre-specified marginal distributions.  
Bhat and Eluru (22) and Trivedi and Zimmer (23) offer detailed descriptions of the copula-based 
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approaches to statistical model estimation and the types of copulas available for generating 
multivariate distribution functions with given marginals [see also Genest and MacKay (24)].  
The precise definition of a copula is that it is a multivariate distribution function defined over the 
unit cube linking uniformly distributed marginals. Let C be an I-dimensional copula of uniformly 
distributed random variables U1, U2, U3, …, UI with support contained in [0,1]I. Then,  
 

Cθ (u1, u2, …, uI) = Pr(U1 < u1, U2 < u2, …, UI < uI), (1) 

 

where θ  is a parameter vector of the copula commonly referred to as the dependence parameter 
vector. Consider I random variables ,,,,, 321 Iεεεε … each with univariate continuous marginal 

distribution function ).Pr()( iii zzF <= ε 1 Then, a joint I-dimensional distribution function of the 
random variables with the continuous marginal distribution functions )( izF  can be generated as 
follows (25): 
 

1 2 1 1 2 2 1 1 2 2

1 1 2 2

( , , , ) Pr( , , , ) Pr[ ( ), ( ), , ( )]
[ ( ), ( ), ( )].

I I I I I

I I

F z z z z z z U F z U F z U F z
C u F z u F z u F zθ

ε ε ε= < < < = < < <
= = = =

… … …
…

      (2)  

 
The above equation offers an approach to develop different dependency patterns for the 

random variables Iεεεε ,,,, 321 … based on the copula that is used as the underlying basis of 
construction. In the current paper, a class of copulas referred to as the Archimedean copulas is 
used to generate the dependency between the random variables. The Archimedean class of 
copulas is popular in empirical applications, and includes a whole suite of closed-form copulas 
that cover a wide range of dependency structures, including comprehensive and non-
comprehensive copulas, radial symmetry and asymmetry, and asymptotic tail independence and 
dependence [see Nelsen (26) and Bhat and Eluru (22) for a detailed discussion]. This class of 
copulas is very flexible, and easy to construct. 

Archimedean copulas are constructed based on an underlying continuous convex 
decreasing generator function (see Bhat and Eluru (22) for a discussion on the generation of 
Archimedean copulas). A whole variety of Archimedean copulas have been identified based on 
different forms of this generator function. In this paper, four different and most popular 
Archimedean copulas that span the spectrum of different kinds of dependency structures are 
considered. These are the Clayton, Gumbel, Frank, and Joe copulas (see Bhat and Eluru (22) for 
graphical descriptions of the implied dependency structures). All of these copulas allow only 
positive associations and equal dependencies among pairs of random variables in their 
multivariate forms, which is well-suited for cluster analysis where one would expect positive and 
equal dependencies among elements within a cluster. The Clayton copula (27) is best suited for 
strong left tail dependence and weak right tail dependence; that is, it is suitable for the case 
when, after controlling for observed covariates, vehicle occupants tend to have a simultaneously 
high propensity for low injury severity levels, but not a simultaneously high propensity for high 
injury severity levels. The Gumbel (28) copula (also referred to as the Gumbel-Hougaard copula) 
                                                 
1 Note that the univariate marginal distribution functions of the random variables do not have to be identical. 
However, such a specification is often used when developing econometric models where the random terms represent 
individual-level idiosyncratic effects.  
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is well suited for the case when there is strong right tail dependence (strong correlation at high 
values) but weak left tail dependence (weak correlation at low values); that is, it is suitable for 
the case when, after controlling for observed covariates, vehicle occupants tend to have a 
simultaneously high propensity for high injury severity levels, but not a simultaneously high 
propensity for low injury severity levels. The Frank (29) copula is radially symmetric in its 
dependence structure like the Gaussian (normal) copula. This copula is suitable for equal levels 
of dependency in the left and right tails, with very strong clustering in the middle (much stronger 
than the Gaussian copula); that is, it is suitable for the case when vehicle occupants tend to have 
a simultaneously high propensity for high injury severity levels or a simultaneously high 
propensity for low injury severity levels.. The Joe (30,31) is similar to the Clayton copula 
discussed earlier, but the right tail positive dependence is stronger.  
 
2.2 Model Formulation and Estimation 
Let q be an index for clusters (vehicle in the current empirical context) (q = 1, 2, …, Q), and let i 
be the index for occupants (i = 1, 2, …, Iq, where Iq denotes the total number of occupants in 
vehicle q; in the current study Iq varies between 1 and 5). Also, let k be an index for the discrete 
outcomes corresponding to the injury severity level. The index k, for example, may take values 
of “no injury” (k = 1), “possible injury” (k = 2), “non-incapacitating injury” (k = 3), 
“incapacitating injury” (k = 4), and “fatal injury” (k = 5). In the usual ordered response 
framework notation, one can write the latent propensity ( *

qiy ) of occupant i in vehicle q to sustain 
an injury severity level as a function of relevant covariates, and then relate this latent propensity 
to the severity outcome ( qiy ) representing the injury severity sustained by occupant i in vehicle q 
through threshold bounds (see 32): 

 

,  y < k y  , + x  = y kqikqiqiqiqi ψψεβ 1
**  if   ' +≤=  (3) 

 
where qix  is a (L×1) vector of exogenous variables for occupant i in vehicle q (not including a 
constant), β  is a corresponding (L×1) vector of coefficients to be estimated, and kψ  is the lower 
bound threshold for injury severity level k ( +∞=−∞=<<<< ++ 101210   ,  ;... KKK ψψψψψψψ ). 
The qiε  terms capture the idiosyncratic effect of all omitted variables for occupant i in vehicle q, 
and are assumed to be independent of β  and qix . The qiε  terms are assumed identical across 
occupants, each with a univariate continuous marginal distribution function 

)Pr()( qiqiqi zzF <= ε . The error terms can take any parametric marginal distribution, although 
only the normal and logistic distributions are considered in the current paper. Due to 
identification considerations in the ordered-response model, the univariate distribution functions 
are standardized, so that they are standard normal or standard logistic distributed.  

Dependence in the qiε  terms across occupants i in the same vehicle q is accommodated to 
allow unobserved cluster effects. This dependency is generated through the use of an 
Archimedean copula based on Equation (2), where the only difference now is the introduction of 
the index q to reflect that the dependence is confined to occupants of the same vehicle: 
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… …

…
               (4) 

 
It is important to note above that the level of dependence among occupants of a vehicle can vary 
across vehicles, as reflected by the qθ  notation for the dependence parameter. This dependence 
parameter is parameterized in this study as a function of observed vehicle characteristics2.  

Let qim  be the actual observed categorical response for qiy  in the sample. Then, the 
probability of the observed vector of injury severity levels across occupants in vehicle q 

),...,,,( 321 qqIqqq mmmm  can be written as: 
 

( ) ,... )(),...,(),(),...,,( **
2

*
1

**
2

*
12211 qqq

q

qq qIqqqIqq
M

qIqIqqqq dydydyyFyFyFcmymymyP θ∫====  (5) 

 
where },...,2 ,1  allfor    :,...,,{ )1(

*
)(

**
2

*
1 qmqimqIqqq IiyyyyM

qiqiq
=<<= +ψψ  and 

q
cθ  is the copula 

density. The integration domain Mq is simply the multivariate region of the *
qiy  variables 

),...,2 ,1( qIi =  determined by the observed vector of injury outcomes ),...,,( 21 qqIqq mmm . The 
dimensionality of the integration, in general, is equal to the number of occupants Iq in the 
vehicle. Thus, if one uses a Gaussian copula, one ends up with integrals of the order of the 
number of occupants in the vehicle for the joint probability of the observed combination of the 
injury severity levels across occupants in the vehicle. This will necessitate the use of simulation 
techniques when Iq is greater than three. However, in the case of a vehicle-level cluster with 
identical dependencies between pairs of occupants in the vehicle, one can gainfully employ the 
Archimedean copulas since they provide closed-form multivariate cumulative distribution 
functions. In particular, the probability in Equation (5) can be written in terms of qI2 closed-form 
multivariate cumulative distribution functions as follows: 
 

),,(),...,,( 1
**

22
*
12211 12111 +<<<<<<====

++ qqIqqqIqqqqq mqImmqmmqmqIqIqqqq yyyPmymymyP ψψψψψψ …
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where 

q
Cθ is one of the four Archimedean copulas discussed previously with an association 

parameter qθ , and ).'( 11 qiamam xFu
iqiiqi

βψ −= −+−+ The number of cumulative distribution function 

                                                 
2 It is possible to use different copula forms (i.e., dependency surfaces) for different vehicles; however, in this paper, 
the same copula form is maintained across all vehicles to keep the estimation tractable.  
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computations increases rapidly with the number of individuals Iq in vehicle q, but this is not 
much of a problem when the cluster sizes are six or less because of the closed form structures of 
the cumulative distribution functions.  In the current empirical context, Iq ≤ 5, thus lending itself 
to the use of the copula-based approach for model estimation.  

The association parameter qθ  is allowed to vary across vehicles. However, it is not 
possible to estimate a separate dependence term for each vehicle. Therefore, qθ  is parameterized 
as a function of a vector qs

 
of observed vehicle variables, while also choosing a functional form 

that ensures that qθ  
for any vehicle q is within the allowable range for each copula.  Thus,  

)exp( qq sδθ ′=
 
for the Frank and Clayton copulas, and )exp(1 qq sδθ ′+=  for the Gumbel and Joe 

copulas.  
The parameters to be estimated in the model may be gathered in a vector 

,) , ,( ′′′′=Ω ψδβ  where the vector ψ  is the vector of threshold bounds: ). , ,( 21 Kψψψψ …=  The 
likelihood function for vehicle q may be constructed based on the probability expression in 
Equation (6) as: 
 

),...,,()( 2211 qq qIqIqqqqq mymymyPL ====Ω .             (7) 

 
The likelihood function to be maximized is then given by ( ) ( )q

q
L LΩ = Ω∏ .     

3. DATA 
The crash data used in this study is derived from the 2007 General Estimates System (GES) 
obtained from the National Highway Traffic Safety Administration (NHTSA) in the United 
States (2). The GES consists of crash data compiled from a sample of police-reported accidents 
that involve at least one motor vehicle traveling on a roadway and resulting in property damage, 
injury, or death.  The GES crash data are drawn from crashes in about 60 areas across the United 
States that reflect the geography, population, and traffic patterns of the country.  A detailed 
discussion on the sampling and compilation of crash data for the GES is provided in the GES 
documentation available at the NHTSA website (http://www.nhtsa.gov).   The 2007 GES 
includes information on 60,000 crashes involving about 150,000 individuals and 100,000 
vehicles.  A number of crash-related attributes are collected for each record in the GES 
including, for example, driver and vehicle characteristics, roadway design attributes, 
environmental conditions, and crash characteristics.  The injury severity of each individual 
involved in a crash is coded on a five-point ordinal scale: (1) No injury, (2) Possible injury, (3) 
Non-incapacitating injury, (4) Incapacitating injury, and (5) Fatal injury.   

In this study, the analysis is confined to examining injury severity of vehicle occupants in 
non-commercial (private) passenger vehicles involved in collisions, i.e., where a vehicle collided 
with a stationary object or another vehicle.  A vast majority of crashes in the database involved 
one or two vehicles, and therefore, records in which three or more vehicles were involved in a 
crash were not included in the analysis.  Through an extensive data checking and cleaning effort, 
only those cases in which complete information was available for all occupants involved in the 
crash were selected for analysis.  The cleaned data set used in this study consists of 35,978 
vehicles and 48,004 occupants.   
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Due to the large sample nature of the data set, a random sample of records was drawn for 
the model estimation process. The random sample used for model estimation includes 5,297 
occupants (4,000 drivers and 1,297 passengers) in 4,000 vehicles. The sample includes 77.3% 
single-occupant, 15.9% two-occupant, 4.3% three-occupant, 2.0% four-occupant, and 0.5% five-
occupant crashes.  Within each of the multiple occupant vehicles there are different seat 
positions possible for the occupants. There are 16 possible seat position configurations for up to 
five occupants. The distribution of the occupants based on the seat position in this estimation 
sample is as follows:  

• Driver: 75.5% 
• Front seat passenger: 15.0% 
• Rear left position passenger: 3.5% 
• Rear center position passenger: 1.3% 
• Rear right position passenger: 4.7% 

Table 1 presents a summary of the sample characteristics of the occupants of the vehicles 
involved in the crashes.  More than three-quarters of the crashes involve two vehicles.  The 
sample has a slightly higher fraction of males.  Nearly one-half of the occupants are aged 21-45 
years; children aged 15 years or less comprise nearly nine percent of the sample. Seatbelt use is 
quite high with 92 percent of the occupants reporting being buckled in.  About 60 percent of the 
vehicles involved are sedans.  Most of the crashes occur in the midday and evening, presumably 
due to the higher level of travel during these periods.  Each of these periods accounts for more 
than 30 percent of the crashes in the sample.  About 90 percent of the crashes took place on 
roadways with speed limits 55 mph or lower.  Head-on collisions account for only five percent of 
the crashes while rear-end and angle collisions each account for more than 30 percent of the 
crashes.   

The distributions of injury severity levels for the vehicle occupants show that nearly two-
thirds of occupants (whether driver or passenger) report no injury.  A little over 10 percent of the 
occupants report a possible injury or non-incapacitating injury in both the driver and passenger 
samples.  The percent of individuals sustaining fatal injuries is extremely small in this random 
estimation sample (at about 0.6 percent).  In order to ensure a reasonable share for each 
alternative outcome, the incapacitating and fatal injury categories were merged to generate a 
single “serious injury” category.  This category accounts for about 8.5 percent of the outcomes 
reported in the sample.  
 
4. MODEL ESTIMATION RESULTS 
This section presents model estimation results in detail.  First, the section presents the overall 
model specification considerations and model performance in terms of goodness-of-fit.  Second, 
the section presents a detailed discussion of the actual factors affecting injury severity of 
multiple occupants in vehicles involved in crashes.   
 
4.1 Model Specification and Overall Performance 
The model specification included a range of variables covering five broad categories of factors. 
These are: 

• Occupant characteristics including age, sex, alcohol state, and seat belt use 
• Vehicle characteristics including vehicle type 
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• Environmental characteristics including day of week, time of day, lighting conditions, 
and weather conditions 

• Roadway design attributes including speed limit, type of roadway, roadway alignment, 
and number of lanes 

• Crash characteristics including whether person was ejected from vehicle, whether vehicle 
rolled over, whether single-vehicle or two-vehicle crash, collision type, and role of the 
driver’s vehicle in a two-vehicle crash 

The final model specification was derived based on a systematic process of considering variables 
for inclusion based on statistical significance, intuitive interpretation, parsimony in specification, 
and consistency with results reported in prior studies of injury severity.  Several different 
combinations of variables, functional forms, and interaction terms were considered.   

In this research effort, and as discussed earlier, we examined four different copula 
structures (Clayton, Gumbel, Frank and Joe) for specifying the dependency between the qiε  
terms across vehicle occupants to represent the vehicle cluster effect, and two different univariate 
distribution assumptions (normal and logistic) for the random error term qiε . For the sake of 
brevity, and also due to space considerations, we present the results for the best copula model 
and the best independent model (from the logistic and the normal distributions for the qiε  terms).   
To determine the best model among the copula models, we employ the Bayesian Information 
Criterion (BIC) [for details, see Quinn (33), Trivedi and Zimmer (23)]. The BIC for a given 
copula model is equal to )ln()ln(2 QKL +− , where )ln(L  is the log-likelihood value at 
convergence, K is the number of parameters, and Q is the number of observations. The copula 
that results in the lowest BIC value is the preferred copula. The BIC based selection procedure in 
our research effort is equivalent to selection based on the largest value of the log-likelihood 
function at convergence because all the competing models have the same exogenous variables 
and the same number of thresholds. 

Among the copula models, the results indicated that the Probit-Frank (PF) model 
provides the best data fit with a likelihood value of -4677.9. However, in all of the copula 
models, the dependency parameters were highly statistically significant, with the vehicle-level 
dependency in unobserved factors varying based on vehicle type. Specifically, the vehicle-level 
dependency was different across four vehicle types – sedan, SUV, pickup truck, and van. 
Between the two independent models, the normal error term distribution for the marginals (i.e., 
the ordered-response probit or ORP) provides a slightly better fit than the logistic error term 
distribution for the marginal (i.e., the ordered-response logit). The likelihood ratio test comparing 
the PF model in this paper with the independent ORP model yields a test statistic value of 373.0 
which is substantially larger than the critical χ2 value with 4 degrees of freedom (corresponding 
to the four dependency parameters) at any reasonable level of significance, confirming the 
importance of accommodating dependence in injury severity propensity among vehicle 
occupants. 
 
4.2 Key Findings 
Model estimation was undertaken for all occupants together while accommodating unobserved 
dependencies in the latent injury propensities of occupants within a vehicle.  Specifically, 
separate coefficients were estimated for the driver, front seat passenger, and rear seat passengers.  
Coefficients for all rear seat passengers were restricted to be equal to accommodate the small 
sample of rear seat passengers; however, indicator variables were included in the model 



Eluru, Paleti, Pendyala, and Bhat  10 
 

 
 

specification to accommodate potential differences across different rear seat passengers. Model 
estimation results are presented in Table 2.  

The coefficients presented in the table indicate the effects of variables on the latent injury 
severity propensity of an occupant.  A positive coefficient associated with a variable indicates 
that the variable contributes positively to a higher injury severity propensity.  The first set of 
values in the table present the thresholds of the ordered response model that simply serve to 
translate the latent propensity into the observed ordered categories of injury severity. For the 
dummy variables (including variables with multiple levels), we have a reference category that 
may vary by seat position category. In Table 2, when all the levels of a dummy variable are 
present, the coefficients with “---” represent the reference category. For other dummy variables, 
we have explicitly identified the reference category in the table. 

Among occupant characteristics, it is found that males have a lower propensity to sustain 
severe injuries when compared with females when seated in the front row (either as driver or 
passenger).  When the driver is male, the front passenger (who is more likely to be a female) has 
a higher propensity to experience a severe injury.  This finding confirms previous research [see 
Ulfarsson and Mannering (5)] indicating significant gender differences (say related to weight, 
body structure, or other factors) in injury severity outcomes after controlling for the factors 
usually available in injury severity analyses. Children aged 0-5 years are less likely to be 
severely injured when they are seated in the rear.  In comparison to older drivers (65+ years of 
age), younger drivers are less likely to sustain a severe injury. This is particularly so for the 
youngest group of drivers 16-20 years of age.  Older passengers (65+ years) seated in the front 
have a higher propensity to be severely injured compared to front row passengers of other age 
groups.  With an increasing number of elderly people in virtually every country of the world, 
many of whom are going to depend on others for a ride, this finding merits serious consideration 
for the implementation of counter-measures.  This finding may call for the installation of special 
safety devices and equipment in vehicles that would protect the elderly whose physical condition 
may be more fragile in comparison to other groups.   

As expected, seat belt use consistently results in a lower injury severity propensity.  
When the driver is under the influence of alcohol and behaves “recklessly”, the propensity of 
severe injuries rises.  A driver in a full vehicle appears less likely to be severely injured, 
presumably because the driver is careful in light of having the responsibility to transport a full 
vehicle of passengers and the passengers in turn ensure that the driver is careful in operating the 
vehicle.3 In comparison to the larger vehicle types of SUV, pickup truck, and van, driving or 
riding in a sedan is associated with a propensity to experience a higher injury severity level.  This 
finding is intuitive, as one would expect to be better protected from severe injury when driving 
or riding in a heavier and larger vehicle type.  Rear passengers seated in the middle have a 
propensity to experience a lower level of injury level, suggesting that the middle position in the 
rear is likely to be the safest position in the event of a crash. This finding is consistent with that 
reported in the literature (13).  

                                                 
3 As pointed out by a reviewer, careful driving would be more reasonably discovered in a crash rate analysis. 
However, it is reasonable to assume that a person who drivers defensively will incur less severe injuries if in a crash 
[a recent study by Paleti et al. (34) has found this to be the case]. In addition to the safe driving habits (which 
unfortunately did not prevent a crash) that may lead to less severe injuries, it is plausible that careful drivers see a 
crash developing earlier and take evasive actions to reduce the severity of a crash. However, it is important to note 
here that other explanations are also possible for this result.  
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Among environmental factors, it was found that time of day significantly impacts injury 
severity levels.  Occupants seated in the front row (whether driver or passenger) are likely to 
sustain more severe injuries in crashes during the overnight and early morning hours (12 
midnight to 6 am) than during other time periods of the day, a finding consistent with 
expectations that night-time driving may be more challenging and associated with potential 
alcohol involvement. Conditions in which lighting is present contributes to a lower injury 
severity propensity.  In wet and snowy conditions, both drivers and front row passengers have a 
lower injury propensity, presumably because vehicles are proceeding at slower speeds and 
drivers are more cautious under these conditions.  

As expected, in comparison to roadways where the speed limit is low, crashes on higher 
speed limit roadways are associated with a higher injury severity propensity for occupants in all 
positions.  The absence of a median dividing the roadway and the presence of curves in the 
roadway contribute positively to injury severity propensity for the driver and the front seat 
passenger.  These findings have important implications for roadway design and alignment.  
Crashes in which the vehicle rolls over, the occupant is ejected from the vehicle, or the vehicle 
collides with a stationary object are associated with higher levels of injury severity, particularly 
for front row occupants.  When occupants are in a vehicle that both strikes another vehicle and is 
struck itself by the other vehicle, then the likelihood of a severe injury rises substantially as 
indicated by the higher positive coefficient than that associated with a vehicle that was only 
struck by another vehicle.  Consistent with expectations, it was found that head-on collisions and 
angle crashes showed high injury severity propensities for all vehicle occupants.  Rear end 
collisions were associated with a higher injury propensity for a front passenger, while side-swipe 
collisions were associated with a lower injury severity levels.  Counter-measures that aim to 
reduce the occurrence of head-on and angle crashes are likely to be most effective in reducing 
injury severity levels associated with crashes.   

Overall, the findings are consistent with expectations and speak to the important role 
played by observed factors in affecting injury severity levels.  The findings confirm results 
reported previously in the literature and offer some insights into the types of safety counter-
measures that can reduce injury severity levels of drivers and passengers seated in different 
positions.  However, this paper goes beyond what has been done previously to also examine for 
possible unobserved dependence effects that can substantially impact values of model 
coefficients, if indeed such effects are present.   The estimated copula-based clustered ordered 
response model incorporates the jointness in injury severity across vehicle occupants that may be 
caused by the presence of common unobserved factors. Ignoring such dependencies completely 
or pre-imposing specific functional forms of the dependency can, and in general will, lead to 
inappropriate covariate influence estimates on injury severity levels.  
 
4.3 Model Assessment and Validation 
As indicated earlier, the Frank copula model form provided the best fit. The association 
parameter is parameterized in the Frank copula as )exp( qq sδθ ′=  to accommodate potential 
heterogeneity in the dependence effects across clusters.  In this paper, explicit recognition is 
given to the possibility that dependence effects in injury severity across vehicle occupants vary 
by vehicle type.  Therefore, in this study, the qs  vector includes four dummy vehicle type 
variables, i.e., sedan, SUV, pickup truck, and van. The implied Frank association parameter qθ  
for these four vehicle types and their corresponding standard errors [computed using the delta 
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method; see Greene (35] are as follows: Sedan: 5.2651 (2.023), SUV: 7.3068 (2.985), Pick up 
truck: 7.6156 (3.244) and Van: 4.3462 (1.152). All of these parameters are highly statistically 
significant (relative to the value of zero, which corresponds to independence), indicating the 
strong dependence among the unobserved injury severity determinants of vehicle occupants. 
Another common way to quantify the dependence in the copula literature is to compute the 
Kendall’s measure of dependence [see Bhat and Eluru (22) for a detailed description of this 
measure]. The Kendall’s measure of dependence takes the place of a traditional correlation 
coefficient when one is dealing with asymmetric distributions.  For the estimated association 
parameters, qθ , the values of the Kendall’s measures are: Sedan: 0.473, SUV: 0.575, Pick-up 
truck: 0.588 and Van: 0.413. These measures of concordance coupled with the dependence form 
of the Frank copula imply that the dependency in unobserved components across occupants in 
the propensity to sustain an injury severity level is very strong. In particular, the highest level of 
dependence in injury severity due to unobserved factors is for occupants of SUVs and pick-up 
trucks4.   

In an effort to further assess the Probit-Frank (PF) model, a model validation effort was 
undertaken.  The performance of the PF model is compared against that of the ordered response 
probit (ORP) model of independence for a validation sample that was not part of the estimation 
data set.  The validation sample consisted of 1,000 vehicles and 1,365 occupants.  To perform the 
validation, the predictive log-likelihood measure is computed for both models for various 
subsamples.  The results of the validation effort are presented in Table 3. 

An examination of the results of the validation exercise confirms that the PF model 
clearly offers a superior statistical fit and predictive power than the ORP model of independence.  
The likelihood ratio test presented in the last column offers a statistical basis to compare the 
performance of the PF model against that of the ORP model.  For the full sample, and most 
subsamples considered in the table, the PF model is statistically significantly better than the ORP 
model.  The PF model performs substantially better than the ORP model when there are multiple 
occupants (particularly when there are three or four occupants in the vehicle). This finding is 
consistent with expectations as one would expect the correlation across dimensions to be 
substantive only for vehicles that have multiple occupants. The PF model shows a statistically 
significant superior data fit for one-vehicle and two-vehicle crashes, sedan and SUV crashes, 
crashes on roadways with speed limit between 35 and 55 mph, and rear-end collisions.  For other 
subsamples, such as head-on collisions and crashes on roadways with speed limit less than or 
equal to 35 mph or greater than 55 mph, the PF model and the ORP model do not provide 
significantly different fit measures. 
 
5. CONCLUSIONS 
There is substantial interest in the profession to understand and identify factors contributing to 
the severity of injuries of vehicle occupants in crashes.  Past research has generally focused on 
the injury severity for that occupant who was most severely injured in a crash as opposed to 
examining the injury severity levels of all occupants in a crash-involved vehicle.  While there 
have been studies examining the injury severity level of vehicle occupants by seat position, there 
has been virtually no study that simultaneously analyzes the injury severity levels of all vehicle 

                                                 
4 We generated scatter plots to illustrate the relationship between the unobserved components εqi of injury severity 
propensity for any two occupants in the same vehicle q, based on vehicle type. However, due to space constraints, 
these plots are not presented. The plots are available from the authors. 
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occupants in a crash.  Initial attempts at doing so have been limited in their scope to examining 
injury severity of two vehicle occupants using bivariate probit models, such as that by 
Yamamoto and Shankar (8).  The ability to examine additional vehicle occupants simultaneously 
has been seriously hampered by methodological challenges associated with jointly modeling 
multidimensional phenomena with complex error correlation structures.   

In this paper, an ordered probit Frank copula model is specified and estimated to allow 
for the joint modeling of injury severity outcomes for all vehicle occupants in a vehicle while 
accomplishing three major objectives: 
 

1. Accounting for the presence of common unobserved factors (error correlations) that 
simultaneously affect the injury severity outcomes of multiple occupants in a crash-
involved vehicle 

 
2. Accounting for the differential effects of various exogenous factors on injury severity 

according to the seat position of the vehicle occupant 
 

3. Accounting for the heterogeneity in injury severity dependency effects among vehicle 
occupants across vehicle types by parameterizing the copula association parameter as a 
function of vehicle body type 
 
The specification and estimation of such a model system constitutes the major 

contribution of this paper in the context of earlier research in this topic area.  A random sample 
of the 2007 General Estimates System (GES) data set in the United States is used to estimate the 
ordered probit Frank copula model.  The performance of the Frank copula based model was 
compared against that of the ordered probit/logit model of independence and it was found that 
the copula-based model that accommodated unobserved common determinants consistently 
outperformed the model of independence for virtually every subsample of crashes considered in 
this paper. The findings clearly point to the presence of correlated unobserved factors that 
determine the crash injury severity outcomes of multiple vehicle occupants in a vehicle and that 
the degree of correlation varies by vehicle body type.  Models that ignore or neglect the presence 
of such common unobserved factors provide poorer fit, and therefore inferior predictive power.   

From a safety perspective, the findings of this paper have important implications.  First 
and foremost, the findings suggest that crash studies that model or predict injury severity levels 
associated with a transportation facility should consider adopting approaches wherein the injury 
severity levels of all vehicle occupants are modeled simultaneously or jointly.  In this way, one 
can obtain a more complete picture of the injury severity profile associated with a facility and 
devise counter-measures that address the entire profile of crash-related injuries.  The use of a 
joint equations model such as that presented in this paper would allow one to do this while 
accounting for correlated unobserved factors that are often not present in safety data sets (e.g., 
speed of travel prior to crash, vehicle condition).  

In addition, model estimation results presented in the paper offer key insights into factors 
that affect crash severity levels for multiple occupants by seat position.  The results have 
important implications for passenger safety and vehicle design.  For example, consider that 
females in the front row are more likely to be severely injured than males.  Females and older 
individuals in the front passenger seat are more likely to suffer severe injuries in comparison to 
other demographic groups.  It would behoove the profession and vehicle manufacturers to 
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consider enhancing safety devices and vehicular designs/ergonomics to better accommodate the 
physical characteristics of females and older individuals.  The finding that higher injury severity 
levels are associated with riding in a sedan implies that vehicle manufacturers need to enhance 
safety features in smaller cars.  Vehicle designs need to be enhanced to mimic the safety of the 
rear center seat position in other seat positions as well.  Designs that can minimize vehicle 
rollover and occupant ejection from a vehicle would result in a decreased propensity to 
experience severe injury levels.  Similarly, findings regarding the benefits of seatbelt use and the 
dangers associated with alcohol involvement confirm many of the previous findings reported in 
the literature.  Safety and education campaigns aimed at raising awareness of these issues are 
likely to have a beneficial impact on reducing injury severity levels. 
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TABLE 1  Sample Characteristics 

Occupant characteristics   
Male  52.1% 
0-15 years  8.6% 
16-20 years  17.1% 
21-45 years  46.3% 
46-65 years  20.2% 
65+ years  7.8% 
Wearing seat belt  92.0% 

Vehicle Characteristics   
Vehicle type   

Sedan  59.2% 
SUV  17.2% 
Pickup truck  16.5% 
Van  7.1% 

Environment characteristics   
Time of crash   

12 AM - 6 AM  6.9% 
6 AM - 9 AM  13.3% 
9 AM - 3 PM  32.3% 
3 PM - 7 PM  32.2% 
7 PM - 12 AM  15.3% 

Roadway Attributes   
Speed limit   

≤ 35 mph  41.2% 
35 - 55mph  48.1% 
55 + mph  10.7% 

Crash Characteristics   
Number of Vehicles involved   

1 vehicle   22.2% 
2 vehicles  77.8% 

Crash Type   
Head-on   5.2% 
Rear-end  30.5% 
Side-swipe  5.9% 
Angle   36.2% 
 Other (single vehicle/fixed 

object crashes) 
 22.2% 

 
Injury Outcome Driver Passenger Overall 

No injury 66.0% 65.8% 65.9% 
Possible injury 13.0% 15.0% 13.5% 
Non-incapacitating injury 12.2% 11.6% 12.1% 
Incapacitating + fatal injury 8.8% 7.6% 8.5% 
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TABLE 2  Vehicle Occupant Injury Severity Estimation Results 
 

 Driver Front passenger Rear passenger 

Variable Parameter t-stat Parameter t-stat Parameter t-stat 

Threshold parameters       

   Threshold 1 0.0195 0.154 0.4646 1.466 0.8537 5.086 

   Threshold 2 0.4660 3.669 1.0116 3.199 1.3423 7.414 

   Threshold 3 1.1114 8.617 1.6895 5.247 1.9510 10.245 

Occupant characteristics       

Male -0.1644 -4.078 -0.1923 -2.483 --- --- 

Driver is Male --- --- 0.1499 1.905 --- --- 

Occupant age       

0-5 years --- --- --- --- -0.6065 -4.453 

16-20 years -0.2710 -3.222 --- --- --- --- 

21-44 years -0.1364 -1.955 --- --- --- --- 

45-64 years -0.1364 -1.955 --- --- --- --- 

≥65 years   0.2649 1.944   

Driver age (base is “<45 years”)       

≥45 years --- --- 0.2873 3.222 --- --- 
Seat Belt used (base is seat belt not 
used) -0.8629 -10.235 -0.5189 -3.016 -0.3072 -2.673 

Driver under the influence of alcohol 
(base is “No alcohol influence”) 0.4067 4.797 --- --- --- --- 

Driver behavior characterized as 
“reckless” (base is “Not reckless”) 0.5432 1.939 --- --- --- --- 

Number of occupants = 5 -0.7578 -3.010 --- --- --- --- 

Vehicle characteristics       
Vehicle type (base is “all other vehicle 
types”)       

Sedan 0.2051 4.853 0.1885 2.407 0.4104 3.409 
Vehicle type of colliding vehicle (base 
is “all other vehicle types”)       

Sedan -0.1266 -2.761 --- --- --- --- 
Rear center indicator (base is “other rear  
seat configuration”) --- --- --- --- -0.4146 -2.431 

Environment factors       
Time of crash (base is “7:00 pm to 
12:00 am”)       

12:00 am to 6:00 am 0.2405 3.373 --- --- --- --- 

6:00 am to 9:00 am 0.1320 2.260 -0.3378 -2.228 --- --- 

9:00 am to 3:00 pm --- --- -0.2734 -2.321 --- --- 

3:00 pm to 7:00 pm --- --- -0.2929 -2.530 --- --- 
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Lighting condition (base is “normal 
lighting”)       

Dark with lighting --- --- -0.3535 -2.883 --- --- 

Dark --- --- --- --- --- --- 
Adverse weather and road condition 
(base is “no adverse weather condition”)       

Wet -0.0992 -2.003 --- --- --- --- 

Snow -0.0992 -2.003 -0.3154 -2.867 --- --- 

Ice -0.0992 -2.003 --- --- --- --- 

Rain --- --- -0.3154 -2.867 -0.2497 -1.621 

Roadway attributes       

Speed limit (base is “≤ 35 mph”)       

35 - 55mph 0.1779 4.097 0.2254 2.681 0.2136 1.669 

>55mph 0.3120 4.298 0.2254 2.681 0.6242 3.201 

Traffic way without median 0.0920 1.975 0.1893 2.261   

Roadway alignment       

Curved road 0.1814 2.878 0.3905 3.062 --- --- 

Crash characteristics       
Vehicle rolled over (base is “No 
rollover”) 0.8271 7.612 0.8150 4.150 0.9008 3.387 

Occupant ejected from the vehicle 1.4659 2.772 0.6602 0.998 --- --- 
Crash with a stationary object (base is 
“crash with another vehicle”) 0.3919 5.572 0.5840 2.233 --- --- 

Role of vehicle in two vehicle crashes 
(base is “vehicle strikes the other 
vehicle”) 

      

      Contacted vehicle 0.1452 2.943 0.2782 3.022 --- --- 

      Both striking & contacted vehicle 0.6340 4.447 0.5867 2.663 --- --- 
Type of Collision (base is “other” type 
of crashes)       

      Head on 1.1335 12.029 1.3135 4.501 1.1508 4.169 

      Rear-end --- --- 0.3072 1.194 --- --- 

      Side-swipe -0.2848 -2.546 --- --- --- --- 

      Angle 0.4230 8.014 0.7260 2.921 0.4169 3.315 



Eluru, Paleti, Pendyala, and Bhat  22 
 

 
 

 
 

TABLE 3  Disaggregate Measures of Fit in Validation Sample 
 

Sample details Number of 
observations 

ORP Predictive 
likelihood 

PF Predictive 
likelihood 

Predictive likelihood 
ratio test ( 2

4,0.05 9.49χ = ) 

Full validation sample 1000 -1213.02 -1191.53 42.98 

Number of occupants     
One 759 -643.70 -645.29 -3.17 
Two  154 -301.70 -298.54 6.31 
Three  54 -133.63 -126.10 15.06   
Four  27 -101.17 -85.99 30.36   
Five  6 -32.83 -35.61 -5.57 

Number of vehicles     
One 198 -266.81 -256.87 19.86 
Two 902 -946.21 -934.66 23.12 

Vehicle type     
Sedan 574 -725.14 -717.17 15.94 
SUV 176 -238.77 -227.46 22.61 

Speed limit     
≤ 35 mph 394 -424.35 -420.40 7.90 
35-55 mph 474 -593.95 -572.69 42.52 
> 55 mph 132 -194.72 -198.44 -7.42 

Collision type     
Head-on 49 -85.89 -84.77 2.24 
Rear-end 319 -323.03 -308.34 29.37 

 


