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ABSTRACT 1 
This paper presents the formulation of a multivariate multiple discrete continuous probit (MV-2 
MDCP) choice model system.  Many choice phenomena in transportation and other fields of study 3 
are multiple discrete continuous choice situations where individuals can choose multiple 4 
alternatives from a choice set.  When several such dimensions of disparate types interact with one 5 
other, and are simultaneously influenced by common unobserved attributes, then a model 6 
formulation capable of jointly modeling such phenomena is needed.  The MV-MDCP model 7 
system presented in this paper is capable of modeling such phenomena in a computationally 8 
tractable manner.  The methodology is illustrated on a physical activity, nutrition, and health data 9 
set collected in the United Kingdom.  The model estimation results demonstrate the efficacy of the 10 
model.     11 
 12 
Keywords: discrete continuous choice model, multivariate multiple discrete continuous probit, 13 
model estimation methodology, simultaneous choice modeling, unobserved attributes  14 
 15 
 16 
  17 
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1. INTRODUCTION 1 
This paper presents a methodological advance that allows the modeling of two multiple discrete 2 
continuous phenomena jointly.  Over the past several years, there has been considerable interest 3 
in modeling multiple discrete continuous choice phenomena because many travel behavior choices 4 
are of the multiple discrete continuous nature. For example, time allocation to activities, ownership 5 
and utilization of multiple vehicle types, and monetary budget allocation to various household 6 
expense categories are all examples of multiple discrete continuous phenomena.  In such choice 7 
situations, individuals are choosing multiple alternatives from among a choice set of alternatives 8 
and allocating a continuous budget across the chosen alternatives.  The multiple discrete 9 
continuous extreme value (MDCEV) model, and its several variants, has made it possible to model 10 
such phenomena easily (Bhat, 2008; Bhat, 2011).  11 
 A methodological challenge that has not been adequately addressed thus far relates to the 12 
ability to model several multiple discrete continuous choice phenomena simultaneously or jointly.  13 
There may be situations where such joint modeling efforts need to be undertaken.  When there are 14 
disparate multiple discrete phenomena that are based on different units of measurement, then it 15 
may be beneficial to use a multivariate MDCP modeling approach.  For example, consider the case 16 
where time is allocated to various types of physically active pursuits such as sports, exercise, 17 
gardening, and recreational bicycling; and total caloric intake (nutritional diet) is allocated to 18 
various types of food groups including fruits and vegetables, meats, and grains.  It is not possible 19 
to combine the two phenomena because they are measured on completely different units of 20 
measurement.  And yet they are intricately related in a number of ways.  Those who are health 21 
conscious individuals may allocate more time to vigorous physical activities and budget more of 22 
their caloric intake to healthy foods.  Thus an unobserved attribute is affecting both phenomena, 23 
calling for the joint modeling of these behavioral dimensions.  Second it is possible that one 24 
dimension affects the other; for example, a large caloric intake associated with less healthy food 25 
groups may motivate an individual to dedicate more time to exercise to compensate for such 26 
dietary intake.  Alternatively, an individual who exercised for a long duration may feel that he or 27 
she is entitled to indulge in a hearty meal and desert, thus leading to relationships between the two 28 
dimensions of interest. Time spent on physical activity pursuits may influence caloric intake 29 
allocation, or caloric intake allocation may affect time allocated to physical activities.  Even when 30 
the units of measurement are the same (as in the case of the example used in this paper), the use 31 
of a multivariate model may be warranted when there is a clear recursive relationship between the 32 
choice dimensions.  In the event that one choice dimension has a causal and sequential relationship 33 
with another, a multivariate MDCP model would be warranted.      34 
 Despite the recognition that such joint relationships may exist, methodological limitations 35 
have made it difficult to model diverse multiple discrete continuous choice phenomena 36 
simultaneously.  This paper offers a major methodological advance in the form of a multivariate 37 
multiple discrete continuous probit (MV-MDCP) model system capable of jointly modeling two 38 
or more multiple discrete continuous choice dimensions while accounting for endogeneity across 39 
the choice dimensions of interest.   40 
 The method is applied in this paper to a physical activity and nutrition data set collected in 41 
the United Kingdom.  The data set includes detailed data on nutritional intake, physical activity, 42 
commuting distance and durations (by mode), socio-economic and demographic characteristics, 43 
and health variables for a sample of individuals.  In studies of physical activity participation, 44 
datasets used for analysis often do not include contextual variables such as built environment 45 
variables associated with the location of residence (and/or work) of the individual respondent (e.g., 46 
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the National Health and Nutrition Examination Survey in the United States).  Consider time 1 
allocation to physically active pursuits such as sports and exercise of various types.  At the same 2 
time, consider time allocation to commuting by different modes of transport including the more 3 
physically demanding bicycle and walk modes.  These are two different multiple discrete 4 
continuous phenomena where an individual can allocate time to multiple options within each 5 
choice dimension.  If no built environment variables are present, then such variables constitute 6 
unobserved factors that affect the time allocation patterns in each choice dimension.  A dense 7 
mixed use environment may enhance time allocated to physically active pursuits; such an 8 
environment may also enhance the time allocated to commuting by bicycle and walk. Also, an 9 
individual who is health conscious (an unobserved personal trait) may commute by active modes 10 
more and pursue sports and exercise more as well.  Thus, unobserved attributes positively 11 
contribute to both time allocation phenomena of interest. In addition, a recursive causal 12 
relationship may exist between these two choice dimensions. If an individual spends more time 13 
commuting because he or she is walking or bicycling, then he or she may feel that the act of 14 
bicycling or walking to and from work provided the exercise needed.  As a result, a bike or walk 15 
commuter will spend less time for physically active recreational pursuits. These intricate 16 
relationships, and the presence of common unobserved attributes that affect disparate multiple 17 
discrete continuous phenomena, can be taken into account through the use of a multivariate 18 
multiple discrete continuous probit (MV-MDCP) model system formulated and presented in this 19 
paper.   20 
 The remainder of this paper is organized as follows.  The next section presents the data 21 
used in the study.  The modeling methodology is presented in Section 3 while the model estimation 22 
results are presented in Section 4. Concluding remarks appear in Section 5.  23 
 24 
 25 
2. DATA  26 
Data used for this modeling effort is from the United Kingdom (UK) National Diet and Nutrition 27 
Survey (NDNS), which collects nutritional data, health and energy expenditure information from 28 
a sample of individuals across the UK. The survey is carried out in all four countries of UK and a 29 
random sample of households is drawn from the Postcode Address File.  In each household, one 30 
individual is selected for the data collection effort. Data is collected for four (or three, depending 31 
on the survey year) days from each selected individual. The NDNS collects information regarding 32 
diet, nutrient intake and nutritional status of the general population 1.5 years or older. Data is 33 
available for this study for four survey snapshots: 2008, 2009, 2011 and 2012. Each year, data is 34 
collected from about 1,000 people, with an equal split between adults (≥ 19 years old) and children. 35 
NDNS database is used to compute national level statistics on food consumption, additives and 36 
other food chemicals. For the four years combined, detailed data is available for about 4,100 37 
individuals. The NDNS database contains information aggregated into the following files: 38 
 39 

• Household Core: This file contains information regarding household composition, sex, age 40 
and marital status of all individuals in co-operating households. 41 

• Individual Core: This file contains comprehensive data regarding the health measures of 42 
the individual, daily activity schedule of the individual and energy expenditure data. 43 

• Day Level Dietary Data Core: This file contains information regarding the daily intake of 44 
a person’s macronutrients, micronutrients and disaggregated food categories. 45 

4 
 



• Person Level Dietary Data Core: Mean intakes of food (derived from the day level dietary 1 
data) are furnished in this file. 2 

• Food Data: A couple of additional files are available at the level of each and every food 3 
consumed by the individuals over the course of the survey period. These files are not 4 
utilized for the current analysis. 5 

 6 
In the context of the current study, adult (≥ 19 years old) workers are selected from the 7 

individual core file for analysis and various attributes of interest are appended from the different 8 
files in the NDNS data base. Among workers, individuals who reported missing work 9 
duration/frequency were eliminated from the data set. Pertaining to the two dimensions of interest, 10 
physical activity information was readily available in the dataset. Respondents were asked to report 11 
the average duration for which they participated in a myriad of activities and the frequency of 12 
performing the activities during a four week period. Using these variables, the total duration of 13 
participation was computed and the activities were categorized into Passive, Moderate and 14 
Vigorous activities. The activity classification by level of intensity was adopted based on 15 
recommendations provided by the Center for Disease Control and Prevention (CDC, 2015). 16 
Activities under each of these categories are listed in Figure 1.  17 

The commute duration by mode information, however, was not readily available in the 18 
NDNS data and had to be imputed from information available. The individual level data file has 19 
commute distance variable coupled with information regarding use of different modes (car, transit, 20 
walk and bike) for which the respondents answered on a Likert scale (1: “always”, 2: “usually”, 3: 21 
“Occssionally”, 4: “Rarely”). These two pieces of information were utilized to compute commute 22 
duration by mode. First, the commute distance for the four week period for each respondent is 23 
computed as ‘2 x (commute distance) x (number of work trips per week) x (4 weeks)’. The Likert 24 
scale questions are then converted by assigning magnitudes or weights to each of level of the 25 
response as follows: 26 

• Always – 50  27 
• Usually – 35  28 
• Occasionally – 15  29 
• Never or Rarely – 0  30 

If an individual responded “Usually” and “Occasionally” for “Car” and “Walk” modes 31 
respectively to commute to work in the past four weeks, the magnitudes for “Car” and “Walk” are 32 
assigned to be 35 and 15, respectively. The magnitudes for “Public Transit” and “Bike” are set to 33 
zero.  Using only these magnitudes to compute allocation probabilities would lead to erroneous 34 
apportionments as there is a speed differential between the different modes. To account for this, 35 
the average travel speed by mode (Car: 29 mph, Public Trans: 24 mph, Bike: 12 mph, and Walk: 36 
3 mph) was used to adjust the magnitudes and proportion of commute durations for each mode 37 
computed for a person.  The following steps illustrate a sample computation for commute time 38 
allocation by mode:   39 

1) Select the mode with the highest speed in the choice set of the individual. From the 40 
example, 29 is selected as the speed for the individual as the average speed of “Car” is 41 
29 mph and that of “Walk” is 3 mph. 42 

2) All of the speeds in the choice set are divided by the max speed to compute the “speed 43 
weight”. For example, Car = 29/29 = 1 and Walk = 3/29 = 0.1034 44 
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3) Magnitudes assigned by the Likert scale questions are multiplied by “speed weight” to 1 
get the “adjusted magnitude”. In the current example, adjusted weight for car is  35x1 2 
= 35 and walk = 15x0.1034=1.551 3 

4) The commute proportions for each individual (among the selected modes chosen) are 4 
computed using “adjusted magnitude”. For example, Car = 35x100/(35+1.551) = 5 
95.75%, Walk = 1.551x100/(35+1.551) = 4.25%. Thus 95.75% of the individual’s 6 
commute duration is apportioned to car and 4.25% to walk. Thus, if total commute 7 
mileage consumption of the respondent is 2,000 miles for four weeks, 1,915.13 miles 8 
(95.75%) and 84.87 miles (4.25%) would be assigned to “Car” (answer – usually) and 9 
“Walk” (answer – occasionally), respectively. 10 

This process helped get rid of unrealistic travel time, or distance, allocations to any mode. After 11 
commute mode duration and physical activity duration were computed for each individual, another 12 
round of data checks was performed to discard any missing/outlying data before proceeding to 13 
model estimation. Descriptive statistics of the model estimation sample are provided in Table 1. 14 
From the table, it can be seen that there is an equal split of male and female individuals in the data 15 
set. The percent of individuals living alone is in agreement with the single person household 16 
proportion seen in UK. It can also be seen that the majority of respondents are ‘White’, again in 17 
line with national level numbers. A look at the body mass index variable reveals that majority of 18 
the respondents are either overweight or obese, which might be related to the lower level of 19 
participation in physically active (transit, walk, bike) commuting and recreational time allocation 20 
to vigorous physical activity. 21 
 22 
 23 
3. METHODOLOGY 24 
3.1 Model Framework 25 
Let there be G dependent variables of the multiple discrete-continuous (MDC) type and let g  be 26 
the index for these variables ),...,3,2,1( Gg = . Also, let gK be the number of alternatives 27 

corresponding to the thg  MDC dependent variable; and let gk be the corresponding index. The 28 
number of alternatives gK  may vary across individuals, but we suppress the index for individuals 29 
to simplify the presentation, and assume that all the alternatives are available to all individuals.  30 

Now, consider the thg  dependent variable. Following Bhat (2008), the individual is 31 
assumed to maximize his/her utility associated with this thg  dependent variable (and similarly for 32 
all other dependent variables) subject to a budget constraint, as below: 33 
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where the utility function )( ggU x  is quasi-concave, increasing and continuously differentiable; gx  1 

is the consumption quantity vector of dimension )1( ×gK  with elements 
ggkx  such that ggk kx

g
∀>   02 

; and 
ggkγ , 

ggkα , and 
ggkψ  are parameters associated with alternative gk . In the budget constraint, 3 

gE  is the total expenditure for the thg  dependent variable, and 
ggkp  is the unit price of 4 

consumption for alternative gk . Assume, for now, that there is no essential outside alternative (i.e., 5 
an alternative that is always consumed), so that corner solutions (i.e., zero consumptions) are 6 
possible for all choice alternatives (relaxing this assumption is straightforward). 

ggkψ  represents 7 

the baseline marginal utility for alternative gk  (i.e., marginal utility of alternative gk  at the point 8 

of no consumption of it). 
ggkγ  allows corner solutions for alternative gk  and also serves as a 9 

translation-based satiation parameter, while 
ggkα  serves as an exponential-based satiation 10 

parameter. Only one parameter of the set 
ggkγ  and 

ggkα  will be empirically identified, so the analyst 11 

will have to estimate either a γ -profile (in which 0→
ggkα ) or an α -profile (in which the 

ggkγ  12 

terms are normalized to 1). Also, for the γ -profile, one need to ensure ggk k
g

∀> 0γ , and, for the 13 

α -profile, the condition is: ggk k
g

∀≤1α . In the current paper, we will retain the general utility 14 
form of Equation (1) to keep the presentation general. 15 

Next, introduce stochasticity through the baseline marginal utility function 
ggkψ , as: 16 

),(exp
ggg gkgkggk ξψ +′= zβ  (2) 

where 
ggkz  is a gA -dimensional vector of attributes that characterizes alternative gk  (including a 17 

constant for each alternative except one, to capture intrinsic preferences for each alternative 18 
relative to a base alternative); gβ  is a consumer-specific vector of coefficients (of dimension 19 

1×gA ) and 
ggkξ  captures the idiosyncratic (unobserved) characteristics that impact the baseline 20 

utility of alternative gk . We assume that the error term ]),...,,([ 21 ′=
ggKggg ξξξξ   is distributed 21 

multivariate normal. That is, ),(MVN~ gKKg gg
Λ0ξ , where ),(MVN ΛKK 0  indicates a K-variate 22 

normal distribution with a mean vector of zeros denoted by K0  and a covariance matrix .Λ  23 
Further, to incorporate taste heterogeneity, we consider gβ  to be a realization from a multivariate 24 

normal distribution: ),(~ ggAg g
f Ωbβ . For future reference, we also write ggg βbβ ~

+= , where 25 

),(~~
ggg AAAg f Ω0β .  26 

The optimal consumption vector gx  can be solved based on the constrained optimization 27 
problem of Equation (1) by forming the Lagrangian function and applying the KKT conditions. 28 
The Lagrangian function for the problem is: 29 
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where gλ  is a Lagrangian multiplier associated with the expenditure constraint of the thg  1 

dependent variable. The KKT first-order conditions for the optimal consumptions *
ggkx  are: 2 

01 )~exp(
1*
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The optimal demand satisfies the above conditions and the budget constraint 3 
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 The budget constraint implies that only )1( −gK of the *

ggkx  values need to be 4 

estimated. To accommodate this singularity, let gm  be, without loss of generality, the consumed 5 
alternative with the lowest value of gk  (note that the consumer must consume at least one 6 

alternative given 0>gE ). For this th
gm  alternative, 0* >

ggmx , which, in conjunction with the first 7 

set of KKT conditions in Equation (4), implies the following expression for gλ : 8 
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(5) 

Substituting gλ  back in Equation (4) for the other alternatives gk  ( gg Kk ,...,2,1= ; gg mk ≠ ), and 9 
taking logarithm simplifies the KKT conditions as follows:  10 

0* =
ggmgky , if 0* >

ggkx , Kkg ,...,2,1= , gg mk ≠
 0* <

gg mgky , if 0* =
ggkx , gg Kk ,...,2,1= , .gg mk ≠  

(6) 

where, 
gggg gmgkmgk yyy −=* ;

gggg gkgkggkgk ξVy +′+= zβ~ ;and 11 

g

g

g

ggg gk
gk

gk
gkgkggk p

x
V ln1ln)1(

*

−













+−+′=

γ
αzb . 12 

Two important identification issues need to be noted here. First, a constant cannot be 13 
identified in the 

ggkg zb′  term for one of the alternatives. Similarly, consumer-specific variables that 14 

do not vary across alternatives can be introduced for )1( −gK  alternatives, with the remaining 15 
alternative being the base. Second, only the covariance matrix of the error differences is estimable. 16 
Taking the difference with respect to the first alternative, only the elements of the covariance 17 
matrix gΛ


 of 11 ggkgk gg

ξξε −= , 1≠gk  are estimable. However, the KKT conditions take the 18 

difference against the first consumed alternative gm . Thus, in translating the KKT conditions to 19 
the consumption probability, the covariance matrix of the error differences with respect to gm  is 20 
desired. Since gm  will vary across consumers, this covariance matrix will also vary across 21 
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consumers. But all the covariance matrices must originate from the same covariance matrix gΛ  1 
for the original error term vector gξ . To achieve this consistency, the error covariance matrix is 2 
constructed in a specific way that will be explained later in this section.  3 

Now, the jointness in the unobserved portion of the utility of different MDC variables may 4 
be generated as follows:  define [ ]1)1(  ),...,,( 13121 ×−′= ggKggg Kεεε

g
ε  and ),...,,( 21 ′′′′= Gεεεε   of 5 

size ( ) 11
1

×
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g
gK . Then the distribution of the vector ε  can be written as: 6 
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                                                      (7) 7 

where gΛ


, as mentioned earlier, captures the covariance between error differences (with respect 8 

to the first alternative)  of the thg  MDC variable and gg ′Λ


 captures the dependence between the 9 
error differences (with respect to the first alternative) of g  and g′ dependent variables. Further, if 10 
there is no price variation across alternatives for each consumer (i.e., if gggk kpp

g
∀= ~ ),  an 11 

additional scale normalization needs to be imposed on gΛ


 (Bhat, 2008).  For instance, one can 12 

normalize the element of gΛ


 in the first row and first column to the value of one. But, if there is 13 
some price variation across alternatives for even a subset of consumers, there is no need for this 14 
scale normalization and all the 2/)1( −gg KK  parameters of the matrix gΛ


 are estimable. In the 15 

general case, this allows the estimation of 
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 matrix 16 
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lg KK  covariance terms in the off-diagonal matrices of the matrix Λ


 17 

characterizing the dependence between the latent utility differentials (with respect to the first 18 
alternative) across the MDC variables. Note that the matrix Λ


 represents the covariance of error 19 

difference taken with respect to the first alternative for each of the dependent variables. For 20 
estimation, the corresponding error differentials with respect to the th

gm  alternative (i.e., a chosen 21 

alternative) for each MDC variable, say Λ


, is needed. For this purpose, a general covariance 22 
matrix Λ  needs to be created depending on the value of gm  for all MDC variables. To do so, 23 

define a matrix D  of size 

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1  whose elements are zero. Then insert an identity 24 

matrix of size )1( −gK for the every thg  MDC variable in the rows  2
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columns 1)1(
1
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iK . Then, the covariance matrix for the 1 

original error terms may be developed as .DΛDΛ ′=


 All the parameters in this matrix are 2 
identifiable by virtue of the way this matrix is constructed based on error differences and, at the 3 
same time, it provides a consistent means to obtain the covariance matrix Λ


 that is needed for 4 

estimation.  5 
 6 
3.2 Model Estimation 7 
Let λ  be the vector of all parameters to be estimated for all the dependent variables under 8 
consideration. To develop the likelihood function, define the following vector and matrices: 9 
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Then, we may write, in matrix notation, ξzβVy +′+=
~ .  It is easy to see that vector y  is 14 

distributed multivariate normal with mean V  and covariance )ΛΩ( +
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where, gggg zΩzΩ ′=


 and
'GGKK0  represents a [ ]GG ′×  matrix with all its elements being zero. 17 
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NCgL ,  as the number of non-consumed alternatives for the thg  MDC variable ( 10 , −≤≤ gNCg KL ), 2 

and CgL ,  as the number of consumed alternatives (other than the th
gm  alternative) for the thg  MDC 3 
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Using the above rearrangement matrices, one may partition *y  as ** yy NCNC R=  and 15 
** yy CC R= . Consistent with this partitioning, define HH R=~  , HH NCNC R=~ , HH CC R=~ , and 16 











 ′
=′=

CNCC

CNCNC

ΨΨ
ΨΨ

RΨRΨ ~~
~~

~

,

, , where NCNCNC RΨRΨ ′=
~ , CCC RΨRΨ ′=

~ , and CNCCNC RΨRΨ ′=,
~17 

. Define )'( *
gK

*
g2

*
g1

g
x,...,x,x=*

gx  and )',...,,( *'
G

*'
2

*'
1

* xxxx = . Then, the likelihood function 18 

corresponding to the consumption quantity vector *x  may be written as: 19 

( ) ,~,~|,)det()(
1

)1(
∫
−∞= −∑

=
=

0

ΨJ
NC

CG

g
g

NCLNC
K

fL
h

* dhH0hx  (9) 

11 
 



where J  is the block diagonal Jacobian matrix (of dimension ( ) ( )GLGL CC +×+ , with 1 

∑
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where gC  is the set of all alternatives consumed in dimensions g (including alternative gm ). 4 
The integral in the likelihood function in Equation (10) may be rewritten as a product of a 5 

marginal and conditional multivariate normal (MVN) distribution, where the marginal distribution 6 
is an MVN probability density function (which has a closed form expression) and the conditional 7 
distribution is an MVN cumulative density (MVNCD) function (see Bhat et al., 2013 for details). 8 
To evaluate the MVNCD function for estimating the parameters embedded in the likelihood 9 
function in Equation (10), we use the maximum approximated composite marginal likelihood 10 
(MACML) approach proposed by (Bhat, 2011). 11 

Finally, the presence of outside good in one of the MDC variables has no impact on the 12 
overall methodology apart from the fact that the utility expression for alternatives in presence of 13 
an outside good changes slightly. We do not discuss the details of MDC construction for the 14 
outside good and the reader is referred to Bhat (2008) for a detailed discussion.  15 
 16 
4. ESTIMATION RESULTS 17 
Model estimation results are presented in Table 2. For the physically active recreational time 18 
allocation model component, the base alternative is passive activities (the outside good in which 19 
everybody participates). For the commute mode time allocation model component, the base 20 
alternative is car.  The model coefficients indicate the extent to which different explanatory 21 
variables contribute positively or negatively to time allocation in a specific category.  22 
 Lower income individuals are less likely to pursue moderate and vigorous activities, with 23 
the lowest income group least prone to pursue such activities.  It is possible that this group cannot 24 
afford to undertake such activities or do not reside in neighborhoods with good amenities to pursue 25 
such activities.  The natural logarithm of age is associated with a higher level of moderate 26 
activities, suggesting that individuals beyond a certain advanced age are more likely to “slow 27 
down” and increase pursuit of moderate activities – they wish to stay active, and yet cannot 28 
participate in vigorous activities.  Males are more inclined than females to allocate time to 29 
moderate and vigorous activities, suggesting that there is a gender difference in recreational 30 
pursuits and time availability to do so. The body mass index indicating obesity is negatively 31 
associated with the time allocation to vigorous activities.  Although the direction of causality is 32 
not clear, it is apparent that there is an indirect relationship between BMI and vigorous activity 33 
time allocation.  Those who consume at least five portions of fruits and vegetables and consumed 34 
fish during the month are likely to undertake moderate and vigorous activities more than others.  35 
These individuals are likely to be health conscious and eat healthy foods; their health 36 
consciousness also manifests itself in the form of increased moderate and vigorous activities.  37 

There is a significant endogenous effect involving bicycle commuting duration.  Those 38 
who bicycle to work also tend to allocate more time to moderate and vigorous activities, pointing 39 
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to a strong positive and symbiotic relationship between the use of an active commuting mode and 1 
the pursuit of moderate and vigorous physical activities.  This relationship may be recursive in 2 
nature.  An individual who chooses to allocate more time to bicycle commuting may deliberately 3 
choose to undertake less vigorous activities (relative to moderate activities) because he or she may 4 
believe that the exercise obtained through commuting by bicycle provides the necessary vigorous 5 
activity. Thus, the choice of commute time allocation influenced time allocation to different types 6 
of physically active recreational pursuits.  This type of recursive relationship can be modeled using 7 
the multivariate MDCP. Another way to view the recursive relationship is through the impacts of 8 
commute distance.  Longer commute distances are associated with less time allocation to bicycling 9 
and walking modes.  The reduction in bicycle commuting time will in turn contribute to a lowering 10 
of moderate physical activity relative to passive and vigorous physical activities.   11 
 The commute time allocation model also shows behaviorally intuitive results. Lower 12 
income individuals are more likely to bicycle or walk to work with the tendency more pronounced 13 
for the lowest income bracket.  Limited car ownership in these market segments likely contributes 14 
to these findings.  Individuals older than 55 years of age are less prone to walk to work; as 15 
individuals get older, they may be less inclined to walk to work due to the physical requirements 16 
of doing so.  Males are more inclined to allocate time to bicycling than females.  It appears that 17 
males are more willing to take on physically strenuous activities, although it may be possible that 18 
females continue to shoulder greater household responsibilities and chauffeuring duties, leaving 19 
less time and making it more inconvenient to commute by bicycle. Non-whites are more likely 20 
than other races to allocate time to transit.  Finally, those who consumed fish were more likely to 21 
walk, once again suggesting that these individuals are health conscious and hence depict these 22 
behaviors.      23 

Although the model estimation results are quite intuitive, the findings should not be 24 
construed as providing authoritative information on the factors affecting time allocation to physical 25 
activities and non-motorized commuting modes.  Despite the richness of the data on the health and 26 
nutrition aspects, the data does not have many variables that would serve as explanatory variables 27 
in the model specification. The data set includes only a limited set of socio-economic and 28 
demographic variables, no built environment and contextual variables, and very limited mobility 29 
and transportation related data.  As such, it was not possible to estimate a MMDCP model system 30 
with a rich specification that includes many socio-economic variables. The goodness of fit of the 31 
model is very low and it is clear that there are many other attributes that affect this behavior.  32 
Although the goodness of fit measures suggest that the MMDCP model system is statistically 33 
significantly better in fitting the data when compared with an independent MDCP model, the 34 
degree of improvement is not very large. In the absence of a rich specification, it is not possible to 35 
draw conclusive inferences regarding commuting mode use and physical activity engagement and 36 
the relationships that exist between and govern these dimensions.  This paper is not intended to 37 
serve as a confirmatory empirical study of physical activity and commuting mode use; rather the 38 
empirical application is merely serving to illustrate and demonstrate the capabilities of the 39 
methodological advances presented in this paper. The significant error difference covariances seen 40 
in Table 3 also indicate the merits of a multivariate MDCP over an independent MDCP model that 41 
ignores such correlations (leading to biased parameter estimates).    42 
 43 
5. CONCLUSIONS 44 
There is considerable interest in understanding the interrelationships between disparate multiple 45 
discrete continuous choice phenomena. This is because of the role played by transportation in 46 
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affecting choice dimensions in various aspects of life.  Whether it be monetary expenditures, time 1 
expenditures, or mileage consumptions, transportation is filled with examples of multiple discrete 2 
continuous phenomena where a decision maker can choose multiple alternatives from a choice set. 3 
The model formulation is motivated by the fact that disparate multiple discrete continuous 4 
variables may be measured along different scales or units, and thus it is impossible to combine 5 
such variables into a single multiple discrete continuous choice variable.  The multivariate model 6 
system can also account for endogeneity effects where correlated unobserved attributes affect 7 
multiple choice dimensions simultaneously.  Finally, the model formulation may be of value even 8 
when the multiple choice dimensions are measured in the same units. If it is posited that there is a 9 
clear sequential, recursive, and causal relationship between two dimensions of interest, then the 10 
multivariate multiple discrete continuous model formulation can effectively capture such cause-11 
and-effect relationships.  If the dimensions were all combined into a single multiple discrete 12 
continuous model, then patterns of substitution may be seen in a correlational framework without 13 
any insights into the cause-and-effect relationships that drive the phenomena of interest.   14 
            This paper demonstrates the capabilities of the methodological advances by presenting a 15 
joint analysis of individuals’ monthly time allocation to commuting via different modes of travel 16 
and monthly time allocation to recreational activities. The motivation for jointly analyzing such 17 
seemingly disparate aspects of individuals’ travel and activity patterns stems from the recognition 18 
that both commuting and recreation may involve physical activity – physically active commuting 19 
(walking and bicycling) and physically active recreational activities, respectively. While the 20 
former is a utilitarian travel, the latter involves recreational activities and non-utilitarian travel, 21 
thereby warranting the need to analyze commuting and recreation as a joint bundle. In addition, 22 
the model is based on a monthly time allocation (as opposed to analysis over limited timeframes 23 
such as a day) using a dataset that collected information on individuals’ monthly time allocation 24 
to a number of physically recreational activities and monthly commuting mode choice.  The dataset 25 
also includes a number of rich health-related variables (e.g., body mass index) and nutritional 26 
variables (e.g., consumptions of different types of foods). For the joint analysis, a novel 27 
multivariate multiple discrete continuous choice model (labeled the MV-MDCP model) that 28 
explicitly recognizes that monthly commuting may involve travel by (and time allocation to) 29 
multiple modes of travel and that monthly recreational activities may involve time allocation to 30 
potentially multiple types of physical activities. In addition, the model recognizes the 31 
interrelationships between the two MDC variables via an endogenous influence of commute time 32 
on physical activities as well as correlations due to common unobserved factors influencing them. 33 
            Model estimation results suggest the role of demographics, body mass index, and 34 
nutritional habits on both commute time allocation and physically active recreational activity. 35 
Interesting findings include: (a) the positive association of healthy nutritional habits with both 36 
physically active recreation and physically active commuting, (b) the deterrence of longer 37 
commute distance on physically active participation, (c) the negative association between 38 
overweight (obese) and physical activity participation, and (d) the substitutive influence of 39 
physically active utilitarian travel on physical activity participation. Equally important are the 40 
findings relevant to the presence of common unobserved effects influencing both monthly 41 
commute mode choice and time allocation and monthly recreational activity participation. These 42 
results highlight the need for a multivariate model system that also recognizes that each variable 43 
is multiple discrete-continuous in nature. 44 
 45 
 46 
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FIGURE 1 Aggregation of Physical Activities into Three Groups 
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TABLE 1  Sample Characteristics (N=590) 

Demographic, health and 
nutrition variables 

Categories Proportion 

Household annual income 
£0-£24,999 28.6 
£25,000-£34,999 20.4 
>£35,000-£79,999 51.0 

Gender Male 49.0 

Educational attainment 
High school or less 53.1 
Higher education, below degree level 14.9 
College degree or graduate degree in 

 
32.0 

Individual living alone Yes 17.3 
Ethnicity White (other category is non-white) 91.4 

Number of adults 
One adult 22.9 
Two adults 59.2 
Three or more adults 17.9 

Number of children 
No kids 58.3 
One kid 12.4 
Two kids or more 29.3 

Age 
Between 16 and 29 years old 17.5 
Between 30 and 55 years old 67.6 
Older than 55 14.9 

Body mass index 
Underweight 1.0 
Normal weight 33.1 
Overweight 36.6 
Obese 29.3 

Consumption of fruits and 
 

At least 5 portions per day 31.4 
Consumption of fish Consumed fish during the month 63.2 
Commute distance Average in miles (standard deviation) 12.7 (26.2) 

Dependent variables Participation 
 

Duration* 
 

Commute time allocation 
Car 80.2 15.5 
Transit 16.3 17.9 
Bike 6.1 13.6 
Walk 19.0 13.1 

Recreational time 
allocation 

Passive activities 100.0 119.2 
Moderate physical 

 
72.0 27.9 

Vigorous physical 
 

34.2 10.5 
*: Durations are computed only for individuals participating in the corresponding activity. 
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TABLE 2  Estimation Results of the Multivariate MDCP Model 

Variable 

Physically Active Recreational Time Allocation in 
hours/month (base: Passive Activities) Commute Time Allocation in hours/month (base: Car) 

Moderate Activities Vigorous Activities Transit Bike Walk 
Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 

Baseline Utility Parameters           
  Constants -5.759 -12.86 -5.664 -35.60 -1.276 -14.35 -1.491 -10.44 -0.871 -6.26 
  Household annual income (base: over 
£35,000)           

    £0,000-£24,999 -0.236 -2.04 -0.416 -2.63 -- -- 0.314 1.86 0.214 1.40 
   £25,000-£34,999 -- -- -0.257 -1.88 -- -- -- -- 0.385 2.53 
  Age           
    Natural logarithm of age 0.377 3.10 -- -- -- -- -- -- -- -- 
    Older than 55 years (dummy) -- -- -- -- -- -- -- -- -0.337 -1.61 
  Gender (base: female)           
    Male 0.179 1.74 0.460 3.29 -- -- 0.637 3.31 -- -- 
  Household structure (base: more than one 
person)           

    Individual living alone -- -- -- -- 0.390 2.74 -- -- -- -- 
  Ethnicity (base: white)           
    Non-white -- -- -- -- 0.604 3.32 -- -- -- -- 
  Commute distance (in miles) -- -- -- -- 0.003 1.91 -0.050 -3.72 -0.040 -8.23 
  Body mass index (base: underweight, 
normal weight or overweight)           

    Obese (BMI ≥ 30) -- -- -0.276 -2.14 -- -- -- -- -- -- 
  Nutritional habits           
    Consumed at least 5 portions per day of 
fruit and vegetables (dummy) 0.185 1.61 0.459 3.24 -- -- -- -- -- -- 

    Consumed fish during the month (dummy) 0.237 2.24 0.390 2.72 -- -- -- -- 0.224 1.76 
Endogenous effect**           
    Bike commute time 0.017 2.55 -- -- NA NA NA NA NA NA 
    Walk commute time -- -- -- -- NA NA NA NA NA NA 
Satiation Parameters* 10.546 7.20 5.381 8.81 68.048 3.64 24.398 3.62 48.583 4.15 
--: not significant. NA: not applicable. 
Number of observations: 590. Log-likelihood at convergence: -4,172.06. Log-likelihood at only constants: -4,264.51. Adjusted rho square w.r.t constants: 0.0155 
*: Since all the individuals in the sample participate in passive activities, no satiation parameter was estimated for that category. Satiation parameter estimate corresponding to the car 

alternative in the commute time allocation model is equal to 57.720 with a t-stat of 3.46. 
**: The independent model also has a positive effect of bike commute time on moderate activity time allocation. However, unlike the joint model, the independent model has a negative and 

significant effect of walking commute time on moderate activities time allocation. 
- Several socio-demographic and nutrition related variables were tested as explanatory variables of the satiation effects but none of them came out significant. 
- The log-likelihood at convergence of the independent model is -4,176.14 and the corresponding adjusted rho square w.r.t constants is 0.0148. 
- Log-likelihood ratio test (between Joint and Independent models): 8.472 compared to a χ2 with 2 degrees of freedom (5.99 at 95.0% confidence). To perform the nested test, we 

included in the joint model the non-significant effect of walk commute time on moderate activity time allocation.
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TABLE 3  Estimated Covariance Matrix of Error Differences in the Multivariate MDCP Model  
(variables significant at 5% level of significance unless otherwise noted) 

 

Physically Active Recreation 
(difference with respect to Passive 

Activities) 
Commute time (difference with respect to Car) 

Moderate 
Activities 

Vigorous 
Activities Transit Bike Walk 

Moderate Activities  1.000*     

Vigorous Activities 0.211 1.277    

Transit 0.000*   0.000*  1.000*   

Bike 0.000* -0.112  0.500*  1.000*  

Walk 0.000*  0.168  0.500*  0.500* 1.000* 
* Fixed 
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