A NEW FLEXIBLE MULTIPLE DISCRETE-CONTINUOUS EXTREME VALUE (MDCEV) CHOICE MODEL

Chandra R. Bhat
The University of Texas at Austin
Department of Civil, Architectural and Environmental Engineering
301 E. Dean Keeton St. Stop C1761, Austin TX 78712, USA
Tel: 1-512-471-4535; Email: bhat@mail.utexas.edu
and
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
ABSTRACT

Traditional multiple discrete-continuous (MDC) models generally predict the continuous consumption quantity component reasonably well, but not necessarily the discrete choice component. In this paper, we propose, for the first time, a new flexible closed-form MDCEV model that breaks the tight linkage between the discrete and continuous choice dimensions of the traditional MDC models. We do so by (1) employing a linear utility function of consumption for the first outside good (which removes the continuous consumption quantity of the outside good from the discrete consumption decision, and also helps in forecasting), and (2) using separate baseline utilities for the discrete and continuous consumption decisions. In the process of proposing our new formulation, we also revisit two issues related to the traditional MDC model. The first relates to clarification regarding the identification of the scale parameter of the error terms, and the second relates to the probability of the discrete choice component of the traditional MDC model (that is, the multivariate probability of consumption or not of the alternatives). We show why the scale parameter of the error terms is indeed estimable when a γ-profile is used, as well as show how one may develop a closed-form expression for the discrete choice consumption probability. The latter contribution also presents a methodology to estimate pure multiple discrete choice models without the need for information on the continuous consumptions. Finally, we also develop forecasting procedures for our new MDC model structure.

We demonstrate an application of the proposed model to the case of time-use of individuals. In a comparative empirical assessment of the fit from the proposed model and from the traditional MDCEV models, our proposed model performs better in terms of better predicting both the discrete outcome data as well as the continuous consumptions.

Keywords: Multiple discrete-continuous choice models, multiple discrete-continuous extreme value model, utility theory, time use, consumer theory.
1. INTRODUCTION

Many choice situations are characterized by the choice of multiple alternatives at the same time, as opposed to the choice of a single alternative. These situations have come to be labeled by the term “multiple discreteness” in the literature (see Hendel, 1999). In addition, in such situations, the consumer usually also decides on a continuous dimension (or quantity) of consumption, which has prompted the label “multiple discrete-continuous” (MDC) choice (see Bhat, 2005, 2008). Specifically, an outcome is said to be of the MDC type if it exists in multiple states that can be jointly consumed to different continuous amounts. Earlier studies of MDC situations have included such choice contexts as (a) the participation decision of individuals in different types of activities over the course of a day and the duration in the chosen activity types, (b) household holdings of multiple vehicle body/fuel types and the annual vehicle miles of travel on each vehicle, and (c) consumer purchase of multiple brands within a product category and the quantity of purchase. In the recent literature, there is increasing attention on modeling these MDC situations based on a rigorous micro-economic utility maximization framework.

The basic approach in a utility maximization framework for multiple discreteness hinges upon the use of a non-linear (but increasing and continuously differentiable) utility structure with decreasing marginal utility (or satiation). Doing so has the effect of introducing imperfect substitution in the mix, allowing the choice of multiple alternatives. The origins of utility-maximizing MDC models may be traced back to the research of Wales and Woodland (1983) (see also Kim et al., 2002; von Haefen and Phaneuf, 2003; Bhat, 2005). More recently, Bhat (2008) proposed a Box-Cox utility function form that is quite general and subsumes earlier utility specifications as special cases, and that is consistent with the notion of weak complementarity (see Mäler, 1974), which implies that the consumer receives no utility from a non-essential good’s attributes if she/he does not consume it. Then, using a multiplicative log-extreme value error term in the baseline preference for each alternative, Bhat (2005, 2008) proposed and formulated the multiple discrete-continuous extreme value (MDCEV) model, which has a closed-form probability expression and collapses to the MNL in the case that each (and every) decision-maker chooses only one alternative. It also is equally applicable to cases with complete or incomplete demand systems (see Castro et al., 2012 for an extended discussion). The MDCEV model has now been applied in a wide variety of fields. Some recent examples include Yonezawa and Richards (2017) in the managerial economics field, Shin et al. (2015) in the
technological and social change field, and Wafa et al. (2015) in the regional science field. Of course, just as in the case of the traditional single choice models, advanced variants of the MDCEV such as the MDCGEV and random-coefficients MDCEV have also been introduced and applied (see, for example, Calastri et al., 2017; Bernardo et al., 2015; Pinjari, 2011; Pinjari and Bhat, 2010) In addition, some studies have considered the replacement of the log-extreme value error term in the baseline preference with a log-normal error term, along with random-coefficients versions of the resulting MDC probit (MDCP) model (Bhat et al., 2016a; Khan and Machemehl, 2017).

In all of the MDC formulations thus far, there is an implicit assumption that the same baseline utility preference influences both the choice of making a positive consumption of a good (the discrete choice) as well as constitutes the starting point for satiation effects (that impact the continuous choice). This has the effect of very tightly tying the discrete and continuous choices in terms of variable effects. However, there may be many reasons why the marginal utility that dictates the discrete consumption decision (that is, whether or not to invest in a particular good) may be different from the marginal utility once a consumption decision has actually been made. First, there may be a need for variety seeking that operates at the pure discrete level of consumption that may make a person’s valuation of the discrete consumption decision different from the one that forms the basis for the continuous consumption decision. For instance, a person may want a specific brand of yoghurt that is consumed in very small quantities simply as an occasional consumption break from another substantially consumed brand. Second, there may be a branding effect (that is, a prestige/image effect) that operates at the pure discrete level, but does not necessarily carry over with the same intensity to the continuous consumption decision. Thus, an individual may consume a premium brand simply to signal an exclusive, high-culture, sophisticated image, but purchase very little of that good. Third, for many goods, there may not be any value gained by investing in a single unit of that good. Indeed, this even brings up the question of how to define a unit of a good. More generally, the traditional MDC model assumes that consumers make continuous consumption choices of goods in a smooth fashion ranging from zero to large amounts of that good. In practice, value may be gained only if some sizeable non-zero amount of a good is consumed.

The tightness maintained by the traditional MDC model can sometimes lead to a situation where the continuous consumption amount is predicted well, but not the discrete choice. This has
been observed by previous studies (see You et al., 2014; Lu et al., 2017). The reason for this situation is that a variable that increases the baseline preference in the traditional MDC model has the effect of simultaneously increasing both the probability of non-zero consumption as well as the continuous amount of the consumption. While the presence of a satiation effect in the traditional MDC model, especially when the satiation effect is allowed to vary across individuals based on exogenous variables, can partially account for a high probability of non-zero consumption and low continuous amount of consumption (or low probability of non-zero consumption and high continuous amount of consumption) for specific individuals, the overall utility profile is still constrained because the satiation starts from the same baseline preference that also determines the discrete consumption decision. In this paper, we propose, for the first time, a new MDC model that breaks this tight linkage between the discrete and continuous choice dimensions. We do so by allowing the utility that determines the discrete decision to be different from the baseline preference utility that determines the continuous choice.

In the process of proposing a new formulation for the MDCEV model, we also revisit two issues related to traditional MDC models. The first relates to clarification regarding the identification of the scale parameter of the error terms in the absence of price variation, and the second relates to the probability of the discrete choice component of traditional MDC models (that is, the multivariate probability of consumption or not of the alternatives).

The rest of the paper is structured as follows. Section 2 presents the model formulation and forecasting procedure. Section 3 illustrates an application of the proposed model for analyzing individual time use. The fourth and final section offers concluding thoughts and directions for further research.

2. MODEL FORMULATION

In this section, we first present Bhat’s (2008) traditional MDC model structure and present two important considerations related to this model that have not been discussed in the earlier literature. In the presentation, we consider the case of incomplete demand with an essential “numeraire” Hicksian outside good and multiple non-essential inside goods. We then proceed to the new proposed model formulation.
2.1. Traditional MDC Model Structure

Assume without any loss of generality that the essential Hicksian composite outside good is the first good. Following Bhat (2008), the utility maximization problem in the traditional MDC model is written as:

\[
U(x) = \frac{1}{\alpha_1} \psi_1 x_1^{\alpha_1} + \sum_{k=2}^{K} \frac{\gamma_k}{\alpha_k} \psi_k \left(\left(\frac{x_k}{\gamma_k} \right)^{\alpha_k} + 1 \right) - 1
\]

s.t. \(\sum_{k=1}^{K} p_k x_k = E \),

where the utility function \(U(x) \) is quasi-concave, increasing and continuously differentiable, \(x \geq 0 \) is the consumption quantity (\(x \) is a vector of dimension \((K \times 1) \) with elements \(x_k \)), and \(\psi_k, \alpha_k, \) and \(\gamma_k \) are parameters associated with good \(k \).\(^1\) The constraint in Equation (1) is the linear budget constraint, where \(E \) is the total expenditure across all goods \(k (k = 1, 2, \ldots, K) \) and \(p_k > 0 \) is the unit price of good \(k \) (with \(p_1 = 1 \) to represent the numeraire nature of the first essential good). The function \(U(x) \) in Equation (1) is a valid utility function if \(\psi_k > 0, \gamma_k > 0, \) and \(\alpha_k \leq 1 \) for all \(k \). As discussed in detail in Bhat (2008), \(\psi_k \) represents the baseline marginal utility, \(\gamma_k \) is the vehicle to introduce corner solutions (that is, zero consumption) for the inside goods \((k = 2, 3, \ldots, K) \), but also serves the role of a satiation parameter (higher values of \(\gamma_k \) imply less satiation). There is no \(\gamma_1 \) term for the first good because it is, by definition, always consumed. Finally, the express role of \(\alpha_k \) is to capture satiation effects. When \(\alpha_k = 1 \) for all \(k \), this represents the case of absence of satiation effects or, equivalently, the case of constant marginal utility (that is, the case of single discrete choice). As \(\alpha_k \) moves downward from the value of 1, the satiation effect for good \(k \) increases. When \(\alpha_k \to 0 \forall k \), the utility function collapses to the linear expenditure system (LES) The reader will note that there is an assumption of additive separability of preferences in the utility form of Equation (1), which immediately implies that none of the goods are \textit{a priori} inferior and all the goods are strictly Hicksian substitutes (see Deaton and Muellbauer, 1980; p. 139). Additionally, additive separability

\(^1\) The assumption of a quasi-concave utility function is simply a manifestation of requiring the indifference curves to be convex to the origin (see Deaton and Muellbauer, 1980, p. 30 for a rigorous definition of quasi-concavity). The assumption of an increasing utility function implies that \(U(x^1) > U(x^0) \) if \(x^1 > x^0 \).
implies that the marginal utility with respect to any good is independent of the levels of all other goods. While the assumption of additive separability can be relaxed (see Castro et al., 2012), we confine attention to the additive separability case in this paper.

2.1.1. Identification of the Scale Parameter of the Error Term in the Baseline Marginal Utility

Bhat observes that both γ_k and α_k influence satiation, though in quite different ways: γ_k controls satiation by translating consumption quantity, while α_k controls satiation by exponentiating consumption quantity. Empirically speaking, it is difficult to disentangle the effects of γ_k and α_k separately, which leads to serious empirical identification problems and estimation breakdowns when one attempts to estimate both parameters for each good. Thus, Bhat suggests estimating a γ-profile (in which $\alpha_k \to 0$ for all alternatives, and the γ_k terms are estimated) and an α-profile (in which the γ_k terms are normalized to the value of one for all alternatives, and the α_k terms are estimated), and choose the profile that provides a better statistical fit. These two utility functions take the following forms:

$$U(x) = \psi, \ln x_i + \sum_{k=2}^{K} \gamma_k \psi, \ln \left(\frac{x_k^k}{\gamma_k} + 1\right)$$ for the γ-profile, and

$$U(x) = \frac{1}{\alpha_1} \psi, x_i^{\alpha_1} + \sum_{k=2}^{K} \frac{1}{\alpha_k} \psi, \left(x_k^k + 1\right)^{\alpha_k} - 1$$ for the α-profile.

Earlier studies have considered both the above functional forms, and it has been generally the case that that γ-profile comes out to be superior to the α-profile (see, for example, Khan and Machemehl, 2017; Bhat et al., 2016a; Jian et al., 2017; Jäggi et al., 2013). Further, from a prediction standpoint, the γ-profile provides a much easier mechanism for forecasting the consumption pattern, given the observed exogenous variates, as explained in Pinjari and Bhat (2011). Thus, in the rest of this paper, we will focus attention on the γ-profile. Additionally, to ensure the non-negativity of the baseline marginal utility, while also allowing it to vary across individuals based on observed and unobserved characteristics, ψ, γ_k is usually parameterized as follows:

$$\psi, \gamma_k = \exp\left(\beta,z_k + \epsilon_k\right), \ k = 1, 2, \ldots, K,$$
where z_k is a set of attributes that characterize alternative k and the decision maker (including a constant), and ε_k captures the idiosyncratic (unobserved) characteristics that impact the baseline utility of good k. Because of the budget constraint in Equation (1), only $K-1$ of the x^*_k values need to be estimated, since the quantity consumed of any one good is automatically determined from the quantity consumed of all the other goods. Thus, a constant cannot be identified in the β term for one of the K alternatives. Similarly, individual-specific variables are introduced in the vector z_k for $(K-1)$ alternatives, with the remaining alternative serving as the base. As a convention, we will not introduce a constant and individual-specific variables in the vector z_i corresponding to the first outside good.

To find the optimal allocation of goods, the Lagrangian is constructed and the first order equations are derived based on the Karash-Kuhn-Tucker (KKT) conditions. The Lagrangian function for the model, when combined with the budget constraint, is:

$$L = U(x) + \lambda \left(E - \sum_{k=1}^{K} p_k x_k \right),$$

where λ is a Lagrangian multiplier for the constraint. The KKT first order conditions for optimal consumption allocations (x^*_k) take the following form:

$$\varepsilon_k - \varepsilon_i = V_i - V_k$$

if consumption is equal to x^*_k ($k = 2, 3, \ldots, K$), where $x^*_k > 0$

$$\varepsilon_k - \varepsilon_i < V_i - V_k$$

if $x^*_k = 0$ ($k = 2, 3, \ldots, K$), where

$$V_k = \beta' z_k - \ln \left(\frac{x^*_k}{\gamma_k} + 1 \right) - \ln p_k$$

($k = 2, 3, \ldots, K$) and $V_i = \beta' z_i - \ln(x^*_i)$.

The likelihood function for the observed consumption pattern depends on the stochastic assumptions made on the error terms ε_k. If these error terms are considered identically and independently distributed (IID) across alternatives with a type 1 extreme-value distribution, Bhat showed that the resulting likelihood function takes a surprisingly simple closed-form expression, and he labels the resulting model as the multiple discrete-continuous extreme value (MDCEV) model. As correctly pointed out by Bhat (2008), in the MDCEV (or in any other model with IID error terms even if not type 1 extreme-value), when one uses the general utility profile of Equation (1), it is not possible to estimate the scale parameter σ of the error terms ε_k when there is no price variation across the alternatives (equivalently, in more general non-IID error
models, a scaling is needed as a normalization). Using the same argument and proof as in Bhat (2008), it is easy to see that this same result holds for the case when the actually estimable α-profile is used. Unfortunately, because Bhat develops the proof for the general case and not specific cases, his result appears to have been taken to imply that the scale parameter σ is not estimable even for the γ-profile case (with α fixed) unless there is price variation (all the γ-profile studies to date, as far as we know, have imposed the normalization of one for the error scale in the absence of price variation). This is, however, not the case, and the scale parameter is estimable for the γ-profile with α fixed even if there is no price variation. To see this, in standardized form and without price variation, the KKT conditions of Equation (2) for the γ-profile may be written as:

$$
\frac{\varepsilon_i - \varepsilon_i^*}{\sigma} = V_i^* - V_i^* \quad \text{if consumption is equal to } x_i^* \quad (k = 2, 3, \ldots, K), \text{ where } x_i^* > 0
$$

$$
\frac{\varepsilon_i - \varepsilon_i^*}{\sigma} < V_i^* - V_i^* \quad \text{if } x_i^* = 0 \quad (k = 2, 3, \ldots, K), \text{ where (6)}
$$

$$
V_k^* = (\beta^*)^T z_k - \left(\frac{1}{\sigma}\right) \ln \left(\frac{x_k^*}{\gamma_k^*} + 1\right) \quad (k = 2, 3, \ldots, K) \text{ and } V_1^* = (\beta^*)^T z_1 - \left(\frac{1}{\sigma}\right) \ln (x_1^*), \text{ with } \beta^* = \left(\frac{\beta}{\sigma}\right).
$$

The scale parameter is distinctly estimable here because it is essentially the coefficient on the natural logarithm term of the continuous consumption quantities in the expressions for V_k^* and V_1^* above. On the other hand, as shown in Section 3.2 of Bhat (2008), there is the coefficient $\sigma(\alpha_k - 1)$ on the $\ln \left(\frac{x_k^*}{\gamma_k^*} + 1\right)$ terms in the V_k ($k = 2, 3, \ldots, K$) expressions and $\sigma(\alpha_1 - 1)$ on the $\ln(x_1^*)$ in the V_1 expression for the first good when the α-profile of Equation (2) is used. Thus, when standardizing by dividing V_k and V_1 by σ, the σ term in $\sigma(\alpha_k - 1)$ and in the denominator cancel, leaving σ inestimable and the β^* vector scaled up or scaled down.\(^2\)

\(^2\) The same situation applies also to a third estimable utility profile in Bhat (2008) in which there is a common α parameter across all the goods as follows:

$$
U(x) = \frac{1}{\alpha} \psi(x_1^\alpha) + \sum_{i=2}^{K} \frac{\gamma_i}{\alpha} \psi_k \left(\frac{x_k}{\gamma_k} + 1\right)^{-\alpha}. \text{ This functional form above is estimable (though we have not seen this form used often in empirical studies), because the constant α parameter is obtaining a "pinning effect" from the satiation parameter for the outside good. Interestingly, but not surprisingly, in our test simulation cases, using the expression above or the γ-profile with a standard deviation estimated for the error terms provided identical likelihood function values. That is, one can use the γ-profile with an estimated
2.1.2. Multiple Choice Probability

In earlier studies of the MDC model, the discrete choice probability of positive consumption has been typically estimated through a simulation technique where the error terms of alternatives are drawn multiple times, and the occurrence of non-zero consumptions of an alternative as a ratio of the total error realizations is declared as the probability of the discrete outcome of positive consumption (see, for example, Bhat et al., 2016b). However, missing in earlier studies is an expression that provides the discrete multivariate probability of consumption across all the goods. Here, we explicitly provide a probability expression for the discrete pattern of consumption, given the consumption in the outside good, and show that this takes a nice closed-form expression for the MDCEV model.

Consider the KKT conditions in Equation (5). However, we rewrite the conditions as follows:

\[\eta_k = \varepsilon_k - \varepsilon_i > \tilde{V}_{k,i} \text{ if } x^*_k > 0 \text{ and } \eta_k = \varepsilon_k - \varepsilon_i = \tilde{V}_{k,i} \text{ if continuous consumption is } x^*_k \ (k = 2, \ldots, K) \]
\[\eta_k = \varepsilon_k - \varepsilon_i < \tilde{V}_{k,i} \text{ if } x^*_k = 0 \ (k = 2, 3, \ldots, K), \]

(7)

where \(\tilde{V}_{k,i} = V_1 - (V_k | x_k = 0) = \beta' z_i - \ln x^*_i - (\beta' z_k - \ln p_k) \), and \(\tilde{V}_{k,i} = V_1 - V_k = \tilde{V}_{k,i} + \ln \left[\frac{x_k}{\gamma_k} + 1 \right] \).

The difference between the KKT conditions as written above and those in Equation (5) is that we have explicitly added the condition that \(\eta_k = \varepsilon_k - \varepsilon_i > \tilde{V}_{k,i} \) if \(x^*_k > 0 \) for the consumed goods. This is completely innocuous because \(\tilde{V}_{k,i} > \tilde{V}_{k,i} \) as long as \(x^*_k > 0 \). That is, as long as \(x^*_k > 0 \), by

standard deviation or the hybrid \(\alpha \) and \(\gamma \) profile above (but with an identical \(\alpha \) value across all the goods), and both end up with essentially identical likelihood values, reinforcing the empirical identification problem between the \(\alpha \) and \(\gamma \) parameters discussed in Bhat (2008). We prefer to use the \(\gamma \)-profile with an estimated standard deviation rather than the hybrid utility profile function above, because the hybrid includes two very different forms of satiation behavior and is more difficult to justify conceptually. For the same reason, we also prefer the \(\gamma \)-profile with an estimated standard deviation to another hybrid variant in Bhat that uses a pure \(\alpha \)-profile for the outside good combined with a \(\gamma \)-profile for the inside goods as in \(U(x) = \frac{1}{\alpha_i} \psi_i x_n^m + \sum_{k=2}^{K} \gamma_k \psi_k \ln \left(\frac{x_k}{\gamma_k} + 1 \right) \). In our experience, this last utility functional form also can run into convergence problems when the scale of the error terms is left free for estimation.
formulation, we have \(\text{Prob}(\eta_k > \tilde{V}_{ki}) \mid (\eta_k = \tilde{V}_{ki}) = 1 \). Focusing only on the discrete choice of consumption, from the KKT conditions, we can write:

\[
\eta_k = \varepsilon_k - \varepsilon_i > \tilde{V}_{ki}, \text{ if } x_k^* > 0 \quad (k = 2, 3, \ldots, K)
\]

\[
\eta_k = \varepsilon_k - \varepsilon_i < \tilde{V}_{ki}, \text{ if } x_k^* = 0 \quad (k = 2, 3, \ldots, K).
\]

Intuitively, the conditions above state that good \(k \) will be consumed to a non-zero amount only if the price normalized random marginal utility of consumption of the first unit \((\beta'z_k - \ln p_k + \varepsilon_k) \) is greater than the random utility \((\beta'z_i - \ln x_i^* + \varepsilon_i) \) accrued at the point of the optimal consumption of the outside good. Let \(d_k \) be a dummy variable that take a value 1 if good \(k \) \((k = 2, 3, \ldots, K) \) is consumed, and zero otherwise. Then, the multivariate probability that the individual consumes a non-zero amount of the first \(M \) of the \(K-1 \) inside goods (that is, the goods \(2, 3, \ldots, M+1 \)) and zero amounts of the remaining \(K-1-M \) goods (that is, the goods \(M+2, M+3, \ldots, K \)), given that the consumption in the outside good is \(x_1^* \), takes the following form that combines integrals capturing a combination of multivariate survival functions (for the non-zero consumption goods) and multivariate cumulative distribution functions (for the zero consumption goods):

\[
P(d_2 = 1, \ldots d_{M+1} = 1, d_{M+2} = 0, d_{M+3} = 0, \ldots d_K = 0)
\]

\[
= \int_{\eta_2 = \infty}^{\infty} \int_{\eta_3 = \infty}^{\infty} \ldots \int_{\eta_{M+1} = \infty}^{\infty} \int_{\eta_{M+2} = \infty}^{\infty} \ldots \int_{\eta_{K-1} = \infty}^{\infty} \int_{\eta_K = \infty}^{\infty} f(\eta_2, \eta_3, \ldots, \eta_K) d\eta_K d\eta_{K-1} \ldots d\eta_2,
\]

where \(f(\eta_2, \eta_3, \ldots, \eta_K) \) represents the multivariate probability density function (pdf) of the random variates \(\eta_2, \eta_3, \ldots, \eta_K \). Based on the inclusion-exclusion probability law, and for all Fretchet class of multivariate distribution functions with given univariate margins, the probability expression above can be written purely as a function of multivariate cumulative distribution functions (CDFs) corresponding to the random variates as follows:

\[
P(d_2 = 1, \ldots d_{M+1} = 1, d_{M+2} = 0, d_{M+3} = 0, \ldots d_K = 0)
\]

\[
= F_{K-M-1}(\tilde{V}_{M+2,1}, \tilde{V}_{M+3,1}, \ldots, \tilde{V}_{K-1,1}, \tilde{V}_{K,1}) + \sum_{S \subseteq \{2, 3, \ldots, M+1\}, |S| \geq 1} (-1)^{|S|} F_{K-M-1+|S|}(\tilde{V}_{M+2,1}, \tilde{V}_{M+3,1}, \ldots, \tilde{V}_{K-1,1}, \tilde{V}_{K,1}, \tilde{V}_{S,1}),
\]

where \(F(.) \) is the multivariate CDF of dimension \(D \), \(S \) represents a specific combination of the consumed goods (there are a total of \(M + C(M,2) + C(M,3) + \ldots C(M, M) = 2^M - 1 \) possible
combinations of the consumed goods), \(|S| \) is the cardinality of the specific combination \(S \), and \(\tilde{V}_{s,1} \) is a vector of utility elements drawn from \(\{\tilde{V}_{2,1}, \tilde{V}_{3,1}, \ldots, \tilde{V}_{M+1,1}\} \) that belong to the specific combination \(S \). The key point to note is that the discrete probability of consumption now is solely a combination of CDFs corresponding to combinations of the elements of the random vector \(\eta = (\eta_2, \eta_3, \ldots, \eta_K)' \). Thus, for example, this discrete probability entails the evaluation of multivariate normal CDFs if the error terms \(\varepsilon_k \) in the baseline preference in Equation (3) of the MDC formulation are normally distributed (because the vector \(\eta \) of error differentials is then multivariate normally distributed).

Interestingly, in the case of Bhat’s MDCEV model, there is a closed-form expression for the discrete probability in Equation (10), an important observation that has not appeared in the literature. Specifically, when the \(\varepsilon_k \) error terms in the baseline preference in Equation (10) are IID extreme value with a scale parameter of \(\sigma \) (as assumed to obtain the MDCEV model), the \(\eta \) vector is multivariate logistic distributed (see Bhat, 2008). Specifically, the pdf and CDF of the \(\eta \) vector are:

\[
f(\eta_2 = h_2, \eta_3 = h_3, \ldots, \eta_K = h_K) = \frac{(K-1)!}{\sigma^{K-1}} \left(1 + \sum_{k=2}^{K} e^{-\frac{h_k}{\sigma}} \right)^{-K} e^{-\frac{1}{\sigma} \left(\sum_{k=2}^{K} (\eta_k - h_k) \right)},
\]

and

\[
F(\eta_2 < h_2, \eta_3 < h_3, \ldots, \eta_K < h_K) = \left(1 + \sum_{k=2}^{K} e^{-\frac{h_k}{\sigma}} \right)^{-1}.
\]

The CDF of any subset of the \(\eta \) vector is readily obtained from the CDF expression above for the entire \(\eta \) vector. For example, the CDF of only the first two elements is:

\[
F(\eta_2 < h_2, \eta_3 < h_3) = \left(1 + e^{-\frac{h_2}{\sigma}} + e^{-\frac{h_3}{\sigma}} \right)^{-1}.
\]

Thus, by plugging the appropriate CDF functions in the expression of (10), one can obtain a closed-form expression for the probability of any pattern of discrete consumption of the many alternatives in the MDCEV model.

The closed form expression for this multivariate discrete probability in the MDCEV model can aid in forecasting. In particular, once the parameters are estimated, one can compute the \(\tilde{V}_{k,1} (k = 2, 3, \ldots, K) \) values using Equation (7) and determine the discrete choice probability of each of the possible \((2^{K-1} - 1) \) combinations of consumption of the goods. For each combination,
the continuous consumption quantities can be estimated (see Pinjari and Bhat, 2011). The consumption quantity of each good is then simply the weighted (based on the probability of each combination) sum of the estimation consumption of that good across all combinations. Alternatively, the analyst can sequence the many combinations of possible discrete consumptions and place the corresponding probabilities (as computed using Equation (10)) in the same sequence to span the 0-1 probability scale. The analyst can draw a random number between 0 to 1 and, depending upon where this falls in the probability scale, one can identify the forecast discrete consumption pattern. Once the discrete forecasting is done, the continuous consumption quantities can be computed. To do so, the analyst can draw extreme value error realizations for each consumed good (including the outside good) from the extreme value distribution with location parameter of 0 and the scale parameter equal to the estimated σ value (label this distribution as $\text{EV}(0, \hat{\sigma})$). For each set of error realizations for these consumed goods, the analyst can compute the consumption quantities using Equations (15) and (16) from Pinjari and Bhat (2011), and then take the mean of the consumption quantities across the many realizations.

There is one problem though when using the γ-profile of Equation (2) with the forecasting approach above. In particular, the expressions for $\tilde{\nu}_{k,i} (k = 2, 3, ..., K)$ include $\ln x_{i}^{*}$, which implies that the prediction of the continuous value of the outside good needs to be known in computing the discrete probability expressions in Equation (10). But the value of $\ln x_{i}^{*}$ itself depends on which specific discrete combination of alternatives is consumed. Also, while $\ln x_{i}^{*}$ is available for the estimation sample, and the forecasting procedure above may be used to estimate the discrete choice probabilities for the estimation sample, $\ln x_{i}^{*}$ is not available outside the estimation sample. Indeed, x_{i}^{*} is part of what needs to be forecasted. In this regard, an alternative specification is needed where $\ln x_{i}^{*}$ does not appear in the expressions for $\tilde{\nu}_{k,i}$ if the forecasting procedure above is to be used. More generally, the presence of $\ln x_{i}^{*}$ is part of what creates the tight connection between the discrete and continuous consumptions of the MDC model, which can be relaxed with an alternative utility specification, as we discuss next.
2.2. A New Flexible MDC Model

The traditional MDC model uses a single baseline utility ψ_k that dictates both the discrete and consumption decisions, and has the continuous consumption of the outside good appear in the discrete consumption decision. This can compromise the ability of the traditional MDC model to predict the discrete decision well. This may also be clearly seen from the KKT conditions of the traditional model from revisiting Equation (7). Specifically, the probability that an individual consumes $(x_1^*, x_2^*, \ldots, x_{M+1}^*)$ of the first M of the $K-1$ inside goods, in addition to an amount x_i^* of the first good, and does not consume the remaining $K-1-M$ goods may be written as:

$$P(x_1^*, x_2^*, \ldots, x_{M+1}^*, 0, 0, \ldots 0) = |J| \times$$

$$P(\eta_2 > \tilde{V}_{21}, \ldots, \eta_{M+1} > \tilde{V}_{M+1,1}, \eta_2 = \tilde{V}_{k1}, \ldots, \eta_{M+1} = \tilde{V}_{M+1,1}, \eta_{M+2} < \tilde{V}_{M+2,1}, \ldots, \eta_K < \tilde{V}_{K,1}),$$

where $|J|$ is the determinant of the Jacobian matrix obtained from applying the change of variables calculus between the stochastic KKT conditions and the consumptions. The traditional MDC model recognizes, correctly, that \(\text{Prob}(\eta_k > \tilde{V}_{k1}) | (\eta_k = \tilde{V}_{k1}) = 1 \) for $k = 2, 3, \ldots, M+1$ (see earlier) and so writes the expression above equivalently as:

$$P(x_1^*, x_2^*, \ldots, x_{M+1}^*, 0, 0, \ldots 0) = |J| \times$$

$$P(\eta_2 = \tilde{V}_{k1}, \ldots, \eta_{M+1} = \tilde{V}_{M+1,1}, \eta_{M+2} < \tilde{V}_{M+2,1}, \ldots, \eta_K > \tilde{V}_{M+K,1}).$$

Thus, the traditional MDC model does not partition into distinct discrete choice and continuous choice components. Specifically, during estimation, the parameters associated with the consumed goods are estimated solely based on fitting to the equality conditions $\eta_2 = \tilde{V}_{k1}, \ldots, \eta_{M+1} = \tilde{V}_{M+1,1}$, with no regard to whether the multiple discrete choice condition is also fit well. Intuitively speaking, the traditional MDC model simultaneously estimates the baseline marginal utility and the γ_k parameters (that control satiation) for the consumed goods so that the level of consumption is generally fitted reasonably well (with zero consumption simply being one possible continuous consumption value). But, in doing so, for example, it can attribute a very high baseline utility for an alternative and adjust the satiation parameter for the alternative such that the continuous values are fitted nicely, but the high baseline utility (that determines the discrete choice consumption pattern) may imply a much higher than observed non-zero consumption for this alternative (and, correspondingly, much lower observed zero consumption for other alternatives). Alternatively, for a good that is consumed in very small quantities, the
traditional model may assign a low baseline utility, so it can fit the low continuous consumption values well with an appropriate satiation parameter, but it may then underestimate the discrete choice of consumption if this good is a specialty good with a positive branding effect that operates at the discrete choice level. The result is that the traditional MDC model generally predicts the continuous component quite well, but may not always do well in terms of predictions for the discrete choice component (though, in some empirical cases, the traditional MDC may predict both the continuous and discrete consumptions poorly, or both consumptions very well).

In this paper, we untangle the strong interlinkage between the discrete and continuous consumption decisions by (1) employing a linear utility function of consumption for the first outside good (which removes the continuous consumption quantity of the outside good from the discrete consumption decision, and also helps in forecasting), and (2) using separate baseline utilities for the discrete and continuous consumption decisions. The model is still based on a theoretic utility-maximizing framework, except that we now assume that the marginal utility of a good at the point of zero consumption of the good is not the same as the marginal utility of the good at the point of an infinitesimally small amount of positive consumption of the good.

2.2.1. The New Flexible MDC Model Formulation

We propose a new utility function as follows:

\[
U(x) = \psi_1x_1 + \sum_{k=2}^{K} \gamma_k \left(\left[\psi_{kd} x_{k,0} \right]^{k(x_{k,0})} \times \left[\psi_{kc} x_{k,0} \right]^{k(x_{k,0})} \right) \ln \left(\frac{x_k}{\gamma_k} + 1 \right),
\]

where we partition the original \(\psi_k \) into two multiplicative components (both \(\psi_{kd} \) and \(\psi_{kc} \) need to be positive for the overall utility function to be valid). The first component \(\psi_{kd} \) corresponds to the baseline preference that determines whether or not good \(k \) will be consumed (we will refer to this preference as the discrete preference component, or simply the D-preference component; it represents the marginal utility at the point when good \(k \) is not consumed). \(\psi_{kc} \), on the other hand, corresponds to the baseline preference if good \(k \) is consumed (we will refer to this preference as the continuous preference component, or simply the C-preference component; it represents the marginal utility at the point when an infinitesimally small unit of good \(k \) is already consumed).
$l(x_i = 0)$ in Equation (15) takes the value of 1 if $x_i = 0$ and 0 otherwise, and $l(x_i > 0)$ in Equation (15) takes the value of 1 if $x_i > 0$ and the value of 0 otherwise.3

To find the optimal allocation of goods, we construct the Lagrangian and derive the Karash-Kuhn-Tucker (KKT) conditions. For the modified utility of Equation (15), these conditions take the following form:

$$
\psi_{kd} - \lambda p_k > 0 \text{ and } (\psi_{kc})\left(\frac{x_k^*}{\gamma_k} + 1\right)^{-1} = \lambda p_k \text{ for } k = 2, \ldots, K \text{ with consumption } x_k^*(x_k^* > 0)
$$

$$
\psi_{kd} - \lambda p_k < 0 \text{ if } x_k^* = 0, \ k = 2, \ldots, K
$$

$$
\psi_1 = \lambda.
$$

Note that, in the KKT conditions above, the inequality $\psi_{kd} - \lambda p_k > 0$ is implicitly implied when $x_k^* > 0$, because $x_k^* = 0$ otherwise (that is, $\psi_{kd} - \lambda p_k < 0$ if $x_k^* = 0$). For our purposes, we write $\psi_{kd} - \lambda p_k > 0$ when $x_k^* > 0$ explicitly in the KKT conditions above. It is the addition of this explicit inequality, combined with different specifications for the D-preference and C-preference components (as discussed later), that differentiates the proposed model from the traditional MDC model.4 Substituting for λ from the last equation into the earlier equations for the inside goods, and taking logarithms, we can rewrite the KKT conditions as:

$$
\ln(\psi_{kd}) - \ln(\psi_1) - \ln p_k > 0 \text{ and } \ln(\psi_{kc}) - \ln \left(\frac{x_k^*}{\gamma_k} + 1\right) - \ln(\psi_1) - \ln p_k = 0
$$

for $k = 2, \ldots, K$ with consumption $x_k^*(x_k^* > 0)$ (17)

$$
\ln(\psi_{kd}) - \ln(\psi_1) - \ln p_k < 0 \text{ if } x_k^* = 0, \ k = 2, \ldots, K.
$$

To ensure the positivity of the D-preference and the C-preference terms, we specify these two components for each inside good as follows:

$$
\psi_{kd} = \exp(\beta z_k + \epsilon_k) \text{ and } \psi_{kc} = \exp(\theta w_k + \xi_k),
$$

3 At $x_i = 0$, $\frac{\partial U(x)}{\partial x_i} = \psi_{kd} \left(\frac{x_i}{\gamma_i} + 1\right)^{-1} = \psi_{kd}$. At $x_i = 0^+$, $\lim_{x_i \to 0^+} \psi_{kc} \left(\frac{x_i}{\gamma_i} + 1\right)^{-1} = \psi_{kc}$.

4 In the traditional MDC, $\psi_{kd} = \psi_{kc} = \psi_k$, and it will be necessarily true that $\psi_k - \lambda p_k > 0$ as soon as $(\psi_k) \left(\frac{x_k}{\gamma_k} + 1\right)^{-1} = \lambda p_k$ if $x_k^* > 0$ because $\left(\frac{x_k}{\gamma_k} + 1\right)^{-1}$ is between 0 and 1 ($\gamma_k > 0$). Thus, it would be redundant to have the condition $\psi_k - \lambda p_k > 0$, as discussed in Section 2.2.
where z_k and ε_k are as defined earlier, but now are specific to the D-preference component of good k, and w_k and ξ_k are similarly defined for the C-preference component. The vectors z_k and w_k can include some common attributes, but can also have different attributes. Using notations already defined earlier, the KKT conditions can be reframed as follows:

\begin{equation}
\eta_k > \tilde{V}_{k,1} \quad \text{and} \quad \zeta_k = \tilde{V}_{k,1} \quad \text{if} \quad x_k^* > 0 \quad (k = 2, 3, \ldots, K), \quad \eta_k = \varepsilon_k - \varepsilon_1 \quad \text{and} \quad \zeta_k = \tilde{\varepsilon}_k - \varepsilon_1,
\end{equation}

\begin{equation}
\eta_k < \tilde{V}_{k,1} \quad \text{if} \quad x_k^* = 0 \quad (k = 2, 3, \ldots, K), \quad \text{where}
\end{equation}

\begin{align*}
\tilde{V}_{k,1} &= \beta^* z_1 - (\beta^* z_k - \ln p_k), \\
\tilde{V}_{k,1} &= \beta^* z_1 - (\theta^* w_k - \ln p_k) + \ln \left(\frac{x_k^*}{\gamma_k} + 1 \right).
\end{align*}

The important point to note is that the error terms η_k ($k = 2, 3, \ldots, K$) and the error terms ζ_k ($k = 2, 3, \ldots, K$) are jointly multivariate logistically distributed (with a fixed correlation of 0.5 across all pairings of these error terms), if we assume that the error terms ε_k ($k = 1, 2, \ldots, K$) and the error terms ξ_k ($k = 2, 3, \ldots, K$) are all identically and independently Gumbel distributed with a scale parameter σ. The positive correlation between η_k and ζ_k (for each k) is reasonable because we expect unobserved factors that increase the probability of consumption to also increase the amount of consumption. Then, we may write the following:

\begin{align*}
P(x_1^*, x_2^*, x_3^*, \ldots, x_{M+1}^*, 0, 0, \ldots, 0) &= |J| \int_{\eta_k = 0}^{\eta_k = \tilde{V}_{k,1}} \int_{\eta_{k+1} = 0}^{\eta_{k+1} = \tilde{V}_{k+1,1}} \cdots \int_{\eta_{M+1} = 0}^{\eta_{M+1} = \tilde{V}_{M+1,1}} \int_{\eta_1 = -\infty}^{\eta_1 = -\infty} f(\eta_2, \eta_3, \ldots, \eta_K; \tilde{V}_{2,1}, \tilde{V}_{3,1}, \ldots, \tilde{V}_{M+1,1}) d\eta_K d\eta_{K-1} \ldots d\eta_2 \quad (20) \\
&= |J| \left[\sum_{S = \{2, 3, \ldots, M+1\}|S| \geq 1} (-1)^{|S|} G_{K-1+S}(\tilde{V}_{21}, \tilde{V}_{31}, \ldots, \tilde{V}_{M+1,1}, \tilde{V}_{M+2,1}, \tilde{V}_{M+3,1}, \ldots, \tilde{V}_{K+1,1}, \tilde{V}_{K,1}) \right],
\end{align*}

where $|J| = \prod_{i=2}^{M+1} f_i$, $f_i = \frac{1}{p_i} \left(\frac{1}{x_i^* + \gamma_i} \right)$.
As defined earlier, $\tilde{V}_{i,1}$ is a vector of utility elements $\tilde{V}_{i,1} (i \in S)$ drawn from $\{\tilde{V}_{2,1}, \tilde{V}_{3,1}, \ldots, \tilde{V}_{M+1,1}\}$ that belong to the specific combination S. The likelihood function, which is the same as the probability expression of Equation (20) written as a function of the parameter vector $(\beta', \theta', \gamma', \sigma)$ can be maximized in the usual fashion to estimate the parameters. The likelihood function takes a convenient closed-form expression.

2.2.2. Forecasting

A two-phase approach may be used in forecasting, where, given the parameters of the model, the multivariate discrete probability of consumption (or not) of each combination of the inside goods may be obtained using Equation (10), followed by the continuous consumptions for the consumed alternatives. Consider a specific combination corresponding to consumption of the first M inside goods. Then, for this combination, based on the KKT conditions in Equation (19), the following must be true:

$$
\varepsilon_1 < \varepsilon_k - \tilde{V}_{k,1} \quad \text{and} \quad \chi_k = \left(\exp(\xi_k) \times \exp(W_{k,1} \mid \varepsilon_i) \right) - 1 \quad \text{for} \ k = 2, 3, \ldots, M+1,
$$

$$
\varepsilon_i > \varepsilon_k - \tilde{V}_{k,1} \quad \text{for} \ k = M+2, M+3, \ldots, K, \text{where} \ W_{k,1} \mid \varepsilon_i = -\beta' \varepsilon_i - \varepsilon_i + (\theta' w_k - \ln p_k).
$$

The forecasting procedure for each observation is as follows:

- **Step 1**: Develop the discrete choice probability of each of the possible $(2^K - 1)$ combinations of consumption of the goods. That is, set $M=1$, develop all the possible $C(K-1,1)$ combinations of a single inside good having positive consumption and form the probability of choice for each combination, then set $M=2$ develop all the possible $C(K-1,2)$ combinations of two inside goods having positive consumption and form the probability of choice for each
combination, and continue the process until $M=K-1$. Index the many combinations across all the M values by l $(l=1,2,\ldots,L)$, where $L = (2^{K-1} - 1)$. Let P_l be the discrete choice probability for combination l. These probabilities are computed based on Equation (10) with $\tilde{V}_{k,1}$ specified as in Equation (19).

- **Step 2**: For each combination l, draw $(K-1)$ independent realizations (one for each inside good) from the extreme value distribution with location parameter of 0 and the scale parameter equal to the estimated σ value (label this distribution as $\text{EV}(0, \hat{\sigma})$). For each inside alternative, compute $H_{k,1} = \varepsilon_k - \tilde{V}_{k,1}$ based on the estimated values and the corresponding extreme value draws. Then, identify the minimum of the $H_{k,1}$ values (say R^1) across the consumed inside goods in combination l (there is no need to compute R^1 if the combination l corresponds to no inside good being consumed) and the maximum of the $H_{k,1}$ values (say R^2) across the non-consumed goods in combination l (there is no need to compute R^2 if the combination l corresponds to all inside goods being consumed). For all combinations l corresponding to some goods being consumed and others not, if $R^2 > R^1$, STOP and return to Step 2. Otherwise, proceed to Step 3. For the combination corresponding to all of the inside goods being consumed, proceed to Step 3. For the combination corresponding to none of the inside goods being consumed, the continuous predictions for the inside goods are set to zero.

- **Step 3**: For combinations of some goods being consumed and others not, draw a realization for the first outside alternative from the doubly truncated univariate extreme value distribution (again with the extreme value distribution being $\text{EV}(0, \hat{\sigma})$) such that $R^2 < \varepsilon_{u,l} < R^1$. For the combination corresponding to all of the inside goods being consumed, draw a realization for the first outside alternative from the singly truncated (from above) univariate extreme value distribution such that $\varepsilon_{u,l} < R^1$.

- **Step 4**: For the consumed inside goods only, construct $W_{k,1} \mid \varepsilon_{u,l} = -\beta'z_{i} - \varepsilon_{u,l} + (\theta'w_{k} - \ln p_{k})$ using the draw for $\varepsilon_{u,l}$ and the estimated values of β and θ. Then, one of two approaches can be used. In the first approach, draw another set of independent realizations for the consumed goods in combination l, one for each consumed inside good (that is, $\xi_{u,l}$), from $\text{EV}(0, \hat{\sigma})$, and
predict the consumption levels for each consumed good in the combination for the specific realization as $x_{il}^* = \left(\exp(\xi_{il}) \times \exp(W_{k,l} | e_{il}) - 1 \right) \gamma$. For the set of realizations for the consumed inside goods, check to ensure that the sum of consumption quantities across the inside goods is less than the budget constraint and that each consumption quantity is higher than zero. If these conditions are not achieved, reject the corresponding realization, and go back to Step 4.

In the second approach, a more systematic truncation approach is used to ensure that the sum of consumption quantities across the inside goods is less than the budget constraint and that each consumption quantity is higher than zero. Specifically, first randomize the ordering of the consumed inside goods. Then, start from the first consumed inside good in the random ordering (label this as the second good, the first being the outside good). Draw a realization for ξ_{2j} from the doubly truncated univariate extreme value distribution EV(0, $\hat{\sigma}$) such that $(-W_{2,1} | e_{il}) < \xi_{2j} < \left[(-W_{2,1} | e_{il}) + \ln \left(\frac{E}{p_{2}\gamma_2} + 1 \right) \right]$. Using this realization for ξ_{2j}, compute the consumption level for this alternative in the combination l being considered as $x_{2j}^* = \left(\exp(\xi_{2j}) \times \exp(W_{2,1} | e_{il}) - 1 \right) \gamma_2$. Next, if there are more than two inside goods consumed in the combination l, draw a realization for ξ_{3j} from the doubly truncated univariate extreme value distribution EV(0, $\hat{\sigma}$) such that $(-W_{3,1} | e_{il}) < \xi_{3j} < \left[(-W_{3,1} | e_{il}) + \ln \left(\frac{E - p_2x_{2j}^*}{p_3\gamma_3} + 1 \right) \right]$, and compute $x_{3j}^* = \left(\exp(\xi_{3j}) \times \exp(W_{3,1} | e_{il}) - 1 \right) \gamma_3$. Continue this process for all consumed inside goods, drawing a realization from $(-W_{k,1} | e_{il}) < \xi_{kl} < \left[(-W_{k,1} | e_{il}) + \ln \left(\frac{E - \sum_{g} p_g x_{gl}^*}{p_k\gamma_k} + 1 \right) \right]$, and computing $x_{kl}^* = \left(\exp(\xi_{kl}) \times \exp(W_{k,1} | e_{il}) - 1 \right) \gamma_k$.

- Step 5: Continue Steps 2 through 4 for each combination l until a fixed number of full realizations are obtained, and take the mean (across realizations) of the consumption quantities for each consumed inside good to predict the continuous consumption value.
• Step 6: Forecast the continuous amount of consumption for each alternative \(k \) as

\[x_k^* = \sum_i P_i^* x_i^* .\]

The one issue with the forecasting approach above is that, for a given individual, it will always forecast a positive value of consumption for each and every alternative, because it considers all the possible combinations of consumption. In case a deterministic choice of alternatives is needed, such as in a micro-simulation framework, another possible approach, that may also be easier to implement and will forecast corner values, is to consider the discrete choice probabilities from the first step, then use the usual discrete probability-to-deterministic choice procedure (used in traditional simulation approaches) to determine the most likely market basket of consumption, and forecast the consumption quantities for this single market basket. Specifically, the procedure is as follows:

• Step 1: Identical to Step 1 of the earlier forecasting procedure.

• Step 2: Order the combinations from 1 to \(L \) in an arbitrary order (but retain this from hereon), and, for each combination \(l \) up to the penultimate combination \((l=1,2,…,L–1) \), obtain the cumulative probability from combination 1 to combination \(l \) as

\[CP_l = \sum_{d=1}^{l} P_d .\]

• Step 3: Partition the 0-1 line into \(L \) segments (each corresponding to a specific combination \(l \)) using the \((L–1) \) \(CP_l \) values. Draw a random uniformly distributed realization from \(\{0,1\} \) and superimpose this value over the 0-1 line with the \(L \) segments. Identify the segment where the realization falls, and declare the combination corresponding to that line segment as the deterministic discrete event of consumption for the individual.

• Step 4: Undertake Steps (2) through (6) from the previous forecasting procedure for the specific combination identified from Step (3) above. This provides the continuous consumption for the predicted discrete event of consumption from Step (3) above.

A third forecasting procedure is perhaps the easiest to implement, and does not use a two-step approach (in which the probabilities of the discrete choice are first computed followed by appropriate simulations). Rather, the simulations dictate even the discrete choice event. The procedure is as follows:

• Step 1: Draw \(K \) independent realizations (one for each inside good and the outside good) from \(EV(0, \hat{\sigma}) \).
Step 2: If \(e_i \leq e_k - \tilde{V}_{k,i} \), declare the inside good as being selected for consumption \((d_k = 1) \); otherwise, declare the inside good as not being selected for consumption \((d_k = 0) \).

Step 3: Run through Steps (4) through (6) of the first forecasting procedure.

3. EMPIRICAL APPLICATION

3.1. Sample Description

To demonstrate an application of the new proposed MDCEV model, we consider the case of time-use of individuals. This is a situation with no price variation. The data and sample used is the same as those in Bhat et al. (2016a), and is drawn from the Puget Sound household travel survey conducted during the spring (April–June) of 2014 in the four county PSRC planning region (the four counties are King, Kitsap, Pierce, and Snohomish) in the State of Washington. Survey administration and sampling details are provided in Bhat et al. (2016a). The sample used includes 3,637 households who had at least one worker employed in the household and with a work location outside the residential dwelling unit. The amount of time spent on a typical weekday across all individuals in the household on (a) in-home (IH) non-work, non-educational, and non-sleep activities and (b) out-of-home (OH) non-work non-educational pursuits is computed from the survey. In the analysis, the OH activities are classified into one of six types: (1) personal business (including family or personal obligations, going to day care, and medical appointments), (2) shopping (including buying food and goods), (3) recreation (including visiting cultural/arts centers, going to the movies, attending sports events, going to the gym, pursuing physical activities such as running, walking, swimming, and playing sports), (4) eating out, (5) social activities (including visiting friends or relatives and attending parties), and (6) “serve passenger”. In all, there are seven activity purposes (alternatives in the MDCEV), with the first in-home activity serving as the “outside good” in which all individuals participate. The discrete component corresponds to household-level participation in these different activity purposes, while the continuous component corresponds to the amount of household time invested in these activity purposes. The total household time budget in the MDC model corresponds to the sum across the seven activity purposes just listed. In the analysis, for convenience, we use the household-level participations and fractions of time investments in each activity purpose as the dependent variables (that is, we normalize the household time investments in each purpose by the total household budget, so that the continuous components correspond to fractions, and the
total budget is 1 for each household). The sociodemographic characteristics of the sample are available at http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf).

3.2. Traditional MDCEV Model with γ-profile

Table 1 shows the estimation results for the traditional MDCEV model with a γ-profile constraining the scale of the error terms to 1 (as has been done in earlier studies) and the same model releasing this constraint on the scale. We will refer to the first model as the TFIXED-MDCEV (for the traditional MDCEV with fixed scale) and the second as the T-MDCEV (for the traditional MDCEV with freely estimated scale). While the intent of this paper is not to study time-use behavior per se (rather it is to demonstrate the value of the proposed new MDCEV model), we will note that the specification is based on a systematic process of rejecting statistically insignificant effects, combining effects when they made sense and did not degrade fit substantially, and, judgment and insights from earlier studies. Also, while variables such as commute distance, residential location (whether living in a high density neighborhood or not, and accessibility to out-of-home activities), and household auto-ownership have been used as explanatory variables of time-use in the past, we avoid using these variables because Bhat et al. (2016a) show that these variables are endogenous (co-determined) with time-use.

For completeness, we now briefly discuss the substantive results from the two models in Table 1, which are similar to each other. The coefficients on the exogenous variables corresponding to the baseline preference are not directly comparable, because the TFIXED-MDCEV normalizes the error scale to one; however, one can notice that the coefficients in the T-MDCEV model, when normalized by the estimated scale in that model of 0.4289, bring the coefficient estimates in that model to close to the magnitudes of the first model.

The effects of the family structure variables are introduced with couple households and multi-adult households as the base category (we did not find any difference in time-use among these two family types; in any case, the fraction of multi-adult households in the sample was quite low). Table 1 indicates that single person households have the lowest preference of all household types for recreational, social, and serve passenger activities, and the highest preference for in-home activities (the base activity purpose). Nuclear families and single-parent families relative to other household types, have a clear higher baseline preference for serve
passenger activities (a reflection of child chauffeuring responsibilities), and nuclear families are the least likely to participate and spend time in shopping.

The next set of variables relate to the fraction of part-time and non-workers in the household, with the fraction of full-time workers in the household constituting the base category. Overall, these coefficients indicate a pattern where households with a high fraction of part-time workers and non-workers are more likely than full-time workers to participate in non-work out-of-home activities (particularly in personal business) and are less likely to spend time at home. This effect is particularly the case for households with a high fraction of non-workers.

The baseline preference constants and satiation parameters in Table 1 are estimated for each activity purpose (except the IH activity purpose) to best replicate the continuous values of time-use in the different activities and the split between sole and joint participations with other activity purposes. Thus, they do not have any substantial interpretations. However, the baseline preference constants are all negative in the TFIXED-MDCEV, a reflection of the fact that most time is spent at home (across all individuals, the mean percentage of time spent at home in the sample is 78%). Also, the constants are highest for the shopping and personal-business activity purposes, and the lowest for the social and serve-passenger purposes. This is because, in trying to fit to the continuous values, the traditional MDCEV model is replicating the presence of a high fraction of non-zero values for the shopping and personal business purposes and a low fraction of non-zero values for the social and serve-passenger purposes (about 45% of households in the sample participate in each of shopping and personal business purposes; on the other hand, the percentage of households with a non-zero time investment in recreation and eating out is about 30%, and the corresponding percentage for each of the social and serve passenger purposes is of the order of 20%). The baseline preference constants in the T-MDCEV model in Table 1 do not exactly follow the same trends as in the first model, and this is again because the sole purpose of the constants, in combination with the satiation parameters and now the scale parameter too, is to replicate the continuous values of time-use. However, among the out-of-home activities, the constants are again highest for the shopping and personal business purposes and lowest for the social and serve-passenger purposes.

The satiation \(\gamma_k (k = 2, 3, ..., K) \) parameters in Table 1 correspond to the \(\gamma \)-profile. Satiation increases for purpose \(k \) as \(\gamma_k \) goes closer to zero. In the sample, the shopping, eating out, and serve passenger activity purposes, among the out-of-home activity purposes, have
relatively low durations of participation if non-zero (taking up between 5-8% of the total time budget), while the personal business, recreation, and social purposes have relatively high participation durations if non-zero (taking up between 13-20% of the total time budget). In both the first and second models in Table 1, these trends are reflected in the high satiation rates (lower values of γ_i) for the shopping, eating out, and serve passenger purposes, and low satiation rates (higher values of γ_i) for the personal business, recreation, and social purposes.

The scale parameter, when freely estimated, shows that it is less than one and statistically significantly so. Thus, arbitrarily normalizing to one when using the γ-profile, as done in earlier studies that apply the traditional MDCEV model (and, more broadly, traditional MDC models), is generally not appropriate, and will lead to an unnecessary degradation in fit. This is also noticeable in the log-likelihood values at convergence for the two models (see the row panel entitled “Data fit measures for continuous consumption” in Table 1). In fact, as indicated in the next row, the log-likelihood with only the constants in the baseline preference for the T-MDCEV model is superior to the log-likelihood at convergence for even the best specification with additional exogenous variables for the TFIXED-MDCEV model. Using the log-likelihood at constants for the TFIXED-MDCEV, the row entitled “Adjusted likelihood ratio index” (ADLRI) computes the rho-bar squared value for each of the models as

$$R^2 = 1 - \frac{\mathcal{L}(\hat{\theta}) - M}{\mathcal{L}(c)},$$

(23)

where $\mathcal{L}(\hat{\theta})$ and $\mathcal{L}(c)$ are the log-likelihood functions at convergence and at constants, respectively, and M is the number of parameters (not including the constants appearing in the baseline preference). The value of $\mathcal{L}(c)$ used in Equation (23) is -4534.94, corresponding to the constant only log-likelihood value for the TFIXED-MDCEV model. The superiority of the T-MDCEV model is apparent again. A likelihood ratio test between the two models rejects the TFIXED-MDCEV model at any reasonable level of significance. To be noted here is that the discussion on data fit thus far corresponds to the continuous values of consumption, because the probability being maximized (as a function of parameters) in the traditional MDCEV is that of the continuous consumptions as in Equation (14) (with zero being one of the continuous values). Interestingly, when we compute a predictive likelihood for the discrete probability of consumption (based on Equation (10) and the actual discrete pattern of consumptions for each
individual), the corresponding predictive log-likelihood values are -13,143.75 for the TFIXED-MDCEV and -13,931.32 for the T-MDCEV (see the entries in the row entitled “predictive log-likelihood at convergence” under “Data fit measures for discrete consumption” in Table 1). That is, the traditional model normalizing the scale to one does better than the traditional model that leaves the scale free to be estimated (this is another indication that the traditional MDCEV model is based on improving the fit of the continuous consumption quantities, not necessarily the discrete consumption event). Indeed, as can be observed from the entries corresponding to the row “predictive log-likelihood at constants” under “Data fit measures for discrete consumption”, the TFIXED-MDCEV with baseline constants only performs better than the T-MDCEV model with variables included in the baseline preference (a reverse of the situation for the continuous consumptions). Using the predictive log-likelihood with constants only for the T-MDCEV model as the base, one can compute the predictive ADLRI values, which are presented in Table 1. One can then use a predictive non-nested likelihood ratio test to compare the performances of the implied discrete predictions from the two models. In particular, if the difference in the indices is

\[
(M_{\text{TFIXED-MDCEV}} - \rho_{\text{TFIXED-MDCEV}}^2 - \rho_{\text{T-MDCEV}}^2) = \tau,
\]

then the probability that this difference could have occurred by chance is no larger than

\[\Phi\left[-2\tau \mathcal{D}(c) + (M_{\text{TFIXED-MDCEV}} - M_{\text{T-MDCEV}})\right]^{0.5} \]

in the asymptotic limit, where the value of \(\mathcal{D}(c) \) for this test is -14,319.56, \(M_{\text{TFIXED-MDCEV}} = 13 \), and \(M_{\text{T-MDCEV}} = 14 \). A small value for the probability of chance occurrence indicates that the difference is statistically significant and that the model with the higher value for the adjusted likelihood ratio index is to be preferred. The non-nested adjusted likelihood ratio test returns a value of \(\Phi(-39.72) \), which is literally zero, clearly indicating that the TFIXED-MDCEV model (that does substantially worse than the T-MDCEV in terms of the continuous predictions) does statistically better than the T-MDCEV model in terms of the discrete event prediction.

5 The number of parameters for this predictive test correspond to the number of parameters estimated in the baseline parameters (excluding the constants) without considering the \(\gamma_i \) satiation parameters but including the scale parameter in the T-MDCEV model (the \(\gamma_i \) satiation parameters do not appear in the predictions for the discrete component; see Equation (10)).
3.3. Traditional MDCEV Model with a Linear-in-Consumption Profile for the Outside Good

As discussed earlier, one of the reasons for the tight linkage between the discrete and continuous components in a traditional MDCEV model, which can compromise the ability of the traditional MDCEV to predict the discrete choices well even as it focuses on predicting the continuous choices well, is that the continuous consumption \(x_i^* \) of the outside good appears in the discrete consumption decision component (see Section 2.1.2). A better separation of the discrete component from the continuous component can be achieved by assuming a linear-in-consumption utility. That is, instead of using the \(\gamma \)-profile of Equation (2) in the traditional MDCEV model, we now consider the following profile that we label as the \(L \gamma \)-profile (for linear utility in the outside good, combined with a \(\gamma \)-profile for the inside goods):

\[
U(x) = \psi_i x_i + \sum_{k=1}^{K} \gamma_k \psi_k \ln \left(\frac{x_k}{\gamma_k} + 1 \right).
\]

The above profile assumes that there is no satiation in the outside good. In doing so, and following the earlier derivations, \(\widetilde{V}_{i,1} = \beta' z_i - (\beta' z_k - \ln p_k) \), and becomes independent of the consumption of the outside good.\(^6\) This allows the forecasting of the discrete event for any individual (given her or his associated exogenous vector of variables), whether or not the individual’s observed choices are available. As importantly, the use of the \(L \gamma \)-profile presents researchers with a utility-theoretic pure multiple discrete choice model that does not need any observations on the continuous consumptions. This is an important supplementary contribution of this paper.

Table 2 provides the data fit statistics for this \(L \gamma \)-profile, similar to Table 1 for the \(\gamma \)-profile. Again, the TFIXED-MDCEV model is the one that constrains the scale to one and the T-MDCEV model is the one that allows a free scale parameter. In Table 2, we dispense with the presentation of the parameter estimates, and focus on data fit (the substantive interpretations of exogenous effects remain the same). The ordering of the data fit statistics in Table 2 is the same as in Table 1. As in the \(\gamma \)-profile case, the model that leaves the scale free for estimation does

\(^6\) On the other hand, as discussed in Section 2.1.2, the term \(\widetilde{V}_{i,1} = \beta' z_i - \ln x_i^* - (\beta' z_k - \ln p_k) \) includes \(\ln x_i^* \) in the \(\gamma \)-profile utility form.
substantially better than the one that constrains the scale to one in the context of predicting the continuous consumptions. In fact, the constants only model (but with the scale free) easily surpasses even the best specification of exogenous variables when the scale is fixed to one. As importantly, a comparison of the log-likelihood values of the two models in Table 2 with the corresponding two models in Table 1 indicates that the models in Table 1 are doing much better for the predictions of the continuous consumptions. A non-nested likelihood test of the TFIXED-MDCEV models across the two tables (using the constants only log-likelihood of the TFIXED-MDCEV from Table 2 as the base) returns a probability value of $\Phi(-14.42)$, which is literally zero. The corresponding probability value for the comparison of the T-MDCEV models across the two tables (using the constants only log-likelihood of the T-MDCEV model from Table 2 as the base) is $\Phi(-38.81)$. These results are not surprising, since the models in Table 1 allow satiation in the utility for the outside good, while the $L\gamma$-profile does not. Again, it should be borne in mind that these log-likelihoods correspond to the continuous quantities of consumptions.

However, the situation completely changes when the predictive likelihood for the discrete probability of consumption is considered. First, there is not much difference between the predictive likelihoods for the two models in Table 2. Using the constants only predictive log-likelihood for discrete consumption from the T-MDCEV model of Table 1 as the base, the adjusted likelihood ratio index values can be computed for each of the models in Table 2, followed by a non-nested likelihood ratio test. As shown in Table 2, the result indicates that the TFIXED-MDCEV is statistically better than the T-MDCEV model, even though the ADLRI index difference is not much. But, much more importantly, the predictive log-likelihoods for the discrete consumption events from the models in Table 2 are far superior to those from Table 1. Again, using the constants only predictive log-likelihood for discrete consumption from the TFIXED-MDCEV model of Table 1 as the base, one can compute a non-nested likelihood ratio test between the TFIXED-MDCEV models in the two tables, and similarly a non-nested likelihood ratio test between the T-MDCEV models in the two tables. The results in Table 2 clearly demonstrate the superiority of the $L\gamma$-profile models in Table 2 relative to those in Table 1 in terms of discrete consumption predictions. Indeed, the predictive log-likelihoods for discrete consumptions from the constants only models in Table 2 are superior to those from the corresponding full models in Table 1.
There are three primary summary results from the previous two sections. First, traditional MDC models using the γ-profile have unnecessarily constrained the scale parameter to one. Doing so can degrade the predictions of the continuous consumptions. Second, the γ-profile does much better than a $L\gamma$-profile for the predictions of the continuous consumptions, but does much worse than the $L\gamma$-profile for predictions of the discrete consumptions. This latter result is because, given that the same baseline parameters drive both the discrete and continuous consumption predictions in the traditional MDCEV model, the γ-profile uses satiation in the outside good as an additional instrument to fit the continuous consumption values well. But it also ties the discrete and continuous consumptions predictions very tightly through the presence of the $\ln x_i^c$ term in the discrete consumption predictions. The $L\gamma$-profile, on the other hand, completely removes any continuous consumption element presence from the discrete consumption predictions. While the use of the $L\gamma$-profile within the traditional MDCEV model also focuses expressly on maximizing the likelihood of the continuous consumptions, the optimization procedure essentially “realizes” that its effort is better spent on predicting the zero continuous consumption values of the outside goods well even as its goal is to fit all continuous consumptions well (because it has more limited ability to utilize the satiation in the outside good to fit the non-zero values well).\(^7\) Third, our new proposed model essentially provides the $L\gamma$-profile more flexibility to focus on the zero predictions as well as the non-zero predictions by releasing the constraint of the same baseline parameters dictating the zero and the non-zero value predictions. As we will see next, doing so more than makes up for the steep penalty the $L\gamma$-profile pays (because of assuming zero satiation in the outside good) in terms of the overall

\(^7\) We noticed this clearly by way of the closeness of the predictive log-likelihood for the discrete consumptions from the $L\gamma$-profile traditional MDCEV model estimation (that maximizes the continuous consumptions) and a discrete model estimation that expressly optimizes the discrete consumptions (using Equation (10) as the objective function, and setting the scale to one; note that the satiation parameters do not appear in this estimation). For the γ-profile, the predictive log-likelihoods for the discrete consumption from the T-MDCEV model is -13931.32 as compared to the log-likelihood value of -13134.80 at convergence for the model that expressly maximizes the discrete log-likelihood. For the $L\gamma$-profile, the predictive log-likelihood for the discrete consumption from the T-MDCEV model is -12743.95 as compared to the log-likelihood value of -12732.31 at convergence for the model that expressly maximizes the discrete log-likelihood. The closeness of the predictive discrete log-likelihoods and the actual discrete log-likelihood at convergence is clearly obvious for the $L\gamma$-profile. Of course, in some other empirical contexts, it is possible that the performance difference between the γ-profile and $L\gamma$-profile MDCEV models in predicting the discrete consumptions will not be as substantial as found in this study.
continuous consumption predictions in the traditional MDCEV model that has a single set of baseline parameters driving both the zero and non-zero consumption predictions.

3.4. The Proposed New Flexible MDCEV Model Results

Table 3 provides the results for the proposed model, with separate baseline parameter estimates for the discrete and continuous components using the L_{γ}-profile, and a free estimate for the error scale (the corresponding log-likelihood at convergence when the scale was constrained to one was -5041.5; a nested likelihood ratio test between this model and the one in Table 3 returns a value of 404.5, which implies the clear rejection of the scale-normalized model relative to when the scale is estimated freely). Interestingly, in comparing the baseline preference coefficients on exogenous variables from the T-MDCEV model in Table 1 with the corresponding D-preference coefficients in Table 3, these all have the same signs and substantive interpretations. Further, the scale-normalized coefficients from both these models are about exactly the same. The D-preference constants have the expected negative signs, because the participation rates in all the OH activities are lower than the 100% participation in in-home activities (unlike those in the T-MDCEV model in Table 1, because the constants in the T-MDCEV model of Table 1 also have a role in the continuous consumption predictions). What is also important to note from the parameter estimates of the D-preference and C-preference variables in Table 3 is that the coefficients sometimes have the opposite signs in the two baseline preferences, as well as do not necessarily have the same set of variables. The C-preference coefficients in Table 3 are introduced as increments over the D-preference coefficients (for convenience in interpretation as well as to highlight statistically significant differences in coefficients on the same variable across the two preference baselines). For instance, from the standpoint of the D-preference (that is, discrete participation), single person households have the lowest preference of all household types for recreational, social, and serve passenger activities. However, conditional on participation, single person households have the highest baseline preference for long time investments in these same activities (note that the sum of the D-preference and C-preference coefficients, which represent the effective coefficients for the continuous baseline component, are the most positive for single person households across all household types). Also, while single person households do not appear to be more likely than other households to participate in eating out activity (the variable does not appear in the D-
preference), such households have a clear higher propensity for long durations of time investment in dining out conditional on participation (the variable has a clear and statistically significant positive coefficient in the C-preference, while other households have a negative coefficient on eating out or a zero effect for the base category of households). Many other variables in Table 3 similarly have differential directions of effects and/or affect only one of the discrete and continuous components of baseline preference. Other substantive results from Table 3 include the higher propensity of nuclear and single parent households to invest time in personal business conditional on participation, as well as the lower propensity of such households, conditional on participation, to invest time in any other out-of-home activity purpose relative to other households (presumably because of child-rearing responsibilities, reinforcing time poverty and potential social exclusion considerations that parents with children face in society; see Bernardo et al., 2015). Also, while households with a high fraction of part-time workers and non-workers are clearly more likely than households with a high fraction of full-time workers to participate in shopping and personal business, the differences among these households are substantially tempered in the context of duration of time investment conditional on participation.

The satiation parameters are much lower than the corresponding values in the traditional models. That is, given the distinct baseline parameters for the continuous consumption (and the generally more positive magnitudes for these baseline parameters than the in the traditional models), the satiation parameters present much stronger satiation to fit the continuous consumptions well.

3.5. Likelihood-Based Data Fit Measures

The bottom row panel of Table 3 presents the likelihood-based data fit statistics for the proposed flexible MDCEV model and compares these with those from the traditional γ-profile MDCEV and the traditional $L\gamma$-profile MDCEV. The fit statistics for all models correspond to the case when the scale is estimated freely (the results for the two traditional models are reproduced from Tables 1 and 2). The first row provides the log-likelihood at convergence for the full model, while the second row provides the log-likelihood with only the constants in the D-preference and C-preferences for the full model. Of course, these log-likelihoods for the proposed model cannot be directly compared to those from the traditional models (since our model includes the distinct modeling of both the discrete and continuous consumption events, while the traditional models
focus on the continuous consumption prediction). However, we are able to compute the predictive log-likelihoods implied by our model for the continuous component and the discrete component. The results in the table provide a positive log-likelihood value for the continuous consumption, as predicted by our new model. This shows that our model is vastly superior to the traditional models in terms of continuous consumption prediction (note that the predictive likelihood of the continuous consumption includes density functions, and is a full density function for the case when all goods are consumed; density functions are not constrained to be less than one, and thus a positive predictive likelihood for the continuous consumption is perfectly legitimate, and, in fact, shows the substantial superiority when the discrete and continuous consumptions are disentangled). The Akaike Information Criterion (AIC) \[= \log L_{ML} - \text{(number of model parameters)} \] and the Bayesian Information Criterion (BIC) values \[= -\log L_{ML} + 0.5 \times \text{(number of model parameters)} \times \log \text{sample size} \] for the three models are shown in Table 3. The AIC and BIC values reinforce the improved continuous consumption predictions from our proposed model relative to the two traditional models. The predictive log-likelihood for the discrete component is also better from our proposed model relative to the two traditional models. The rho bar-squared values, computed with respect to the log-likelihood at constants of the traditional \(\gamma \)-profile MDCEV, is also provided for all three models in the table, as is the result of a non-nested predictive likelihood ratio test of each of the two traditional models with respect to our proposed full model. Again, the superiority of our proposed model is clear even for the discrete consumption component.

8 Our proposed model does not nest the traditional \(\gamma \)-profile MDCEV model because that would require that \(\varepsilon_k = w_k \forall k = 2,3,\ldots, K, \beta = \theta \), and \(\text{cor}(\varepsilon_k, \xi_k) = 1 \forall k = 2,3,\ldots, K \) in the \(D \)-preference and \(C \)-preference specifications of Equation (18). The last of these conditions cannot be met by our proposed model, because the closed form is obtained by requiring that \(\text{cor}(\varepsilon_k, \xi_k) = 0.5 \forall k = 2,3,\ldots, K \). As we discuss in the last section, however, our proposed framework can be used to implement more flexible error forms for \(\varepsilon_k \) and \(\xi_k \) that allow testing whether the correlation between these error terms (for each \(k \)) approaches one. But allowing such flexible forms for the error terms will, of course, come at the expense of not having a nice closed-form probability structure as in our proposed model.

9 \(\log L_{ML} \) refers to the log-likelihood value at convergence. Many measures have been suggested in the literature to evaluate model fit among non-nested models. Including the AIC, the BIC, and variants of these (see Fonseca, 2010 for a listing and description of these information criteria). In general, the AIC tends to favor more complex models, leading to potential overfit. On the other hand, the BIC tends to favor simpler models, with an adjustment for sample size to avoid overfit. More simply speaking, the BIC-based measures demand a higher strength of evidence to add complexity than do the AIC-based measures, and thus the BIC-based measures favor more parsimonious models (see Neath and Cavanaugh, 2012).
3.6. Non-Likelihood Based Data Fit Measures

The likelihood-based tests (for the comparison of the two traditional models and the proposed flexible MDCEV model) constitute disaggregate measures of fit that consider performance at the multivariate and disaggregate level. While the best data fit measures, these are not very intuitive. So, we also evaluate the performance of the three models intuitively and informally at a disaggregate and aggregate level. At the disaggregate level, we estimate the probability of the observed multivariate discrete outcome for each individual using Equation (10), and compute an average probability of correct prediction for the discrete consumption outcome. At the aggregate level, we design an informal heuristic diagnostic check of model fit by computing the predicted aggregate share of individuals for specific multivariate discrete outcomes (because it would be infeasible to provide this information for each possible multivariate outcome). In particular, we compare the aggregate marginal trivariate predictions (with the true sample values) for combinations of three of the most participated-in inside activity purposes: shopping, personal business, and eat-out (the outside activity is always participated in). That is, we first compute the probability of each individual participating in each of the following seven combination activity purposes (including in-home): (1) shopping only, (2) personal business only, (3) eat-out only, (4) shopping and personal business, (5) shopping and eat-out, (6) personal business and eat-out, and (7) shopping, personal business, and eat-out (these probabilities are computed using Step 1 of the first forecasting algorithm). The probabilities for each combination are averaged across individuals to obtain the predicted percentage of individuals falling into each combination category and compared with the actual percentage of individuals in each combination (using the weighted mean absolute percentage error (MAPE) statistic, which is the MAPE for each combination weighted by the actual percentage shares of individuals participating in each combination.

For the continuous consumption predictions, to remove any effects of poor discrete choice predictions on the continuous prediction outcomes, we assume the observed multivariate discrete outcome, and predict the continuous consumptions for each individual using Steps (2) and (3) of the first forecasting algorithm (and its equivalent for the traditional models). In using this procedure, we use 1000 error vector replications per individual observation. We then compute the aggregate predicted continuous consumption values for each inside activity purpose across all individuals at the individual level (these are in the form of fractions of the time budget...
invested in each activity participated in), and compare the predicted versus actual fractions of
time budget invested in each inside good using the MAPE statistic (note that the time budget for
the outside good is effectively obtained from the inside good consumptions).

For the discrete consumptions, the average probability of correct prediction from the
traditional γ-profile MDCEV model, the traditional $L\gamma$-profile MDCEV model, and the
proposed new flexible MDCEV model were 0.0451, 0.0695, and 0.0705, respectively. Table 4
presents the aggregate prediction results. The top row panel provides the actual and predicted
percentages of individuals participating in each of the seven specific combinations identified
earlier. The weighted MAPE is about the same for the traditional $L\gamma$-profile model and the
proposed flexible model, and is about 50% higher for the traditional γ-profile MDCEV model.
In the table, we also provide the weighted MAPE statistic for the number of inside alternatives
chosen in the same, and here again the traditional $L\gamma$-profile model and the proposed flexible
model perform much better than the traditional γ-profile MDCEV model.

The bottom row panel of Table 4 provides the aggregate continuous consumption values
(as a percentage of total budget) for each of the six inside alternatives. The superior performance
of the proposed model is clear here. Interestingly, while at the disaggregate-level, the traditional
γ-profile MDCEV model does better than the traditional $L\gamma$-profile MDCEV model, the latter
outperforms the former in the context of the aggregate continuous predictions (though this is
primarily because of the relatively poor aggregate prediction for the personal business activity
from the traditional γ-profile MDCEV model).

4. CONCLUSIONS
The traditional MDC models simultaneously estimate the baseline marginal utility and the
satiation parameters so that the level of consumptions is fitted well (with zero consumption
simply being one possible continuous consumption value). The result is that the traditional MDC
models generally predict the continuous component well, but may not do as well in terms of
predictions for the discrete choice component.

In this paper, we propose, for the first time, a new flexible and also utility-theoretic MDC
model that breaks the tight linkage between the discrete and continuous choice dimensions of the
traditional MDC models. We do so by (1) employing a linear utility function of consumption for
the first outside good (which removes the continuous consumption quantity of the outside good from the discrete consumption decision, and also helps in forecasting), and (2) using separate baseline utilities for the discrete and continuous consumption decisions. In the process of proposing our new formulation, we also revisit two issues related to the traditional MDC model. The first relates to clarification regarding the identification of the scale parameter of the error terms, and the second relates to the probability of the discrete choice component of the traditional MDC model (that is, the multivariate probability of consumption or not of the alternatives). We show why the scale parameter of the error terms is indeed estimable when a \(\gamma \)-profile is used, as well as show how one may develop an expression for the discrete choice consumption probability.

The paper then proposes a new utility functional form for modeling MDC choices. To introduce stochasticity in the model, we consider independent and identically distributed (IID) log-extreme-value error terms in the baseline utility preferences for the discrete component and for the continuous component. This stochastic specification results in a multivariate logistic distribution functional form for the error terms in the discrete and continuous baseline preferences, and leads to a closed form MDCEV model, as well as allows the discrete choice probabilities to be specified in closed form. The latter issue, when combined with our proposed \(L\gamma \)-profile, presents a methodology to estimate pure multiple discrete choice models without the need for information on the continuous consumptions. We also develop forecasting procedures for the proposed model that are easily implemented, thanks to the disentangling of the strong tie between the discrete and continuous components.

To demonstrate an application of the proposed model, we consider the case of time-use of individuals. The data and sample used is drawn from the Puget Sound household travel survey conducted by the Puget Sound Regional Council (PSRC) in the spring (April–June) of 2014 in the four county PSRC planning region (the four counties are King, Kitsap, Pierce, and Snohomish) in the State of Washington. The participation decision and the amount of time spent on a typical weekday across all individuals in the household on (a) in-home (IH) non-work, non-educational, and non-sleep activities and (b) out-of-home (OH) non-work non-educational pursuits are computed from the survey, and form the multiple discrete-continuous dependent variable. In a comparative empirical assessment of the fit from the proposed model and from the
traditional MDCEV models, our proposed model came out clearly as the winner in terms of better predicting both the discrete outcome data as well as the continuous consumptions.

In summary, the proposed new flexible MDCEV formulation should be a valuable approach to model multiple discrete-continuous choices if one is willing to work with IID log extreme-value error terms across the baseline preferences, and accept a constant correlation of 0.5 across the D-preference and C-preference error terms. Of course, the framework developed here can also form the basis for more general MDC models, such as introducing flexible forms of stochasticity through (a) the specification of multivariate error structures across the baseline preferences of alternatives (such as a multivariate normal error structure), (b) correlations across error terms in the D-preference and C-preference baselines, and (c) mixing error structures to accommodate unobserved heterogeneity in the responsiveness to exogenous variables. However, such more general stochastic formulations will also lead to more complicated model forms, with many of these having non-closed forms for the probability expressions. Also, while the proposed MDCEV model performs substantially better than the traditional MDCEV in our empirical context, it is important to bear in mind that the traditional MDCEV may perform almost as well as the proposed model in other empirical contexts where the discrete and continuous marginal utility functions are not very different. Similarly, in other empirical contexts, the traditional MDCEV model, which has much fewer parameters to estimate, may be able to predict both the discrete and continuous consumptions reasonably well. Thus, comparing the performance of the traditional parsimonious (in parameters) MDCEV with the proposed more flexible MDCEV model would always be helpful. Finally, this is the first foray into a flexible MDCEV formulation, and the properties of this model need to be examined carefully in future studies.

ACKNOWLEDGMENTS
This research was partially supported by the U.S. Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center. The author would like to acknowledge support from a Humboldt Research Award from the Alexander von Humboldt Foundation, Germany. The author is also grateful to Lisa Macias for her help in formatting this document. Three anonymous reviewers provided useful comments on an earlier version of this paper.
REFERENCES

Table 1. Estimation Results for Traditional MDCEV Model with a γ-profile

<table>
<thead>
<tr>
<th>Independent Variables/ Data Fit Measures</th>
<th>TFIXED-MDCEV</th>
<th>T-MDCEV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff (t-stat)</td>
<td>Coeff (t-stat)</td>
</tr>
<tr>
<td>Family structurea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single person HH</td>
<td>-- --</td>
<td>-0.496 (-5.67)</td>
</tr>
<tr>
<td>Nuclear family</td>
<td>-0.230 (-3.44)</td>
<td>-- --</td>
</tr>
<tr>
<td>Single parent family</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td>Fraction of adults by work status in HHPb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part-time workers</td>
<td>0.365 (3.09)</td>
<td>0.651 (5.58)</td>
</tr>
<tr>
<td>Non-workers</td>
<td>0.789 (6.24)</td>
<td>1.109 (8.82)</td>
</tr>
<tr>
<td>Baseline preference constants</td>
<td>-0.082 (-1.98)</td>
<td>-0.312 (-7.72)</td>
</tr>
<tr>
<td>Satiation parameters</td>
<td>0.027 (24.44)</td>
<td>0.103 (20.74)</td>
</tr>
<tr>
<td>Scale parameter</td>
<td>Fixed to the value of 1.0</td>
<td></td>
</tr>
</tbody>
</table>

Fit measures for continuous consumptions

Log-likelihood at convergence	-4163.88	-3529.26
Log-likelihood at constants	-4534.94	-3940.22
Number of parameters	19	20
Nested likelihood ratio test	0.0776	0.2174

Fit measures for discrete consumptions

Predictive log-likelihood at convergence	-13143.75	-13931.32
Predictive log-likelihood at constants	-13540.06	-14319.56
Predictive adjusted likelihood ratio index	0.0821	0.0261
Predictive non-nested test	$\Phi[-39.72] << 0.0001$; Conclusion is that the TFIXED-MDCEV model is preferred	

a: base is couple family and multi-adult households

b: base is full-time workers
Table 2. Estimation Results for Traditional MDCEV Model with a γ-profile, and Comparison with the Traditional MDCEV Model with a γ-profile

<table>
<thead>
<tr>
<th>Independent Variables/ Data Fit Measures</th>
<th>TFIXED-MDCEV</th>
<th>T-MDCEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale parameter Fixed to the value of 1.0</td>
<td>0.121 (t-stat of 73.23 with respect to the value of 1.0)</td>
<td></td>
</tr>
<tr>
<td>Log-likelihood at convergence -5147.96</td>
<td>-4195.24</td>
<td></td>
</tr>
<tr>
<td>Log-likelihood at constants -5497.32</td>
<td>-4528.14</td>
<td></td>
</tr>
<tr>
<td>Number of parameters 19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Adjusted likelihood ratio index 0.0600</td>
<td>0.2332</td>
<td></td>
</tr>
<tr>
<td>Nested likelihood ratio test between the TFIXED-MDCEV and T-MDCEV models of this table Test statistic $[-2 \times (LL_{TFIXED-MDCEV} - LL_{T-MDCEV})] = 1905.44 >$ Chi-Squared statistics with 1 degree of freedom at any reasonable level of significance; Conclusion is that the T-MDCEV model is preferred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-nested likelihood ratio test between the TFIXED-MDCEV models from Tables 1 and 2 $\Phi[-42.14] < 0.0001$; Conclusion is that the TFIXED-MDCEV model from Table 1 is better Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-nested likelihood ratio test between the T-MDCEV models from Tables 1 and 2 $\Phi[-38.81] < 0.0001$; Conclusion is that the T-MDCEV model from Table 1 is better</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data fit measures for discrete consumptions Predictive log-likelihood at convergence -12738.40</td>
<td>-12743.95</td>
<td></td>
</tr>
<tr>
<td>Predictive log-likelihood at constants -13104.41</td>
<td>-13106.63</td>
<td></td>
</tr>
<tr>
<td>Number of parameters 13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Predictive adjusted likelihood ratio index 0.1095</td>
<td>0.1091</td>
<td></td>
</tr>
<tr>
<td>Predictive non-nested likelihood ratio test between the TFIXED-MDCEV and T-MDCEV models of this table $\Phi[-3.23] < 0.001$; Conclusion is that the TFIXED-MDCEV model is preferred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictive non-nested likelihood ratio test between the TFIXED-MDCEV models from Table 1 and 2 $\Phi[-28.47] < 0.0001$; TFIXED-MDCEV model from Table 2 is better Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictive non-nested likelihood ratio test between the T-MDCEV models from Table 1 and 2 $\Phi[-48.76] < 0.0001$; T-MDCEV model from Table 2 is better</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Estimation Results for Proposed New Flexible MDCEV Model with a L_y-profile

<table>
<thead>
<tr>
<th>Independent Variables/ Data Fit Measures</th>
<th>Discrete baseline preference (D-preference)</th>
<th>Continuous baseline preference (C_y-preference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff (t-stat)</td>
<td>Coeff (t-stat)</td>
</tr>
<tr>
<td>Family structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single person HH</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nuclear family</td>
<td>-0.119 (-3.19)</td>
<td>--</td>
</tr>
<tr>
<td>Single parent family</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fraction of adults by work status in HH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part-time workers</td>
<td>0.222 (3.51)</td>
<td>0.348 (5.60)</td>
</tr>
<tr>
<td>Non-workers</td>
<td>0.410 (6.13)</td>
<td>0.601 (8.73)</td>
</tr>
<tr>
<td>Baseline preference constants</td>
<td>-0.255 (-9.64)</td>
<td>-0.343 (-12.93)</td>
</tr>
<tr>
<td>Satiation parameters</td>
<td>One set of satiation parameters as listed in next column</td>
<td>0.013 (8.52)</td>
</tr>
<tr>
<td>Scale parameter</td>
<td>0.5244 (t-stat of 27.98 with respect to the value of 1.0)</td>
<td></td>
</tr>
</tbody>
</table>

Data fit measures for full model

- Log-likelihood at convergence: -4636.92
- Log-likelihood at constants: -5673.25

Fit measures for continuous consump.

- Predictive log-likelihood at convergence: -3218.90 for flexible MDCEV model, -3529.26 for γ-profile T-MDCEV, -4195.24 for L_y-profile T-MDCEV
- Number of model parameters: 49 for flexible MDCEV model, 20 for γ-profile T-MDCEV, 20 for L_y-profile T-MDCEV
- Akaike Information Criterion: -3169.90 for flexible MDCEV model, -3549.26 for γ-profile T-MDCEV, -4205.24 for L_y-profile T-MDCEV
- Bayesian Information Criterion: -3018.03 for flexible MDCEV model, -4205.24 for γ-profile T-MDCEV, -4277.23 for L_y-profile T-MDCEV

Fit measures for discrete consumptions

- Predictive log-likelihood at convergence: -12738.37 for flexible MDCEV model, -13931.32 for γ-profile T-MDCEV, -12743.95 for L_y-profile T-MDCEV
- Predictive log-likelihood at constants: -13111.35 for flexible MDCEV model, -14319.56 for γ-profile T-MDCEV, -13106.63 for L_y-profile T-MDCEV
- Number of parameters: 14 non-constant parameters for all models that determine discrete consumption patterns
- Predictive adjusted likelihood ratio index: 0.1094 for flexible MDCEV model, 0.0261 for γ-profile T-MDCEV, 0.1091 for L_y-profile T-MDCEV
- Predictive non-nested test: $\phi[-48.84]$ and $\phi[-2.93]$ for comparisons of the γ-profile T-MDCEV and L_y-profile T-MDCEV with the proposed flexible MDCEV model; Conclusion is that the proposed flexible MDCEV model is preferred.
Table 4. Aggregate Measures of Fit

<table>
<thead>
<tr>
<th>Percentage of individuals participating in in-home and…</th>
<th>Actual percentage of individuals participating</th>
<th>Traditional γ - profile MDCEV prediction</th>
<th>Traditional $L\gamma$ - profile MDCEV prediction</th>
<th>Proposed Flexible MDCEV model prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopping (S) only</td>
<td>9.76</td>
<td>6.39</td>
<td>7.24</td>
<td>7.06</td>
</tr>
<tr>
<td>Personal Business (PB) only</td>
<td>5.94</td>
<td>5.16</td>
<td>6.54</td>
<td>6.54</td>
</tr>
<tr>
<td>Eat Out only (EO)</td>
<td>5.58</td>
<td>3.03</td>
<td>3.44</td>
<td>3.56</td>
</tr>
<tr>
<td>S and PB</td>
<td>5.88</td>
<td>3.63</td>
<td>4.62</td>
<td>4.43</td>
</tr>
<tr>
<td>S and EO</td>
<td>2.89</td>
<td>1.99</td>
<td>2.19</td>
<td>2.16</td>
</tr>
<tr>
<td>PB and EO</td>
<td>2.42</td>
<td>1.55</td>
<td>1.90</td>
<td>1.93</td>
</tr>
<tr>
<td>S and PB and EO</td>
<td>2.69</td>
<td>2.36</td>
<td>2.68</td>
<td>2.60</td>
</tr>
<tr>
<td>Weighted Mean Absolute Percentage Error</td>
<td>-</td>
<td>31.40</td>
<td>22.06</td>
<td>22.96</td>
</tr>
<tr>
<td>Weighted Mean Absolute Percentage Error for number of inside alternatives picked</td>
<td>-</td>
<td>39.55</td>
<td>22.59</td>
<td>22.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentage of overall time-budget spent in …</th>
<th>Actual percentage</th>
<th>Traditional γ - profile MDCEV prediction</th>
<th>Traditional $L\gamma$ - profile MDCEV prediction</th>
<th>Proposed Flexible MDCEV model prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopping</td>
<td>2.76</td>
<td>3.12</td>
<td>2.41</td>
<td>3.07</td>
</tr>
<tr>
<td>Personal Business</td>
<td>8.92</td>
<td>6.91</td>
<td>8.35</td>
<td>8.58</td>
</tr>
<tr>
<td>Recreation</td>
<td>3.65</td>
<td>3.18</td>
<td>3.10</td>
<td>3.94</td>
</tr>
<tr>
<td>Eat Out</td>
<td>2.44</td>
<td>2.26</td>
<td>1.95</td>
<td>2.39</td>
</tr>
<tr>
<td>Social</td>
<td>3.26</td>
<td>2.42</td>
<td>2.72</td>
<td>3.48</td>
</tr>
<tr>
<td>Serve Passenger</td>
<td>0.97</td>
<td>0.72</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Weighted Mean Absolute Percentage Error</td>
<td>-</td>
<td>18.69</td>
<td>12.61</td>
<td>6.75</td>
</tr>
</tbody>
</table>