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ABSTRACT 

This study adopts a dwelling unit level of analysis and considers a probabilistic choice set 

generation approach for residential choice modeling. In doing so, we accommodate the fact that 

housing choices involve both characteristics of the dwelling unit and its location, while also 

mimicking the search process that underlies housing decisions. In particular, we model a 

complete range of dwelling unit choices that include tenure type (rent or own), housing type 

(single family detached, single family attached, or apartment complex), number of bedrooms, 

number of bathrooms, number of storeys (one or multiple), square footage of the house, lot size, 

housing costs, density of residential neighborhood, and commute distance. Bhat’s (2014) 

generalized heterogeneous data model (GHDM) system is used to accommodate the different 

types of dependent outcomes associated with housing choices, while capturing jointness caused 

by unobserved factors. The proposed analytic framework is applied to study housing choices 

using data derived from the 2009 American Housing Survey (AHS), sponsored by the 

Department of Housing and Urban Development (HUD) and conducted by the U.S. Census 

Bureau. The results confirm the jointness in housing choices, and indicate the superiority of a 

choice set formation model relative to a model that assumes the availability of all dwelling unit 

alternatives in the choice set.  

 

Keywords: Latent psychological constructs, MACML estimation approach, mixed dependent 

variables, structural equations models, integrated land use-transportation modeling, housing 

choices. 
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1. INTRODUCTION 

The home is usually considered as the base location for individuals, the place that most people 

start their activities from each day and the place that most people come back to at the end of the 

day. Thus, it has been well established for some time now that the home location can act as a 

facilitator or a suppressor of out-of-home activity pursuits of individuals living in the home, 

based on the relative spatial location of the home vis-à-vis activity opportunity locations (see, for 

example, Bhat and Koppelman, 1993). In turn, the residential location choices of households, at 

an aggregate level, impact the built environment as transport, land use, and urban form change in 

response to where people live.  This bidirectional and dynamic interaction between where people 

choose to live and how the built environment evolves is at the heart of integrated land-use and 

transportation modeling (see, for example, Bhat and Guo, 2004, Sener et al., 2011, Pagliara and 

Wilson, 2010, and Zolfaghari et al., 2012). More broadly, the decision of residential location 

fundamentally determines the connection between the household and the rest of the urban 

environment, and can have a profound impact on the overall quality of life of individuals in the 

household.  As a consequence, the study of residential location choice has attracted considerable 

attention in a wide variety of disciplines well beyond transportation, including real estate 

science, ecology, actuarial science, psychology, and urban and regional economics.  

Many different approaches have been considered in the literature to model residential 

location choice. One approach is based on a gravity-type formulation, which uses an aggregate-

level relationship to characterize a distance-decay specification for the residence location-

workplace interchange (see Lowry, 1964 and Wilson, 1970). Another approach is based on 

Alonso’s (1960) bid-rent model that assumes that households compete for land and locate in 

concentric circles, with the density of households fading with distance from a monocentric 

employment center. Households’ location decision is considered to be based on a trade-off 

between commuting time and land prices. The bid-rent model has been extended to consider 

other observed factors (such as the location of good schools, accessibility to activity 

opportunities, and crime rates) and unobserved factors (see Ellickson, 1981, Martinez, 2008, and 

Hurtubia and Bierlaire, 2011). However, the dominant approach to model residential location is 

based on the discrete choice formulation originally proposed by Lerman (1976) and McFadden 

(1978).  Such a formulation has an appealing underlying microeconomic basis, and enables the 

analysis of trade-offs among a wide range of factors affecting the decision of where to locate. It 
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also allows sensitivity variations (across socio-demographic segments of the population) to 

location attributes (see Bhat and Guo, 2004, Bhat and Guo, 2007, Prashker et al. (2008), Pinjari 

et al. 2009, and Zolfaghari et al., 2012).  

 In the context of the discrete choice formulation, many important issues become relevant 

and need to be addressed. Two such very important (and as we will discuss later, inter-related) 

considerations deal with the analysis unit used for the alternatives in the choice set and the 

choice set construction. 

 

1.1. The Analysis Unit 

A majority of residential location choice models consider an aggregate spatial region (for 

example, census tracts or traffic analysis zones or neighborhoods) as the analysis unit. Typically 

referred to as zone-based models, these models focus on households’ choice of the spatial zone 

to reside in, as a function of a suite of zone characteristics (such as zone-based accessibility 

measures to pursue out-of-home activities, crime rates, quality of schools in the zone, commute 

times of workers in the household, zonal race and income distributions relative to household’s 

race and income, respectively) and interactions of  household characteristics with the zonal  

characteristics (see, for example, Chen et al., 2008, Pinjari et al., 2011, de Palma et al., 2007, 

and Bhat and Guo, 2007). The advantage of zone-based models is that data preparation is rather 

easy for estimation and forecasting, because the zone-based attributes are constructed anyway for 

use in other components of a travel demand model. However, there are many limitations of using 

a zone-based model. First, one has to define a spatial resolution for the “zone” and develop a 

configuration of the zonal structure. Unfortunately, this can imply that two points in space very 

proximal with one another may end up in different zones (because of the discretization of space), 

with potentially different zone-level attributes attached to the two points. The end-result is that 

the model estimates can be different based on how space is compartmentalized into zones. This 

problem, referred to in the literature as the Modifiable Areal Unit Problem (MAUP), is a long 

standing one with no clear way out to resolve the problem (see Openshaw, 1978, Guo and Bhat, 

2004). Second, any dwelling unit related variables that one may want to use to explain residential 

location (such as owned single family unit versus a rented unit in a multi-family apartment 

complex) also has to be aggregated up to the zone level. This results in a situation where all 

points in space within a zone take on the same dwelling unit attribute values, even though there 
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will be variation in these attributes within a zone. In essence, heterogeneities in space within a 

zone get ignored, and could lead to an aggregation bias in model estimates (see Heckman and 

Sedlacek, 1985). Besides, the decision of housing involves more than just location; households 

do consider dwelling unit attributes (such as number of bedrooms, number of bathrooms, square 

footage, and housing costs) too, and this is completely ignored by zone-based models. Third, 

micro-scale land-use policies cannot be analyzed using zone-based models because of the 

coarseness of the definition of space.  

A second unit of analysis used in the literature corresponds to that of a parcel or a 

building. Doing so has many advantages over the zone-based models, because there is no 

ambiguity in the definition of the spatial unit of analysis, and thus the problems arising from 

MAUP in the zone context are non-existent in the parcel context. The use of a parcel can also 

help improve the specification of accessibility attributes, and provide the fine resolution needed 

for the analysis of micro-scale land-use policies. This approach has been adopted by Lee et al. 

(2010) and Lee and Waddell (2010), who developed a parcel-based residential location choice 

model for the Puget Sound region, though many of the locational explanatory variables they used 

were only defined at the zone level. The problem with parcel-based models is that, like the zone-

based models, they do not consider dwelling unit attributes that are made jointly with the 

physical location of the residence. Thus, these models do not distinguish between two parcels 

with very different types of dwelling units.  Besides, such models have not been used much 

because of the need for high spatial resolution data on parcels (which can be difficult to put 

together) and the computational issues associated with the high number of parcels as alternatives. 

In particular, unless the restrictive multinomial logit model form is used, estimation with a 

sample of parcel alternatives requires the introduction of appropriate correction terms (see 

further discussion in Section 1.3).  

A third unit of analysis is that of the dwelling unit. One can then use a zonal-level spatial 

resolution or a parcel-level spatial resolution for the physical location unit. The advantage of this 

approach is that it can accommodate dwelling unit attributes. But a zone-level spatial 

representation brings the same disadvantages as those listed earlier for zone-based models in 

terms of spatial aggregation, while a parcel-based spatial representation has important 

advantages. Further, the combination of the dwelling unit and a parcel provides a unique “point” 

identification of residential location. Examples of the use of a zone-based dwelling unit approach 
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include Guevara (2010) and Bayer et al. (2005), while examples of the parcel-based dwelling 

unit approach include Habib and Miller (2009) and Eliasson (2010). In both cases, considerations 

related to choice set formation are very important because the universal choice set explodes in 

size very quickly (particularly with a parcel-based spatial resolution), as we discuss in the next 

section. 

 

1.2. Choice Set Generation 

An important issue in the discrete choice modeling of residential choice is the alternatives from 

which a family chooses its location. This is non-trivial because the number of spatial location 

alternatives can range from a few hundreds to thousands in the case of zone-level models to 

hundreds of thousands in the case of parcel-level or dwelling unit level models. There is a 

relatively vast body of literature in the social-behavioral science literature now that suggests that 

decision-makers, when confronted with a vast array of possible options, whittle down those 

options to just a few using heuristic non-compensatory screening rules, followed by a much more 

careful and possibly compensatory process to make the final decision (see Tversky, 1972 and 

Manrai and Andrews, 1998). Further, many earlier studies of choice set formation have 

demonstrated how ignoring the choice set formation process, and assuming that all alternatives 

are available and evaluated using a utility-maximizing structure, can lead to biased parameter 

estimates, leading to incorrect sensitivity to variable changes and poor forecasting performance 

(see, for example, Shocker et al., 1991, Williams and Ortuzar, 1982, Swait, 2001, Basar and 

Bhat, 2004, and Bell, 2007). The fundamental reason for this is that considering the full choice 

set is tantamount to assuming that the choice of one alternative implies an underlying preference 

ordering in which the chosen alternative is the highest ranked over all other alternatives. This 

may not be the case because individuals may not be aware of some alternatives and/or may use 

heuristics to simplify the choice process to reduce cognitive, emotional, and time/money search 

costs that come with choice option overloading. In particular, the cognitive costs are associated 

with the mental energy expenditure to collect information on each alternative in the choice set 

and make a “rational” choice (see Shugan, 1980 and Botti and Hsee, 2010); the emotional costs 

relate to the psychological distress that accrues from a consumer not being entirely sure about 

her/his preference ordering in the presence of a large number of options and/or experiencing a 

high degree of loss aversion due to having to reject a large number of options in the process of 
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selecting one option (see Carmon et al., 2003); the time costs refer to the opportunity cost of 

collecting and processing information on a large number of alternatives, and the money costs 

refer to fiscal investments in the information gathering process. Indeed, Simon’s pioneering work 

emphasized the use of heuristics and short-cuts to quickly circumscribe the set of possibilities to 

choose from, due to humans being “cognitive misers” and having “bounded rationality” (Simon, 

1986). 

 The typical approach in the literature on residential choice modeling (whether at the 

zone-level, parcel-level, or dwelling level) has been to use a random sampling approach to 

sample a subset of the universal choice set of alternatives (for example, Bhat and Guo, 2007, 

Habib and Miller, 2009, Lee and Waddell, 2010, Guevara, 2010, Eliasson, 2010, Chen et al., 

2008, and de Palma et al., 2007). This reduces the computational burden of estimating a discrete 

choice model with a large number of alternatives. With the introduction of appropriate correction 

terms, the approach can also provide consistent and asymptotically normal estimates for most 

discrete choice models, assuming that households consider all possible alternatives (see 

McFadden, 1978, and Guevara and Ben-Akiva, 2013a,b). However, sampling of alternatives is 

simply a statistical device to reduce the computational burden of considering all alternatives 

during estimation. At a fundamental level, it does implicitly assume that households do choose 

from the universal choice set, and it ignores the presence of any search behavior process 

heuristics and pruning tactics in residential choice decisions.  As already discussed, this can lead 

to inappropriate forecasts and inaccurate policy sensitivity in response to changes in exogenous 

variables. Another substantial problem with the sampling approach is in forecasting. As 

discussed by Wegener (2011), even if it is true that households actually consider the universal 

choice set, a very large number of alternatives leads to a situation where there is little difference in 

the predicted choice probabilities across alternatives, which can lead to instability and poor 

predictions when such a residential location choice model is used in forecasting or in evaluating the 

effects of a change in a policy variable.  

 Another approach in the literature is to acknowledge the presence of a dynamic spatial 

choice process in which households get exposed to an evolving set of alternatives over a period 

of time (with potentially changing attributes of alternatives such as housing costs), search and 

construct what they believe to be a set of credible and feasible alternatives during each 

evaluation occasion in a first stage decision process, and then make a final choice from the 
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alternatives remaining at the end of the first stage in a second stage decision process at some 

point in time (Habib and Miller, 2007). In the absence of direct observation on the first stage 

search process, analysts attempt to mimic this underlying choice set formation process assuming 

(1) a search strategy and (2) a specific approach to implement the search strategy to form choice 

sets. Zolfaghari et al. (2013) provide a good review of search strategies and their 

implementations. Briefly, the search strategies, as originally identified by Huff (1986) (and 

supported by his empirical analysis based on direct observation on the search process of 

households looking to purchase homes in the San Fernando Valley of Los Angeles), are likely to 

be a combination of three underlying cognitive psychology approaches: supply constraint-based, 

area-based, or anchor points-based. The supply constraint-based approach assumes that 

households will concentrate their search on areas where their housing needs (in terms of dwelling 

and parcel attributes) are most likely to be met. As well, the approach recognizes that different 

households may consider different alternatives because financial or access constraints or the 

social capital available at the disposal of the household may modulate and/or meter information 

flow (see also Bell, 2009, who emphasizes these considerations in a parental school choice 

context). The area-based search approach states that once a specific geographic market (and/or 

area type) has been identified for housing search, households will concentrate and persist their 

search within that market because of start-up and information-processing costs involved in 

shifting attention to another area. The anchor-points based approach is based on the notion that 

households will circumscribe their searches around specific anchor points and consider only 

those alternatives that are within a specific threshold distance of the anchor points. Most studies 

in the literature that consider search processes in a spatial context (such as residential choice or 

activity location choice) focus on the anchor-based approach (see, for example, Thill and 

Horowitz, 1997, Bhat, 1999, Bhat and Zhao, 2002, Elgar et al., 2009, and Rashidi et al., 2012).  

The implementation of a search strategy itself is generally accomplished using a 

deterministic set-up or a probabilistic set-up. The deterministic set-up is based on specifying a 

fixed threshold for each household based on the predicted distribution of distances from one or 

more anchor points. For example, in Zolfaghari et al.’s (2012) zone-level residential choice 

model, they develop a weibull-distributed model for average commute time (that is, the commute 

time averaged across all workers in a household) as a function of the number of vehicles, number 

of workers. Then, the 90th percentile commute time is declared as the threshold commute 
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distance for zones to be considered in the choice set of the household (that is, 90% of households 

with given values of number of vehicles, number of workers, and household income have an 

average commute time less than the threshold).1 The probabilistic set-up acknowledges the lack 

of precise information about the search process, and accommodates the uncertainty inherent in 

the choice set formation process. Thus, it is more representative of the true behavioral process 

underlying choice set formation relative to the deterministic set-up. In this probabilistic set-up, 

which typically uses Manski’s (1977) two-stage modeling paradigm, the overall probability of 

choice of an alternative is developed as the sum (across all possible non-empty choice subsets of 

the universal choice set) of the product of probability of a choice set (formed through a non-

compensatory conjunctive heuristic process) and the probability of the alternative given the 

choice set (typically formulated as a conventional compensatory utility maximization process). 

In Manski’s approach, the two stages are considered as separate and independent mental 

processes, even though the second-stage choice is made from the retained (but latent to the 

analyst) choice set in the first stage (see also Bovy, 2009). Swait and Ben-Akiva’s (1987) 

random constraint-based approach or its variants are typically used to form the probabilities of 

the non-empty choice subsets in the first step in a practical manner. Kaplan et al. (2011, 2012a,b) 

adopt a Manski-like approach for rental apartment choice modeling, but with the important 

difference that they overtly “observe” the choice set of respondents (rather than the choice set 

being latent as in the Manski formulation). Specifically, they use information on three search 

criteria for developing the choice set in the first step. The search criteria included whether 

respondents (631 students in a University in Israel) were willing to share a rental apartment, 

location preference between two neighborhoods in the vicinity of the University, and the 

maximal rent price. That is, Kaplan et al. undertook a web survey-based experimental design to 

elicit information on both the search process (used to form the choice set) as well as the choice 

process from the constituted choice set. By doing so, the likelihood function can effectively be 

                                                 
1 Another approach to choice set formation is to attribute a probability weight to each possible alternative (based on, 
for example, the desired commute time distribution), and then adopt an importance sampling scheme to populate the 
choice set of a size smaller than the cardinality of the universal choice set. But, as discussed in Zolfaghari et al. 
(2012), if sampling correction terms are used to effectively undo the importance sampling, this is no different from 
using the universal choice set and the procedure effectively completely ignores any behavioral search element in the 
analysis. If no correction terms are used, the behavior assumed is equivalent to that of the deterministic set-up.   
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developed separately for the two stages and does not require the development, during estimation, 

of the probabilities of all possible choice subsets of the universal choice set in the first step.2,3   

 

1.3. The Current Study in Context 

In the current study, we adopt a dwelling unit level of analysis and consider a probabilistic 

choice set generation approach for residential choice modeling. The use of a dwelling unit has 

many advantages, as already discussed earlier. Most importantly, the decision of housing 

necessarily involves physical dwelling unit attributes (that is, amenities within the home) as well 

as location attributes (that is, accessibility to activity opportunities outside the home). That is, 

residential models that consider only physical location-related attributes miss out on important 

behavioral elements that drive housing choices. At the same time, we assume a two-stage 

modeling paradigm to accommodate the process by which households decide on a dwelling unit. 

But the key innovation we introduce here is that rather than motivate the first stage from an 

elimination-by-aspects kind of a principle in the first stage (as in Kaplan et al., 2012b), we 

consider the first stage as a high-level (non-compensatory) decision process regarding housing 

attributes that includes some aggregate spatial representation of residential location. Importantly, 

and different from earlier two-stage Manski type choice models, the first and second stages in 

                                                 
2 Zolfaghari et al. (2013) criticize the Kaplan et al. model as being deterministic in that only the probability of the 
choice set formed from the observed search process is included in the first consideration part of the Manski model. 
The situation is in fact much more nuanced.  Essentially, an issue is that Kaplan et al. assume that only alternatives 
that simultaneously meet all the search criteria are considered by respondents, while Zolfaghari et al. suggest that all 
feasible combinations (subsets) of the multiple search criteria should also be considered in forming the possible 
choice sets. However, Kaplan et al. were consistent in that only those dwelling unit alternatives that met all the 
selected thresholds on the search criteria were presented to respondents in the choice stage. Thus, based on their 
experimental design, they take the position that they actually “observed” the choice set (in the estimation stage). So, 
while it is true that different respondents may consider different search criteria (such as only the pricing-based 
search criterion or only the number of bedrooms criterion), allowing combinations of search criteria leads to an 
explosion in the number of dwelling unit alternatives for at least some choice sets. This itself is not behaviorally 
reasonable from a cognitive standpoint in the context of residential location choice, where there can be scores of 
dwelling units if, for example, only a one-dimensional search criterion is used. In our study, we exploit the fact that, 
even as they are forming choice sets, households already have formed a general preference for a range of dwelling 
unit attributes they seek. However, at this high-level preference development stage, they are not undertaking any 
detailed comparative (and compensatory) evaluation of actual dwelling units, but rather develop a multi-dimensional 
(and non-compensatory) set of preferences for dwelling unit attributes.  
3 The literature has also seen applications of a single stage search and choice decision process that we do not discuss 
in detail in this paper (the reader is referred to Cascetta and Papola, 2001, Elrod et al., 2004, Martinez et al., 2009 
and Bierlaire et al., 2010).  These single stage models tie the search and choice components very closely together 
within a single compensatory process. That is, an assumption implicit in these models is that the availability of an 
alternative in the choice set is a direct function of its utility. On the other hand, the two stage models allow the 
possibility that alternatives that may have a high utility in the second choice stage may not even enter into the 
picture because of locational or cost or other constraints in the non-compensatory first stage search process.  
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our system do not even have the same dependent variables and the same unit of analysis for the 

dependent variable(s). Thus, the choice in the first stage focuses on specific physical 

characteristics of the dwelling unit (such as, say a single-family detached one storey “to-be-

owned” three bedroom home with two bathrooms), along with ranges of some other dwelling 

unit physical attributes (such as, say a 1,500-2,000 square foot home with a good yard size of 

5,000-7,500 square feet costing between $200,000-$250,000 and within 2 miles of the 

workplace) and a preference to live in some aggregated representation of space (say, a certain 

neighborhood or area of a city). The choice in the second stage focuses on the precise dwelling 

unit physical characteristics for those attributes that are chosen in ranges in the first stage, along 

with the parcel-level spatial location of the dwelling unit (given the high-level dwelling unit 

attribute choices made in the first stage). This representation is consistent with a combination of 

supply constraint-based, area-based, or anchor points-based search strategies. Specifically, 

consistent with the supply constraint-based approach, we represent the first stage search not as a 

screening mechanism, but as an integral part of trying to maximize search efficiency (and 

minimize cognitive burden) by increasing the chances of a “hit” for the desired housing attributes 

and parcel locational attributes combination. Next, not inconsistent with the area-based search 

process, we use revealed preference data on actual housing choices rather than use experimental 

or web-based search data that may be onerous to collect. That is, we use the observed housing 

choices and an aggregate spatial representation of the observed residential location choice as the 

observed outcomes for the dependent variables in the first stage. Effectively, the premise is that 

the dwelling unit chosen was preceded by the choice of the dwelling unit attributes at a relatively 

aggregate level, including the geographic market (or aggregate spatial representation) in which 

the chosen dwelling unit is actually located (due to the persistence of search within the initially 

preferred geographic submarket). Finally, consistent with the anchor-based approach, the 

aggregate spatial preference of dwelling unit location in the first stage is based on a grouped 

(coarse) representation of the average commute distance (across workers in the household) from 

the actual chosen dwelling unit location to the work places of employed individuals. The 

underlying notion again is that the actual dwelling unit location is preceded by the choice of an 

aggregate geographic submarket to reside in based on commute distance.  

In summary, our study accommodates the fact that housing choices involve both 

characteristics of the dwelling unit and its location (rather than many studies that divorce the 
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analysis of these two completely and examine only dwelling unit choices or only physical 

residential location choice), while also mimicking the search process that underlies housing 

decisions. In particular, and unlike all earlier studies, we model a complete range of dwelling 

unit choices that include the following dimensions in the first stage: tenure type (rent or own), 

housing type (single family detached, single family attached, or apartment complex), number of 

bedrooms, number of bathrooms, number of storeys (one or more), square footage of the house 

(in a ranger), lot size (in a range), housing costs (in a range), density of residential neighborhood, 

and household average commute distance (in a range).4 Among the dimensions examined in this 

paper, tenure choice and number of stories are binary outcomes, housing type and density of 

residential neighborhood are nominal (unordered multinomial) outcomes, the number of 

bedrooms and bathrooms are count outcomes,  and square footage of the house and the land, 

housing costs, and household average commute distance are treated as grouped outcomes with 

underlying continuous variables (grouped outcomes are similar to ordinal outcomes, with the 

difference that the thresholds that demarcate various groups are observed and do not need to be 

estimated; see Bhat, 1994). The reason for the treatment as grouped outcomes stems from the 

notion that households, in the first consideration stage, make choices of what they desire in terms 

of general ranges of housing attributes, and then follow through only in the second evaluative 

stage with a rigorous comparison of actual dwelling units to make a final choice. To 

acknowledge this, and also to estimate comprehensive dwelling unit choice models from the 

                                                 
4 There is a vast theoretical and empirical literature that focuses exclusively on the tenure decision, including those 
based on a portfolio analysis-based framework, a utility-based discrete choice approach, and a risk-based evaluation 
perspective (see, for example, Kain and Quigley, 1972, Li, 1977, Henderson and Ioannides, 1983, Sinai and 
Souleles, 2005, Davidoff, 2006, and Flavin and Nakagawa, 2008). There is also substantial literature on the mobility 
decision (that is, whether to move or not, given the current dwelling unit choice), which we do not consider in the 
current paper (though we appreciate the importance of including this dimension in a future effort; the emphasis on 
the analysis of a comprehensive set of dwelling unit attributes considerably narrowed down the possible data sets 
available, and the data used in the current analysis did not have adequate information on the mobility decision). But 
there has been very limited literature on considering a comprehensive set of dimensions characterizing housing 
stock, as is the focus of the current study. But, for the analysis of two or three dimensions of the housing stock, see 
Quigley (1976), Lerman (1977), Cho (1997), Quigley (1985), Rapaport (1997), Boheim and Taylor (1999), 
Skaburskis (1999), Yates and Mackay (2006), Frenkel and Kaplan (2014). There also has been a substantial 
literature on housing tenure/mobility (discrete choice) and quantity of housing demand (continuous choice), but this 
vast literature uses hedonic relationships to estimate the quantity of housing demand as the market value of a 
dwelling unit divided by a constructed price of a standardized unit of the flow of housing services. However, the 
demand for housing services in such studies is rather abstract and does not correspond to individual dimensions of 
the dwelling unit. Examples of this literature include Lee and Trost (1978), Rosen (1979), Dubin and McFadden 
(1984), Ermisch et al. (1996), Rapaport (1997), Rouwendal and Meijer (2001), Goodman (2002), Barrios-García 
and Rodríguez-Hernández (2008), and Chen and Jin (2014). Besides, previous housing stock studies have not 
motivated their analysis from a search theory perspective to winnow down the choice set for the dwelling unit in a 
parcel, as is the primary motivation for the current paper.  
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revealed preference choice of dwelling unit, we exploit the idea that the final observed dwelling 

unit choice provides an indication of the broader preferences at the first consideration stage.  

In this paper, we focus exclusively on the first consideration stage. The extension to the 

estimation of dwelling unit given the choice set is relatively straightforward using traditional 

random utility choice models, because of the winnowing down of the dwelling unit alternatives 

and the separation of the mental processes between the first consideration and second cross-

evaluative (among desirable dwelling units) phases (because of which estimation of the second 

choice stage can be undertaken easily from the dwelling units that fall within the 

multidimensional profile actually chosen by each household in the estimation sample).  Note also 

that this second stage will include many location-related and accessibility attributes (not included 

in the first stage) because of the fine resolution for the unit of analysis of space (because the 

dwelling unit alternatives in this second stage are defined at the parcel-level). Of course, the 

model structures from the first stage and second stage are also very different. In the first stage, 

there are multiple dependent variables, each corresponding to a physical dwelling unit attribute 

or an aggregate representation of space.  In the second stage, there is a single nominal variable 

corresponding to dwelling unit choice, with the alternatives corresponding to all the dwelling 

units consistent with the first stage choice. Thus, this second stage takes the more familiar 

“unlabeled” multinomial model form used in the literature (see, for example, Newman and 

Bernardin Jr, 2010).  

For forecasting, one can form different choice sets that exhaust the combinations of the 

housing attributes, next form the probability of each combination from the estimated parameters 

and the probability of each dwelling unit choice given the units within each choice set, and then 

sum the product of the two probabilities across all combinations to get the probability of choice 

of each dwelling unit. But this process is much easier to implement in a microsimulation 

framework where the probabilities of each choice set get translated into a deterministic choice in 

a first step. Then, all those dwelling units that are available in the market and that fit the desires 

of the household (as deterministically obtained after the first step) can be evaluated using the 

estimated choice model to assign the household to a dwelling unit.5   

                                                 
5 Technically, as discussed earlier, one has to identify whether or not a household is looking for a new residence 
(either because of a move from within a metropolitan region or because of a new household migrating into the 
region), along with the choice of housing attributes (see, for example, Eluru et al., 2009, Lee and Waddell, 2010, 
and Kortum et al., 2012). We leave this extension for the future.  
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There are several salient aspects of the current paper. First, unlike earlier studies in the 

housing modeling literature that focus either only on physical location or only on a very limited 

set of housing choices, the current study examines a whole suite of housing choices at the 

dwelling unit level. As indicated in a comprehensive review of earlier studies on housing 

choices, Coulombel (2010) states “there is a wall separating the issues of location and dwellings 

characteristics in academic research, and the interplay between the two is still not fully 

understood (Hilber, 2005). This might represent the most important lack as for now.” Second, the 

entire set of dimensions characterizing housing choices is modeled accommodating a non-

compensatory search process combined with a compensatory choice model for the specific 

dwelling unit. Third, the use of a large set of multidimensional housing attributes at the 

consideration stage in our study leads to a small set of desirable options to make the final 

selection from, as is likely to be the case behaviorally (see Rashidi et al., 2012). This 

immediately obviates the need for sampling during estimation. At the same time, the number of 

possible choice sets to be formed in the forecasting stage is still kept to a manageable number 

while also retaining behavioral realism. Fourth, in the past, a high-dimensional model at the 

consideration stage has not been estimated because of the computational complexity in doing so 

when there are mixed dependent outcomes (i.e., variables). In the current study, we address this 

issue by using Bhat’s (2014) generalized heterogeneous data model (GHDM) system that is 

capable of accommodating a range of different types of dependent outcomes, while capturing 

jointness caused by unobserved factors. We do so by introducing latent psychological constructs 

that influence multiple housing choice outcomes in a measurement equation, engendering a 

parsimonious covariance structure across the many outcomes because the latent constructs 

themselves are specified in a structural system to be a function of exogenous variables and 

correlated random error terms. The approach represents a powerful dimension-reduction 

technique, and accommodates non-nominal as well as nominal variables. For example, we 

specify that an environmentally conscious household will locate itself in a multi-family 

household setting with fewer bathrooms and bedrooms, in a one storey home for energy 

efficiency, in a high density neighborhood that supports non-auto modes of transportation, in a 

dwelling unit with a smaller square footage and smaller land acreage, and closer to the work 

place. Besides, including the latent psychological constructs is consistent with the persepective 

that dwelling unit choice involves an affective dimension in that it constitutes a lifestyle choice. 
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Fifth, we propose the use of Bhat’s Maximum Approximate Composite Marginal Likelihood 

(MACML) approach for estimation of the resulting two stage model. The proposed MACML 

procedure requires the maximization of a function that has no more than bivariate normal 

cumulative distribution functions to be evaluated.  

The rest of this paper is structured as follows. Section 2 presents the model formulation, 

while Section 3 presents the empirical application of the model. Section 4 concludes the paper by 

highlighting the important results and identifying future research directions. 

 

2. THE GHDM MODEL FORMULATION  

Let q be the index for households ),...,2 ,1( Qq  , which we will suppress in parts of the 

presentation below. Assume that all error terms in the GHDM model for a household are 

independent of other household error terms.   

 

2.1. Structural Equation Model 

Consider the latent variable (i.e., an unobserved lifestyle variable or a latent psychological 

construct) *
lz  for a specific household, with  l  being the index for latent variables (l = 1, 2,…, 

L). Write *
lz  as a linear function of covariates: 

,*
llz  wα l       (1) 

where w  is a )1
~

( D  vector of observed covariates (excluding constant), lα  is a corresponding 

)1
~

( D  vector of coefficients, and l  is a random error term assumed to be standard normally 

distributed for identification purposes (see Stapleton, 1978). Next, define the )
~

( DL  matrix 

),...,,( 21  Lαααα , and the )1( L  vectors ),...,,( **
2

*
1  Lzzz*z  and )'.,...,,,( 321 Lη  Let 

],[~ Γ0η LLMVN , where L0  is an )1( L  column vector of zeros, and Γ  is an )( LL

correlation matrix. In matrix form, we may write Equation (1) as: 

η αwz* .          (2) 

*z is a vector of latent psychological constructs (variables).  
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2.2. Measurement Equation Model Components 

We will consider a combination of grouped, count, and nominal outcomes (indicators) of the 

underlying latent variable vector *z . In the past, SEM-type models have primarily used binary, 

ordinal, and continuous outcomes, but we use grouped, count, and nominal variables in the 

current paper.  

Consider N grouped outcomes (indicator variables) for the individual, and let n be the 

index for the grouped outcomes ) ..., ,2 ,1( Nn  . Also, let nJ  be the number of categories for the 

nth grouped outcome )2( nJ  and let the corresponding index be nj ) ..., ,2 ,1( nn Jj  . Let *~
ny  be 

the latent underlying variable whose horizontal partitioning leads to the observed outcome for 

the nth grouped variable. Assume that the household under consideration chooses the th
na  

grouped category. Then, in the grouped response formulation (see Bhat, 1994) for the household, 

we may write: 

,~~~and,~~~~
,

*
1,

*

nn annannnn yy   
*

n zdxγ

 

 (3) 

where x  is a fixed )1( A  vector of exogenous variables (including a constant) as well as 

possibly the observed values of other endogenous grouped, count variables, and nominal 

variables (introduced as dummy variables).6 nγ
~

 is a corresponding )1( A  vector of coefficients 

to be estimated, nd
~

 is an )1( L  vector of latent variable loadings on the nth grouped outcome, 

the ~  terms represent thresholds, and n~  is a normal random error term for the nth grouped 

outcome; ),0(~~ 2
nn N  . For each grouped outcome, 

nn JnJnnnn ,1,2,1,0,
~~...~~~    ; 

0,
~

n  and 
nJn,

~ , which are observed thresholds that do not need to be estimated. For 

later use, let )~...,~,~,~(~
1,3,2,1,  nJnnnn nψ and )~,...,~,~(~

21  Nψψψψ . Stack the N underlying 

                                                 
6 In joint limited-dependent variable systems in which one or more dependent variables are not observed on a 
continuous scale, such as the joint system considered in the current paper that has grouped, count, and nominal 
variables (which we will more generally refer to as limited-dependent variables), the structural effects of one 
limited-dependent variable on another can only be in a single direction. That is, it is not possible to have correlated 
unobserved effects underlying the propensities determining two limited-dependent variables, as well as have the 
observed limited-dependent variables themselves structurally affect each other in a bi-directional fashion. This 
creates a logical inconsistency problem (see Maddala, 1983, page 119 for a good discussion). It is critical to note 
that, regardless of which directionality of structural effects among the endogenous variables is specified (or even if 
no relationships are specified), the system is a joint bundled system because of the correlation in unobserved factors 
impacting the underlying propensities. The reader is referred to Bhat (2014) for additional details.  
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continuous variables *~
ny  into an )1( N  vector *y~ , and the N error terms n~  into another 

)1( N  vector ε~ .  Let )~...,~,~(~
21  Nγγγγ  [ )( AN   matrix] and  Ndddd

~
,...,

~
,

~~
21  [ )( LN   

matrix], and let Ξ  be the diagonal matrix of dimension N representing the covariance matrix of 

ε~ . That is, 
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1
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0000

0000

0000

N

















Ξ   (4) 

The diagonal specification for the matrix above helps identification (see Bhat, 2014 for a detailed 

discussion), though the presence of the unobserved *z  vector will, in general, generate 

covariance among the grouped outcomes. Finally, stack the lower observed thresholds for the 

decision-maker  Nn
nan  ..., ,2 ,1~

1,   
into an )1( N  vector lowψ~  and the upper thresholds 

 Nn
nan  ..., ,2 ,1~

,   into another vector .~
upψ  Then, in matrix form, the measurement equation 

for the grouped outcomes (indicators) for the household may be written as: 

up
*

low
** ψyψεzdxγy ~~~ ,~~~~  .      (5) 

Let there be C count outcomes for a household, and let c be the index for the count 

outcomes ) ..., ,2 ,1( Cc  . Let the count index be ck )..., ,2 ,1 ,0( ck  and let cr  be the actual 

observed count value for the household. Then, following the recasting of a count model in a 

generalized ordered-response probit (GORP) formulation (see Castro, Paleti, and Bhat, or CPB, 

2012 and Bhat et al., 2015), a generalized version of the negative binomial count model may be 

written as:  

 ,, ,
*

1,
*

cc rccrccc yy    
*

czd  (6)  

   
c

cl

c rc

r

t

t
c

c

c

c
rc t

t
,

0

1
, !

)(

)(

1 




















 



 



, 

cc

c
c 




 , and xγc


ec .  (7) 

In the above equation, *
cy
  is a latent continuous stochastic propensity variable associated with 

the count variable c that maps into the observed count cr  
through the cψ


 vector (which is a 

vertically stacked column vector of thresholds .),... ,,,( 2,1,0,1,  cccc  
 cd


 is an )1( L vector of 
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latent variable loadings on the cth count outcome, and c


 is a standard normal random error term. 

cγ


 is an )1( A  column vector corresponding to the vector x . 1  in the threshold function of 

Equation (7) is the inverse function of the univariate cumulative standard normal. c  is a 

parameter that provides flexibility to the count formulation, and is related to the dispersion 

parameter in a traditional negative binomial model )0( cc  . )( c  is the traditional gamma 

function; 





0~

~1 ~~)(
t

t
c tdet c . The threshold terms in the cψ


 vector satisfy the ordering 

condition (i.e., )....2,1,0,1, ccccc   
 as long as .....2,1,0,1,  cccc   

The presence of the c  
terms in the thresholds provides flexibility to accommodate high or low 

probability masses for specific count outcomes without the need for cumbersome traditional 

treatments using zero-inflated or related mechanisms in multi-dimensional model systems (see 

CPB, 2012 for a detailed discussion). For identification, we set 1,c  and 00, c for all 

count variables c (so )1, cc  . In addition, we identify a count value *
ce  

......}),2 ,1,0{( * ce  above which ......}),2 ,1{(, ckc k
c

 is held fixed at *, cek
 ; that is, *,,

cc eckc    

if ,*
cc ek   where the value of *

ce  can be based on empirical testing. Doing so is the key to 

allowing the count model to predict beyond the range available in the estimation sample. For 

later use, let ),...,,( *,2,1, 
cecccc   vector])1[( * ce  (assuming )0* ce , 
















  vector1  ),,( *
21

c
cC e  , ),...,,( 21  Cθ  vector)1( C , and 

.),...,,( 21  Cψψψψ


 Also, stack the C latent variables *
cy
  into a )1( C vector

 
*y


, the C error 

terms c
  into another )1( C  vector

 
ε


. Let  CIDEN0 ,~ CCMVNε


 from identification 

considerations, and stack the lower thresholds of the individual  Cc
crc  ..., ,2 ,11, 

 
into a 

)1( C  vector lowψ


, and the upper thresholds  Cc
crc  ..., ,2 ,1,   into another )1( C vector upψ


. 

Define ),...,,(  C21 γγγ


γ   [ )( AC   matrix]  and   C, dddd


,...,, 21  )([ LC   matrix]. With 

these definitions, the latent propensity underlying the count outcomes may be written in matrix 

form as:  
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up
*

low
** ψyψ εzdy

  ,   (8) 

Finally, let there be G nominal (unordered-response) variables for an individual 

),...,3 ,2 ,1( Gg  . Also, let Ig be the number of alternatives corresponding to the gth nominal 

variable (Ig 2) and let gi  be the corresponding index ) ,...,3 ,2 ,1( gg Ii  . Consider the gth 

nominal variable and assume that the individual under consideration chooses the alternative gm . 

Also, assume the usual utility structure (see, for example, Bhat, 2000) for each alternative gi .  

,)(
gggg gigigigi  *

gi zβxbU
g

   (9) 

where x is the same fixed vector as earlier, 
ggib  is an )1( A  column vector of corresponding 

coefficients, and 
ggi is a normal error term. 

ggiβ  is a )( LN
ggi  -matrix of variables interacting 

with latent variables to influence the utility of alternative gi , and 
ggi  is an )1( 

ggiN -column 

vector of coefficients capturing the effects of latent variables and its interaction effects with other 

exogenous variables (see Bhat and Dubey, 2014). Let ),...,,( 21 
ggIgg ςςςg  ( 1gI  vector), and 

),0(~ gΛgIMVNg . Taking the difference with respect to the first alternative, only the elements 

of the covariance matrix gΛ


 of the covariance matrix of the error differences, 

),...,,( 32 ggIgg ςςς
 g  (where 1ggigi    , 1i ), are estimable.  Further, the variance term at 

the top left diagonal of gΛ


 ),...,2 ,1( Gg   is set to one to account for scale invariance. gΛ  is 

constructed from gΛ


 by adding an additional row on top and an additional column to the left. All 

elements of this additional row and column are filled with values of zeros.  In addition, the usual 

identification restriction is imposed that one of the alternatives serves as the base when 

introducing alternative-specific constants and variables that do not vary across alternatives (that 

is, whenever an element of x is individual-specific and not alternative-specific, the corresponding 

element in 
ggib is set to zero for at least one alternative ).gi  To proceed forward, define 

),...,,( 21 
ggIggg UUUU  1( gI  vector), ),...,,,( 321 

gIg gggg bbbbb  AI g (  matrix), and 

),...,, 21 
ggIggg ββββ  














LN
g

g

g

I

i
gi

1

 matrix. Also, define the 













g

g

g

I

i
gig NI

1

matrix g , which 

is initially filled with all zero values. Then, position the )1( 1gN  row vector 1g  in the first row 
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to occupy columns 1 to 1gN  , position the )1( 2gN  row vector 2g  in the second row to occupy 

columns 1gN +1 to ,21 gg NN   and so on until the )1(
ggIN  row vector 

ggI  is appropriately 

positioned.  Further, define )( ggg β  LI g (  matrix), 



G

g
gIG

1


, 




G

g
g

G

g
g TTIG

11

,
~

),1(
~

 

  GUUUU , ... ,, 21   1( G


 vector), ), ... ,,(  G 21  ( 1G


 vector), ),...,,  Gbbb(b 21

AG 


(  matrix), LGG 


(),...,,( 21  matrix), and ),...,,(Vech 21 Gvec   (that is, vec  

is a column vector that includes all elements of the matrices G ,...,, 21 ). Then, in matrix form, 

we may write Equation (9) as: 

,  *zbxU  (10) 

where ),(~ Λ0
GG

MVN  .  As earlier, due to identification considerations, we specify Λ  as 

follows: 

),matrix(

0000

0000

0000

0.000

3

2

1

GG

G







































Λ

Λ

Λ

Λ

Λ   (11) 

In the general case, this allows the estimation of 












G

g

gg II

1

1
2

)1(*
 terms across all the G 

nominal variables (originating from 










1

2

)1(* gg II
 terms embedded in each gΛ


matrix; 

g=1,2,…,G) .  

Let δ  be the collection of parameters to be estimated: 

,, ),(Vech ),~Vech(,)(Vech ),(Vech),Vech([ θdγα 


ΞΓδ  )],Vech( ,),Vech( ,)Vech( Λvecγb


 

where the operator )"(Vech" .  vectorizes all the non-zero elements of the matrix/vector on which  

it operates. We will assume that the error vectors η , ,~ε  and ε
  are independent of each other. 

The identification and estimation of the system is provided in an online supplementary note to 

streamline the presentation here (see 
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http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/ResidentialChoice/Online_supplementary_note.pdf).  

Figure 1 provides a diagrammatic representation of the entire model system.   

 

3. EMPIRICAL APPLICATION 

3.1. Data 

Data for this study is derived from the 2009 American Housing Survey (AHS), sponsored by the 

Department of Housing and Urban Development (HUD) and conducted by the U.S. Census 

Bureau. The AHS identified about 59,800 dwelling (or housing) units in the country, sampled to 

be representative of dwelling units in the entire country. These dwelling units were contacted by 

Census enumerators, either through telephone interviews or in-person interviews, and a 

notebook-based survey was administered to a knowledgeable household member 16 years of age 

or over in the dwelling unit. While detailed socio-economic information was collected regarding 

each member residing in the dwelling unit, the relationships among residents was based on 

soliciting information regarding the relationship of each resident with a single “reference 

person”. The “reference person” (also referred to as the “householder” in the 2009 AHS survey) 

was identified as the first resident member listed as owning or renting a dwelling unit in the 

official housing records.  

Of the 59,800 eligible sample units, 6,450 could not be interviewed either because of 

inability to contact any interview-eligible individual in the corresponding household or because 

of refusal of the unit despite repeated visits. All the remaining dwelling units were interviewed 

between April and September 2009. The sampling units are located across 878 counties and 

independent cities with representation from all 50 states and the District of Columbia. Details of 

the sample design and survey administration procedures are available in Appendix B of U.S. 

Census Bureau (2011). Each sampled housing unit represents about 2000 other units in the 

country.  A majority of the sample units (about 89%) were occupied at the time of the survey, 

while 11% were vacant. In addition to this national level survey, a concurrent metropolitan 

survey of housing was undertaken in New Orleans and Seattle. In this paper, we focus only on 

occupied dwelling units because of better data quality for such units than for vacant units. 

Further, to maintain focus on one metropolitan region, we selected the Seattle region in the State 

of Washington where the occupancy rates of the dwelling units was quite high. Another reason 
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for choosing the Seattle region over the New Orleans region was the lingering effects of 

Hurricane Katrina in 2005 on housing markets there. 

The initial sample size of occupied dwelling units in the AHS (including the national 

survey and the concurrent metropolitan survey) in the Seattle region was 1491. There were very 

few mobile homes in this sample and, after dropping these observations, the sample size reduced 

to 1445 fixed and occupied dwelling units. After some additional screening to remove 

inconsistent/unusual records (such as dwellings with zero square footage and/or zero monthly 

rent for rented houses), the final sample size used was 1421 with complete information on 

dwelling attributes as well as the socio-economic characteristics of individuals in the dwelling 

(interestingly, all dwelling units in our sample had at least one resident worker, presumably a 

reflection of the vibrant technology-driven labor market in the Seattle region).  

The survey collected detailed information on the characteristics of each dwelling unit, 

including (but not limited to)  housing type (single family-attached, single family-detached, and  

apartment complex with two or more apartment units), number of stories, number of bedrooms 

and bathrooms, house square footage, lot area, density of dwelling unit location (primary central 

city, secondary central city or suburb), whether the unit was currently being rented or owned 

(i.e., tenure type), and housing costs.7,8 In addition, information on demographics was also 

collected, including, for each individual in the household, the following characteristics: age, 

education level, sex, ethnicity/race, relationship to reference person, marital status, country of 

birth, U.S. citizenship status, employment status, commuting characteristics if employed 
                                                 
7 The housing cost variable includes estimates of the equivalent monthly costs of all of the applicable following 
items: electricity, gas, fuel oil, other fuels (e.g. wood, coal, kerosene, etc.), garbage and trash, water and sewage, real 
estate taxes, property insurance, condominium fees, homeowner's association fees, land or site rent, rent, mortgage 
payments, home equity loan payments, other charges included in mortgage payments, and routine maintenance. 
Indeed, the housing cost-related questions occupy all of about 140 pages in the codebook for the American Housing 
Survey (U.S. Department of Housing and Urban Development, 2013). It is important to note that the monthly 
housing cost variable used in the current paper is a constructed variable (by the U.S. Census Bureau) from a suite of 
questions on housing costs and mortgage/rental payment arrangements (with respondents free to provide cost and 
payment estimates over any time period, not necessarily a monthly period). Additional details are available in the 
codebook. The overall monthly cost was constructed in this paper to represent the typical costs in residing in the 
dwelling unit and the value of the property and the land (computed as an equivalent total rental cost as estimated by 
the respondents, using all the costs listed above and replacing any mortgage payments by an estimated monthly rent 
as provided by the respondents).  
8 The survey data itself had information on the precise address of each dwelling unit, because dwelling units 
constituted the sampling frame. But the publicly available information categorizes the dwelling unit as being located 
in one of three density categories of neighborhoods: (1) suburb of a metropolitan statistical area MSA (population 
less than 250,000), (2) secondary city of an MSA (population is between 250,000 and 1,000,000) and (3) primary 
city of an MSA (population greater than 1 million). While this categorization is technically based on population size, 
we use it as a proxy for density.  
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(whether or not the individual worked outside the home), full-time employment (35 hours of 

work or more per week) or part-time employment (less than 35 hours of work), telecommuting 

characteristics, commute mode, time, and distance to the usual work location of the individual, 

and annual income by source (such as wages, tips, self-employment, rental property, 

retirement/pension, public welfare, and alimony or child support). The individual-level 

information also provided many variables at the household level (some of which were sought 

directly in the survey for verification purposes, though they can be computed from the 

individual-level information). These included household income (sum of the incomes of all 

individuals aged 16 years or older), household size by age groupings, number of adults 

(individuals over 16 years of age), number of children of different age groups, number of 

individuals with physical challenges, number of workers, number of workers with full-time 

employment, number of workers with part-time employment, number of workers with the option 

to work from home, education status of individuals in the household, marital status of individuals 

(married, widowed, separated or divorced, or never married), race/ethnicity of the householder in 

one of the following categories: (1) Caucasian, (2) Asian, (3) African-American, and (4) Others 

(Hawaiian, American Indian and Alaska Native), and the immigrant status of the household in 

one of the following three categories: (1) all members are foreign born (labeled as immigrant 

households), (2) all members are born in the U.S. (labeled as non-immigrant households), and (3) 

some members born in the U.S., and others born outside the U.S. (labeled as combination 

households).9 Descriptive statistics of these household-level independent variables are provided 

in an online supplement to this paper at 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/ResidentialChoice/Independent_Variables.pdf.  

 

3.2. Dependent Variables  

The dependent variables considered in this study represent different attributes of the physical 

dwelling unit characteristics, housing costs, tenure type, housing type, density of residential 

location, and household average commute distance associated with the dwelling unit. These 

dependent variables are discussed below by variable type. 

 

                                                 
9 We use the race of the householder to represent household race because there were only about 4% of the 
households in which there was a difference between the race of the householder and the race of any other member in 
the household. That is, there are very few mixed-race households in our sample.  
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Grouped outcomes  

(1) The square footage of the dwelling unit corresponds to the square feet of all the rooms in the 

dwelling unit, including basement and finished attics (but excluding unfinished attics, 

carports, attached garages, and porches that are unprotected from weather). This variable is 

classified into six grouped categories: (1) less than or equal to 1,000, (2) 1,001 – 1,500, (3) 

1,501 – 2,000, (4) 2,001 – 2,500, (5) 2,501 – 3,000, and (6) greater than 3,000.  

(2) The dwelling lot size refers to the square footage of the lot, including all connecting land that 

is owned or that is rented with the rental units. The dwelling lot size applies only to units that 

are not in apartment complexes. The lot size is classified into eight grouped categories as (1) 

less than or equal to 1,500, (2) 1,501 – 2,500, (3) 2,501 – 5,000, (4) 5,001 – 7,500, (5) 7,501 

– 10,000, (6) 10,001 – 12,500,  and (7) 12,501 – 15,000, and (8) greater than 15,000 square 

footage. 

(3) Housing costs (monthly) is computed as discussed in a footnote in the earlier section, and is 

classified into five grouped categories: (1) less than or equal to $1,000, (2) $1,001 – $1,500, 

(3) $1,501 – $2,000, (4) $2,001 – $2,500, (5) $2,501 – $3,000, and (6) greater than $3,000.  

(4) Household average commute distance (miles) is the average one-way distance in miles 

between the home and the workplace across those individuals who work outside the home 

(for brevity, from hereon, we will refer to this variable as household commute distance). For 

the consideration stage, we group the household commute distance into seven categories: (1) 

less than or equal to 2 miles, (2) >2 and ≤5 miles, (3) >5 and ≤10, (4) >10 and ≤15, (5) >15 

and ≤20, (6) >20 and ≤25, and (7) >25 miles.  

The top panel of Table 1 provides descriptive statistics for the grouped variables. The statistics 

indicate that (a) 50% of the dwelling units are less than or equal to 1500 square feet in size, while 

50% are larger than 1500 square feet, (b) About 40% of the lot sizes are less than 5,000 square 

feet, while 60% of the lot sizes are more than 5000 square feet (but note again that these lot sizes 

correspond only to units that are not apartment complexes), (c) a little less than half of the 

dwelling units have a monthly housing cost of $1,500, while a little more than half have a 

monthly housing cost of more than $1,500, (d) about one-half of the household commute 

distances are 10 miles or shorter.  
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Count outcomes  

(1) The number of bedrooms refers to the count of rooms in the dwelling unit used mainly for 

sleeping, and rooms reserved for sleeping (e.g., guest rooms), with the qualification that 

dwelling units with only one room (such as a studio or efficiency apartment) are designated 

as having zero bedrooms.  

(2) The number of bathrooms refers to the count of full bathrooms in the dwelling unit for the 

exclusive use of the household occupying the dwelling unit, and including a flush toilet, 

bathtub or shower, and a sink with hot and cold piped water.  

As can be noticed from the top right panel of Table 1, 40% of the dwelling units in the 

sample have three bedrooms, with few units with zero or more than four bedrooms. In terms of 

bathrooms, the vast majority of units have one or two bathrooms.  

 

Nominal/Binary outcomes  

(1) Housing type is distinguished in three nominal alternatives in the sample (after removing 

mobile homes, as indicated earlier): single-family detached units, single-family attached 

units, and apartment complexes, with a dominance of single-family detached units. In our 

analysis, due to the very small sample share of single-family attached units (only 3%), we 

combine single-family attached and detached units into one category and represent housing 

type as a binary outcome: single family unit (72%) or apartment complex (28%). In the 

estimation, the single family unit  is considered as the base category.  

(2) The density of the dwelling unit location, as indicated earlier, is identified in three nominal 

alternatives: suburb, secondary city, and primary central  city, with about a fourth of the 

dwelling units located in a primary city, and 65% in a suburban location (see under 

“nominal/binary outcomes” in Table 1). In the estimation, the suburb location is considered 

as the base category (see also Brownstone and Fang, 2010 and Brownstone and Golob, 2009 

for the use of density as a representation of residential location). 

(3) Housing tenure type is a binary outcome, corresponding to whether the unit is rented or 

owned by the occupant household. Table 1 indicates that most of the households (65.0%) 

choose to own their dwelling units. In the estimation, the “owned” alternative is considered 

as the base category. 
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(4) The number of storeys includes finished or unfinished basements, and finished (but not 

unfinished) attics. For split levels and bi-levels, the highest number of floors that are 

physically over each other is the designated number of stories. In this paper, we classify 

dwelling units into single storey units or multiple storey units. In the sample, there are 28 out 

of a total of 404 (about 7%) apartment dwelling units that have multiple stories (based on the 

definition above), and so we allow for this combination possibility. Table 1 indicates that the 

dwelling units are about equally split between single and multiple storey units. In the 

estimation, the multiple storey alternative is considered as the base category.  

3.3. Latent Variables 

Several earlier studies have considered lifestyle and attitude-related variables in residence-related 

choices (the reader is referred to Van Acker et al., 2011, Bohte et al., 2009, and Bhat et al., 2014 

for reviews of this literature), but these studies have focused only on the location dimension of 

residence and not on other dwelling unit attributes as we do here. Further, rather than use 

extraneous indicators to characterize attitudes and lifestyles, as in most earlier studies that use an 

integrated choice and latent variables (ICLV) approach, we use the endogeneous outcomes 

themselves as indicators of the latent variables in the GHDM modeling strategy. At the same 

time, we use earlier descriptive studies investigating (directly or indirectly) general lifestyle-

related characteristics that affect residential choice decisions as the basis to select our latent 

variables (or constructs). For example, Fleischer (2007) reinforce the notion that “to choose a 

house means to choose a lifestyle” in their investigations based on qualitiative data from 

ethnographic fieldwork. These authors suggest that (1) the desire for green space and 

environmental consciousness, as well as (2) the preference for privacy, spaciousness, and 

exclusivity, substantially impact the types of houses and the locations of the houses people live 

in. Indeed, they show that these lifestyle orientations, while related to economic and education-

related socio-demographics, have their own signaling considerations that are relevant to housing 

choice. Similarly, Schwanen and Mokhtarian (2007), in their principal components analysis of 

18 attitudinal statements, identify two overarching attitudinal factors -- (1) pro-high density 

environment factor and (2) pro-suburban housing -- as determinants of housing choices.  

Interestingly, both Flesicher and Schwanen and Mokhtarian identify very similar latent 

constructs affecting housing choices, with the first factor (second factor) in Flesicher’s study 

related closely to the first factor (second factor) in Schwanen and Mokhtarian. In our study, we 
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use latent variables without having any explicit indicators to undertake a factor analysis on 

(except for the housing choice outcomes themselves). Thus, we base our identification of the 

latent variables on the studies above. Further, to the extent that lifestyle choices typically are 

precursors to the attitudinal preferences used by Schwanen and Mokhtarian, we use two latent 

constructs that coincide with Fleischer’s lifestyle designations: (1) Green lifestyle propensity and 

(2) luxury lifestyle propensity. The first latent variable is a measure of the overall attitude and 

concern toward the environment, while the second reflects a penchant for consuming more, 

marked by a desire for privacy, spaciousness, and exclusivity.  

In the context of dwelling unit choice, we expect that households with a green lifestyle 

propensity will locate themselves in high density areas with better access to public transit and 

better facilities for bicycling and walking (see, for example, de Abreu e Silva et al., 2012), will 

have a lower household commute distance, and will shy away from single family-detached 

housing and large lot sizes in preference for other less “space-guzzling” forms of housing 

consumption in the form of apartment complexes and small lot sizes, respectively. We also 

expect that green lifestyle propensity will have an effect on tenure type and the number of 

storeys, because the general consensus in the literature (see, for example, U.S. Department of 

Energy, 2011) points to (a) a higher energy consumption per square foot for rented houses 

relative to owned houses, and (b) multi-storey homes being more energy efficient and 

environmentally beneficial because of less geographic footprint (leading to higher density 

developments and less disturbance of natural landscape) and less overall surface area for the 

same volume (resulting in less thermal exchange with the environment). Thus, “green” 

households may prefer to own rather than rent, and prefer multi-storey units to single storey 

units. We also hypothesize that individuals with a luxury lifestyle propensity will consume more 

in terms of all the attributes of the housing stock (square footage, number of bedrooms, number 

of bathrooms, housing cost), and will prefer to own multi-storey dwelling units of the single 

family unit kind. To satisfy identification considerations, we specify household commute 

distance and lot size as indicators solely of a green lifestyle, while we specify housing cost and 

the number of bedrooms as indicators solely of a luxury lifestyle.  

The latent variables are modeled as a function of a suite of household characteristics in 

the structural equation system, in which we also allow a covariance between the two latent 



26 

variables. The expectation is that there will be a negative covariance between green lifestyle 

propensity and luxury lifestyle propensity.  

 

3.4. Endogenous Effects 

These effects correspond to recursive influences among the endogenous outcomes (see Section 

2.2). These are parts of the 

γ  matrix (for the grouped outcomes), the γ


 matrix (for the count 

outcomes), and the b matrix (for the nominal outcomes), and represent “cleansed” effects after 

accommodating unobserved covariance effects through the latent variables discussed in the 

previous section. The final directions of the recursive effects were obtained in the current paper 

after an extensive testing of various model specifications, and choosing the specification that 

provided the best data fit in terms of the composite marginal log-likelihood value (note, however, 

that regardless of the presence or absence of recursive effects, the model is a joint model because 

of the presence of latent variables that impact the many dependent variables). Figure 1 presents 

the directions of the endogenous relationships. Our results indicate that, after accommodating the 

jointness among the dependent variables caused by the latent variables, the type of housing 

(single family units or apartment complexes) affects housing cost, and both of these dwelling 

unit attributes impact square footage choice. The three aforementioned choices influence the 

density of dwelling unit location, and then the housing type and density of dwelling unit location 

impact housing tenure (own or rent). Finally, an array of physical dwelling unit attributes (storey 

type, lot size, number of bedrooms, and number of bathrooms) and commute distance bring up 

the trailing edge of the recursivity in decision-making.   

 

3.5.  Structural Equation Model Results 

Table 2 provides the results for the two latent variables, i.e., green lifestyle propensity and luxury 

lifestyle propensity. The two latent variables represent the entire household’s attitudes and 

preferences, to be consistent with the notion that dwelling unit choices are made at a household 

level.   

 

Green Lifestyle Propensity 

A variable that has been found to impact green lifestyle propensity is education status. From the 

data, we categorize the highest level of education status obtained by each individual in four 
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groups: less than a bachelor’s degree, bachelor’s degree, master’s degree, and PhD degree. To 

obtain a representation of education status at the household-level, we first select out only those 

individuals in each household who are 25 years or older. We do so because, by that age, most 

individuals would have finished their bachelor’s degree if they do end up getting one, thus 

removing the mechanical effect of age on attaining a bachelor’s degree. Next, from among the 

group of adults who are 25 years or older, we compute the fraction of adults who have attained 

each of the bachelor’s degree, master’s degree, and the PhD degree, and use these three fractions 

as household-level determinants of green lifestyle propensity (with the fraction of adults who 

have attained less than a bachelor’s degree serving as a base category). The results in Table 2 

indicate that household education status has a positive impact on the household’s green lifestyle 

propensity. That is, households with a higher fraction of more educated individuals tend to have 

a higher green lifestyle propensity (the coefficients on the fractions corresponding to bachelor’s  

and master’s degrees were not statistically significantly different, and so have been constrained 

to be the same; the implication is that there is no difference between bachelor’s degree 

attainment and master’s degree attainment in “green” lifestyle propensity). The education effect 

is consistent with results in the social-psychological literature (see, for example, Stern, 2000, 

Sundblad et al., 2007, and Franzen and Vogl, 2013) that suggest that individuals with a higher 

education are (a) able to assimilate environmental information quickly, (b) more self-aware of 

the negative consequences of degrading the environment (such as the resulting health-related 

problems and global warming), (c) more cognizant of the actions that lead to degrading the 

environment (such as excessive driving) and benefiting the environment (such as using non-

motorized means of travel), and (d) able to better project into the future and appreciate the 

trajectory of alarming environmental trends, even if these trends are very slow and do not pose 

an imminent danger to society.  

The green lifestyle propensity is also influenced by the race of the household. We did not 

find a statistically significant difference in green lifestyle propensity between Caucasian and 

Asian households, and these two race categories together formed the base category (as in the 

2010 Population Census for the Seattle region, the two dominant races in the sample are 

Caucasian and Asian; these two races accounted for 85-90% of the population in the 2010 

Census and in our sample). Table 2 indicates that African-American households as well as other 

race households (Hawaiian, American Indian and Alaska Native) exhibit a higher green lifestyle 
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propensity relative to Caucasian and Asian households (there was no statistical difference in 

green lifestyle propensity between African-American and other race households). There has been 

substantial environmental-psychological literature on race effects on environmental concern and 

attitudes (see a recent review of the literature on race and other demographic determinants of 

environmental attitudes by Gifford and Nilsson, 2014). The early literature on the subject (see, 

for example, Taylor, 1989, Mohai, 1990, and Jones, 1998) suggested that Caucasians are more 

likely to be concerned about the environment relative to other races, based on Maslow’s theory 

of the hierarchy of human needs and the generally better social/economic status of Caucasians 

(Maslow’s theory states that humans first focus on the survival-based instinct of meeting their 

basic material needs, and consider higher level needs such as the need for environmental quality 

only after the basic needs are satisfied). However, this view has been challenged more recently, 

with a majority of studies in the past decade either suggesting no statistically significant race-

based variations or, as Liu et al. (2014) suggest, “…the best available evidence appears to 

suggest that non-Whites/Blacks tend to be more concerned for the environment than Whites are”. 

The explanation provided for the higher concern for the environment among non-whites/blacks is 

that minorities have been, for a long time, disproportionately shouldering the burden of negative 

environmental quality. For example, for many years over the past several decades, hazardous 

waste facilities were placed disproportionately in people of colored communities. This may have 

contributed to a higher sensitivity to the negative implications of environmental stressors in 

general (and neighborhood environmental issues, such as air quality, in particular).10  

 Finally, our results indicate, consistent with the findings in the literature, that households 

with a higher fraction of female adults (lower fraction of male adults) tend to exhibit a higher 

green lifestyle propensity relative to households with a lower fraction of female adults (higher 

fraction of male adults). Social-pyschological studies attribute this gender-based effect to 

socialization norms and relational value differences among men and women (see, for example, 

Liu et al., 2014 and Gifford and Nilsson, 2014). In particular, from a socialization norm 

perspective, these earlier studies indicate that, across cultures, women tend to be cooperative and 

interdependent in socialization, while men tend to be competitive and independent in 

                                                 
10 Our study supports this latter reasoning. Specifically, when we removed race and added income categories as 
explanatory variables, the effect of income was not statistically significant, suggesting that Maslow’s theory does 
not hold for our sample. Of course, income did not turn up statistically significiant when introduced along with race. 
These findings do back the notion that minority groups may have become more environmentally sensitive because 
of disproportionately sholdering the burden of negative environmental quality. 
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socialization. From a relational value perspective, women tend to value the needs of others more 

so than men. In combination, the result is that women typically exhibit a more caring behavior 

and altruism than men, which manifests itself in the form of a higher environmental concern (that 

is, the notion that the environment is a shared asset whose quality has to be preserved for the 

benefit of all through cooperative efforts and responsibility) and appropriate “green” actions to 

minimize environmental harm.  

Consistent with the recent study by Liu et al. (2014), our results did not find any 

statistical differences in environmental concern and expression (i.e., green lifestyle living) based 

on other demographic factors such as household income and age of individuals in the household.   

 

Luxury Lifestyle Propensity  

There has been some limited research suggesting that the choice of a home is effectively the 

choice of a lifestyle (see, for example, Fleischer, 2007). Further, there has been quite extensive 

research on luxury consumption and its determinants in the context of non-housing related 

consumer goods (see, for example, Kastanakis and Balabanis, 2014 and Nwankwo et al., 2014). 

While the issues related to luxury consumption can vary based on the specific consumer good 

under study, there are some common themes associated with the socio-cultural motivations for a 

luxury lifestyle, such as signaling wealth, power and status, privileged access to limited 

resources, and/or uniqueness in the consumer space (see Chevalier and Gutsatz, 2012). This is 

the basis for our construction of the luxury lifestyle propensity as a latent construct in the current 

study. 

 Income has been well established as a dominant socio-economic factor that affects luxury 

lifestyles, simply because it provides the financial ability for individuals and households to better 

manage the social impression they want to project by consuming the goods (in terms of both 

quality and quantity) that are consistent with the intended signaling (see, for example, Husic and 

Cicic, 2009). The results in Table 2 are consistent with this notion, and show that income has a 

clear and statistically significant effect on luxury lifestyle propensity. Interestingly, after 

accommodating income effects, no other sociodemographic variable had any statistically 

significant effect on luxury lifestyle propensity.  
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Correlation 

The correlation coefficient between green lifestyle propensity and luxury lifestyle propensity is 

statistically significant at any reasonable level of significance, with a value of –0.621 and a t-

statistic of –3.73. This negative correlation is reasonable, since a green lifestyle is associated 

with careful and conservative consumption of resources, while a luxury lifestyle correlates with 

extravagant living and indulgence beyond an indispensable minimum (Wiedmann et al., 2007). 

The correlation between green lifestyle propensity and luxury lifestyle propensity is not perfectly 

negative because luxury lifestyle is not only about excess consumption, but also about 

consumption of high quality, unique products. At the same time, green lifestyle propensity may 

also imply some level of unique, expensive, and high quality product consumption (for example 

organic food consumption or solar-paneled house choices).  

 

3.6. Measurement Equation Model Components  

Tables 3 and 4 provide the results for the latent variable measurement equation model 

components. The dependent outcomes are arranged row-wise in the recursive sequence presented 

in Section 3.4 and Figure 1. The exogenous variables and the latent constructs are arranged 

column-wise in Table 3, while the endogenous variables that affect other endogenous variables 

in a recursive fashion are arranged columnwise in Table 4.  

For the binary and nominal outcomes (housing type, density of residential location, 

tenure type, and storey type), one of the alternatives is used as the “base alternative” (see Section 

3.2 for the identification of the base alternative for each dimension, which is also listed in Tables 

3 and 4). The coefficients in Table 3 represent the impacts of the column exogenous variables 

(corresponding to the b matrix in Equation (10)) and the column latent constructs (corresponding 

to the vec  matrix embedded in the   matrix of Equation (10)) on the utilities of the non-base 

alternatives relative to the base alternative. A ‘-’ corresponding to an exogenous variable or a 

latent construct for a non-base alternative indicates that the corresponding column variable or 

latent construct has no differential effect on the utilities of the base alternative and the non-base 

alternative. Also, there is no intuitive interpretation of the constants in these models because of 

the presence of count exogenous variables in the model. The constant (t-statistic) corresponding 

to apartment (for housing type) is –0.269 (–6.55), for secondary and primary city (for density of 

residential location) are –0.796 (–15.32) and –2.447 (–2.47), respectively, rented dwelling (for 
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tenure type) is –0.329 (–8.74), and single-storey (for storey type) is 0.861 (15.43). The 

coefficients in Table 4 represent the recursive endogenous impacts, also embedded in the b  

matrix in Equation (12).  

For the grouped outcomes (housing cost, square footage, lot size, and commute distance), 

the coefficients in Table 3 represent the effects of the column exogenous variables 

(corresponding to the γ~ matrix  in Equation (5)) and the column latent constructs (corresponding 

to the d
~

 matrix in Equation (5)) on the underlying latent continuous variable that represents the 

logarithm of the corresponding dimension. Thus, for example, in the case of housing cost, the 

underlying latent variable is the continuous natural logarithm of housing cost, with the thresholds 

demarcating the six grouped categories (see Section 3.2) corresponding to ln(1000), ln(1500), 

ln(2000), ln(2500), and ln(3000). Again, similar to a linear regression, the constants in the 

grouped outcome regressions do not have any tangible interpretation, because of the presence of 

count explanatory variables. Similarly, the variances as such do not have any tangible meaning 

other than to provide a sense of the level of stochasticity in the underlying latent variable 

conditional on the exogenous variables. The constants (t-statistic) in the equations corresponding 

to the natural logarithm of housing cost, square footage, lot size, and household commute 

distance are –0.138 (–8.80), –0.057 (–3.69), 1.707 (138.96) and 1.345 (48.93), respectively. The 

variances (t-statistic) corresponding to the natural logarithm of housing cost, square footage, lot 

size, and household average commute distance are 0.280 (30.75), 0.171 (41.81), 0.593 (43.48), 

and 1.119 (38.10), respectively. The coefficients in Table 4 for these grouped outcomes capture 

any endogenous recursive effects, also embedded as elements of the γ~ matrix in Equation (5).  

For the count outcomes (the number of bathrooms and the number of bedrooms),  the 

Table 3 coefficients represent the effects of the column exogenous variables on the thresholds 

(corresponding to elements of the γ


 matrix in Equation (7)) and the effects of the column latent 

constructs on the underlying latent propensity for the count variable (corresponding to the 

elements of the d


 matrix in Equation (8)). The constant coefficients in the γ


 matrix do not have 

any substantive interpretation. For the other variables, a positive coefficient in the γ


 vector shifts 

all the thresholds toward the right of the count propensity scale, which has the effect of reducing 

the probability of the zero count (see CPB, 2012). On the other hand, a negative coefficient shifts 

all the thresholds to the left of the count propensity scale, which has the effect of increasing the 
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probability of the zero counts.  The Table 4 coefficients for the count outcomes correspond to 

endogenous recursive effects as embedded in the γ


 matrix within the threshold. In addition to 

the effects mentioned above, for each count variable, we also have the dispersion parameter c  

and the c  
vectors in the thresholds that provide flexibility to accommodate high or low 

probability masses for specific count outcomes. In our empirical analysis, the final model 

specifications for the two count outcomes (number of bathrooms and bedrooms) collapsed to a 

Poisson generating process. In particular, the c  parameters for these two count variables (c=1,2) 

became quite large in the estimations ),( c  and the resulting specifications could not be 

distinguished from corresponding Poisson-based latent variable specifications.  In terms of the 

c  vectors, we needed three flexibility terms for the “number of bedrooms” dependent outcome  

( 210.01,1 φ  with a t-statistic of 7.06, 463.02,1 φ  with a t-statistic of 12.43, and 388.13,1   

with a t-statistic of 32.13). There was no need for any flexibility terms for the number of 

bathrooms. The constants (t-statistics) corresponding to the number of bedrooms and bathrooms 

were 0.233 (8.10) and –0.525 (–17.29), respectively.   

The final model specification was obtained after a comprehensive iterative process in 

which different functional forms for variables (such as a continuous linear form, piecewise-linear 

forms, logarithmic form, and discrete categories) and different ways of including demographic 

variables (such as presence of children and marital status of adults separately versus a single 

combined family structure variable) were considered. Also, model coefficients were examined 

with respect to their intuitive behavioral interpretations and statistical significance levels. All of 

these issues, along with data fit, were considered in developing the final variable specification. In 

the next section, we discuss the effects of exogenous variables and latent constructs on all the 

dependent variables (characteristics of dwelling unit), followed by the effects of endogenous 

effects.   

 

3.6.1 Effects of Explanatory Variables 

The family structure of the household is the first variable in Table 3, and is introduced in the 

form of a set of categories (with married couples with no children, or simply couple family, 

forming the base category): (a) single person (never married) household (from hereon referred to 

as a single person NM household), (b) single person (separated/divorced) household (or single 
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person S/D household), (c) nuclear family household (married couple with one or more 

children), and (d) other households (such as single parent households, presence of a widow with 

other adults in the household, roommates, and joint families with two or more adults). The last 

category of “other” households comprised less than 9.5% of all households, with very few 

households in any single sub-category in this broad “other” category to meaningfully 

differentiate between. The results in Table 3 indicate that single person NM households and 

single person S/D households are more likely (than couple and nuclear families) to live in rented 

apartments rather than owned single family homes, perhaps as a way of increasing social 

interaction and activity participation opportunities. This is reinforced, in particular, for single 

person NM households who are more likely to live in high density secondary and primary cities 

rather than in the suburbs. Our finding is consistent with that of Boehm and Schlottmann (2014) 

who note that “In particular, single males, single females, and those homeowners recently 

experiencing a change in marital status (e.g., divorce, death of a spouse, etc.) would be more 

likely to transition back to rental tenure”. Single person NM households also appear to prefer 

single-storey units to multi-storey units. In contrast, nuclear families have the highest preference 

of all family types to live in a single family dwelling unit, perhaps because of a perception that 

such dwelling units provide more security and a better quality of living space for the children 

(see Mulder and Lauster, 2010). Finally, in the category of family structure variables, relative to 

couple family households, “other” households prefer rented single-storey apartments. 

Interestingly, the family structure variables discussed above that represent the make-up of 

a household (the relationship among individuals residing within a dwelling unit) directly 

influence the non-size attributes of dwelling unit choice, but do not directly influence the size-

related attributes of dwelling unit choice (note, however, that because of the structural 

(endogenous) effect of housing type on other housing dimensions, there is an indirect influence 

of family structure on size-related attributes; for example, single person households prefer 

apartment living, which, in a recursive manner, implies a smaller square footage of the dwelling 

unit). On the other hand, the number of children and number of adults variables in Table 3 

represent the effect of household size in non-single person households and directly impact the 

size-related attributes. In particular, and as expected, as the number of children or the number of 

adults increase, so does the preference for a higher square footage of the dwelling unit and the 

number of bedrooms in the unit, with this positive effect being stronger for older children 
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relative to younger children and for adults relative to children (see Frenkel and Kaplan, 2014 for 

a similar result). But, while the number of children also has a positive impact on lot size and 

number of bathrooms (with this effect not being different across age groups within children), the 

number of adults does not have an impact on lot size and only an indirect effect on the number of 

bathrooms (this latter effect is because of a structural or endogenous effect of square footage on 

the number of bathrooms, as discussed in the next section). The implication is that lot size and 

number of bathrooms are much more tied with the number of children than with the number of 

adults. This is reasonable, because dwelling units with a large lot size provide outdoor play space 

for children, while more bathrooms may be preferred to accommodate the biological needs of 

children. Another explanation related to the effect of children on lot size and number of 

bathrooms (as well on square footage and number of bedrooms) may be derived from Mulder 

and Lauster’s (2010) dramaturgical framework of housing and motherhood. In this framework, 

Mulder and Lauster propose that housing serves as both staging matter used by actors (the main 

actor here being the mother, along with other close family members) to set up the stage 

performance of motherhood/proper family life  presented to the wider social world, as well as 

staging matter that partitions “the performance space within the family into adequate frontstage 

and backstage performance space.” In particular, Mulder and Lauster test and show that a higher 

number of bathrooms and a roomy dwelling unit are representative stage elements to set up as 

well partition performance space to present what society has come to expect and appreciate as a 

good performance of privileged motherhood.  Mulder and Lauster (2010) also discuss this two-

way interaction between housing and motherhood, and conclude that “family is as much a 

context for understanding housing needs and residential outcomes as housing is a context for 

understanding family events”. Ström (2010) similarly finds a strong inter-relationship between 

dwelling unit size attributes and childbearing.  

Households with senior members (65 years or over) seem to favor dwelling units with 

large square footage located in primary and secondary cities (rather than located in the suburbs), 

and are predisposed to owning multi-storey units with large lot sizes. The preference for large 

square footage and large lot sizes may be attributed to older members spending more of their 

time within their dwelling units and their lots (see Andersson and Abramsson, 2012), and so 

desiring to increase that activity space. The preference for locating in primary and secondary 

cities (rather than in the suburbs) is presumably at least a partial reflection of the “empty-nesters 



35 

flocking back to the downtown areas” effect that provides better accessibility to activity centers 

such as parks, supermarkets, entertainment centers, restaurants, and hospitals (see, for example, 

Litman, 2009). The preference for residing in owned multi-storey units among households with 

older individuals has also been found in Carter (2011).  

Households that have an individual with some form of physical disability are more likely 

to reside in either the primary city or the suburbs (relative to the moderate density locations in 

the secondary city), and rent rather than own. The higher likelihood to reside in the primary city 

for such households may be attributed to the need for easier access to destinations and 

opportunities (including medical care). A similar result was found in Bhat et al. (2014) for 

households with individuals with a prolonged medical condition. The higher likelihood to rent 

rather than own among households with disabled individuals may reflect a disadvantage such 

households continue to have in the owned housing market, despite the institution of policies such 

as the 1990 Americans with Disabilities Act (ADA) and the 1991 Fair Housing Act Accessibility 

Guidelines.  

 The number of full time workers and the number of workers with the option to work from 

home both increase the propensity to reside in single family dwelling units in the primary city. 

The preference to live in the primary city may be a reflection of the benefits of knowledge 

spillovers (through formal and informal personal interactions) that occur in dense urban regions, 

and that provide and allow workers to retain (and enhance) their competitive edge in the market 

place (see Autant-Bernard and LeSage, 2011). As indicated by Boterman and Sleutjes (2014), 

this is true even for workers who have the option to work from home because “E-mail and 

mobile telecommunication complement, rather than replace, face-to-face contacts.” Additionally, 

the results reveal that the number of workers with the option to work from home has a positive 

impact on dwelling unit square footage and lot size. These effects are intuitive because of the 

need for additional office space. Overall, it appears that households with many workers 

(especially those working from home) prefer single family, large-sized units in the primary city 

that affords them social interaction opportunities and high accessibility (see also Kunzmann, 

2009, Yigitcanlar et al., 2008, Yigitcanlar, 2010, and Frenkel et al., 2013 for similar results). 

Interestingly, while primary cities are typically associated on the supply side with rental 

apartment units, in the last decade, there has been a dramatic increase in the supply of the 

number of single family homes in dense primary cities. In particular, between 2000 and 2010, a 
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total of over 4.5 million single family units were newly built in the large metropolitan areas, 

while the corresponding figure for apartment units was only 590,000 (see Cox, 2011). For the 

Seattle region, the distribution of single family versus apartment units in the primary city was 

about 60% to 40% according to the 2010 American Community Survey, a distribution also 

reflected in the sample used in the current paper. This supply of single family units should 

facilitiate the fulfillment of the demand for such units in the primary city (of course, it is still true 

that more single family units are located in the suburbs; for the Seattle region, the overall 

distribution of single family units in the primary city, secondary city, and suburb locations is 

20%, 10%, and 70%, respectively).  

The effect of immigrant status indicates that immigrant households and combination 

households are more likely to reside in rented apartment complexes than non-immigrant 

households (there was no difference between immigrant and combination households for each of 

the housing type and tenure type effects).  This is not inconsistent with the notion of the 

“American dream” being tied to owning a single-family home (see, for example, Carter, 2011). 

Also, immigrants may prefer rented apartment living because of lower access to mainstream 

sources of financing because of the absence of a credit history, or because of past living 

behaviors with multiple families living in a single housing complex in their originating countries, 

or due to self-preservation and identity considerations that encourage them to share multi-unit 

quarters with other people of their own culture to feel a sense of closeness/belonging, as well as 

retaining a sense of security and place in a foreign land. Interestingly, our results show that, 

while housing unit and location decisions are made jointly (due to the presence of latent 

variables affecting multiple housing dimensions), the structural effect of immigrant status on the 

density of residential location manifests itself indirectly through housing type choice rather than 

a direct structural effect (note that there is no effect of immigrant/combination households on the 

density of residential location in Table 3). Many earlier studies, on the other hand, consider the 

immigrant status effect directly on the density of residential location choice (see, for example, 

Wilson and Singer, 2011, Logan et al., 2011, and Bhat et al., 2014). Overall, our results suggest 

that the reason for the preference for high density living among immigrants may be more tied to 

factors such as the absence of a credit history and self-preservation considerations (that is, 

preference for living in apartment units, which are more abundant in supply in high density 

areas) than a direct preference for high density living (though we have to emphasize that this is 
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speaking to the strength of the direction of relationship among the many housing unit choices, 

and not suggesting a hierarchical framework of housing unit-related choices, given that the 

housing unit choices are being made jointly).  

 Finally, the household commute distance increases with an increase in household income, 

a result found in many earlier studies too (see, for, example, Rashidi et al., 2012, Paleti et al., 

2013, and Surprenant-Legault et al., 2013). An explanation for this effect is that individuals who 

are able to command higher wages in the market are willing to commute long distances to 

improve their market potential, while commuting long distances is simply not worthwhile for 

those who command relatively low wages in the market place (Madden, 1985). Another 

explanation is related to occupation segregation; that is, occupations with relatively low wages, 

such as clerical, sales, and services positions, tend to be more localized geographically, 

engendering a positive relationship between income and commute distance (see Clark and Wang, 

2005). Note also that household income has an indirect impact on almost all dimensions of the 

dwelling, through its impact on the luxury propensity latent construct. In the next section, we 

briefly discuss these latent construct effects.  

 

3.6.2 Latent Construct Effects 

The latent construct effects are quite consistent with our hypotheses in Section 3.3. Specifically, 

according to the results in Table 3, households with a high green lifestyle propensity generally 

have a preference for owned, multiple-storey units on a compact lot in higher density 

neighborhoods with a short commute distance, while households with a high luxury lifestyle 

propensity are inclined toward owning high-priced large multi-storey single family homes in 

sparsely dense (suburb) or dense (primary city) neighborhoods (and not in moderately dense 

neighborhoods in the secondary city). 

  

3.6.3 Endogenous Effects 

As discussed in Section 3.4 and presented in Figure 2, there are a number of endogenous effects 

in the choice of dwelling characteristics. The reader will note that these are endogenous effects 

because error correlations across the many dimensions (engendered by the latent effects) are 

explicitly accommodated for. In contrast, many earlier studies that focus on limited dimensions 

of the dwelling unit assume one or more unmodeled dimensions to be exogenous. For example, it 
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is quite typical to consider housing costs and/or density of residential neighborhood (for instance, 

urban versus suburban neighborhood) as an explanatory variable in tenure/housing type and 

housing size decisions (see, for example, Barrios-García and Rodríguez-Hernández, 2008 and 

Carter, 2011). But, as our results indicate, households who are luxury-oriented because of 

various unobserved attributes (such as a higher need to signal wealth or power than their 

observationally equiavelent peer group) are likely to be drawn toward owning high-priced single 

family homes in non-moderately dense (that is, either high density or low density) 

neighborhoods. After accounting for the resulting correlation effects among housing cost, density 

of residential neighborhood, tenure, and housing type choices, our results do not show any 

remaining structural (causal) effect of housing cost on housing tenure decisions (see Table 4). 

The results also reveal that the housing type decision affects housing cost decisions, and both 

these decisions affect residential location and tenure decisions in a recursive fashion (though the 

model is a joint model because of the explicit incorporation of the stochastic latent constructs). 

More generally, the takeaway is that ignoring the package nature of the many housing 

dimensions can lead to incorrect inferences regarding structural (causal) effects among the 

dimensions. Table 4 provides the coefficient estimates of these endogenous effects, which are 

self-explanatory (and have already been diagrammatically illustrated in Figure 2, and discussed 

in Section  3.4).  

 

3.6.4 Variance-Covariance Parameters 

In addition to the correlations across dimensions engendered by the latent constructs, we also 

allowed a general covariance structure for the utility differences (taken with respect to the base 

alternative of the suburb) of the three alternatives for the density of residential neighborhood. 

But the resulting 2×2 covariance matrix provided estimates that could not be statistically 

distinguished from a matrix with the value of 1.0 on the diagonal and the value of 0.5 on the off-

diagonal. Thus, we fixed the 2×2 covariance matrix with 1.0 on the diagonals and 0.5 on the off-

diagonal. This is equivelent, of course, to an IID error structure for the original three alternatives 

with a variance of 0.5 for each alternative. That is, after accommodating for the error 

heteroscdeasticity and correlation in the utilities of the location alternatives due to the stochastic 

latent constructs, there is no remaining heteroscdeasticity and correlation in the location utilities.  
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3.6.5. Data Fit 

The performance of the GHDM structure used here may be compared to the one that does not 

consider latent constructs, maintaining the same specification otherwise as in the final GHDM 

model. However, this would not constitute a good “strawman” specification to test the GHDM 

model with. Instead, we estimate a model including the determinants of the latent constructs  as 

explanatory variables, while maintaining the recursivitiy in the dimensions as obtained from our 

final GHDM model. Essentially, this is an independent model in that the error term correlations 

across the dimensions are ignored, but the best specification of the explanatory variables 

(including those used in the GHDM model in the structural equation system to explain the latent 

constructs) is considered to explain the dwelling unit dimensions. We will refer to this as the 

independent heterogeneous data model (or IHDM model). The GHDM and the IHDM models 

are not nested, but they may be compared using the composite likelihood information criterion 

(CLIC) introduced by Varin and Vidoni (2005). The CLIC takes the following form: 

 1* )ˆ(ˆ)ˆ(ˆ)ˆ(log)ˆ(log  θHθJθθ trLL CMLCML  (12) 

The model that provides a higher value of CLIC is preferred. Another way to examine the 

performance of the two models is to compute the equivalent GHDM predictive household-level 

likelihood value and computing the log-likelihood value across all households at convergence 

)ˆ(θ L . The corresponding IHDM predictive log-likelihood value may also be computed. Then, 

one can compute the adjusted likelihood ratio index of each model with respect to the log-

likelihood with only the constants for each dimension in the IHDM model: 
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θ ,                         (13) 

where )ˆ(θ L  and )(c L  are the log-likelihood functions at convergence and at constants, 

respectively, and M is the number of parameters (not including the constant(s) for each 

dimension) estimated in the model. To test the performance of the two non-nested models (i.e. 

the GHDM and IHDM models) statistically, the non-nested adjusted likelihood ratio test may be 

used (see Ben-Akiva and Lerman, 1985, page 172). This test determines if the adjusted 

likelihood ratio indices of two non-nested models are significantly different. In particular, if the 

difference in the indices is   )( 2
1

2
2 , then the probability that this difference could have 

occurred by chance is no larger than  5.0
12 )]()(2[ MMc  L  in the asymptotic limit. A 



40 

small value of the probability of chance occurrence indicates that the difference is statistically 

significant and that the model with the higher value of adjusted likelihood ratio index is to be 

preferred. 

We also evaluate the data fit of the two models intuitively and informally at both the 

disaggregate and aggregate levels. To do so, we consider four specific dimensions (housing type, 

density of residential location, storey type, and tenure type) and compute marginal multivariate 

predictions for these four dwelling unit attributes jointly. At the disaggregate level, for the 

GHDM model, we estimate the probability of the observed marginal multivariate outcome for 

each household using Equation (4) in the supplementary note (essentially this entails a four 

dimensional rectangular integral computation after integrating out other housing dimensions), 

and compute an average (across households) probability of correct prediction at this four-variate 

level. Similar disaggregate measures are computed for the IHDM model. At the aggregate level, 

we design a heuristic diagnostic check of model fit by computing the predicted aggregate share 

of individuals for combinations of the four dimensions identified earlier that have an aggregate 

share of over 0.05. The predicted shares at the multivariate outcome as well as the marginal 

outcome levels from the GHDM and the IHDM models are compared to the actual shares, and 

the absolute percentage error (APE) statistic is computed.  

The results of our disaggregate data fit evaluation are provided in Table 5a. The CLIC 

values in Table 5 clearly favor the GHDM model over the IHDM model. The same result is 

obtained when comparing the predictive likelihood values, the predictive adjusted likelihood 

ratio indices, and computing the non-nested likelihood ratio statistic; the probability that the 

adjusted likelihood ratio index difference between the GHDM and the IHDM models could have 

occurred by chance is literally zero. The average probability of correct prediction at the four-

variate level of housing type, residential location density, storey type, and tenure type is 0.2235 

for the GHDM model, and 0.2145 for the IHDM model. At the aggregate level, the five 

combinations at the four-variate level with a share of over 0.05 are identified in Table 5b. For 

each of these combinations, the shares predicted by the GHDM model are either superior to the 

IHDM model or about the same as the IHDM model. Across all five combinations, the average 

APE is 6.93% for the GHDM model compared to 21.17% for the IHDM. The aggregate fit 

measures in Table 5b reinforce the disaggregate level results in Table 5a. 
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In summary, the results clearly show that the GHDM model proposed here outperforms 

the IHDM model in the disaggregate level and aggregate level comparisons. It is also interesting 

to compare the model with a model that ignores the first stage search process completely, and 

assumes that households choose from all possible dwelling units. Such a model essentially 

assumes that, regardless of household demographics and attitudes, the probability of choice of 

each alternative along each dimension in the first stage process modeled here is equal across 

alternatives in that dimension. Equivalently, each multivariate combination has the same 

probability of being included into the choice set of the household. The log-likelihood (LL) value 

of the naïve model is  –20,161.00, which is much worse than that of the GHDM LL value of       

–10,726.72, and of the IHDM LL value of –11,438.43. The average probability of correct 

prediction of such a naïve model at the four-variate level identified above is 0.0420, which is 

much worse than the corresponding GHDM value (of 0.2235) or the IHDM value (of 0.2145). 

Overall, the GHDM model, which has the best data fit, is the one that provides the most accurate 

set of alternatives for the subsequent second stage fine-level determination of housing choices at 

the parcel level.   

 

4. CONCLUSIONS  

A majority of residential location choice models are based on traffic analysis zones or similar 

aggregate spatial regions as the analysis unit. However, because of several limitations of such 

zone-based models, some recent studies have started using parcels as the analysis unit. However, 

like the zone-based models, parcel-based models also do not consider dwelling unit attribute 

choices that are made jointly with the physical location of the residence. Another unit of analysis 

is that of the dwelling unit. The advantage of this analysis unit is that it can accommodate 

dwelling unit attributes, but a problem is that the universal choice set explodes in size very 

quickly (particularly with a parcel-based spatial resolution). The typical approach to handle such 

a situation has been to use a sampling approach to sample a subset of the universal choice set of 

alternatives, and use correction terms that can provide consistent and asymptotically normal 

estimates for most discrete choice models. But this works only if households do choose from the 

universal choice set, which is not the case. It fundamentally ignores the presence of any search 

behavior process heuristics and pruning tactics.   
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In the current study, we adopt a dwelling unit level of analysis and consider a 

probabilistic choice set generation approach for residential choice modeling. Our representation 

of the search process is consistent with a combination of supply constraint-based, area-based, or 

anchor points-based search strategies. The study accommodates the fact that housing choices 

involve both characteristics of the dwelling unit and its location, while also mimicking the search 

process that underlies housing decisions. A complete range of dwelling unit choices are 

considered in the first consideration stage, including tenure type, housing type, number of 

bedrooms, number of bathrooms, number of storeys (one or two), square footage of the house, 

lot size, housing costs, density of residential neighborhood, and household commute distance. 

We exploit the idea that the final dwelling unit choice provides an indication of the broader 

preferences at the first consideration stage, and focus on this consideration stage in this paper. 

The many housing choices associated with the consideration stage are estimated by introducing 

latent psychological constructs that influence multiple housing choice outcomes in a 

measurement equation, engendering a parsimonious covariance structure across the many 

outcomes because the latent constructs themselves are specified in a structural system to be a 

function of exogenous variables and correlated random error terms. The model system is 

estimated on a Seattle subsample drawn from the 2009 American Housing Survey. 

Several important conclusions may be drawn from the estimation results. First, housing 

choices are determined by many household socio-demographic variables, including family 

structure, number of children, number of adults, presence of senior adults and physically 

challenged individuals, number of workers, immigrant status, and household income. Second, 

housing choices are clearly made jointly, unlike the typical study that separates location 

considerations from dwelling unit characteristics. That is, residential models that consider only 

physical location-related attributes miss out on important behavioral elements that drive housing 

choices. Further, our study shows that housing studies that focus on only a limited set of housing 

dimensions, while considering other housing dimensions as being exogenous, run the risk of 

endogeneity bias because of the package nature of housing choices. Third, the gamut of housing 

choices are inter-related because of both common observed variables directly impacting the 

many dimensions of choice, as well as because of the effects of stochastic latent variables 

associated with green lifestype propensity and luxury lifestyle propensity. Because these latent 

constructs are themselves a function of socio-demographics such as education level, income, 
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race, and gender, the many housing choices are indirectly a function of these socio-demographic 

variables too. Also, the presence of unobserved factors impacting the latent constructs 

immediately implies that the many housing choices are correlated because of the unobserved 

factors. In addition, after controlling for these unobserved correlation effects, our results show a 

recursive pattern of endogenous effects within the housing choices. Fourth, the two latent 

variables provide important insights into housing choices, and reinforce the notion that dwelling 

unit choice involves an affective dimension and constitutes a lifestyle choice. Fifth, our results 

clearly show the superior data fit of the proposed GHDM model relative to a model that ignores 

the package nature of the housing decisions. Importantly, the proposed model is vastly superior 

to the commonly used residential location model that ignores all dwelling type attributes, and 

that assumes that households choose from all possible parcels (or zones).  

In conclusion, this paper underscores the need to examine all aspects (locational and non-

locational) of dwelling unit choice jointly, which, in turn, indicates a need to collect dwelling 

unit attibutes in activity-travel surveys. One important extension of the current paper is to 

include the mobility decision when modeling dwelling unit attributes. While doing so is 

methodologically straightforward in our proposed analytic framework, the data used in the 

empirical analysis of this paper did not have adequate information on mobility decisions.  
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Figure 2. Recursivity in Implied Structural Effects 
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Table 1. Descriptive Statistics 

Grouped Outcomes Count Outcomes 

Square footage of the 
house (Sq. feet) 

Lot size (Sq. feet) Housing cost ($) 
Household average 

commute distance (miles)
# of bedrooms # of bathrooms 

Category Percentage Category Percentage Category Percentage Category Percentage Value Percentage Value Percentage 

≤1,000 27.0 ≤1,500 24.0 ≤1,000 26.0 ≤2 13.0 0 1.0 0 0.0 

1,001 – 1,500 23.0 1,501 – 2,500 7.0 1,001 – 1,500 21.0 >2 & ≤5 14.0 1 12.0 1 45.0 

1,501 – 2,000 19.0 2,501 – 5,000 9.0 1,501 – 2,000 20.0 >5 & ≤10 25.0 2 22.0 2 43.0 

2,001 – 2,500 15.0 5,001 – 7,500 16.0 2,001 – 2,500 13.0 >10 & ≤15 19.0 3 40.0 3 11.0 

2,501 – 3,000 7.0 7,501 – 10,000 11.0 2,501 – 3,000 9.0 >15 & ≤20 13.0 4 21.0 4 1.0 

>3,000 9.0 10,001 – 12,500 10.0 >3,000 11.0 >20 & ≤25 7.0 ≥5 4.0   

  12,501 – 15,000 4.0   >25 9.0     

  >15,000 19.0         

Nominal/Binary Outcomes 

Housing type 
Single family detached Single family attached Apartment complex 

69.0 3.0 28.0 

Residential 
location 

Suburb of the MSA* Secondary central cities of the MSA* Primary central city of the MSA* 

65.0 11.0 24.0 

Tenure type 
Owning Renting 

65.0 35.0 

Storey type 
Single-storey Multi-storey 

48.0 52.0 

*MSA: Metropolitan Statistical Area 
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Table 2. Estimation Results of Structural Equation  

Variables Coefficient T-stat 

Green Lifestyle Propensity 

Education status (base: fraction of adults with less than a bachelor’s degree)    

   Fraction of adults with bachelor’s or master’s degree in the household 0.755 18.593 

   Fraction of adults with PhD degree in the household 1.629 16.706 

Race (base: Caucasian or Asian )   

   African-American or other 0.167 5.156 

Gender (base: fraction of male adults in the household)    

   Fraction of female adults in the household 0.167 7.216 

Luxury Lifestyle Propensity 

Household income (base: less than $30,000)   

    30,000 – 50,000 1.326 4.596 

    50,001 – 75,000 2.525 4.700 

    75,001 – 100,000 3.632 4.700 

    100,001 – 125,000 4.754 4.717 

    125,001 – 200,000 5.374 4.709 

    200,001 and above 6.790 4.701 

Correlation coefficient between ‘Green Lifestyle Propensity’ and ‘Luxury 
Lifestyle Propensity’ latent constructs  

-0.621 -3.735 
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Table 3. Measurement Equation Estimates 

Dependent Variables 

Family structure of the household  
(base: married couple with no children) 

Number of children  
(base: no children) 

Single person 
never married 

(NM) household 

Single person 
separated/divorced 
(S/D) household 

Nuclear family 
household 

Other households 
 # of children ≤ 10 

years old   
# of children 11-

16 years old 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Housing type (base: single family)                

   Apartment 1.103 32.288 0.627 15.900 -0.500 -8.600 0.210 5.575 - - - - 

Housing cost (dollars) - - - - - - - - - - - - 

Square footage of the dwelling unit - - - - - - - - 0.026 3.037 0.056 7.595 

Residential location (base: suburb)             

   Secondary city 0.371 7.166 - - - - - - - - - - 

   Primary city 1.001 2.814 - - - - - - - - - - 

Tenure type (base: owned)             

   Rented 0.119 3.145 0.362 8.779 - - 0.625 14.574 - - - - 

Storey type (base: multi-storey)             

   Single-storey 0.194 4.780 - - - - 0.261 5.995 - - - - 

Lot size (sq. feet) - - - - - - - - 0.043 3.531 0.043 3.531 

# of bedrooms - - - - - - - - 0.090 7.717 0.140 14.221 

# of bathrooms - - - - - - - - 0.048 2.973 0.048 2.973 
Household average commute 
distance (miles) 

- - - - - - - - - - - - 
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Table 3 (Cont.) Measurement Equation Estimates 

Dependent Variables 

Number of adults 
(17 and above) 

Presence of seniors 
(65 and above) 
(Yes=1, No=0) 

Presence of a 
disabled person 
(Yes=1, No=0) 

Number of full 
time workers 

Number of 
workers with the 
option to work 

from home 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Housing type (base: single family)              

   Apartment - - - - - - -0.118 -6.018 -0.132 -4.485 

Housing cost (dollars) - - - - - - - - - - 

Square footage of the dwelling unit 0.059 12.251 0.101 6.508 - - - - 0.021 2.084 

Residential location (base: suburb)           

   Secondary city - - 0.139 2.255 -0.112 -2.172 - - - - 

   Primary city - - 0.626 2.507 - - 0.247 2.378 0.121 4.130 

Tenure type (base: owned)           

   Rented - - -0.815 -14.960 0.163 3.632 - - - - 

Storey type (base: multi-storey)           

   Single-storey - - -0.201 -3.776 - - - - - - 

Lot size (sq. feet) - - 0.120 3.566 - - - - 0.051 2.514 

# of bedrooms 0.179 33.872 - - - - - - - - 

# of bathrooms - - - - - - - - - - 
Household average commute 
distance (miles) 

- - - - - - - - - - 
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Table 3 (Cont.) Measurement Equation Estimates 

Dependent Variables 

Immigration status  
(base: native 
household) 

Household monthly income (base: $30,000 or less) Latent Constructs 

Immigrant and 
combined 

households 

30,000 – 
50,000 

50,001 – 75,000 
75,001 and 

above 
   Green lifestyle 

propensity 
    Luxury lifestyle 

propensity 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Housing type (base: single family)                

   Apartment 0.415 14.892 - - - - - - - - -0.222 -4.408 

Housing cost (dollars) - - - - - - - - - - 0.133 4.613 

Square footage of the dwelling unit - - - - - - - - - - 0.064 4.583 

Residential location (base: suburb)             

   Secondary city - - - - - - - - 0.305 3.979 -0.092 -4.090 

   Primary city - - - - - - - - 1.736 2.679 - - 

Tenure type (base: owned)             

   Rented 0.248 8.068 - - - - - - -0.265 -7.205 -0.213 -4.445 

Storey type (base: multi-storey)             

   Single-storey - - - - - - - - -0.261 -7.274 -0.041 -3.279 

Lot size (sq. feet) - - - - - - - - -0.264 -16.742 - - 

# of bedrooms - - - - - - - - - - 0.110 4.440 

# of bathrooms - - - - - - - - - - 0.138 4.358 
Household average commute 
distance (miles) 

- - 0.184 5.581 0.381 10.716 0.462 14.011 -0.364 -12.419 - - 
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Table 4. Endogenous Effects 

Dependent Variables 

Housing type 
(base: detached/ 

attached) 
   Housing cost (base: $1,000 dollars or less) 

Apartment   1001 – 1500 1501 – 2000 2001 – 2500 2501 – 3000 
   3001 and 

above 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Housing cost  -0.410 -26.475 - - - - - - - - - - 

Square footage of the dwelling unit -0.640 -52.861 - - - - 0.131 11.124 0.182 12.856 0.330 20.277 

Residential location (base: suburb)             

   Secondary city - - - - - - - - - - - - 

   Primary city 0.443 2.416 - - 0.302 2.166 0.653 2.379 0.653 2.379 0.653 2.379 

Tenure type  (base: owned)             

   Rented 1.416 38.329 - - - - - - - - - - 

Storey type (base: multi-storey)             

   Single-storey 2.069 41.994 - - -0.101 -2.937 -0.101 -2.937 -0.406 -8.414 -0.406 -8.414 

Lot size (sq. feet) - - - - - - - - - - 0.188 6.309 

# of bedrooms - - 0.124 8.569 0.233 16.725 0.312 19.263 0.312 19.263 0.312 19.263 

# of bathrooms - - - - - - 0.099 3.213 0.099 3.213 0.166 4.615 
Household average commute 
distance 

- - - - - - - - - - - - 
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Table 4 (Cont.) Endogenous Effects 

Dependent 
Variables 

   Square footage of house (base: 1,000 sq. feet or less) 
Residential location  

(base: suburb) 
Tenure type 

(base: rented) 

  1001 – 1500 1501 – 2000 2001 – 2500 2501 – 3000 
   3001 and 

above 
Primary city 

Secondary 
city 

Owned 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Housing cost  - - - - - - - - - - - - - - - - 
Square footage of 
the dwelling unit 

- - - - - - - - - - - - - - - - 

Residential location 
(base: suburb) 

                

   Secondary city -0.140 -2.912 -0.140 -2.912 -0.140 -2.912 -0.140 -2.912 -0.140 -2.912 - - - - - - 
   Primary city -0.847 -2.684 -0.847 -2.684 -0.847 -2.684 -1.656 -2.607 -1.656 -2.607 - - - - - - 
Tenure type (base: 
owned) 

                

   Rented - - - - - - - - - -  0.238  6.956  0.160  3.746 - - 
Storey type (base: 
multi-storey) 

                

   Single-storey -0.384 -7.898 -1.454 -27.291 -1.454 -27.291 -2.205 -30.361 -2.205 -30.361 -0.663 -18.785 - -  0.263  6.893 
Lot size (sq. feet) - - - - - - - - - - - - - -  0.273  14.590
# of bedrooms - - - - - - - - - - - - - -  0.427  38.894
# of bathrooms 0.379 12.364 0.379 12.364 0.379 12.364 0.379 12.364 0.379 12.364 - - - - - - 
Household average 
commute distance 

- - - - - - - - - - -0.421 -15.430 - - 0.230 9.103 
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Table 5a. Disaggregate Data Fit Measures 

Summary Statistics 
Model 

GHDM IHDM 

Composite Marginal log-likelihood value at convergence -99009.59 -99640.90 

Composite Likelihood Information Criterion (CLIC) -99257.24 -99956.41 

Log-likelihood at constants -11965.33 

Predictive log-likelihood at convergence -10726.62 -11438.43 

Number of parameters 116 146 

Number of observations 1421 1421 

Predictive adjusted likelihood ratio index  0.094 0.032 

Non-nested adjusted likelihood ratio test between the GHDM and IHDM  Φ[–36.09]<<0.0001 

 

 

 

Table 5b. Aggregate Data Fit Measures 

Alternative 
Observed 

Share 

GHDM IHDM 

Predicted 
Share 

APE* 
Predicted 

Share 
APE* 

Owned, multi-storey, single-family unit 
located in primary city 

0.0950 0.0912  4.00 0.0865  8.95 

Owned, single-storey, single-family unit 
located in suburb 

0.1281 0.1137 11.24 0.0888 30.68 

Owned, multi-storey, single-family unit 
located in suburb 

0.2885 0.2658  7.87 0.2720  5.72 

Rented, single-storey, apartment unit 
located in primary city 

0.0690 0.0680  1.45 0.0357 48.26 

Rented, single-storey, apartment unit 
located in suburb 

0.1119 0.1006 10.10 0.0982 12.24 

Average across all combinations   6.93  21.17 

*APE: Absolute Percentage Error 


