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ABSTRACT 

This paper proposes simple and computationally efficient forecasting algorithms for a Kuhn-
Tucker (KT) consumer demand model system called the Multiple Discrete-Continuous Extreme 
Value (MDCEV) model. The algorithms build on simple, yet insightful, analytical explorations 
with the Kuhn-Tucker conditions of optimality that shed new light on the properties of the 
model. Although developed for the MDCEV model, the proposed algorithm can be easily 
modified to be used for other KT demand model systems in the literature with additively 
separable utility functions. The MDCEV model and the forecasting algorithms proposed in this 
paper are applied to a household-level energy consumption dataset to analyze residential energy 
consumption patterns in the United States. Further, simulation experiments are undertaken to 
assess the computational performance of the proposed (and existing) KT demand forecasting 
algorithms for a range of choice situations with small and large choice sets.  
 

Keywords: Discrete-continuous models, Kuhn-Tucker consumer demand systems, MDCEV 

model, forecasting procedure, residential energy consumption, climate change impacts, welfare 
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1. INTRODUCTION 

In several consumer demand situations, consumer behavior may be associated with the choice of 
multiple alternatives simultaneously, along with a continuous choice component of “how much 
to consume” for the chosen alternatives. Such multiple discrete-continuous choice situations are 
being increasingly recognized and modeled in the recent literature in transportation, marketing, 
and economics.  

A variety of modeling frameworks have been used to analyze multiple discrete-
continuous choice situations. These can be broadly classified into: (1) statistically stitched 
multivariate single discrete-continuous models (see, for example, Srinivasan and Bhat, 2006), 
and (2) utility maximization-based Kuhn-Tucker (KT) demand systems (Hanemann, 1978; 
Wales and Woodland, 1983; Kim et al., 2002; Phaneuf et al., 2000; von Haefen and Phaneuf, 
2005; Bhat, 2005 and 2008). Between the two approaches, the KT demand systems are more 
theoretically grounded in that they employ a unified utility maximization framework for 
simultaneously analyzing the multiple discrete and continuous choices. Further, these model 
systems accommodate fundamental features of consumer behavior such as satiation effects 
through diminishing marginal utility with increasing consumption. 

The KT demand systems have been known for quite some time, dating back at least to the 
research works of Hanemann (1978) and Wales and Woodland (1983). However, it is only in the 
past decade that practical formulations of the KT demand system have appeared in the literature. 
Recent applications include, but are not limited to, individual activity participation and time-use 
studies (Bhat, 2005; Habib and Miller, 2009; Pinjari et al., 2009, Rajagopalan et al. 2009; Pinjari 
and Bhat 2010), household travel expenditure analyses (Rajagopalan and Srinivasan, 2008; 
Ferdous et al., 2010), household vehicle ownership and usage forecasting (Ahn et al., 2007; 
Fang, 2008; and Bhat et al., 2008), outdoor recreational demand studies (Phaneuf et al., 2000; 
von Haefen et al., 2004; and von Haefen and Phaneuf, 2005), and grocery purchase analyses 
(Kim et al., 2002). As indicated by Vasqez-Lavín and Hanemann (2009), this surge in interest 
may be attributed to the strong theoretical basis of KT demand systems combined with recent 
developments in simulation techniques. 

Within the KT demand systems, the recently formulated multiple discrete-continuous 
extreme value (MDCEV) model structure by Bhat (2005, 2008) is particularly attractive due to 
its closed form, its intuitive and clear interpretation of the utility function parameters, and its 
generalization of the single discrete multinomial logit choice probability structure. In recent 
papers, the basic MDCEV framework has been expanded in several directions, including the 
incorporation of more general error structures to allow flexible inter-alternative substitution 
patterns (Pinjari and Bhat, 2010; Pinjari, 2011).  

Despite the many developments and applications, a simple and very quick forecasting 
procedure has not been available for the MDCEV and other KT demand model systems. On the 
other hand, since the end-goal of most model development and estimation is forecasting, policy 
evaluation, and/or welfare analysis, development of a simple and easily applicable forecasting 
procedure is a critical issue in the application of KT demand model systems. Currently available 
forecasting methods are either enumerative or iterative in nature, are not very accurate, and 
require long computation times. 
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In this paper, we propose computationally efficient forecasting algorithms for the 
MDCEV model.1 The algorithms build on simple, yet insightful, analytic explorations with the 
KT conditions that shed new light on the properties of the MDCEV model. For specific utility 
functional forms used in many MDCEV model applications, the proposed approach is non-
iterative in nature, and results in analytically expressible consumption quantities. Even with more 
general utility forms that fall within the class of additively separable utility functions, we are able 
to employ the properties of the MDCEV model presented in this paper to design efficient (albeit 
iterative) forecasting algorithms. In addition, we formulate variants to the proposed algorithms 
that remain computationally efficient even in situations with large choice sets. Further, the 
insights gained from the analysis of the KT conditions also enable us to develop efficient 
forecasting procedures for other non-MDCEV KT demand systems with additively separable 
utility functions.  

As a demonstration of the effectiveness of the proposed algorithms, we present an 
application to analyze residential energy consumption patterns in the U.S., using household-level 
energy consumption data from the 2005 Residential Energy Consumption Survey (RECS) 
conducted by the Energy Information Administration (EIA). This application provides insights 
into the influence of household, house-related, and climatic factors on households’ consumption 
patterns of different types of energy, including electricity, natural gas, fuel oil, and liquefied 
petroleum gas (LPG). Prediction exercises with the proposed algorithms and currently used 
algorithms highlight the significant computational efficiency of the proposed algorithms. In 
addition, we present simulation experiments to assess the computational performance of the 
proposed algorithms vis-à-vis existing algorithms in situations with large choice sets. 

The remainder of the paper is organized as follows. The next section presents the 
challenge associated with forecasting with the MDCEV model, and describes currently used 
forecasting procedures in the literature. Section 3 highlights some new properties of the MDCEV 
model. Building on these properties, Section 4 presents new forecasting algorithms tailored for 
different types of utility specifications under different choice situations, ranging from very small 
to very large choice sets. In addition, a discussion is provided on how similar forecasting 
algorithms can be developed for other KT demand system models. Section 5 presents an 
application of the MDCEV model to analyze residential energy consumption patterns in the U.S., 
using the 2005 RECS data. Section 6 presents several prediction experiments with the RECS 
data as well as other, simulated data to assess the computational performance of the proposed 
forecasting algorithms vis-à-vis existing approaches. In addition, this section includes 
hypothetical policy simulations to predict the impact of different climate change-related 
scenarios on residential energy consumption patterns. Section 7 summarizes and concludes the 
paper. 

  

2 FORECASTING WITH KT DEMAND MODEL SYSTEMS 
The MDCEV and other KT demand modeling systems are based on a resource allocation 
formulation. Specifically, it is assumed that consumers operate with a finite amount of available 
resources (i.e., a budget), such as time or money. Their decision-making mechanism is assumed 
to be driven by an allocation of the limited amount of resources to consume various 
goods/alternatives to maximize the utility derived from consumption. Further, a stochastic utility 

                                                           
1 From now on, and throughout the paper, we use the term efficient interchangeably with the term computationally 
efficient (i.e., computationally fast). The reader should not confuse this with statistical/econometric efficiency. 
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framework is used to recognize the analyst’s lack of awareness of factors affecting consumer 
decisions. In addition, a non-linear utility function is employed to incorporate important features 
of consumer behavior, including: (1) the diminishing nature of marginal utility with increasing 
consumption (i.e., satiation effects), and (2) the possibility of consuming multiple goods as 
opposed to a single good. To summarize, the KT demand modeling frameworks are based on a 
stochastic (due to the stochastic utility framework), constrained (due to the budget constraint), 
non-linear (due to satiation effects) utility optimization formulation.  

In most KT demand system models, the stochastic KT first order conditions of optimality 
form the basis for model estimation. Specifically, an assumption that stochasticity (or 
unobserved heterogeneity) is generalized extreme value (GEV) distributed leads to closed form 
consumption probability expressions (Bhat 2005 and 2008; Pinjari 2011; von Haefen et al., 
2004), facilitating a straightforward maximum likelihood estimation of the model parameters. 
Once the model parameters are estimated, forecasting or policy analysis exercises involve 
solving the stochastic, constrained, non-linear utility maximization problem for the optimal 
consumption quantities of each decision-maker. Unfortunately, there is no straightforward 
analytic solution to this problem. The typical approach is to adopt a constrained non-linear 
optimization procedure at each of several simulated values drawn from the distribution of 
unobserved heterogeneity. This constrained non-linear optimization procedure itself is based on 
either an enumeration technique or an iterative technique. The enumerative technique (used by 
Phaneuf et al., 2000) involves enumeration of all possible sets of alternatives that the decision-
maker can potentially choose to consume. Specifically, if there are K available choice 
alternatives, assuming not more than one essential Hicksian composite good (or outside good)2, 
one can enumerate 2K-1 possible choice set solutions to the consumer’s utility maximization 
problem. Clearly, such a brute-force method becomes computationally burdensome and 
impractical even with a modest number of available choice alternatives/goods. Thus, for medium 
to large numbers of choice alternatives, an iterative optimization technique has to be used. As 
with any iterative technique, optimization begins with an initial solution (for consumptions) that 
is then improved in subsequent steps (or iterations) by moving along specific directions using the 
gradients of the utility functions, until a desired level of accuracy is reached. Most studies in the 
literature use off-the-shelf optimization programs (such as the constrained maximum likelihood 
library of GAUSS) to undertake such iterative optimization. However, the authors’ experience 
with iterative methods of forecasting in prior research efforts indicates several problems, 
including long computation times and convergence issues.  

More recently, von Haefen et al. (2004) proposed another iterative forecasting algorithm 
designed based on the insight that the optimal consumptions of all goods can be derived if the 
optimal consumption of the outside good is known. Specifically, conditional on the simulated 
values of unobserved heterogeneity, von Haefen et al. begin their iterations by setting the lower 
bound for the consumption of the outside good to zero and the upper bound to be equal to the 
budget. The average of the lower and upper bounds is used to obtain the initial estimate of the 
outside good consumption. Based on this, the amounts of consumption of all other inside goods 
are computed using the KT conditions. Next, a new estimate of consumption of the outside good 
is obtained by subtracting the budget on the consumption of the inside goods from the total 
budget available. If this new estimate of the outside good is larger (smaller) than the earlier 

                                                           
2 Several KT demand system models generally include an essential Hicksian good (or outside good, or numeraire 
good), which is always consumed by the decision-makers. 
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estimate, the earlier estimate becomes the new lower (upper) bound of consumption for the 
outside good, and the iterations continue until the difference between the lower and upper 
bounds is within an arbitrarily designated threshold. This numerical bisection iterative process 
relies on the strict concavity of the utility function. Further, to circumvent the need to perform 
predictions over the entire distribution of unobserved heterogeneity, von Haefen et al. condition 
on the observed choices.3 Based on “Monte Carlo experiments with low-dimensional choice 
sets”, they indicate that, relative to the unconditional approach (of simulating the entire 
distribution of unobserved heterogeneity), the conditional approach requires about 1/3rd the 
simulations (of conditional unobserved heterogeneity) and time to produce stable estimates of 
mean consumptions and welfare measures. Overall, this combination of the numerical bisection 
algorithm with the conditional approach is clever and clearly more efficient than using a generic 
optimization procedure with the unconditional approach. However, the numerical bisection 
algorithm is still iterative and can involve a substantial amount of time. At the same time, in 
many situations, the estimated model needs to be applied to data outside the estimation sample, 
in which case the conditional approach cannot be used. For instance, in the travel demand field, 
models are estimated with an express intent to apply them for predicting the activity-travel 
patterns in the external (to estimation sample) data representing the study area population. This 
implies that the iterative numerical bisection algorithm has to be applied using the unconditional 
approach, which could further increase computation time. The point is that there is a 
computational benefit to using a non-iterative optimization procedure rather than an iterative 
procedure, which can then be used with the conditional approach when possible or with the 
unconditional approach if needed. Further, and more importantly, the von Haefen et al algorithm 
is applicable only in the case with the presence of an outside good. To be more precise, their 
approach can be applied only if the analyst knows apriori at least one good chosen by the 
consumer. In situations with an outside good, it is already known that the outside good is one of 
the consumed alternatives. However, in situations with no outside good, their approach doesn’t 
provide any lead to the analyst on which alternative is consumed (or not consumed), a critical 
prerequisite for obtaining the consumption forecasts.  
 

3 THE MDCEV MODEL: STRUCTURE AND PROPERTIES 

This section draws from Bhat (2008) to briefly discuss the structure of the MDCEV model 
(Section 3.1) and derives some fundamental properties of the model (Section 3.2) that will form 
the basis for formulating the forecasting algorithm. 

3.1 Model Structure 

Consider the following additively separable utility function as in Bhat (2008): 

1

1 1

21

1
( ) 1 1 ;  0,  0 1,  0

kK
k k

k k k k

k k k

t
U t

α

α γ
ψ ψ ψ α γ

α α γ=

   
= + + − > ≤ ≤ >  

   
∑t  (1) 

                                                           
3 To do so, they simulate the unobserved heterogeneity that corresponds to the observed choices in the data (that is, 
they simulate the elements of the error vector for each individual so as to exactly replicate the observed 
consumptions of the individual in the estimation sample). Using these simulated values of conditional (on observed 
choices) unobserved heterogeneity, they apply the numerical bisection algorithm to perform predictions for the 
policy case and subsequently compute the welfare change from the base case to policy case. See von Haefen (2003) 
for a discussion on the advantages of incorporating observed choices into policy analyses. 
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In the above expression, U(t) is the total utility accrued from consuming t (a Kx1 vector with 

non-negative consumption quantities kt ; k = 1,2,…,K) amount of the K alternatives available to 

the decision maker. The kψ  terms (k = 1,2,…,K), labeled as baseline utility parameters, represent 

the marginal utility of one unit of consumption of alternative k at the point of zero consumption 

for that alternative. Through the kψ  terms, the impact of observed and unobserved alternative 

attributes, decision-maker attributes, and the choice environment attributes may be introduced as 

exp( )k k kzψ β ε′= + , where kz  contains the observed attributes and kε  is a random disturbance 

capturing the unobserved factors. The kα
 
terms (k = 1,2,…,K), labeled as satiation parameters 

(0 1)kα< ≤ , capture satiation effects by reducing the marginal utility accrued from each unit of 

additional consumption of alternative k.4 The kγ
 
terms (k = 2,3,…,K), labeled as translation 

parameters, play a similar role of satiation as that of kα
 
terms, and an additional role of 

translating the indifference curves associated with the utility function to allow corner solutions 
(i.e., accommodate the possibility that decision-makers may not consume all alternatives). As it 

can be observed, there is no kγ  term for the first alternative for it is assumed to be an essential 

Hicksian composite good (or outside good or essential good) that is always consumed (hence 
there is no need for a corner solution). Finally, the consumption-based utility function in (1) can 

be expressed in terms of expenditures ( ke ) and prices ( kp ) as:
5 

1

1
1

21 1

1
( ) 1 1 ,

kK
k k

k

k k k k

ee
U

p p

αα
γ

ψ ψ
α α γ=

     
= + + −   

     
∑e  where k

k

k

e
x

p
=      (2) 

From the analyst’s perspective, decision-makers maximize the random utility given by Equation 

(2) subject to a linear budget constraint and non-negativity constraints on ke : 

1

(where is the total budget) and 0  (  1,2,..., )
K

k k

k

e E E e k k K
=

= ≥ ∀ =∑   (3) 

The optimal consumptions (or expenditure allocations) can be found by forming the Lagrangian 
and applying the Kuhn-Tucker (KT) conditions. The Lagrangian function for the problem is: 

L  

1

1
1

2 11 1

1
1 1

kK K
k k

k k

k kk k k

ee
e E

p p

αα
γ

ψ ψ λ
α α γ= =

      
= + + − − −     

      
∑ ∑ ,  

where λ  is the Lagrangian multiplier associated with the budget constraint. The KT first-order 
conditions for the optimal expenditure allocations *( ; 1,2,..., )ke k K= are given by: 

                                                           

4 Theoretically speaking, the 
k

α  values can be negative. But imposing the condition 0
k

α ≥  provides much needed 

stability in empirical estimations (Bhat, 2008). 
5 For the first alternative, 

1
1p = , since it is the “numeraire” good. However, in the exposition in the paper, we will 

use the notation 
1
p  rather than setting this to 1. 
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, if * 0,ke =  (k = 2,…, K) 

As indicated earlier, these stochastic KT conditions form the basis for model estimation. 

Specifically, an assumption that the kε  terms (i.e., the stochastic components of the kψ  terms) 

are independent and identically distributed type-I extreme value (or Gumbel) distributed leads to 
closed form consumption probability expressions that can be used to form the likelihoods for 
maximum likelihood estimation (see Bhat, 2005). Next, using these same stochastic KT 
conditions, we derive a few properties of the MDCEV model that can be exploited to develop a 
highly efficient forecasting algorithm. 

 

3.2 Model Properties 

Property 1: The price-normalized baseline utility of a chosen good is always greater than that of 

a good that is not chosen. 

ji

i jp p

ψψ   
>        

 if ‘i’ is a chosen good and ‘j’ is not a chosen good.          (5) 

Proof: The KT conditions in (4) can be rewritten as: 
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, if * 0,ke >  (k = 2,…, K) (i.e., for all chosen goods) (6) 

k

kp

ψ
λ< , if * 0,ke =  (k = 2,…, K) (i.e., for all goods that are not chosen) 

The above KT conditions can further be rewritten as: 
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Now, consider two alternatives ‘i’ and ‘j’, of which ‘i’ is chosen and ‘j’ is not chosen by a 
consumer. For that consumer, the above KT conditions for alternatives ‘i’ and ‘j’ can be written 
as: 

1

1

1 1
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Further, since 

1
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is always greater than 1, one can write the following inequality: 

1 111 1
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As one can observe, the third term in the above inequality is nothing but i

ip

ψ 
 
 

, and the second 

term is λ . Thus, one can rewrite the inequality in (9) as: 

 < 
j i

j ip p

ψ ψ
λ

   
<       

               (10) 

Now, by the transitive property of inequality of real numbers, the above inequality implies a 

fundamental property of the MDCEV model that 
ji

i jp p

ψψ   
>        

. In words, the price-normalized 

baseline utility of a chosen good is always greater than that of a good that is not chosen.  

Corollary 1.1: It naturally follows from the property above that when all the K 

alternatives/goods available to a consumer are arranged in a descending order of their price-

normalized baseline utility values (with the outside good being the first in the order), and if it is 
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known that the number of chosen alternatives is M, then one can easily identify the chosen 

alternatives as the first M alternatives in the arrangement.
6
 

Corollary 1.2: Another important observation to be made from Equation (10) is that the 
Lagrange multiplier of the consumer’s utility maximization problem (i.e., the marginal utility at 

optimal consumption) is always greater than the price-normalized utility of any not-chosen good, 

but less than that of any chosen good. It naturally follows from this property that λ  is greater 
than the highest price-normalized baseline utility among the not-chosen goods, but less than the 

lowest price-normalized baseline utility among the chosen goods. 

Property 2: The minimum consumption amount of the outside good is
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Proof: Use the first and third KT conditions in (6), and consider market baskets that involve only 

the consumption of the outside good (i.e., * 0, 1)ke k= ∀ > . At these market baskets, one can write 

the following:    
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pe
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αψ

ψ

−

∀ =

  
      >           

             (11) 

In words, the right side of the above equation represents the “minimum” amount of 
consumption of the outside good. The interpretation is that, after the “minimum” amount of the 
outside good is consumed, all other goods (and the outside good) start competing for the 
remaining amount of the budget. Thus, if the budget amount is less than that corresponding to the 
minimum consumption of the outside good given in (11), no other good will be consumed. Note 
also that if there is no price variation across the consumption alternatives, the distribution of the 
minimum consumption of the outside good can be derived as a log-logistic variable (given that 

exp( )k k kzψ β ε′= + ).   

                                                           
6 Note that the converse of this property may not always hold true. That is, given the price-normalized utilities of 
two alternatives, one cannot say with certainty if one or both of the alternatives are chosen. 
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Property 3: When all the satiation parameters ( )kα are equal, and if the corner solutions (or 

discrete choices) are known (i.e., if the chosen and non-chosen alternatives are known), the 

Lagrange multiplier of the utility maximization as well as the continuous optimal consumption 

choices of the chosen goods can be expressed in an analytic form.  

Proof 
7
: Using the first and second KT conditions in (6), and assuming without loss of generality 

that the first M goods are chosen, one can express the optimal consumptions as: 
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Using these expressions, the budget constraint in (3) can be written as: 
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From the above equation, and assuming that all satiation ( )kα  parameters as equal to α , the 
Lagrange multiplierλ can be expressed analytically as: 
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The above expression for λ  can be substituted back into the expressions in (12) to obtain the 
following analytic expressions for optimal consumptions: 

                                                           
7
 This is a known property of KT demand model systems. But we provide the proof here for completeness. 

8
 Although this expression involves a subtraction, it is not possible to obtain negative predictions. One can verify 

this by applying the KT condition inequality: ( / )k kp kλ ψ> ∀ ∈{chosen alternatives} to see that the second 
expression always provides positive predictions. 
9 The expression on the left side of this budget constraint equation is a monotonically decreasing function of λ . 
This property will be useful later.    
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The reader will note here that the expressions in Equations (14), (15) and (16) contain terms 
corresponding to the consumed (i.e. chosen) goods only. 

 

4 EFFICIENT FORECASTING ALGORITHMS FOR MDCEV AND OTHER KT 

DEMAND MODELS 

In this section, using the properties discussed in the preceding section, we propose efficient 
forecasting algorithms for MDCEV model and other KT demand systems. Section 4.1 presents a 
non-iterative forecasting algorithm for the MDCEV model with the following utility function: 

1
1 1

21
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ee
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β ε β ε
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As indicated in Bhat (2008), this is a -profileγ utility function in that the kγ  parameters are 

different across the choice alternatives but the satiation ( kα ) parameters are constrained to be 

equal (to α ) across all choice alternatives. Section 4.2 presents a similar (but iterative) algorithm 
for more general utility functions that allow for different kα  parameters across choice 

alternatives. Section 4.3 presents variants to the proposed algorithms for situations with large 
choice sets. Section 4.4 discusses how such efficient forecasting algorithms can be designed for 
other KT demand systems in the literature with additively separable utility functions. 

4.1 Forecasting Algorithm for the MDCEV model with γ -profile Utility Functions: An 
Incremental Enumeration Method 

The proposed algorithm comprises four basic steps as outlined below. 
Step 0: Assume that only the outside good is chosen and let the number of chosen goods M = 1. 

Step 1: Given the input data ( kz , kp ), model parameters ( β , kγ ,α ), and the simulated error term 

( kε ) draws, compute the price-normalized baseline utility values ( )k kpψ  for all 

alternatives. Arrange all the K alternatives available to the consumer in the descending 
order of their price-normalized baseline utility values (with the outside good in the first 
place). Go to step 2. 

Step 2: Compute the value of λ  using equation (14). Go to step 3. 
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Step 3: If λ  > 1

1

M

Mp

ψ +

+

 (i.e., the price-normalized baseline utility of alternative in position M+1), 

compute the optimal consumptions of the first M alternatives in the above 
descending order using equations in (15) and (16). Set the consumptions of other 
alternatives as zero and stop. 

Else, go to step 4. 
Step 4: M = M+1.  

If (M = K),  
compute the optimal consumptions using equations in (15) and (16) and stop. 

Else, go to step 2. 

4.1.1 Application of the Algorithm 

The algorithm outlined above can be applied a large number of times with different simulated 

values of the kε  terms to sufficiently cover the simulated distribution of unobserved 
heterogeneity (i.e., the kε  terms) and obtain the distributions of the consumption forecasts. 
Alternatively, if the observed consumption choices are available, as in von Haefen et al. (2004), 
one can apply the algorithm with simulated values of conditional (on observed choices) 
unobserved heterogeneity. The procedure for simulating the conditional unobserved 
heterogeneity is discussed below. 
 The KT conditions in (4), after taking logarithms and algebraic arrangements, can be 
written as follows: 

1 1k kV Vε ε− = −  if * 0,ke >  (k = 2, 3,…, K) 

1 1k kV Vε ε− < −  if * 0,ke =  (k = 2, 3,…, K)  (18) 

where, 
*

1
1 1 1 1

1

( 1) ln ln ,
e

V z p
p

β α
 

′= + − − 
 

 and 
*

( 1) ln 1 lnk
k k k k

k k

e
V z p

p
β α

γ
 

′= + − + − 
 

. 

One can observe from the above equations that infinite combinations of the values of 1ε  and kε  
(k = 2,3,…,K) terms result in the same KT conditions (and consumptions) as long as the 

difference between  kε  and 1ε  remains the same. That is, only the differences in error terms 
matter (Bhat, 2008). Based on this insight, one can recast the MDCEV model with a differenced-
error structure where the outside good is associated with no error term and the remaining K-1 

goods are associated with a multivariate logistic distribution (i.e., ,1 1;  2,3,...,k k k Kε ε ε= − =ɶ ; see 

Appendix C of Bhat, 2008 for more details). That is, it is sufficient to simulate the differences in 

error terms ( ,1 1k kε ε ε= −ɶ ) rather than the error terms ( 1 and kε ε ) themselves. Based on this 
insight, one can assume that the differenced-error term for the outside good is zero 

(i.e., 1,1 1 1 0ε ε ε= − =ɶ ) and simulate the differenced-error terms for other alternatives. For chosen 

alternatives, one can easily do so by using the first equation in (18) (i.e., ,1 1k kV Vε = −ɶ ). To 

simulate the differenced-error terms for the non-chosen alternatives, the analyst has to draw from 
a truncated multivariate logistic distribution resulting from the second equation in (18). 
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4.1.2 Intuitive Interpretation of the Algorithm 

The proposed algorithm builds on the insight from corollary 1.1 that if the number of chosen 
alternatives is known, one can easily identify the chosen alternatives by arranging the price-
normalized baseline utility values in a descending order. Subsequently, one can compute the 
optimal consumptions of the chosen alternatives using Equations (15) and (16). The only issue, 
however, is that the number of chosen alternatives is unknown apriori. To find this out, the 
algorithm begins with an assumption that only one alternative (i.e., the outside good) is chosen 
and verifies this assumption by examining the KT conditions (i.e., the condition in Step 3) for 
other (assumed to be) non-chosen goods. If the KT conditions (i.e., the condition in Step 3) are 
met, the algorithm stops. Else, at least the next alternative (in the order of the price-normalized 
baseline utilities) has to be among the chosen alternatives. Then, the KT conditions (i.e., the 
condition in step 3) are verified again by assuming that the next alternative is among the chosen 
alternatives. These basic steps are repeated until either the KT conditions (i.e., the condition in 
step 3) are met or the assumed number of chosen alternatives reaches the maximum number (K). 
 As one may note from the above description, the KT conditions are essentially replaced 

by a single condition (involving the Lagrange multiplierλ ) in Step 3 of the algorithm. This 
condition is equivalent to verifying if λ  is greater than the highest price-normalized baseline 
utility among the not-chosen goods (see corollary 1.2). To understand this better, recall from the 
equations in (6) that verifying the KT conditions in this algorithm is equivalent to verifying the 

condition k

kp

ψ
λ >  for all goods that are assumed to have not been chosen. Obviously, verifying 

the condition in Step 3 (i.e., if λ  is greater than the highest price-normalized baseline utility of 
all goods assumed to have not been chosen) is a more efficient way of doing so.10  
 The proposed algorithm involves enumeration of the choice baskets in a computationally 
efficient fashion. In fact, the algorithm begins with identifying a single alternative (outside good) 
that may be chosen. If the KT conditions are not met for this choice basket, the algorithm 
identifies a two-alternative choice basket and so on, till the number of chosen alternatives is 
determined. Thus, the number of times the algorithm enumerates choice baskets is equal to the 
number of chosen alternatives in the optimal consumption portfolio, which is at most equal to 
(but many times less than) the total number of available alternatives (K). Thus we label this 
algorithm an “incremental enumeration algorithm” 
 Another feature of the algorithm is that it is non-iterative in nature, which makes it highly 
efficient compared to other iterative approaches. 11 Further, coding the algorithm using vector 
and matrix notation in a matrix programming language significantly reduces the computational 
burden even with large number of choice alternatives and observations. Also, due to the 

convenient -profileγ  utility specification, the algorithm is accurate with no room for any 

inaccuracy (unlike the existing iterative procedures discussed earlier), as it uses analytic 
expressions for the optimal consumption computations.  

                                                           
10 At the beginning of the algorithm, when only the outside good is assumed to be consumed, the condition in Step 3 
of the algorithm is equivalent to the “minimum consumption” condition in Equation (11). 
11

 Strictly speaking, one may view our proposed approach as iterative in (the literal sense) that steps 2-4 in Section 

4.1 are iterated until the number of chosen alternatives is determined. However, in the spirit of the term “iterative” 
used in general for numerically-based computationally intensive iterations, we call our approach non-iterative to 
emphasize that the overall algorithm is analytical (as opposed to being numerical) in nature. Further, we believe that 
the proposed approach classifies better as enumerative (as identified in the earlier paragraph) than iterative in nature.  
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In summary, the proposed algorithm is simple and efficient. The only limitation of this 

algorithm is that it is designed to be used with the -profileγ  utility specification that restricts the 

kα  parameters of all choice alternatives to be equal. Admittedly, the -profileγ  utility 

specification is not the most general form within the class of additively separable utility 

functions. However, as indicated by Bhat (2008), both the kγ  and kα  parameters serve the role 

of allowing differential satiation effects across the choice alternatives. Due to the overlapping 

roles played by these parameters, attempts to estimate utility functions that allow both the kγ  and 

kα  parameters to vary across alternatives may lead to severe empirical identification issues and 

estimation breakdowns. Further, “for a given kψ  value, it is possible to closely approximate a 

sub-utility function based on a combination of kγ  and kα  values with a sub-utility function 

solely based on kγ  or kα  values” (Bhat, 2008). For these reasons, and given the ease of 

forecasting with the proposed algorithm, we suggest an estimation of the -profileγ utility 

function. Nevertheless, the insights obtained from the properties discussed in the preceding 
section (and parts of this algorithm) can be used to design an efficient (albeit iterative) algorithm 

for cases when kα  parameters vary across alternatives, as discussed next. 

4.2 Forecasting Algorithm for the MDCEV model with General Utility Functions: 

Incremental Enumeration Combined with Bisection over the  λ -Space 
Let λ̂  and Ê  be estimates of λ  (the Lagrange multiplier) and E  (the budget amount), 
respectively, and let λδ  and Eδ  be the tolerance values (for estimatingλ  and E, respectively) 

which can be as small as desired. Let ˆLλ  and ˆUλ  be the lower and upper bounds of λ . Based on 

the budget constraint Equation (13), define Ê  (the estimate of E) as a function of λ̂  (estimate of 
λ ) as below: 

1

11

11
1

1

21

ˆ ˆˆ 1
k

M
k

k k

k k

pp
E p p

αα

λ λ γ
ψ ψ

−−

=

 
    

= + −   
    

 

∑ .            (19) 

The proposed algorithm comprises six basic steps as outlined below. 

Step 0: Assume that only the outside good is chosen and let the number of chosen goods M = 1.  

Step 1: Given the input data ( kz , kp ), model parameters ( β , kγ ,α ) and the simulated error term 

( kε ) draws, compute the price-normalized baseline utility values ( )exp( )k k kz pβ ε′ + for 

all alternatives. Arrange all the K alternatives available to the consumer in a descending 
order of their price-normalized baseline utility values (with the outside good in the first 
place).  

Step 2: Let λ̂  = 1

1

M

Mp

ψ +

+

, the price-normalized baseline utility of the alternative in position M+1. 

Substitute λ̂  into Equation (19) to obtain an estimate Ê  of E . 
Step 3: If Ê  <E  

 Go to step 4. 

Else, if Ê  > E  
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1
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+
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Go to step 5 to estimate λ  via numerical bisection.  
Step 4: M = M+1.  

If M < K 
 Go to step 2. 
Else, if M = K 

0 and K
L U

Kp

ψ
λ λ= =  (because 0 K

Kp

ψ
λ< < ) 

Go to step 5 to estimate λ  via numerical bisection. 
Step 5: Step 5.1: Let ˆ ( ) / 2L Uλ λ λ= + and use Equation (19) to obtain an estimate Ê  of E .  

Step 5.2: If ( )ˆ
L U Eor E Eλλ λ δ δ− ≤ − ≤   

Go to step 6. 

   Else, if Ê E<   

Update the upper bound of λ  as ( ) / 2U L Uλ λ λ= + , and go to step 5.1 

   Else, if Ê E>   

Update the lower bound of λ  as ( ) / 2L L Uλ λ λ= + , and go to step 5.1 

Step 6: Compute the optimal consumptions of the first M alternatives in the above descending 
order using equations in (12). Set the consumptions of other alternatives as zero and stop. 

As can be observed, the above algorithm is similar to the algorithm in Section 4.1 in that 
the choice alternatives are arranged in a descending order by the price-normalized baseline utility 
values. Further, the algorithm begins with an assumption that only one alternative is chosen (i.e., 
M =1) and builds on the following insights: 

1. The value of the Lagrange multiplier λ  is greater than the highest price-normalized baseline 
utility among the not-chosen goods, but less than the lowest price-normalized baseline utility 
among the chosen goods (corollary 1.2).  

2. The left side of the budget constraint Equation (13) is a monotonically decreasing function of 

λ . Thus, in Equation (18), the value of Ê  increases monotonically as the value of λ̂  
decreases (see footnote 7). 

Based on these insights, as indicated in step 2, the algorithm starts with an estimate λ̂  of λ  as 
the price-normalized baseline utility of the alternative in the (M+1)th position in the above 

descending order, and a corresponding estimate Ê  of E . Then step 3 verifies if the estimated 

amount of budget Ê  is less than the actual amount of budget E  available to the decision-maker. 

If so, the number of chosen alternatives M is increased by 1 (see step 4) and the value of λ̂  is 
updated to the price-normalized baseline utility of the next alternative in the arrangement (see 

step 2). This process is repeated until either Ê   exceeds E  (step 3), or M = K (step 4). At this 
point, the chosen alternatives are known (as the first M alternatives in the descending order of 
price-normalized utility values). Further, an upper bound (lowest price-normalized baseline 
utility among the chosen alternatives) and a lower bound (highest price-normalized baseline 

utility among the not-chosen alternatives, or zero) are also obtained forλ . Given these bounds 
forλ , and the property that Ê  decreases monotonically with λ̂ , step 5 follows a simple 
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numerical bisection to arrive at the final estimate for λ  that accurately estimatesE . This is the 
value of λ  that satisfies the KT conditions of optimal consumption. Thus, using this value of λ , 
one can use the KT Equations in (12) to obtain the optimal consumptions. 

The above algorithm is generic enough to be used for MDCEV models with either γ -
profile utility functions or α -profile utility functions. Replacing the numerical bisection 
procedure to compute λ  (i.e., step 5) in the above algorithm by an analytic formula for λ  (from 
Equation 14) will result in a more efficient forecasting algorithm for the γ -profile model, which 
is equivalent to the algorithm proposed in Section 4.1. In other words, the major difference 

between the forecasting algorithms proposed in sections 4.1 and 4.2 is in the way λ  is computed. 
The algorithm presented in this section is similar to the von Haefen et al. algorithm in 

that both the algorithms use a numerical bisection approach. However, while von Haefen et al. 
employ bisection over the consumption (or expenditures)-space to arrive at the optimal 
consumptions, we first use incremental enumeration (as in Section 4.1) to identify the chosen 

alternatives, and then employ numerical bisection over the λ -space to arrive at the optimal 
consumptions. Another difference is that we exploit the properties discussed in Section 3 to 
arrange the alternatives based on the price-normalized baseline utility values. This arrangement 
helps in quickly identifying the chosen alternatives. Thus, in situations with no outside good 
(where there is no apriori knowledge of any chosen good), this arrangement becomes even more 
important. On the other hand, the von Haefen et al. algorithm critically depends on the 
knowledge of a chosen good, but provides no way to determine a chosen alternative when there 
is no outside good.12     

 

4.3 Variants of the Proposed Forecasting Algorithms for Situations with Large Choice Sets 

Recall from the discussion in Section 4.1.2 that the proposed algorithm for γ -profile utility 
functions in Section 4.1 is enumerative in nature. The number of times the algorithm enumerates 
the choice baskets is equal to the number of chosen alternatives in the optimal consumption 
portfolio. Even in the context of alpha-profile utility functions, the algorithm proposed in Section 
4.2 enumerates the choice baskets as many times as the number of chosen alternatives. Thus, one 
may argue that the number of enumerations may become too large in situations with large 
number of chosen alternatives. To avoid such large number of enumerative steps, the proposed 
algorithms can be modified as discussed below.  
 

4.3.1 Bisection-based Enumeration Algorithm for γ -profile Utility Functions and Large Choice 
Sets 

For choice situations with large choice sets and γ -profile utility functions, the algorithm 
proposed in Section 4.1 can be modified by replacing the step-by-step enumeration with a 
bisection-based enumeration (over the space of choice alternatives). Specifically, the algorithm 
begins with an assumption that the number of chosen alternatives, M is an integer midway 
between the lower bound value (one) and an upper bound value K (i.e., between the first 
alternative and the last alternative in the descending order of the baseline utility values). 

                                                           
12 This is not to say that the insights from the von Haefen et al. algorithm cannot be used in situations with no 
outside good. Once the alternatives are arranged in the descending order of the price-marginalized baseline utility 
values, one could employ numerical bisection over the consumption space (or expenditures space) for the first good 
in the arrangement to obtain the optimal consumption forecasts.  
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Subsequently, based on the lambda value computed for the corresponding M, either the lower 
bound or the upper bound is updated to an integer midway between the previous lower and upper 
bounds. This process continues until a convergence is reached on the number of chosen 
alternatives (M) and then the optimal consumptions are computed. Thus, the proposed 
modifications allow the algorithm to quickly determine the chosen alternatives without the need 
to enumerate each (and every) chosen alternative. The detailed steps of the algorithm are 
provided below. 
 
Step 0: Let lower bound for M, ML = 1, let upper bound for M, MU = K. 
Step 1: Arrange all K alternatives available to the consumer in the descending order of their 

price-normalized baseline utility values (with the outside good in the first place).  

Step 2: Let M = ( ) / 2L UM M+    (i.e., an integer midway between ML and MU ).  

Compute the value of λ  using equation (14). 

Step 3: If λ  > M

Mp

ψ
 (i.e., the price-normalized baseline utility of alternative in position M) 

Update upper bound, 1UM M= − . 

Else, if λ  < M

Mp

ψ
 (i.e., the price-normalized baseline utility of alternative in position M) 

Update lower bound, LM M= . 

Step 4: Compute M = ( ) / 2L UM M+    (i.e., an integer midway between ML and MU ).  

Compute the value of λ  using equation (14). 

Step 5: If (ML < M ), go to step 3. 

Else, if (ML = M ) and if λ  > 1

1

M

Mp

ψ +

+

 

Set M = ML. 

Else, if (ML = M ) and if λ  < 1

1

M

Mp

ψ +

+

 

Set M = ML +1. 
Step 6: Compute the optimal consumptions using equations (15) and (16) for the first M goods  

(in the arrangement of step 1). Set the consumptions of other goods as zero and stop. 

 

4.3.2 Bisection (over the λ -space) Algorithm for α -Profile Utility Functions and Large Choice 

Sets 

In the case of α -profile utility functions, the algorithm proposed in Section 4.2 can be modified 
by avoiding the enumerative steps (i.e., steps 3 and 4 of the algorithm in section 4.2) and directly 

employing a bisection-based iteration over the λ -space (as in step 5 of section 4.2). The 
modified algorithm is presented below.  
 
Step 0: Assume that only the outside good is chosen and let the number of chosen goods M = 1.  
Step 1: Arrange all the K alternatives available to the consumer in a descending order of their 

price-normalized baseline utility values (with the outside good in the first place).  
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Step 2: Let 1

1

0 and L U
p

ψ
λ λ= = , the price-normalized baseline utility of the alternative in the 1st 

position.  

Step 3: Step 3.1: Let ˆ ( ) / 2L Uλ λ λ= + and use Equation (19) to obtain an estimate Ê  of E .  

Step 3.2: If ( )ˆ
L U Eor E Eλλ λ δ δ− ≤ − ≤   

Go to step 4. 

   Else, if Ê E<   

Update the upper bound of λ  as ( ) / 2U L Uλ λ λ= + , and go to step 3.1 

   Else, if Ê E>   

Update the lower bound of λ  as ( ) / 2L L Uλ λ λ= + , and go to step 3.1 

Step 4: Compute the optimal consumptions of the first M alternatives in the above descending 
order using equations in (12). Set the consumptions of other alternatives as zero and stop. 

The reader will note that this algorithm is much more similar to the von Haefen et al. 
algorithm than the algorithm in Section 4.2 which combines enumeration of choice alternatives 

with numerical bisection over the λ -space. The only difference is that while this algorithm 
employs bisection over the λ -space, the von Haefen et al. algorithm employs bisection over the 
consumption space. Thus, one can expect both the algorithms to be computationally equivalent 
(i.e., provide similar computational performance). 

 

4.4 Generalization of the Forecasting Algorithms for other KT Demand Model Systems 

The algorithms developed in this section are tailored to the MDCEV model. However, similar 
properties as in Section 3 can be derived, and similar forecasting algorithms can be developed for 
other KT demand model systems in the literature with additively separable utility functions. 
Specifically, the basic algorithmic approach remains the same, except that some modifications 
may be needed depending on the form of the utility function employed in different KT demand 
systems, as discussed below. 

• In step 1 of both the algorithms, all the K available alternatives have to be arranged in the 
descending order based on their marginal utility value at zero consumption. For the MDCEV 
model, marginal utility at zero consumption happens to be the price-normalized baseline 
utility. In fact, a general property of most KT demand systems used in the literature (with 
additively separable utility functions) is that the marginal utility at zero consumption of a 
chosen alternative is always greater than that of a non-chosen alternative. This property can 
be proved for different forms of additively separable utility functions used in the literature by 
following the proof of property 1 in Section 3.1. 

• Similar to the above modification, in all other steps of both the algorithms, replace the price-
normalized baseline utility with the corresponding marginal utility measure at zero 
consumption.  

• Similarly, for the algorithms in Section 4.1 and 4.3.1 for γ -profile utility functions, the 
analytic formula for Lagrange multiplier (λ ) will depend on the form of the utility function. 
The formulae for optimal consumptions (conditional on the knowledge of the consumed 
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alternatives) will also depend on the form of the utility function. These formulae can be 
derived in a straight forward fashion following the discourse in Section 3. 

In summary, the proposed algorithms are fairly generic in their approach, and can be easily 
modified to be used with different forms of additively separable utility functions. 
 

5 EMPIRICAL ANALYSIS OF RESIDENTIAL ENERGY CONSUMPTION PATTERNS 

In this and the next section, we estimate a model of residential energy consumption, and 
demonstrate the computational effectiveness and practical value of our proposed forecasting 
algorithms by applying it to study a variety of energy policy scenarios.  

The interest in the subject of residential energy demand analysis dates back to the 1970s, 
reportedly beginning with the first oil crisis. This topic has gained renewed attention in recent 
years, due to at least three reasons. First, growing concerns regarding depleting fossil fuel 
resources, deteriorating environmental quality, and potentially adverse climate changes have 
highlighted the need for sustainable energy production and efficient energy consumption 
practices. Second, the residential sector is responsible for a significant share of total national-
level energy consumption in many countries. For example, in the United States, the residential 
sector accounted for 22% of the total energy consumption during the year 2008 (EIA, 2009). 
Thus, analysis of residential energy consumption patterns is essential for energy planning, 
pricing, and policy decision-making. Third, price fluctuations, energy policies, and market 
conditions may result in notable welfare consequences and equity/distributional impacts. For 
example, Cashin and McGranahan (2006) report that low income households are likely to be 
impacted more than high income households due to rise in energy prices. Thus, it is important to 
understand energy consumption patterns in the context of price variations and policy impacts.  

Section 5.1 provides an overview of the residential energy consumption studies in the 
past. Section 5.2 describes the RECS data used in this study, and Section 5.3 presents and 
discusses the MDCEV model estimation results.  

5.1 Brief Overview of the Residential Energy Consumption Literature 
Residential energy demand analysis was initiated by the pioneering work of Houthakker (1951) 
on British urban electricity consumption. Since then, and especially after the oil price shocks in 
the 1970s, numerous studies have examined energy consumption in the residential sector, using 
aggregate-level econometric demand techniques (e.g., Clements and Madlener, 1999; Narayan 
and Smith, 2005) or disaggregate, household-level, econometric techniques. The focus in this 
paper is on disaggregate-household level econometric modeling techniques13. 
 From a modeling perspective, several econometric studies use single-equation log-linear 
models that estimate the amount of a fuel used conditional upon a household choosing to use that 
fuel (e.g., Filippini and Pachauri, 2004). The approach is to regress the natural logarithm of 
energy consumption as a function of price, income, climate, and other variables influencing 
demand. Sometimes, log-log (or double-log) models, in which the explanatory variables (price, 
income, etc.) also take a logarithmic form along with the dependent variable, are also used (Dale 
et al., 2009). Log-linear and log-log models are easy to estimate and simple to interpret. For 
example, the coefficient of the log-price variable in a log-log model can be directly interpreted as 
the price elasticity of demand. However, these models have been criticized for the lack of a 

                                                           
13 For a recent review of econometric analyses of residential energy demand, the reader is referred to Bhattacharya 
and Timilisma (2009).  
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sound behavioral/ theoretical foundation (Madlener, 1996). Another stream of studies use the 
transcendental logarithmic (or translog) functional forms proposed by Christensen et al., (1973). 
The translog specification includes quadratic forms of the log-price and log-income variables in 
addition to first order terms in a log-log specification. This specification comes with additional 
flexibility relative to the log-linear or log-log models, but there is also the potential problem of 
obtaining unintuitive/unstable parameter (and elasticity) estimates (Madlener, 1996). Further, 
one cannot use single-equation regression models (whether log-linear, log-log, or translog) to 
simultaneously analyze households’ consumption of multiple types of fuel. Another limitation is 
that none of these approaches can be used to model the “discrete” choices households make on 
the type(s) of energy/fuel to use. On the other hand, a common feature of household energy 
consumption data (as will be discussed in a subsequent section) is that several households 
consume multiple types, but not necessarily all types, of energy available to them. This choice 
process can be viewed as a result of multiple discrete-continuous choices, where households 
make discrete choices of “whether to use” and continuous choices of “how much to use” for each 
type of energy available in the market.  

Dubin and McFadden (1984) pioneered the joint analysis of the discrete choice of 
appliance holdings (choice of heating technology) and the continuous choice of energy 
consumption, by explicitly accounting for the self-selection effects due to unobserved factors 
affecting both the discrete and continuous choices. Mansur et al. (2008) use this approach for a 
simultaneous analysis of households’ energy/fuel type and usage choices, while Nesbakken 
(2001) uses the approach for a simultaneous analysis of the fuel type and usage choices for space 
heating.14 In such earlier studies, the discrete choice alternatives correspond to possible 
combinations of fuel types such as electricity only, electricity and natural gas, electricity and fuel 
oil, and electricity and other fuels. The continuous choice component includes the amount of 
consumption of each type of fuel, conditional upon the choice of fuel type combination (with 
self-selection terms included in the continuous choice model to account for the endogeneity of 
discrete choices). However, these two step estimation procedures are generally inefficient, and 
are also not based on a unified utility maximizing theory of multiple discreteness. Rather, they 
are based on exploding the fuel type combinations to generate a choice set suitable for modeling 
in a traditional single discrete choice framework. Even at moderate sizes of the elemental fuel 
type alternatives, this approach of exploding the elemental alternatives starts to generate a large 
number of combination alternatives for the single discrete choice (for example, 4 elemental fuel 
type alternatives will generate 15 combination choices of fuel types for the single discrete 
choice). The result is that sample sizes for estimation of such models needs to be relatively large 
to obtain enough households who choose each combination. On the other hand, multiple 
discrete-continuous KT systems handle such situations from a fundamentally unified 
microeconomic principle of the choice of multiple alternatives and offer an efficient framework 
for estimation.15 In this paper, we employ the MDCEV model in which a unified utility 

                                                           
14Some discrete-continuous energy demand studies also follow Hanemann’s (1984) approach in which the discrete 
and continuous choices are derived theoretically from the same utility maximization problem. The study by Vaage 
(2000), for example, belongs to this category.  
15Some previous studies (e.g. Labanderia and Labeaga, 2006) have also analyzed the multi-fuel/energy usage 
patterns of household by employing a quadratic extension of the almost ideal demand system (AIDS) of Deaton and 
Muellbauer (1980) as proposed by Banks et al (1997). The AIDS system is theoretically sound, based on a unified 
utility maximization principle, and can be used to model the consumption of multiple types of energy/fuels in a 
simultaneous fashion. However, the AIDS system assumes that all types of energy are consumed by all households. 
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maximization approach for multiple discreteness is adopted to simultaneously model the 
“whether to consume” and “how much to consume” decisions for all types of energy. 

5.2 Data 

The data used in this study was obtained from the 2005 Residential Energy Consumption Survey 
(RECS) conducted by the Energy Information Administration (EIA) of the United States. The 
RECS collected a variety of information on the use of energy for a sample of 4382 households in 
housing units statistically selected to represent the 111.1 million housing units in the U.S. The 
information collected in this survey included: (1) The sources/types of energy used (electricity, 
natural gas, fuel oil, liquid petroleum gas (LPG), kerosene, and wood)16 and the quantity of 
annual consumptions and corresponding expenditures for each source/type of energy, (2) The 
end-uses of energy (cooking, washing/drying, heating, cooling, etc.), (3) The physical 
characteristics of the housing unit, (4) Information on household appliances such as space 
heating and cooling equipment, and (5) The demographic characteristics of the household. The 
information was collected from three different sources: (a) in-person interviews with 
householders of sampled housing units, (b) mail questionnaires or in-person/telephone interviews 
with rental agents of sampled rental units where some or all energy costs were included in the 
rent, and (c) mail questionnaires from energy suppliers who provided actual energy consumption 
and expenditure data for the sampled housing unit. In addition to the above-mentioned 
information, each household’s geographic location information was collected by the EIA, but not 
released to the public due to confidentiality reasons (only Census region/division information 
and rural/urban classifications were made available in the public use microdata). However, EIA 
utilized the location information to obtain weather information from the National Oceanic and 
Atmospheric Administration. Thus, climate variables, such as annual heating degree days and 
annual cooling degree days (which are described in the next section), are available in the RECS 
data. Further details about the survey as well as the public-use microdata used for this study are 
available at the following EIA website: http://www.eia.doe.gov/emeu/recs/. 

Among the 4382 household records in the RECS data, several records did not contain 
information on the consumption of different types of energy (especially LPG consumption). 
Those records were supplemented by EIA with imputed consumption values and expenditures. 
Such imputed information, although useful for aggregate-level analysis purposes, can be 
inaccurate, and potentially influence the model estimates. Hence, only 2473 records with actual 
reported information on energy consumption and expenditures were used for model estimation. 
Of these 2473 households, all households consumed electricity, 59.2% (or 1465 households) 
consumed natural gas, 7.3% (180 households) consumed fuel oil, and 6.3% (155 households) 
consumed LPG.17,18  

                                                                                                                                                                                           

Such an assumption precludes the ability to analyze the discrete choices faced by households on the type(s) of 
energy to consume. The translog utility function-based model system proposed by Christensen et al. (1975) is 
another model that can be used to analyze multi-category energy consumption, but, like the AIDS model, assumes 
all types of energy are consumed.  
16 Information on gasoline usage for travel purposes was not collected in this survey. 
17Very few households indicated kerosene and wood consumption. Hence, the kerosene and wood alternatives were 
not included in the analysis. 
18
The implied energy consumption patterns of the 2473 households (without weighting) were not very different from 

the implied consumption patterns of the 111.1 million US housing units (as obtained by expanding the original 4382 
household records using weights). The only difference of relevance was in the percentage of households consuming 
LPG as an energy source. We chose to estimate the model with the unweighted sample of 2473 households because 
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Table 1 presents more details on the energy consumption patterns in the estimation 
sample (see the first set of rows in the table). As can be observed, 709 out of the 2473 
households (i.e., 28.67%) consumed only electricity and no other type of fuel. All other 
households (i.e., 71.33% in the sample) consumed multiple types of energy (i.e., at least one 
other type of energy than electricity). Further, no household chose both the natural gas and LPG 
alternatives, indicating that these two sources of energy are perfect substitutes. In fact, all 1465 
households consuming natural gas belong to the category of 1779 households that had a natural 
gas pipe connection to their housing unit, while all 155 LPG consuming households did not have 
a natural gas pipe connection to their housing unit.  

The average annual household expenditure and average consumption in millions of 
British Thermal Units (or MBTU) in each type of energy are reported in the second set of rows 
in Table 1. To this data on annual energy expenditures, an additional “outside good” expenditure 
variable was appended (see last row in the second set of rows). The expenditure for the “outside 
good” for each household was computed by subtracting the household’s total annual energy 
expenditures (i.e., expenditures on all four types of energy – electricity, natural gas, fuel oil, and 
LPG) from the annual household income. Thus, for analysis purposes, households are assumed to 
operate with their income as a budget constraint (see Equation 3), and allocate income to 
consume different types of energy and to the “outside good”. The outside good includes other 
expenses as well as savings. 

The unit prices for each type of energy are in the third set of rows.19 It can be observed 
that electricity is the most expensive fuel (for consumers), while natural gas is the least 
expensive fuel. The unit price for the outside good is set to unity. The next three sets of rows in 
the table provide descriptive information on the household, housing unit, and household 
residential location variables (in that order) used in the model. For continuous variables, the 
average value of that variable in the data is reported. For categorical/dummy variables, the 
number (and percentage) of households in the data is reported. For example, the average annual 
household income in the data is close to $50k. About 30% of the households belong to the low 
income category, while 23% belong to the high income category. Similar interpretations hold for 
the other household-related variables.  

The climate variable group includes two variables: the annual heating degree days (HDD) 
and the annual cooling degree days (CDD). The HDD variable is a surrogate measure of how 
cold a location is over a year, relative to a base temperature of 65 degrees Fahrenheit. For each 
location, it is computed as the difference between the average daily temperature and 65 degrees 
Fahrenheit (if the average daily temperature is less than 65 degrees) summed over the 365 days 
in the year. Similarly, the annual cooling degree days (CDD) variable is computed as a measure 

                                                                                                                                                                                           

individual household imputations in the 4382-household sample may be quite different from reality, even if the 
aggregate consumption patterns are not very different between the 2473-housheold sample and the weighted 4382-
housheold sample.   
19Given the data on energy consumption and expenditures, one could potentially compute the unit price values for 
each type of energy consumed by each household (as expenditure divided by consumption). However, since energy 
prices tend to vary with consumption levels (due to block-pricing), the unit price values computed in such a fashion 
would be endogenous to consumption levels. Further, for any household, it is possible to compute the unit prices 
only for those types of energy that the household consumed, but not for non-chosen energy types. Thus, instead of 
computing unit price values separately for each household from the data, we used the aggregate-level unit price 
values given by the EIA. These values, obtained from the EIA website at the following link, vary by census 
divisions: http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/c&e/pdf/tableus7.pdf.  
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of how hot a location is over a year (relative to a base temperature of 65 degrees Fahrenheit). 
The use of these variables in the model allows us to study the influence of climate factors on 
energy consumption patterns.  

5.3 Model Estimation Results 

The choice alternatives in the MDCEV model include the four types of energy (electricity, 
natural gas, fuel oil, and LPG) and a numeraire “outside good”. We considered various estimable 
forms of the general utility function in Equation (2) proposed by Bhat (2008). The following 
form of the utility function provided the best fit to the current empirical data: 

( ) ln ln ln 1 ln 1 ln 1
fe n l

o o e n n f f l l

e n n f f l l

ee e e
U e

p p p p
ψ ψ γ ψ γ ψ γ ψ

γ γ γ

      
= + + + + + + +             

e         (20) 

In the above utility equation, on the right hand side, the first term ( lno otψ ) corresponds to the 

utility contribution of the expenditure to the outside good, the second term corresponds to the 
utility contribution due to the consumption of electricity, the third, fourth and fifth terms 
correspond to the utility contributions due to the consumption of natural gas, fuel oil, and LPG, 
respectively. The subscripts, o, e, n, f, and l, used in the utility expression represent the choice 
alternatives of outside good, electricity, natural gas, fuel oil, and LPG, respectively.  

 The above utility form is obtained by constraining all the kα  terms (for 1,2,3,4,5k = ) in 

Equation (2) to be equal to zero (see Bhat, 2008). Further, there is no kγ  term corresponding to 

the outside good and electricity categories, because all households in the estimation sample 
allocated some non-zero amount of their income to these categories. The baseline utility terms 

( kψ ) are specified as exp( )k k kzψ β ε′= + , where kz  contains the observed factors (such as 

household characteristics, housing unit characteristics, location attributes, and climate variables)  

and kε  captures the unobserved factors influencing energy consumption decisions. Further, for 

identification purposes, the oψ  parameter corresponding to the outside good is specified as 

exp( )oε , without any observed variables kz  (i.e., the outside good acts as the base alternative in 

the model specification). 
 Table 2 presents the model estimates. The baseline preference constants do not have any 
substantive interpretations, but capture generic tendencies to consume each type of energy as 
well as accommodate the range of the continuous variables in the model. However, the positive 
baseline preference constant for electricity (relative to the constants for other energy types) is 
indicative of the much higher percentage (100%) of households spending a non-zero amount of 
their budget on electricity relative to other energy types. The effects of other variables are 
discussed by variable group in the subsequent sections.  

5.3.1 Household Characteristics 

Among the household characteristics, annual income is specified in a logarithmic form as well as 
using dummy variables representing low and high income households (with medium income as 
the base for the dummy variable specification). The negative coefficient on the log(income) 
variable indicates that the proportion of household income (but not necessarily the absolute 
dollar amount) spent on energy consumption decreases with increasing income levels. This 
impact is further reinforced by the positive coefficient on the low income dummy variable, 
(though this dummy variable effect is only marginally significant). A direct policy implication of 
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these results is that energy price increases have larger welfare impacts on low income households 
than other households (see Cashin and and McGranahan, 2006). Also, according to the estimated 
coefficient on the high income dummy variable, high income households, in general, expend a 
higher share of their income (when compared to low income households) on electricity. This is 
perhaps because high income households tend to own and use a wider variety and a larger 
number of electric-operated appliances. 

The household size (i.e., number of people in household) related coefficients indicate that 
larger household sizes are associated with higher energy consumption, in the context of 
electricity and natural gas. The log(householder age) variable refers to the natural logarithm of 
the age of the householder.20 The estimated effects of this variable imply that households at an 
older stage in their lifecycle are more pre-disposed to use non-electricity type of fuels (natural 
gas, fuel oil, and LPG) relative to electricity.  

5.3.2. Housing Unit Characteristics 

The coefficients on the log(age of housing unit) variable indicate that households living in older 
houses are more likely to use fuel oil and natural gas than those living in newer houses. This 
result corresponding to fuel oil is consistent with the declining popularity of fuel oil as a heating 
source, due to the extensive maintenance needs and environmental and health risks associated 
with fuel oil heaters and tanks. The result corresponding to natural gas is consistent with the 
trend that natural gas consumptions in the U.S. have declined over the years, perhaps due to two 
reasons (AGA 2003): (1) the increased efficiency of natural gas appliances such as space heaters 
and water heaters, and better insulation features and energy efficiency of newer houses, and (2) 
the reduction in the number of gas appliances in homes served with gas.   

As expected, households living in larger houses (in terms of house area) expend more on 
energy relative to households living in smaller houses. They are also more likely (than those in 
smaller houses) to use fuels other than electricity, such as natural gas, fuel oil, and LPG. It is 
likely that owners of smaller houses (with lower energy needs) are less likely to choose non-
electricity types of fuels due to higher capital costs of installing equipment for such fuels as 
natural gas and fuel oil. On the other hand, as energy needs increase, it is likely that households 
choose fuels with lower prices and hence higher returns to off-set the capital costs (see Mansur et 
al., 2008 for similar findings). Recall from Table 1 that the unit price of electricity is much 
higher than that of other fuels.  

Households in multifamily units are associated with lower energy consumptions than 
those in single family dwelling units and mobile homes. This may be attributable to the lower 
heating and other energy requirements due to such features as shared walls in multifamily units.  

The final variable among housing unit characteristics corresponds to the availability of a 
natural gas pipe connection to the house. As indicated earlier, a household’s choice between the 
natural gas and LPG alternatives depended on the availability of a natural gas pipe connection to 
its house. Further, no household chose both natural gas and LPG alternatives. Our model 
specification accommodates such perfect substitutability between the two alternatives by 
deterministically making the natural gas option available only to those houses with a natural gas 
pipe connection, and the LPG option available only to those houses without a natural gas pipe 
connection. Besides such availability constraints in the context of natural gas and LPG fuels, the 
                                                           
20According to the EIA, the householder is defined as the person who lives in the housing unit and in whose name 
the house is owned or rented. If the house owner (or the renter) does not live in the housing unit, the householder is 
defined as the person responsible for paying the household bills. 
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availability of a natural gas pipe connection also impacts the choice and consumption of other 
fuels. As expected, the presence of a natural gas pipeline decreases the energy expenditure on 
electricity and fuel oil.  

5.3.3 Household Location Characteristics 

Households in rural locations are less likely to choose natural gas, but are more likely to choose 
LPG. This result may be due to the lower connectivity of natural gas utilities to rural locations. 
Also, households in southern regions appear to be less likely to opt for natural gas, while those in 
the north-eastern region are highly reliant upon fuel oil, a well established trend (EIA, 2008). 

5.3.4. Climate Variables 

The coefficients corresponding to the log(HDD) and log(CDD) variables indicate that 
households in colder climates expend more income share on energy than those in other climates, 
except for those households in very hot climates. These latter households expend more income 
share on electricity than households in other climates. These results are quite intuitive. 
Households in cold climates have increased space heating needs, leading to an increase in energy 
share expenditure in general, and in non-electricity types of fuels in particular (space heaters 
generally use non-electricity sources of energy). On the other hand, households in very hot 
climates have space cooling needs, and air-conditioning units predominantly use electricity as 
the source of energy. In summary, the climate variable effects indicate that households in cold 
climates are more likely to use fuel oil, natural gas, and LPG, while those in hot climates tend to 
consume higher amounts of electricity.21  

5.3.5. Satiation and Scale Parameters 

The next set of parameters corresponds to the kγ  terms. As discussed earlier, there is no such 

term corresponding to the electricity alternative because all households consume a non-zero 

amount of electricity (hence, no need for corner solutions). The kγ  terms for other fuels are all 

significantly different from zero, indicating the possibility of corner solutions (i.e., zero 
consumption) for some households.  

 Finally, since there is variation in the unit prices ( kp ) across the energy/fuel choice 

alternatives, we could estimate the scale parameter associated with the Gumbel distribution of 

the baseline utility functions ( kψ ) without assuming it to be unity (see Bhat, 2008). The scale 

parameter can be interpreted as a measure of the magnitude of unobserved factors influencing the 

baseline utility functions ( kψ ). In a naïve MDCEV model with only constants in the baseline 

                                                           
21A caveat is in order here regarding the annual HDD and CDD variables. These variables are good measures of 
space heating and cooling needs, respectively. However, they may not unambiguously represent the seasonal 
temperature variations at a location. This is because the degree-days measure does not distinguish between a large 
number of moderately high/low temperatures and a small number of extremely high/low temperatures. Further, since 
the variables are constructed using 65 degrees Fahrenheit as the base temperature, there is an inherent assumption 
that 65 degrees Fahrenheit is the optimum temperature (at which least amount of energy is consumed). Using 
detailed information on temperature variations across different seasons (e.g., winter temperatures and summer 
temperatures) in the model may overcome these limitations and provide better insights into climate effects on energy 
consumption. However, the RECS data available for public use does not contain such information. Even the 
geographic location information is available at a coarse geography such as census region and division variables, 
rural/urban variables, and states. At the least, county-level geographic location information is required to be able to 
merge detailed temperature data from other sources in to the RECS database. Mansur et al. (2008) include such 
detailed temperature information in their energy consumptions analysis. 
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utility functions, and satiation parameters (i.e., a model with no other covariates), the scale 
parameter was estimated to be 0.608 (not shown in tables). As more and more explanatory 
variables were specified in the baseline utility functions, the magnitude of the scale parameter 
estimate decreased. In the final model specification (as shown in Table 2), the scale parameter 
estimate is 0.331. The decrease in magnitude of the scale parameter estimate from 0.608 for the 
naïve model to 0.331 for the final specification indicates that the specified explanatory variables 
capture about 46% of the variation in the logarithm of households’ preferences toward different 
energy alternatives. This predictive value of the model is also corroborated by log-likelihood 
measures of fit. Specifically, the log-likelihood for the naïve MDCEV specification is -36823.5, 
while that for the final MDCEV specification with 26 additional parameters is -34549.5. The 
likelihood ratio statistic between the two specifications is 4548, which is substantially higher 
than the critical chi square value for 26 degrees of freedom at any level of significance.  
 Overall, the MDCEV model estimates are consistent with expectations and shed light on 
the influence of different household, housing unit, location, and climate characteristics on 
residential energy consumption patterns. In the next section, we use these model estimates and 
the proposed forecasting procedure to examine various policy scenarios.  

 

6 PREDICTION EXPERIMENTS AND SCENARIO ANALYSIS 

In this section, we first present prediction experiments with the RECS data to assess the 
computational time performance of the proposed forecasting algorithms in the current empirical 
context (Section 6.1). For further assessment in choice situations with large choice sets, we 
present additional prediction experiments with simulated datasets in Section 6.2. Next, we 
conduct policy simulations to predict the impact of different climate change scenarios and other 
scenarios on residential energy consumption patterns in the U.S. (Section 6.3).  

6.1 Computational Time Analysis of the Proposed Forecasting Algorithms (with the RECS 

data) 

To assess the computational performance of the proposed forecasting algorithms (presented in 
Sections 4.1 and 4.2), several prediction experiments were undertaken with different samples of 
the 4382-household data, varying from 1000 households to the full-RECS sample of 4382 
households.22 To recognize stochasticity, in each experiment, predictions were carried out 

repeatedly using several sets of draws of the kε  terms, varying from 100 sets to 500 sets for each 
household. Specifically, scrambled Halton sequences (Bhat 2003) of standard uniform 
distributions were generated and converted into Gumbel distributions with the scale parameter as 
estimated in the model and the location parameter as zero.  

For all prediction exercises, both the proposed forecasting procedures from Sections 4.1 
and 4.2 were coded and executed in the Gauss matrix programming language. In addition, for 
comparison purposes, the gradient-based constrained optimization routines of the Constrained 
Maximum Likelihood (CML) module of Gauss were used to undertake the same prediction 
exercises.23 Further, the numerical bisection algorithm of von Haefen et al. (2004) was also 

                                                           
22
Although the model estimation was pursued with the sample of 2473 household records containing exogenous 

energy consumption/expenditure information, forecasting exercises were conducted with the full survey sample of 
4382 households. This enables us to directly use the population weights to expand the RECS sample to the 
population of 111.1 million housing units in the U.S. 
23

 The CML module of Gauss uses a sequential programming method for constrained non-linear optimization, in 

which the optimal values are approximated iteratively using the gradients of the Lagrangian function. 
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coded in Gauss and used to assess its performance vis-à-vis the algorithms proposed in this paper 
and the gradient-based CML routines of Gauss. All predictions were performed with a desktop 
computer of 2.66GHz processing speed and 3.25GB Random Access Memory (RAM). 
 Table 3 shows the computation times of the forecasting algorithms proposed in Sections 
4.1 and 4.2 of this paper, as well as those of the von Haefen et al. algorithm and the gradient-
based CML module of Gauss. In this table, the computation times reported in the first block of 
rows correspond to prediction runs of the incremental enumeration algorithm proposed in this 

paper for γ -profile utility functions (i.e., the algorithm proposed in Section 4.1) on datasets of 
different sample sizes and with different sets of error term draws. For example, to predict the 
energy expenditures/consumptions of 4382 households, hundred different times for each 
household (each time with a different set of error term draws), the proposed incremental 
enumeration algorithm took only 10.62 seconds (see last column). Another observation from the 
table is that the computation time increases almost linearly with the number of households 
(across the columns in each row) as well as with the number of sets of error term draws (across 
the rows in each column). Nevertheless, even for the entire dataset of 4382 households, and with 
500 sets of error term draws for each household, the total computation time is less than a minute. 

The next set of rows in the table shows the computation times for the second forecasting 
algorithm proposed in this paper (in Section 4.2), which is designed for general utility functions 

that do not restrict the kα  parameters to be equal across alternatives. These computation times 

are at least 4 times longer than those of the algorithm designed specifically for γ -profile utility 
functions. The increase in computation time is because the general algorithm adopts an iterative 

approach to determine the value of the Lagrange multiplierλ , while the algorithm designed for 
γ -profile utility functions obviates the need for iterations by using an analytic expression for λ . 

The third set of rows in the table shows the computation times for the von Haefen et al. 
(2004) algorithm. These computation times are about 14 times (3 times) longer than those of the 

algorithm proposed in this paper for γ -profile utility functions (more general utility functions). 
These run time differences highlight the efficiency of the algorithms proposed in this paper, 

especially the algorithm designed for γ -profile utility functions.  
The final block of Table 3 shows the computational performance of the gradients-based, 

iterative constrained optimization routine (available in the CML module of Gauss). As can be 
observed, to compute the expenditure patterns of 4382 households for just one set of error term 
draws for each household, it took 3 hours and 36 minutes. A linear extrapolation to 100 sets of 
error term draws implies a rather large computation time of about 15 days. These long run times 
clearly highlight the inefficiency of the gradient-based, iterative algorithm. To be sure, we could 
reduce the computation time of the gradient-based algorithm by easing its convergence criteria. 
But this resulted in suboptimal solutions for a large number of households. In fact, even at the 
convergence criteria that resulted in the reported computation times of 15 days, the predicted 
expenditures for some households were suboptimal. Specifically, non-negligible differences 
were found between the predicted expenditures of the gradients-based procedure and that of the 
proposed procedure for a small number of households. In such cases, the utility values 
corresponding to the predictions from the proposed algorithms were higher compared to that of 
the iterative procedure, indicating that the gradient-based algorithm resulted in suboptimal 
solutions. As the convergence criteria were tightened to improve the accuracy of the results (i.e., 
to obtain more optimal solutions), the computation time increased considerably. In all fairness to 
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the gradient-based iterative algorithm, perhaps such a level of accuracy is not necessary for 
practical purposes. However, as the convergence criteria were eased to reduce the computation 
time to a day (as opposed to 15 days), the quality of the results deteriorated too much to be of 
practical value. Thus, there seems to be a clear trade-off between accuracy and computation time 
that the analyst has to make, when using a gradient-based algorithm. Even after making the 
trade-off, the analyst is left with an undesirable amount of computation time (in the order of 
days) for just one prediction exercise (with 4382 households and 100 sets of error term draws). 

The incremental enumeration algorithm we propose for the γ -profile utility functions, on the 
other hand, is analytic in nature and does not leave room for any approximations or inaccuracy, 
and is free from any trade-off between accuracy and computational efficiency.24 Finally, in 
certain (although a small number of) instances with tight convergence criteria, the gradient-based 
procedure ran into convergence problems, requiring forced termination and resulting in 
suboptimal solutions. On the other hand, both the algorithms proposed in this paper as well as the 
von Haefen et al. algorithm did not run into convergence issues. 

To further demonstrate the computational efficiency of the proposed algorithms, we 
undertook predictions with different sets of bootstrapped parameter estimates (obtained based on 
the covariance matrix of the model estimates). For example, as discussed earlier, for the entire 
dataset of 4382 households, with 100 sets of error term draws, but only one set of parameter 
estimates, the computation time was 10.62 seconds for the incremental enumeration algorithm 

we designed (in Section 4.1) for γ -profile utility functions. When predictions were carried out 
with the same dataset and the same number of error term draws, but with 50 sets of bootstrapped 
parameter estimates, the computation time was about 8 and half minutes (510 seconds). With 100 
sets of bootstrapped parameter estimates, the computation time was about 17 minutes (1019 
seconds), which is not an unreasonable amount of time. To do the same, the other algorithm 
proposed in this paper (for more general utility functions; Section 4.2) took about 38 minutes for 
50 bootstrapping repetitions and 76 minutes for 100 bootstrapping repetitions. The von Haefen et 
al. algorithm took about 2 hours for 50 bootstrapping repetitions and 4 hours for 100 
bootstrapping repetitions. On the other hand, the gradient-based, iterative algorithm would need 
an unreasonably large amount of time to do the same (it would need more than a year with 50 
sets of bootstrapped estimates!).  

It can be observed that the ratios of the above-reported run-times are similar to the ratios 

discussed earlier in this section. That is, the proposed incremental enumeration algorithm for γ -
profile utility functions is about 4 times faster than the proposed algorithm in Section 4.2 

(incremental enumeration combined with bisection over λ -space), and about 14 times faster than 
the von Haefen et al. algorithm. Similarly, the proposed algorithm in Section 4.2 is at least 3 
times faster than the von Haefen et al. algorithm. Such computational efficiencies become 
crucial in application contexts with a large number of agents and when bootstrapping is needed 
to compute standard errors of the predictions, as is usually the case with travel demand and other 
microsimulation models. 

                                                           
24

 The other algorithm we propose (for general utility functions) as well as the von Haefen et al. algorithm are also 

associated with similar trade-offs between accuracy and computational efficiency, because of the iterative nature of 
these algorithms. For example, the accuracy of the von Haefen et al. algorithm could be increased in the decimal 
places of the predicted expenditures by tightening the convergence criteria that increased the run times to one-and-
half times the run times reported in Table 3. 
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6.2 Analysis of the Proposed Forecasting Algorithms in Situations with Large Choice Sets 

Admittedly, the above section demonstrates the computational efficiencies of the proposed 
forecasting algorithms in a choice situation with a small choice set. It is not clear if such 
computational efficiencies translate to situations with large choice sets. Thus, to evaluate the 
computational performance of the proposed algorithms in situations with large choice sets, we 
conducted simulation experiments for a 211-alterantive choice set case with 1000 observations. 
In these experiments, the utility function specification was a gamma-profile similar to that in 
Equation (17). The deterministic component of the log-baseline utility for the outside good 

(i.e., 1ln( )zeβ ′
) was set to 1 for identification, and that for the remaining 210 inside goods was 

specified as a linear function of a normally distributed variable. All prices were assumed to be 1. 
The budget was kept equal for all choice observations in each experiment, but varied from 1 to 
100,000 across different experiments to generate situations with small sets of chosen alternatives 
as well as large sets of chosen alternatives. Table 4 reports the computation times based on 
prediction runs using 50 sets of error draws for each of the 1000 observations in the simulated 
data. As can be observed from the first two rows of the table, as the budget increases from 1 to 
100,000 (from left to right of the table), the average number of chosen alternatives increases 
from 1.5 to 115. The next set of rows report the computations for each of the forecasting 
algorithms, including the von Haefen et al. algorithm. Several observations can be made from 
these computation times, as discussed below. 

First, the two algorithms proposed in Sections 4.1 and 4.3.1 for γ -profile utility functions 
are much faster than the other three algorithms designed for general utility functions (including 
the von Haefen et al. algorithm). This is because these two algorithms exploit the properties of 

γ -profile utility functions to use closed form expressions for optimal consumptions. Second, 
between the two algorithms for γ -profile utility functions, incremental enumeration performs 
faster for situations with small to moderate number of chosen alternatives and bisection-based 
enumeration performs faster for situations with large number (50 or more) of chosen alternatives. 
We noticed during the simulations that the bisection-based enumeration arrives at the chosen 
alternatives in about 6 to 8 steps, regardless of the number of chosen alternatives. Accordingly, 
the corresponding computation times for this algorithm are similar across all choice situations 
(regardless of the number of chosen alternatives). Third, among the three algorithms for general 

utility functions, the incremental enumeration combined with bisection over the λ -space (as in 
Section 4.2) performs the best in situations with small to moderate number (i.e., up to 25) of 
chosen alternatives. In situations with large number (beyond 50) of chosen alternatives, the 

method of bisection over the λ -space or the von Haefen et al method of bisection over the 
consumption space are preferable. Further, as speculated earlier, the bisection over λ -space and 
the bisection over consumption space are computationally equivalent methods (see the similar 
computation times between the last two rows). 
 Based on these findings, the following general guidelines may be useful for an analyst 
using KT demand models, especially in large-scale micro-simulation models that simulate 
choices of a large number of agents: 

• Use the incremental enumeration method (proposed in Section 4.1) in data environments 
with γ -profile utility functions and small to moderate number (up to 50) of chosen 
alternatives 
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• Use the bisection-based enumeration method (proposed in Section 4.3.1) in data 
environments with γ -profile utility functions and large (more than 50) number of chosen 
alternatives 

• Use incremental enumeration combined with bisection over the λ -space (as in Section 
4.2) in data environments with α -profile utility functions and small to moderate number 
(up to 50) of chosen alternatives 

• Use either the proposed bisection over λ -space (as in Section 4.3.2) or von Haefen et 
al.’s bisection over consumption-space in data environments with α -profile utility 
functions and large number (more than 50) of chosen alternatives 

6.3 Scenario Analysis 

This section presents the results of several policy simulations to assess the impact of four 
different scenarios on residential energy consumption/expenditure patterns in the U.S. Two of 
the four scenarios are related to climate change: (1) A 450 degree Fahrenheit increase in annual 
cooling degree days, and (2) A 450 degree Fahrenheit increase in annual heating degree days. 
These scenarios can be viewed as a result of a 5o Fahrenheit rise (for the first scenario) or a 5o 
Fahrenheit drop (for the second scenario) in average daily temperature from 65o for 3 months (90 
days) in a year. The other two scenarios are related to the size of housing units in the U.S.: (1) A 
10% increase in the floor area of all houses, and (2) a 10% decrease in the floor area of all 
houses. The predictions were carried out for 50 sets of bootstrapped parameter estimates. For 
each set of parameter estimates, 100 sets of error term draws were used for each household to 
simulate unobserved heterogeneity. The prediction results are presented in Tables 5, 6, and 7, 
each of which is discussed next. 

Table 5 presents the predicted residential energy expenditures as well as the observed 
expenditures for the base case scenario (the standard errors of the predictions are in parenthesis, 
and are obtained from bootstrapping). The first two numeric columns (under the label of “sample 
predictions”) of the table show the average predicted energy expenditures and consumptions, 
averaged over all households, all sets of bootstrapped model parameters, and all sets of error 
term draws, for the sample data set. The third and fourth numeric columns (under the label of 
“sample observations”) show the observed average (over all households) energy expenditures 
and consumptions in the sample data. For example, the model predicts that, on average, a 
household spends $1100 per annum to consume 38 Million British Thermal Units (MBTU) of 
electricity, while the observed average household expenditure on electricity is $1116 per annum 
(for 39 MBTU). It can be observed that the aggregate predictions are reasonably close to the 
observed energy expenditures and consumptions25, except a notable discrepancy in the context of 
natural gas consumption (the model seems to be over-predicting natural gas consumption). The 
weights available in the data were used to expand the predicted (and observed) expenditures and 
consumptions to total annual energy expenditures and consumptions for all the 111.1 Million 
housing units in the U.S. Such population totals are shown in the second half of Table 5, under 

                                                           
25

 Although the predictions appear close to the observed expenditures, we do not claim this as a validation of the 

model. This is because at least half of the sample (over which predictions were performed) includes the estimation 
data. Showing that the model closely predicts aggregate-level statistics in the estimation sample is not a sufficient 
yardstick for model performance. Besides, what is more important is appropriate sensitivity of the model to relevant 
policies and changes in the explanatory variables. 
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“population predictions” and “population observations”. Similar predictions were obtained for all 
the above-mentioned four scenarios, as discussed next.  

Table 6 shows the predictions for the two climate change scenarios. The first two 
numeric columns of the table contain the predicted changes in residential energy expenditure and 
consumption patterns due to a 450 degree Fahrenheit increase in annual cooling degree days 
(CDD). Both average predicted changes and standard errors (obtained from bootstrapping) are 
reported in the table, with the standard errors in parentheses. According to these predictions, due 
to a 450 degree Fahrenheit increase in annual CDD, the overall residential electricity energy 
expenditure in the U.S. would increase by $5.581 Billion. This is due to an increase in electricity 
consumption by 189.78 Trillion BTU, which is equivalent to 55.66 Billion Kilo Watt Hours 
(KWH) of additional electricity. It can also be observed from the results that most of the increase 
in expenditures due to additional electricity consumption is drawn from the “outside good” 
which includes other household expenditures and savings. These results indicate severe welfare 
impacts of climate warming. 
 The third and fourth numeric columns in Table 6 present the predicted changes in 
residential energy expenditure and consumption patterns due to a 450 degree Fahrenheit increase 
in annual heating degree days (HDD). The model predictions indicate an overall increase in 
residential energy expenditures by $5.104 Billion, most of which is due to increased 
consumption of natural gas (by 191.48 Trillion BTU) and fuel oil (by 116.06 Trillion BTU). This 
is an expected result because space heating requirements increase at cooler temperatures, and 
natural gas and fuel oil are primarily used for space heating purposes. 
 Table 7 presents the predicted energy expenditure and consumption changes for scenarios 
related to the size of houses in the U.S. Specifically, it is predicted that a 10% increase in the 
floor area of all houses in the U.S. leads to an increase in residential energy expenditures by 
$4.741 Billion. A large part of this increase is due to increased consumption of natural gas (by 
110.93 Trillion BTU), electricity (by 84.39 Trillion BTU), and fuel oil (by 54.10 Trillion BTU). 
On the other hand, if the houses were 10% smaller in size, the residential energy expenditures 
would decrease by $5.117 Billion. These savings would result primarily from reduced 
consumption of natural gas and electricity, followed by fuel oil. 
 

7 SUMMARY AND CONCLUSIONS 

In this paper, we propose simple and computationally efficient forecasting algorithms for the 
MDCEV model. These algorithms build on simple, yet insightful, analytic explorations of the 
Kuhn-Tucker conditions of optimality that shed new light on the properties of the model. For 

specific forms of the consumption utility function (i.e., a γ -profile utility function), the 
algorithm obviates the need to undertake any iterative constrained optimization procedures that 
have hitherto been used for forecasting with Kuhn-Tucker (KT) demand system models. The 
non-iterative nature of the algorithm contributes significantly to its efficiency and accuracy. 
Even with more general utility functions that fall within the class of additively separable utility 
functions, we use the properties of the MDCEV model to design efficient (albeit iterative) 
forecasting algorithms. We also propose variants of the proposed algorithms that perform faster 
in situations with large choice sets. Further, although developed in the context of the MDCEV 
model, the proposed algorithms can easily be modified for use with other utility maximization-
based Kuhn-Tucker (KT) consumer demand model systems with additively separable utility 
functions.  
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To demonstrate the effectiveness of the forecasting algorithms, we present an analysis of 
residential energy consumption patterns in the U.S. using the MDCEV model and its forecasting 
algorithm proposed in this paper. Household-level energy consumption data from the 2005 
Residential Energy Consumption Survey (RECS) conducted by the Energy Information 
Administration (EIA) was utilized for this analysis. The MDCEV model estimates provide 
insights into the influence of household, house-related, residential location, and climatic factors 
on households’ consumption patterns of different types of energy, including electricity, natural 
gas, fuel oil, and liquefied petroleum gas (LPG).  

Prediction exercises with the proposed algorithms, a numerical bisection-based iterative 
algorithm proposed by von Haefen et al. (2004),  and a general gradient-based iterative algorithm 
indicate the significant computational efficiency (as well as accuracy) of the proposed 
algorithms. In the current empirical context, to predict the energy consumption patterns of 4382 
households, with 100 sets of error term draws for each household, the incremental enumeration 

algorithm proposed for γ -profile utility functions took only 11 seconds. On the other hand, the 
von Haefen et al. procedure took 143 seconds, and the gradient-based, iterative forecasting 
routine would take around 15 days to do so. Even when the predictions were conducted over as 

much as 50 sets of bootstrapped parameter estimates, the algorithm proposed for γ -profile utility 
functions took only about 8 and half minutes, while it took about 2 hours to accomplish this with 
the von Haefen et al. algorithm, and it would take about a year to do the same with the gradients-
based iterative algorithm. Further prediction exercises on simulated data with large choice sets 

suggest the following general guidelines. (1) For γ -profile utility functions, incremental 
enumeration performs well in choice situations with small to moderate number (up to 50) of 
chosen alternatives, while bisection-based enumeration performs well in choice situations with 

large number (beyond 50) of chosen alternatives. (2) For α -profile utility functions, incremental 
enumeration combined with bisection over the λ -space performs well in situations with small to 
moderate number of chosen alternatives, while a simple bisection over the λ -space or over the 
consumption-space (as in von Haefen et al., 2004) perform well in situations with large number 
of chosen alternatives. 

The computational efficiencies of the proposed algorithms facilitated policy simulations 
to predict the impact of climate change and other scenarios on residential energy consumption 
patterns. The results indicate that a 450 degree Fahrenheit increase in cooling degree days over a 
year can lead to a $5.581 Billion increase in residential expenditures on electricity. This is due to 
55.66 Billion Kilo Watt Hours (KWH) of additional electricity consumption. Similarly, a 450 
degree Fahrenheit increase in cooling degree days over a year can lead to a $5.104 Billion 
increase in residential energy expenditures, primarily due to increased consumption of natural 
gas and fuel oil. In the context of house sizes in the U.S., if the houses were 10% smaller (larger) 
in their floor area, the residential energy expenditures would decrease (increase) by $5.117 
Billion ($4.741 Billon). 

The effectiveness of the proposed algorithms for forecasting and policy analysis with 
MDCEV and other KT demand model systems should facilitate the increased use of these model 
systems in applied research and policy analysis. In fact, one of the proposed algorithms is now 
being used in a large-scale activity-based travel demand micro-simulation system for predicting 
the vehicle ownership/usage and activity-participation and time-use patterns of individuals in the 
Los Angeles area (with a population of about 20 million individuals). Another useful application 
of this algorithm is that it can be used to quickly generate large sets of synthetic data for 
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simulation experiments to understand the properties of MDCEV and other KT demand model 
systems. For example, now that a fast and easy-to-use forecasting procedure is available, further 
research can be conducted to characterize the distributions of forecasts obtained from KT 
demand systems. Besides, one can conduct predictive validation assessments of the MDCEV 
approach for different empirical contexts (see Jaggi and Axhausen, 2011 for a recent effort). 

Future studies would benefit from explicitly accommodating the potential endogeneity of 
energy prices in energy consumption (due to block pricing). Another extension is to include 
gasoline consumption (for travel needs) in the analysis. Including temperature and other weather 
variables at a fine space and time resolution is another useful direction for extending the current 
empirical analysis. On the methodological front, there is an important need to develop similarly 
easy forecasting approaches for KT demand models that allow flexible, non-additive utility 
functions. 
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Table 1. Descriptive Statistics of the RECS Data 

Variable Value 

Number (%) of households consuming  

     Electricity only          709 (28.67%) 

     Electricity and Natural Gas        1451 (58.67%) 

     Electricity and Fuel Oil         144  (  5.82%) 

     Electricity and LPG         133  (  5.38%) 

     Electricity, Natural Gas and Fuel Oil           14  (  0.57%) 

     Electricity, Natural Gas and LPG             0  (  0.00%) 

     Electricity, Fuel Oil, and LPG           22  (  0.89%) 

     Electricity, Natural Gas, Fuel Oil, and LPG             0  (  0.00%) 

Annual household expenditures (and consumptions)*  

     Electricity       $1146  (  40.00 MBTU) 

     Natural gas         $856  (  78.16 MBTU) 

     Fuel oil       $1736  (118.61 MBTU) 

     LPG       $1165  (  56.66 MBTU) 

     Outside good   $47,801 

Unit prices (averaged over all Census regions)  

     Electricity       28.70  $/MBTU 

     Natural gas       10.94  $/MBTU 

     Fuel oil       14.74  $/MBTU 

     LPG       20.97  $/MBTU 

Household Attributes  

     Annual household income    $49,654 

     Household with income below $25k           746  (30.20%) 

     Household with income above $75k           570  (23.00%) 

     Household size (i.e., no. of people)          2.68 

     Age of householder        50.01  years 

Housing Unit Characteristics  

     Age of housing unit         38.59  years 

     Area of housing unit         2403  square feet 

     House in multifamily dwelling units           407  (16.46%) 

     Natural gas connection available to house         1779  (71.94%) 

Household Location Attributes  

     House in rural locations           491  (19.85%) 

     House in Northeast Census region           492  (19.89%) 

     House in Midwest Census region           593  (23.98%) 

     House in South Census region           744  (30.08%) 

     House in West Census region           644  (26.04%) 

Climate Variables  

     Annual Heating Degree Days (HDD)         4399 

    Annual Cooling Degree Days (CDD)         1407 

*The reported annual household expenditures and consumptions were obtained by taking averages of expenditures 
and consumptions only for those households that consumed that energy type. 
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