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Model System Estimation 
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dimension CA . Let δ  be the collection of parameters to be estimated.  

With the definitions above, we obtain the following reduced form system for y


 and U : 











CIDEN0

0Ξ
Σηηα


)(Var , εεdαwdxγε)w(dxγεzdxγy *        

  ηηα αwbx)w(bxzbxU *                                                (1) 

Now, consider the )]1)[( GE


 vector   U,yyU


. Define 























αwbx

αwdxγ

B

B
B

2

1





  and  


















 


ΛΓΓ

ΓΣΓ

ΩΩ

ΩΩ
Ω

212

121




d

ddd




    (2) 

Then ).( ΩB,MVN ~yU
GE



                                                                                             (3) 

Bhat (2015) has identified sufficient identification conditions for the GHDM model, which are 

summarized here (details are in Bhat, 2015): (1) there are at least two latent variables, with each 

latent variable correlated with at least one other latent variable in the correlation matrix Γ , (2) 

diagonality is maintained across the elements of the error term vector ε


 (that is, Σ


 is diagonal), 

(3) block-diagonality is maintained for the matrix Λ  as in Equation (11) of the paper, (4) The 

error term vectors ε


 and ς  are independent of each other, (5) for each latent variable, there are at 

least two outcome variables that load only on that latent variable and no other latent variable 

(that is, there is at least two factor complexity one outcome variables for each latent variable), (6) 

if a specific variable in the vector x  loads onto an element of the non-nominal outcome vector 

y


, then that element does not depend on any latent variable that contains the specific variable as 

a covariate in the structural equation system, (7) if a specific variable in the vector x  affects the 
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utility of alternative gi  of a nominal variable, then the utility of alternative gi  does not depend on 

any latent variable that contains that specific variable as a covariate in the structural equation 

system, and (8) endogenous variable effects can be specified only in a single direction (as 

discussed in the footnote in Section 2.2 of the paper); in addition, when a continuous observed 

variable (say variable A) appears as a right side variable in the regression for another continuous 

observed variable, or as a right side variable in the latent regression underlying another count or 

ordinal variable, each latent variable appearing in the regression/latent regression for the other 

continuous/count/ordinal variable (say variable B) should have two factor complexity one 

outcome variables after excluding the equation for variable B. This latter condition is not needed 

when a non-continuous observed variable appears as a right side variable in the regression of any 

other observed variable because of the non-linear nature of the relationship between the latent 

regressions and the observed non-continuous variables. 

To estimate the model, note that, under the utility maximization paradigm, 
gg gmgi UU 

must be less than zero for all gg mi   corresponding to the gth nominal variable, since the 
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. Fill this matrix up with 

values of zero. Then, insert an identity matrix of size E into the first E rows and E columns of the 

matrix M. Next, consider the rows from 1to1 1  IEE , and columns from .to1 1IEE   

These rows and columns correspond to the first nominal variable. Insert an identity matrix of size 

)1( 1 I  after supplementing with a column of ‘-1’ values in the column corresponding to the 

chosen alternative. Next, rows 1IE   through 221  IIE  and columns 11  IE  through

21 IIE  correspond to the second nominal variable. Again position an identity matrix of size 

)1( 2 I  after supplementing with a column of ‘-1’ values in the column corresponding to the 

chosen alternative for the second nominal variable. Continue this procedure for all G nominal 
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variables. With the matrix M as defined, we can write ),
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vector), where 
G
~  is a 1

~G -column 

vector of negative infinities, and G
~0  is another 1

~G -column vector of zeros. Then the likelihood 

function may be written as: 
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where the integration domain }:{ uplow ψrψrDr


  is simply the multivariate region implied 

by the observed non-nominal indicator outcomes, and the range ),( ~~
G

0
G

  for the utility 

differences taken with respect to the utility of the observed choice alternative for the nominal 

outcome. )
~

,
~

|(~ ΩBr
GCN

f
  is the multivariate normal density function of dimension GCN

~  

with a mean of B
~

 and a covariance of Ω
~

, and evaluated at r . The likelihood function for a 

sample of Q households is obtained as the product of the household-level likelihood functions.  

The above likelihood function involves the evaluation of a GCN
~

 -dimensional 

rectangular integral for each decision-maker, which can be computationally expensive. An 

alternative estimation technique is Bhat’s (2011) Maximum Approximate Composite Marginal 

Likelihood (MACML) approach.  

 

The Joint Mixed Model System and the MACML Estimation Approach 

In the MACML procedure, we develop the following (pairwise) composite marginal likelihood 

function formed by taking the products (across the N grouped variables, the C count variables, 

and G nominal variables) of the joint pairwise probability of the chosen alternatives for a 

household: 



4 

.),Pr(),Pr(

),Pr(),Pr(

),Pr(),Pr()(

1

1 11 1

1 11 1

1

1 1

1

1 1

'


































































 


 

  



 




 


G

g

G

gg
gggg

G

g

C

c
ggcc

G

g

N

n
ggnn

N

n

C

c
ccnn

C

c

C

cc
cccc

N

n

N

nn
nnnnCML

mimimirk

miajrkaj

rkrkajajL δ

 (5) 

To explicitly write out the CML function in terms of the standard and bivariate standard 

normal density and cumulative distribution function, define ω  as the diagonal matrix of 

standard deviations of matrix Δ , );(. **
ΔR  for the multivariate standard normal density function 

of dimension R and correlation matrix *Δ  ( 11* 



 ωΔωΔ ), and );(. *ΔE  for the multivariate 

standard normal cumulative distribution function of dimension E and correlation matrix *Δ . 
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

 (and similarly for other vectors), and   vv Ω
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In the MACML approach, all MVNVD function evaluation greater than two dimensions 

in the expression above are evaluated using an analytic approximation method rather than a 

simulation method (see Bhat, 2011). As has been demonstrated by Bhat and Sidharthan (2011), 

the MACML method has the virtue of computational robustness in that the approximate CML 

surface is smoother and easier to maximize than traditional simulation-based likelihood surfaces. 

Write the resulting equivalent of Equation (6) computed using the analytic approximation for the 

MVNCD function as )(, δqMACMLL , after introducing the index q for households. The MACML 

estimator is then obtained by maximizing the following function:  

log .)(log)(
1

,



Q

q
qMACMLMACML LL δδ                 (7) 

In the actual empirical analysis in the paper, lot size is not defined for dwelling units in 

apartment complexes. Thus, the likelihood function in Equation (4) and the CML function in 

Equation (5) have to be modified in a minor way. Specifically, in Equation (4), the likelihood 

function becomes the product of two components: (1) one component for dwelling units in 

apartment complexes, where the likelihood corresponds to the probability of the 

multidimensional set of chosen attributes but sans the lot size dimension (this reduces the 

dimensionality of the integral), and (2) a second component for non-apartment complexes that 

takes the exact form as in the current Equation (4). In the CML function of Equation (5), there 

are two multiplicative components once again: (1) one component for dwelling units in 

apartment complexes where pairwise combinations of other dimensions with the lot size 
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dimension do not appear, and (2) a second component for non-apartment complexes where the 

CML function is exactly as is in the current Equation (5). 

The covariance matrix of the parameters δ  may be estimated by the inverse of 

Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005).  
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An alternative estimator for Ĥ  may be obtained by computing the quantity below for each 

household, and averaging across households: 
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Positive Definiteness 

The matrix Ω
~

 for each household has to be positive definite. The simplest way to guarantee this 

in our mixed model system is to ensure that the )( LL correlation matrix Γ  is positive definite, 
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and each matrix gΛ


),...,2 ,1( Gg   is also positive definite. An easy way to ensure the positive-

definiteness of these matrices is to use a Cholesky-decomposition and parameterize the CML 

function in terms of the Cholesky parameters. Further, because the matrix Γ  is a correlation 

matrix, we write each diagonal element (say the aath element) of the lower triangular Cholesky 

matrix of Γ  as 





1

1

21
a

j
ajp , where the ajp  elements are the Cholesky factors that are to be 

estimated. In addition, note that the top diagonal element of each gΛ


 matrix has to be 

normalized to one (as discussed earlier in Section 2.2 of the paper), which implies that the first 

element of the Cholesky matrix of each gΛ


 is fixed to the value of one.  
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