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ABSTRACT 
In consumer surveys, more information per response regarding preferences of alternatives may be 
obtained if individuals are asked to rank alternatives instead of being asked to select only the most 
preferred alternative. However, the latter method continues to be the common method of 
preference elicitation. This is because of the belief that ranking of alternatives is cognitively 
burdensome. In addition, the limited research on modeling ranking data has been based on the rank 
ordered logit (ROL) model. In this paper, we show that a rank ordered probit (ROP) model can 
better utilize ranking data information, and that the prevalent view of ranking data as not being 
reliable (due to the attenuation of model coefficients with rank depth) may be traced to the use of 
a misspecified ROL model rather than to any cognitive burden considerations.  
 
Keywords: ranking; rank ordered probit (ROP); rank ordered logit (ROL); heteroscedastic ROL 
(HROL); heteroscedastic ROP (HROP); coefficient attenuation; stated preference. 
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1. INTRODUCTION 
The preferences of individuals regarding market goods and services are typically imputed in choice 
models using consumer survey data. In the context of transportation planning, surveys have been 
extensively used to explore individuals’ preferences for travel modes, vehicle type choices and 
route choices, among many other activity-travel choice dimensions. It is common practice to elicit 
only the most preferred alternative in these surveys. However, it is possible to elicit not just the 
preferred alternative but a ranking of all the available alternatives. Although it would appear that 
the additional information available from the ranking of alternatives should prove beneficial in 
producing more precise estimates of model coefficients, several past studies (1–3) have shown that 
the rankings provided among the less preferred alternatives appear to be less reliable than the 
rankings provided among the more preferred alternatives. This unreliability was assumed to be a 
result of an increased cognitive burden placed on respondents when ranking alternatives with lower 
preference. In other words, individuals are assumed to be more uncertain when ranking alternatives 
with lower preferences. 

The most commonly used model for ranking data has been the Rank Ordered Logit (ROL) 
model and its variants. The ROL model is a random utility maximization model that assumes a 
type 1 extreme value distribution for its utility error kernel term. To account for the hypothesis 
that rankings of less preferred alternatives, i.e., rankings at higher rank depths, are less reliable, 
“error scaling parameters” have been introduced into the ROL model to capture the varying 
uncertainty of individuals at each ranking level.1 The scaling up of the error terms at higher rank 
depths would represent increasing uncertainty in the rankings among the lesser preferred 
alternatives.  

A study by Yan and Yoo (4) has questioned the notion that the increasing scale as one goes 
down the rankings (that is, at higher ranking depths) is due to cognitive burden or less reliability 
in the ranking. They show that the perceived unreliability of rankings of less preferred alternatives 
can be a result of model misspecification in the ROL model. Since the ROL model assumes its 
error kernel to follow a type 1 extreme value distribution, the model has a special property that the 
alternative chosen at any rank level among the unranked alternatives is independent of the rank 
ordering of the higher ranked alternatives. If the true error kernel is any distribution other than the 
type 1 extreme value distribution, this property would not hold true. In particular, when a generic 
distribution of the error kernel is incorrectly constrained to be of the type 1 extreme value 
distribution, the estimated parameters can mimic a situation of coefficient attenuation across rank 
depths (that is, increasing uncertainty in utility preferences as the rank depth increases).  

The findings by Yan and Yoo (4) suggest that it may be worthwhile to explore ranking 
models that do not rely on the IIA property. The Rank Ordered Probit (ROP) model is another 
random utility maximization model for ranking data which assumes a normal distribution on its 
error kernel. In this paper, we perform simulation experiments on the ROP model to evaluate how 
the model performance varies with rank depth and then compare the ROP model results with the 
ROL model results. We also extend the ROP model similar to the manner in which the ROL model 
was extended to incorporate scaling of error terms at different conditional rank depths. The 
performance of the extended ROP model is compared against the performance of other models in 
the simulated and empirical datasets. 
 

                                                 
1 To be clear about the terminology of rank depth, consider a set of three alternatives labeled A, B and C, and assume 
that a person ranks the alternatives (from most preferred to least preferred) as C, A, and B. Then, the alternative 
selected at a rank depth of 1 is C and the alternative selected at a rank depth of 2 is A. 
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2. LITERATURE REVIEW 
The ROL model was first developed by Beggs et al. (5). This model follows a random utility 
maximization framework and assumes that the error kernels of the utility functions follow an 
independent and identically distributed (IID) type 1 extreme value (EV) distribution across 
alternatives. A consequence of this assumption is that the distribution of utility of the most 
preferred alternative is independent of the ordering of utilities of less preferred alternatives. This 
property is a manifestation of the independence of irrelevant alternatives (IIA) property that is 
associated with logit models. Therefore, if the utilities of alternatives are type 1 EV distributed, 
the probability of any rank ordering of alternatives can be written as the product of the sequence 
of probabilities of choosing the most preferred alternative among all the unranked alternatives. 

Logically, the coefficients estimated using the ROL model should be the same irrespective 
of the rank depth that is used in estimation. In other words, the coefficients estimated using only 
the most preferred choice must be around the same as the coefficients obtained when the estimation 
is undertaken using the first k ranked choices. However, several previous studies have shown that 
this is not the case. In fact, it is observed that the coefficients of the ROL model tend to attenuate 
(move closer to zero) when more rank levels are used for estimation (2, 3). This has fostered a 
belief that progressively higher cognitive demands are placed on individuals when ranking less 
preferred alternatives, because of which rankings become less reliable and not consistent with the 
individual’s true underlying utilities as the rank depth increases. To accommodate this higher 
unreliability of rankings, some studies (such as Hausman and Ruud (3) and Foster and Mourato 
(2)) have suggested the use of models where the utility function for alternatives changes with each 
ranking level. These models make the use of scaling parameters to alter the variance of the error 
kernel with rank levels. The error kernel is assumed to capture an individual’s inability to assess 
utilities reliably. Therefore, scaling up of the error kernel at higher rank depths is considered to be 
a sign of decreased ability to rank reliably. This extension of the ROL model that makes use of 
scale parameters to capture coefficient variations across rank levels is called the heteroscedastic 
ROL (HROL) model. 

In contrast to the prevalent view of cognitive burden considerations with ranking data 
(based on the observation of coefficient attenuation across conditional rank levels in the ROL), 
Yan and Yoo (4) show, through simulation experiments and computational analyses, that estimates 
produced by the ROL model can show coefficient attenuation if the true distribution of the utility 
error term deviates even slightly from the type 1 EV distribution. This is because, if the error term 
does not follow a type 1 EV distribution, the probability of a ranking pattern can no longer be 
written as the product (across rank depths) of the probabilities of choosing the most preferred 
alternative among the unranked alternatives at each rank depth. For a generic distribution of the 
error term, the probability for selecting an alternative at a rank level must be conditioned on the 
ordering of alternatives that have already been ranked. Assuming a type 1 EV distribution for the 
error kernel and using the resulting exploded logit structure ignores this conditioning (except that, 
when the error kernel is truly a type 1 EV, this conditioning becomes mute). The solution proposed 
in Yan and Yoo (4) to avoid the problem of attenuation of coefficients because of misspecification 
of the error term distribution is to increase the flexibility of the ROL model by introducing mixing 
of coefficients and latent classes in addition to scaling parameters at each ranking level. With such 
a flexible specification, the kernel error will play a lower role in determining the ranking sequence, 
and therefore the problem of attenuation of coefficients will not be as severe. 

The rank ordered probit (ROP) model was developed based on the assumption that the true 
distribution followed by the utility error terms of alternatives is normal. This model is discussed 
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in Train (6). While the ROL model and its variations have been developed upon extensively and 
used in several empirical contexts (7–9), few studies have made use of the ROP model (10–12). 
To the authors’ knowledge, Schechter (11) is the only paper that applied the ROP model to a stated 
preference ranking dataset. The reason for the dearth of literature on the ROP model may be 
because, until the past decade, computing cumulative distribution functions of multivariate normal 
distributions for evaluation of the ROP model was much more cumbersome than computing 
logistic distributions for evaluation of the ROL model. However, with recent advancements in 
analytical (13) and simulation methods (14) for the approximation of cumulative multivariate 
normal distribution functions, estimation of a ROP model for the usual modeling contexts 
encountered in practice should no longer be intractable. 

In addition to the dearth of ROP applications, there has been no study that we are aware of 
that investigates if the problem of unstable coefficients which afflicts the ROL model also prevails 
for the ROP model. The findings of Yan and Yoo (4) suggest that, since the ROP model takes into 
consideration the dependencies of choices between (the conditioned) rank levels, the effects of 
unstable coefficients because of misspecification must be much less severe or even non-existent. 
In this paper, we compare the performance of the ROL and ROP models on simulated datasets in 
terms of robustness of coefficients to misspecification and goodness of fit across rank depths. 
Further, we generalize the econometric approach to introduce heteroscedasticity with rank depth 
through the use of scaling parameters. This approach is used to develop a heteroscedastic version 
of the rank ordered probit (HROP) model. The tendency for the ROL and ROP models to show 
coefficient variation across rank levels is studied for the case of two empirical datasets by 
comparing estimates of the scaling parameters produced by the HROL and HROP models 
respectively. 

The remainder of this paper is organized as follows. Section 3 provides a background of the 
traditional non-heteroscedastic or homoscedastic ranking models. Section 4 describes the concept 
behind the development of heteroscedastic ranking models. Further, the ranking probability 
functions for the HROL and HROP models are derived. Section 5 provides details regarding the 
simulation experiments conducted to evaluate the different ranking models in terms of coefficient 
variation and goodness of fit. In Section 6, the ranking models are estimated on two different 
empirical datasets to investigate whether the insights gained from the simulation studies carry over 
to the empirical datasets as well. Section 7 concludes the paper. 

 
3. RANKING MODELS 
Consider the case of an individual who ranks a set of K  different alternatives. Let kU  be the 

individual’s utility for an alternative (1, 2,..., )k K  expressed as: 

k kU  kβ x  (1) 

where kx  is a column vector (of dimension 1D ) of individual-level attributes specific to the 

alternative, β is the corresponding column vector of coefficients, and k  is the idiosyncratic 

random error term. Let r be a specific rank ordering of the alternatives. That is, 1r  is the first 
alternative, 2r  is the second alternative and so on. Rr  denotes the event that the alternatives are 

ranked in the order r by the individual. According to the random utility maximization framework, 
the probability of Rr can be expressed as: 

   12 23 1; 0, 0,..., 0K Kr r r r r r
P R P U U U U U U       r β  (2) 



Nair, Bhat, Pendyala, Loo, Lam  4 

 

The above probability can also be considered as the likelihood value for a given ranking 
observation r. When using a likelihood framework for estimating the coefficients of utilities, it is 
common to consider only a part of the ranking sequence. If only the top d alternatives of an 
individual are considered during estimation, the resulting probability function of the partial ranking 
sequence up to a rank depth of d can be expressed as follows: 

 
2 1 1

1 2

3 20, 0,..., 0,
;

0, 0,..., 0
,

dd

dd d d K d

r r r r r r

r r r r r r

U U U U U U
P R P

U U U U
d

U U



 

      
         


r β  (3) 

If the rank depth d is set as 1K   (because the individual’s least preferred alternative is implicitly 
known once all other alternatives are ranked), Equation (3) is equivalent to Equation (2). 

In the ROL model, which assumes the kernel error term k  to follow a type 1 EV 

distribution, the probability of a ranking sequence up to a rank depth of d reduces to the following 
equation: 

 
 1

ex

e
( ;

p
, )
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d

ROL K
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P R d











 i
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r
r

r

β x
β

β x
 (4) 

which is the product of probabilities (across ranks up to the rank depth of d) of selecting the most 
preferred alternative among all the unranked alternatives. The reader is referred to Beggs et al. (5) 
for the complete derivation. 

To compute the probability for the ROP model, construct the K D  matrix

1 2( , ,..., )K x x x x . Let U ( 1K   vector) be the vector of utility values of alternatives and let ξ     

( 1K   vector) be the vector of idiosyncratic error terms associated with the alternatives. Then the 
vector of utilities U can be expressed as: 

U xβ ξ   (5) 

Here, ξ  is assumed to follow a multivariate normal distribution, with mean 0 and variance Ω. Let 

M be the mask matrix of size  ( 1)K K    which when pre-multiplied with U produces the vector 

of utility differences that should be less than zero according to Equation (3). To generate the mask 
matrix M corresponding to a ranking sequence r and rank depth d, first generate a matrix of size 

 ( 1)K K   filled with zeros. Then, in the first row, place a value of ‘–1’ at the column 

corresponding to the first ranked alternative and ‘1’ at the column corresponding to the second 
ranked alternative. Similarly, in the second row, place a value of ‘–1’ at the column corresponding 
to the second ranked alternative and ‘1’ at the column corresponding to the third ranked alternative. 
Continue this procedure for d rows. After row d, place ‘–1’ on all rows at the column corresponding 
to the alternative with rank d. But continue placing ‘1’s at the columns corresponding to the 
alternative that is ranked one more than the row index. An illustration of the mask matrix for the 
ranking sequence (3,5,1, 4, 2)  and rank depth 3 is given below. 

0 0 1 0 1

1 0 0 0 1

1 0 0 1 0

1 1 0 0 0

 
  
 
  

M   
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Then the probability of a ranking sequence r up to a rank depth d when using an ROP model is 
expressed as follows: 

 11; , ) ; ,( KROP r KP d FR    0 M MΩM βxβ  (6) 

where, 1 1( ,; )K KF  0 Σμ  is the K–1 dimensional cumulative multivariate normal distribution 

function computed at the truncation point vector 1K 0  (a vector of zeros of dimension K–1) with 

mean μ and variance-covariance matrix Σ. 
 
4. HETEROSCEDASTIC RANKING MODELS 
The process of ranking alternatives can be considered as a series of choice decisions in which an 
individual selects, conditional on earlier choices, the best alternative among all the unranked 

alternatives (15). Let 
irS r  denote an event where the individual selects alternative ir  from an 

ordered set of alternatives r.  

2

1 2

1 10, 0,..., 0,
( ; )

0, 0,..., 0

i ii

i

i

i

i

iKi i

r r r r r rr

r r r r r r

U U U U U U
P S P

U U U U U U



 

      
         

r β   (7) 

Let :i jr  denote the vector of alternatives between and including the thi and thj alternatives 

in a ranking r of the K alternatives, with the convention that 1: .K r r  Equation (3) can be written 
in the following manner to better reflect the ranking process as a series of conditional single choice 
decisions. 

     :

11 3

: 2: 3 -1:

2 1

2

,,; ; | , ,..., ;
l

l K K

l

K l K

r r r r r r
d

l

P R P S P S S S S Sd




 r r rr r r r
β β β   (8) 

In Equation (8),  :

1 2 13

: 2 3: -1:| , , ,..., ;l

ll

K K K l K

r r r r rP S S S S S


rr r r r
β  denotes the probability that lr  is 

selected as the best alternative among the unranked alternatives :l kr , given that the individual has 
selected 1: -1lr  as the first 1l   alternatives. The conditioning is required because the unobserved 
factors that affect the individual’s choice of the first 1l   alternatives may also affect the choice 
of the lth alternative. 

To account for the phenomenon of attenuation of coefficients with rank depth, it is 
hypothesized that individuals find it difficult to rank alternatives at higher rank depths reliably. 
This hypothesis is incorporated into ranking models by multiplying scaling parameters with the 
attribute coefficients at each rank level. The resulting ranking models are referred to as 
heteroscedastic ranking models and its general form is as shown below. 

     1 3

: 2 3

1 2

:

1

: -1:

2
1; ; | , , ,..., ;, ,

l

l K K K l K

lr r r r r r
HR l

d

l

P R P S P Sd S S S S 




 r r rr r r r
β μ β β  (9) 

The scaling parameter l  effectively controls the relative contributions of the exogenous 

parameters and the idiosyncratic error term in the overall utility function. A lower value for l  

would introduce higher variability in the utilities of alternatives at rank level l, while a higher value 
of l  would make the utilities more deterministic. Therefore, if the hypothesis that individuals 

rank alternatives at higher rank depths less reliably is true, the value of l  should be lower for 

larger l. To avoid issues with identification of coefficients, 1  is fixed to 1 during estimation. To 
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ensure that the scaling parameter remains positive, it may be reparametrized as )exp(l lf  . Note 

that multiplying the utility coefficients by l  has the same effect as dividing the covariance matrix 

of the error terms by 2
l . 

The conditional probability of selection of an unranked alternative at any given rank depth 
can be expressed in terms of the ranking probabilities as follows: 
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Equation (9) on application of Equation (10) becomes: 
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Equation (11) can be used to extend the ROL model to produce the heteroscedastic ROL 
(HROL). Substituting the generic ranking probability function  ,; l lP R 

r β  in Equation (11) with 

that of the ROL model, ROLP (from Equation (4)), the probability function for the HROL model is 

as follows: 
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As mentioned in Section 2, Equation (12) can be viewed as the product of probabilities of 
choosing the best alternative among the unranked alternatives independent of the alternatives that 
have already been chosen. This is an artifact of the IIA property of logit based models. In other 
words, if the errors are assumed to be type 1 EV distributed, 
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where,  : ;
l

l K

r
MNL lP S 

r
β denotes the probability of selection of lr  from alternatives :l Kr  when the 

utility coefficients are l β  and the error terms follow a type 1 EV distribution. 

To the authors’ knowledge, heteroscedasticity using scale parameters has not been 
introduced to any ranking model other than ROL. However, the same concept can also be extended 
to the ROP model to produce the Heteroscedastic ROP (HROP) model. Replacing the generic 
ranking probability function  ,; l lP R 

r β  in Equation (11) with that of the ROP model, ROPP

(from Equation (6)), the probability function for the HROP model is as follows: 

     
 1

2

;
; ;

;

,
, , ,1

, 1
ROP

H
l

ROP R
l

OP
O

l

R P

d P R
P R P

l
Rd

P R l







 r

r r
r

β
β μ β

β


 


 (14) 



Nair, Bhat, Pendyala, Loo, Lam  7 

 

Unlike the HROL model, the HROP model cannot be simplified to a sequence of independent 
single choice decisions. 

All the heteroscedastic and homoscedastic ranking models discussed in this paper were 
estimated using the GAUSS matrix programming language, and are available at 
http://www.caee.utexas.edu/prof/bhat/CodeRepository/CODES/Ranking/Code_Release.zip. 

 
5. TEST FOR COEFFICIENT ATTENUATION IN ROP MODELS 
In this section, we compare the extent of coefficient attenuation and goodness of fit for the ROL 
and ROP models. The comparison is performed on simulated datasets. Details regarding the 
development of the simulated datasets are provided in Section 5.1, and the results and 
interpretations from the experiments are presented in Sections 5.2 and 5.3. 
 
5.1 Experimental Setup 
The objective of the simulation experiments is to understand the robustness of coefficients 
obtained from the different ranking models to misspecification of the kernel error term. By 
robustness of coefficients, we refer to the property of lack of variation in estimated coefficients 
across rank depths. To focus on the issue of kernel distribution misspecification, we consider 
strictly IID error terms across alternatives (so that covariance across error terms of alternatives 
does not add another dimension of misspecification impacting variation in estimated coefficients 
across rank depths). The data generation process used for the generation of test datasets is the same 
as Equation (1). In all our experiments we assume 8 alternatives and 2 attributes for each 
alternative. The alternative specific constant term for the first alternative is set to zero, and that for 
all other alternatives is set to one. The value of coefficients for the two attributes are set as 1 and 
–1. We consider 4 different distributions for the IID kernel error terms. They are the normal 
distribution, type 1 extreme value distribution, uniform distribution and logistic distribution. The 
parameters of these distributions were set in a way that the mean is zero and the variance is 2 / 6  
for all distributions. The values of attributes for each observation are drawn from normal 
distributions with a variance of one. The mean of normal distributions for the first attribute of the 
8 alternatives ranged linearly from 0.5 for the first alternative to –0.5 for the last alternative. This 
trend was reversed for the distributions of the second attribute. The distributions of attributes were 
set in this manner to ensure that there are variations in the number of observations that select each 
alternative as their first choice.  

All coefficients are estimated using the maximum likelihood method. The one variate 
univariate screening method (13) is used to evaluate the cumulative multivariate normal 
distribution function for the probit based models. 

 
5.2 Experimental Results: Robustness of Coefficients 
To evaluate the degree of coefficient attenuation, 50 datasets of size 500 were generated for each 
distribution of the utility error term. For each dataset, coefficients were estimated using the 
different ranking models at rank depths varying from 1 to 7. In other words, a total of 4 (error 
distributions) × 50 (datasets) × 4 (ranking models) × 7 (rank depths) = 5600 models were estimated. 
A box plot of the estimated coefficient of the first attribute (with a coefficient of 1 in the data 
generation process) is provided in Figure 1. The box plots for the second attribute (with a 
coefficient of –1 in the data generation process) is not shown here as it is almost the same as that 
for the first attribute except for a reversal in sign of the estimated coefficients. Note that the 
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variation of coefficient values presented in the box plot in Figure 1 represent the different estimates 
obtained across the 50 datasets. 

For the models generated from datasets having error distributions as normal, uniform or 
logistic, the extent of coefficient attenuation with the ROP model seems to be much lower than 
that of the ROL model. For these datasets, the advantage of using a heteroscedastic ranking model 
over the ROP model seems to be relatively less. The coefficient attenuation shown by the ROL 
model appears similar to what would be expected if the rankings at higher rank depths were made 
less reliably. This suggests that it may be possible to rectify the problem of attenuation of 
coefficients observed in previous literature by using the ROP model instead of the ROL model.  

In the datasets where the utility follows type 1 EV distribution, the coefficients of the ROL 
model does not attenuate, but that of the ROP model is amplified. None of the heteroscedastic 
ranking models show any variation in coefficient parameters with rank depth. This is expected 
because the variation of coefficients is captured by the scaling parameters in these models. 
However, the robustness of coefficients in heteroscedastic ranking models comes at the cost of 
higher variance (determined by the length of the boxes and whiskers) at higher rank depths. The 
reduction of variance of heteroscedastic models with rank depth seems to be lower than that of 
homoscedastic models. 

Overall, among the homoscedastic models, the ROP model seems to be a better alternative 
to the ROL model if one is not sure about the distribution of the error term. The probit kernel is 
much more accommodative and robust to misspecification of the kernel error term. Both the 
heteroscedastic models do not show significant coefficient attenuation for any distribution of the 
kernel error term. 

 
5.3 Experimental Results: Goodness of Fit 
Coefficient attenuation by itself is not necessarily problematic if it improves the predictive power 
of a model. The maximum likelihood procedure ensures that the coefficients maximize the 
probability of observed rankings up to the rank depth used for estimation. However, in most cases 
where ranking data is used, the true objective is not to be able to predict the probability of an 
individual’s ranking of all alternatives, but to predict the probability of an alternative being 
selected as the most preferred alternative. The idea behind using the ranking data is to use 
information of choices at lower rank levels to produce more precise estimates of the probability of 
selection of the most preferred alternative. Therefore, in this section, we assess the ability of the 
different models to predict the probability of the most preferred alternative when different rank 
depths are used. 

To evaluate the predictive power of the models estimated in the previous step, test datasets 
with 1000 observations were generated for each of the utility error distributions. The likelihood of 
the most preferred alternative in the test dataset was computed for the 5600 models estimated in 
the previous step. The models were tested on the dataset having the same distribution as the dataset 
on which the model is estimated. Figure 2 shows a plot of the computed likelihood values. The 
likelihood value plotted is the average of the likelihoods produced by ranking models estimated 
using the 50 datasets. The likelihood of the most preferred alternatives in the test dataset is 
considered to be a metric for goodness of fit or predictive capability. 

A comparison between the corresponding plots in Figure 1 and Figure 2 indicates the 
goodness of fit improves with rank depth for models that showed robust coefficients in Figure 1. 
The ROL model shows a drop in the goodness of fit when the error terms follow normal, uniform 
or logistic distribution. The likelihood value of the ROP model deteriorates when the error term is 
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type 1 EV distributed. All heteroscedastic ranking models show improvement in goodness of fit 
with rank depth. Overall, the plots of goodness of fit reinforce our finding that the ROP model is 
more robust to the misspecification of distribution of error terms. It should not be surprising that 
the ROL model performs better than the ROP model when the utilities in the datasets are type 1 
EV distributed since this is the same as the utility distribution assumed by the ROL model.  

In the broader context, these results further corroborate Yan and Yoo (4) that the 
attenuation of coefficients observed in past studies on the ROL model may be a result of 
misspecification and not because of inconsistent ranking of alternatives at higher rank depths. The 
ROP model did not show attenuation of coefficients in three of the four error distributions that 
were tested. The robustness of the ROP model in our simulated datasets means that, in the context 
of empirical datasets of stated preference surveys, if the ROP model shows coefficient attenuation 
with rank depth, or equivalently if estimated values of scale parameters in the HROP model are 
significantly less than one, this would be a better indication that individuals in fact rank alternatives 
with lower preference less reliably (while making this same conclusion based on a ROL model is 
more dubious because of confounding of misspecification in the kernel error distribution with less 
reliability in the rankings at higher depth). 

 
6. APPLICATION 
In this section, we compare the extent of coefficient attenuation and goodness of fit of logit based 
models and probit based models when the estimation is undertaken on empirical datasets. 
Coefficient attenuation is captured in the heteroscedastic ranking models through the logarithm of 
the scale parameter at each rank depth except the last (that is, log( ) ( 1,2,... 1),l lf l K   where 

K is the number of alternatives and 1 0f   as an innocuous normalization) (see Section 4). This 

term is an indicator of the extent of coefficient variation at each rank level. A negative value for 
the log scale parameter would indicate coefficient attenuation (that is lower reliability of ranking 
at higher depths), while a positive value implies that the coefficients are amplified (or higher 
reliability of ranking at higher depths). Insignificance or a value close to zero for this term at a 
particular rank level indicates that the coefficient at that rank level is the same as the coefficient at 
the first rank level where the log scale parameter is fixed to zero. The variance of the error term is 
fixed to 2 / 6  in all models. 

For each of the estimated ranking models, the log-likelihood value at convergence and the 
adjusted likelihood ratio index (ADLRI) are computed. In computing the ADLRI, we use the 
likelihood at convergence of the constants only model for the ROL model as the common basis to 
evaluate the alternative models. The performance of the probit based models are compared against 
the corresponding logit based models through the use of the non-nested adjusted likelihood ratio 
test, which determines if the ADLRIs of two non-nested models are significantly different. In other 
words, this statistic gives the probability that the difference between the ADLRI statistic of two 
models occurred because of random chance. Within each of the probit-based and logit-based model 
categories, the performance of the homoscedastic model is compared against its corresponding 
heteroscedastic counterpart using a nested likelihood ratio test. Additionally, the goodness of fit in 
predicting the highest and lowest ranked alternatives is computed. That is, using the estimates from 
each ranked model estimation, the probability of the observed first ranked choice and the 
probability of the observed last ranked choice for each individual in the sample is computed. Then, 
the corresponding log-likelihood values and the average probability of correct predictions (across 
all individuals) are computed. These additional exercises are undertaken to obtain a sense of how 
the ranked model estimation performs in predicting only the first-ranked choice and only the last-
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ranked choice (discarding performance at the intermediate ranks). Note, however, that it is not 
possible to use any rigorous statistical tests to compare performance for the first-ranked choice 
and last-ranked choice predictions, because the model estimations themselves are undertaken using 
the full ranking order. But the log-likelihood values and the average probability of correct 
prediction values serve as informal measures of fit.  
 
6.1 Empirical Example 1 
In this section, we analyze the data on ranking of gaming consoles by 91 Dutch students. The 
students were asked to consider buying a new gaming platform on which to play computer games. 
The six gaming platforms available were Xbox, PlayStation, Gamecube, PlayStation Portable, 
Gameboy or a regular personal computer. For more information on this dataset, the reader is 
referred to van Dijk et al. (16). The dataset is available as part of the R package mlogit (17). 

The specification used for modeling is the same as that used by van Dijk et al. (16). The 
exogenous variables are the number of hours spent playing and a binary variable indicating 
whether the individual owns (or not) the gaming platform under consideration. To conserve on 
space, and also because the substantive variable effects themselves are not of primary importance 
in this paper, we do not present the complete model results (suffice it to say though that all the 
variable effects for all models were as expected and intuitive). Readers interested in the complete 
model results will find these in an online supplement to this paper available at 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Ranking/OnlineSupplement.pdf. But we 
should state here that, in terms of the estimated logarithms of the ranking scale parameters, these 
were statistically significant at the 0.10 level of significance or lower at rank levels two, four, and 
five for the HROL model, but statistically insignificant at literally any reasonable level for the 
HROP model. Also, the magnitudes of the estimated logarithm of scale parameters were all 
negative at each rank level and generally increasing in magnitude with increasing rank depth for 
both the HROL and HROP models, indicating potentially less reliability for lower ranked 
alternatives. In addition, the magnitudes at each rank level were higher in the HROL model 
compared to the HROP model. All of these results, taken together, very strongly imply that the 
coefficient attenuation observed in the ROL model is a result of model misspecification rather than 
unreliable rankings.  

The model fit statistics and the statistics for comparison between the different models is 
provided in Table 1. The non-nested likelihood ratio tests between the ROL and ROP, and the 
HROL and HROP, show that the superiority in performance of the probit kernel over the logit 
kernel is significant. The nested likelihood ratio test between the ROL and HROL models indicates 
that the superior performance of the latter is statistically significant at about the 0.075 level of 
significance. There is no difference between the ROP and HROP models at any reasonable level 
of significance. In fact, the ADLRI value for the HROP is worse than that of the ROP, because the 
HROP adds another four parameters to the ROP with little benefit in prediction.  

With regard to the prediction of the observed first choice, once again, the ROP model 
dominates the ROL model. There is literally no difference in performance between the HROL and 
HROP models, and also literally no difference in performance between the ROP and HROP 
models. For the prediction of the last observed choice, the probit-based models perform better than 
their logit-based counterparts on the log-likelihood measure, though the ROL performs just a little 
better than the ROP based on the average probability of correct prediction. More important to note 
is that the heteroscedastic models perform worse here than their homoscedastic counterparts, 
especially when comparing the two logit-based models. This poor performance of the 
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heteroscedastic models for the last choice prediction is not surprising, given the larger error 
variance at increasing rank depths.  

 
6.2 Empirical Example 2 
In this section, we explore the ranked preferences for buses of public light bus operators obtained 
from a stated preference (SP) survey conducted in 2002 in Hong Kong. The objective of the SP 
survey was to gauge the interest of operators in buying LPG powered buses. The survey included 
an SP game in which each respondent was asked to rank between four hypothetical alternatives 
for buses. The alternatives were described using the following attributes, fuel type (diesel or LPG 
powered), fuel price, vehicle price, distance to the nearest refueling station, maximum distance the 
vehicle can travel between refueling stops (vehicle range), life of the vehicle, number of seats and 
horsepower of the vehicle. The dataset consisted of 903 valid observations. The reader is referred 
to Loo et al. (18) for further details regarding the survey and Loo et al. (19) for a detailed analysis 
of the dataset. The coefficients estimated by the different ranking models are provided in an online 
supplement available at 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Ranking/OnlineSupplement.pdf. In this 
second empirical example (and similar to the first), the estimated logarithms of the ranking scale 
parameters were negative and increasing in magnitude at higher rank depths. But, unlike the first 
empirical example, the logarithm of scale parameters were statistically significant at the 0.05 level 
of significance even in the HROP model (and at a much higher level of significance for the HROL 
model). But, similar to the first example, the magnitudes of these scale parameters were much 
higher in the HROL model relative to the HROP model. Overall, the implication is that there may 
be some degradation in reliability at higher rank depths, but the HROL substantially overestimates 
any such degradation.  

The model fit statistics and the statistics for comparison between the different models are 
presented in Table 1. The non-nested likelihood ratio tests show again that the probit-based models 
outperform their logit counterparts. Also, introducing heteroscedasticity helps in both the probit 
and logit cases, though it improves the ROL model much more than the ROP model. In terms of 
the ability of the models to predict the most preferred alternative, the probit-based models 
outperform their logit counterparts, and introducing heteroscedasticity substantially helps in the 
logit case but relatively less so for the probit case. For predicting the least preferred alternative, 
the ROP model is superior to all other models in terms of log-likelihood, although the probability 
of correct prediction is slightly higher for the ROL model. 

Across both the datasets, for the full ranking and first choice predictions, our results 
indicate that the simple ROP model does better than or almost as well as the HROL model. Further, 
there is not much difference in data fit between the ROP and HROP models. In predicting the least 
preferred choice, the homoscedastic models fare better, and the ROP model outperforms the ROL 
model in terms of log-likelihood and the average probability of correct prediction. Taken together, 
the implication is that the ROP model appears to be far more robust to error term misspecification 
than the ROL model. Earlier studies that use the ROL model and suggest that ranking data is not 
reliable due to cognitive burden considerations may be misplaced. This is particularly so because, 
when using the probit kernel, there was little need to introduce heteroscedasticity, while 
introducing heteroscedasticity in the ROL model improved fit considerably.  
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7. CONCLUSION 
In this paper, we demonstrate through simulation experiments that the coefficient attenuation with 
rank depth observed with ROL models in past literature may be a result of model misspecification 
and not unreliability of the ranking data. Our simulation experiments indicate that the ROP model 
may be a superior option to the ROL model in terms of robustness of coefficients across rank 
depths and goodness of fit. The different ranking models are also estimated on two different 
empirical stated preference survey datasets. In both datasets, on almost all metrics, the probit based 
models were superior to the logit based models. The ROP model appears to be a particularly robust 
one to error misspecification, and there was relatively little attenuation observed in the parameters 
at different conditional rank depths. Our analysis suggests that it would be far superior to use a 
probit kernel to analyze ranked data, and that ranked data may be quite reliable after all. This is an 
important result for survey data collection and preference elicitation, and suggests that researchers 
seriously consider ranking data as a way to elicit preferences. Rank-ordered data are as easy to 
collect as the most preferred alternative, and also have the distinct advantage of providing the 
ability to exploit the additional information to achieve a certain desired precision in choice model 
estimation with a much smaller sample size. Thus, ranked data surveys are more cost-effective for 
a specified precision level of parameters than purely choice (or first preference) data surveys. 
Besides, ranked data estimation allows the simultaneous prediction of both first choice and last 
choice, both of which may be helpful in practical situations. Again, the advantage of the ROP 
model (compared to all other models) comes through clearly in this context from our empirical 
results.  

The transportation industry has recently witnessed the advent of several new technologies 
such as autonomous vehicles and affordable electric vehicles. For these technologies, there is a 
growing need to study and identify early adopters as well as the product features that would be 
most appealing to individuals. Ranking models applied to stated preference data can be a powerful 
tool for undertaking such studies because there exists little revealed preference data on these new 
technologies. We hope that researchers and practitioners will reconsider the use of ranking data in 
modeling choice behavior, rather than inappropriately and summarily dismissing this type of data 
collection as being unreliable.  
 
ACKNOWLEDGEMENT 
This research was partially supported by the Center for Teaching Old Models New Tricks 
(TOMNET) (Grant No. 69A3551747116) as well as the Data-Supported Transportation 
Operations and Planning (D-STOP) Center (Grant No. DTRT13GUTC58), both of which are Tier 
1 University Transportation Centers sponsored by the US Department of Transportation. The 
authors are grateful to Lisa Macias for her help in formatting this document, and to three 
anonymous reviewers for excellent suggestions on improving the paper.  
 
AUTHOR CONTRIBUTION STATEMENT 
The authors confirm contribution to the paper as follows: study conception and design: G.S. Nair, 
C.R. Bhat, B.P.Y. Loo, W.H.K. Lam, R.M. Pendyala; data collection: D. Fok, R. Paap, B. van Dijk 
(first dataset), B.P.Y. Loo (second dataset); analysis and interpretation of results: G.S. Nair, C.R. 
Bhat, B.P.Y. Loo, W.H.K. Lam, R.M. Pendyala; draft manuscript preparation: G.S. Nair, C.R. 
Bhat, B.P.Y. Loo, W.H.K. Lam, R.M. Pendyala. All authors reviewed the results and approved the 
final version of the manuscript. 
 



Nair, Bhat, Pendyala, Loo, Lam  13 

 

REFERENCES 
1. Chapman, R.G., and R. Staelin. Exploiting Rank Ordered Choice Set Data within the 

Stochastic Utility Model. Journal of Marketing Research, 1982. 19: 288–301. 
https://doi.org/10.2307/3151563  

2. Foster, V., and S. Mourato. Testing for Consistency in Contingent Ranking Experiments. 
Journal of Environmental Economics and Management, 2002. 44: 309–328. 

3. Hausman, J.A., and P.A. Ruud. Specifying and Testing Econometric Models for Rank-Ordered 
Data. Journal of Econometrics, 1987. 34: 83–104. https://doi.org/10.1016/0304-
4076(87)90068-6 

4. Yan, J., and H.I. Yoo. The Seeming Unreliability of Rank-Ordered Data as a Consequence of 
Model Misspecification. MPRA Paper No. 56285, 2014. https://mpra.ub.uni-
muenchen.de/56285/. Accessed June 18, 2018. 

5. Beggs, S., S. Cardell, and J. Hausman. Assessing the Potential Demand for Electric Cars. 
Journal of Econometrics, 1981. 17: 1–19. https://doi.org/10.1016/0304-4076(81)90056-7 

6. Train, K.E. Discrete Choice Methods with Simulation, 2nd edition. Cambridge University 
Press, Cambridge, 2009. 

7. Beaumais, O., A. Casabianca, X. Pieri, and D. Prunetti. Why Not Allow Individuals to Rank 
Freely? A Scaled Rank-Ordered Logit Approach Applied to Waste Management in Corsica. 
Annals of Economics and Statistics, 2016. 121/122: 187–212. 
https://doi.org/10.15609/annaeconstat2009.121-122.187 

8. Bogue, S., R. Paleti, and L. Balan. A Modified Rank Ordered Logit Model to Analyze Injury 
Severity of Occupants in Multivehicle Crashes. Analytic Methods in Accident Research, 2017. 
14: 22–40. https://doi.org/10.1016/j.amar.2017.03.001 

9. Oviedo, J.L., and H.I. Yoo. A Latent Class Nested Logit Model for Rank-Ordered Data with 
Application to Cork Oak Reforestation. Environmental and Resource Economics, 2017. 68: 
1021–1051. https://doi.org/10.1007/s10640-016-0058-7 

10. Nair, G.S., S. Astroza, C.R. Bhat, S. Khoeini and R.M. Pendyala. An Application of a Rank 
Ordered Probit Modeling Approach to Understanding Level of Interest in Autonomous 
Vehicles. Transportation, 2018. 45(6): 1623–1637. 

11. Schechter, L. The Apple and your Eye: Visual and taste rank-ordered probit analysis with 
correlated errors. Food Quality and Preference, 2010. 21: 112–120. 
https://doi.org/10.1016/j.foodqual.2009.08.009 

12. Tamiya, R., S.Y. Lee, and F. Ohtake. Second to Fourth Digit Ratio and the Sporting Success 
of Sumo Wrestlers. Evolution and Human Behavior, 2012. 33: 130–136. 
https://doi.org/10.1016/j.evolhumbehav.2011.07.003 

13. Bhat, C.R. New Matrix-based Methods for the Analytic Evaluation of the Multivariate 
Cumulative Normal Distribution Function. Transportation Research Part B, 2018. 109: 238–
256. 

14. Pace, R.K., and J.P. LeSage. Fast Simulated Maximum Likelihood Estimation of the Spatial 
Probit Model Capable of Handling Large Samples. In: Spatial Econometrics: Qualitative and 
Limited Dependent Variables, Advances in Econometrics. Emerald Group Publishing Limited, 
2016, pp. 3–34. https://doi.org/10.1108/S0731-905320160000037008 

15. Luce, R.D., and P. Suppes. Preference, Utility and Subjective Probability. In: Handbook of 
Mathematical Psychology (R.D. Luce, R.R. Bush, E.H. Galanter, eds.), Wiley, New York, 
1965, Vol. 3, pp. 249–410. 



Nair, Bhat, Pendyala, Loo, Lam  14 

 

16. van Dijk, B., D. Fok, and R. Paap. A Rank-ordered Logit Model with Unobserved 
Heterogeneity in Ranking Capabilities. Econometric Institute Research Paper No. EI 2007-07, 
Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute, 
2007. 

17. Croissant, Y. mlogit: Multinomial Logit Models. R package version 0.3-0, 2018. 
18. Loo, B.P.Y., S.C. Wong, and T.D. Hau. Introducing Alternative Fuel Vehicles in Hong Kong: 

Views from the public light bus industry. Transportation, 2006. 33: 605–619. 
https://doi.org/10.1007/s11116-006-7947-5 

19. Loo, B., S. Wang, and T. Hau. Choice or Rank Data in Stated Preference Surveys? The Open 
Transportation Journal, 2008. 2: 74–79. https://doi.org/10.2174/1874447800802010074 
 

 
 
 
 
LIST OF FIGURES 
 
Figure 1 Coefficient estimated by ROL, ROP, HROL, and HROP models for different kernel error 
distributions. 
 
Figure 2 Likelihood of test dataset for the different error distributions when using ROL, ROP, 
HROL, and HROP models. 
 
 
LIST OF TABLES 
 
Table 1 Goodness of fit and comparison statistics for models estimated using ROL, ROP, HROL 
and HROP models 
 



Nair, Bhat, Pendyala, Loo, Lam  15 

 

 
 

FIGURE 1 Coefficient estimated by ROL, ROP, HROL, and HROP models for different 
kernel error distributions. 
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FIGURE 2 Likelihood of test dataset for the different error distributions when using ROL, 
ROP, HROL, and HROP models. 
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TABLE 1  Goodness of fit and comparison statistics for models estimated using ROL, ROP, 
HROL and HROP models 

Summary Statistics 
Model 

ROL ROP HROL HROP

Measures of fit for empirical example 1 – Gaming console dataset 

No. of variables in full specification 11 11 15 15
No. of variables in constants model 5 5 5 5

For complete rankings  

Log-likelihood at constants for the ROL model -546.82    
Log-Likelihood at convergence -517.37 -507.34 -513.13 -506.41
ADLRI 0.0429 0.0612 0.0433 0.0556

Non-nested comparison between models ROL and ROP HROL and HROP
p value ( 4.48) 0.0001   ( 3.67) 0.0001  

Nested comparison between models  ROL and HROL ROP and HROP
p value 2

4
4(8.41 0.8) 075F


 2

4
4(1.81 0.7) 760F




For observed first choice     
Log-Likelihood value -131.30 -124.77 -124.53 -124.05
Average probability of correct prediction 0.28 0.32 0.32 0.32

For observed last choice     
Log-Likelihood value -133.65 -130.38 -138.02 -131.26
Average probability of correct prediction 0.30 0.29 0.26 0.28

Measures of fit for empirical example 2 – LPG bus utility dataset 

No. of variables in full specification 8 8 10 10
No. of variables in constants model 0 0 0 0

For complete rankings     
Log-likelihood at constants for the ROL model -2869.78  
Log-Likelihood at convergence -2489.54 -2416.67 -2419.88 -2402.49
ADLRI 0.1297 0.1551 0.1533 0.1593

Non-nested comparison between models ROL and ROP HROL and HROP
p value ( 12.07) 0.0001   ( 5.90) 0.0001  

Nested comparison between models  ROL and HROL ROP and HROP
p value 

2
2 (139.33) 0.00011 F


  2

2
4(28.31 0.7) 000F


  

For observed first choice  

Log-Likelihood of full specification -928.69 -878.79 -869.37 -866.50
Average probability of correct prediction 0.41 0.46 0.48 0.48

For observed last choice  
Log-Likelihood of full specification -1141.847 -1135.127 -1161.127 -1147.029
Average probability of correct prediction 0.37 0.36 0.32 0.34

 


