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ABSTRACT 
The mode share of app-based ride-hailing services has been growing steadily in recent years and 
this trend is expected to continue. Ride-hailing services generate two types of trips – passenger 
hauling trips and deadheading trips. Passenger hauling trips are the trips made while transporting 
passengers between places. Virtually all other trips made by a ride-hailing vehicle when there are 
no passengers in the vehicle are called deadheading trips or empty trips. Trips between the drop-
off location of one passenger and the pick-up location of the next passenger could comprise a 
substantial share of total travel by ride-hailing vehicles, both in terms of number of trips and miles 
of travel. This paper aims to model the deadheading trips produced by app-based ride-hailing 
services at the disaggregate level of individual trips. Passenger trip data published by the app-
based ride-hailing company Ride Austin is used to impute deadheading trips. The pick-up locations 
of passengers are then modeled using a nonlinear-in-parameters multinomial logit framework, 
essentially capturing the deadheading that takes place from the drop-off of one passenger to the 
pick-up of the next passenger. The model is sensitive to socio-demographic characteristics, as well 
as employment opportunities and built environment characteristics of the study area. The model 
results shed light on the characteristics of deadheading trips at different locations and at different 
time periods in a day. The paper concludes with a discussion of how transportation planners and 
app-based ride-hailing companies may utilize knowledge about deadheading to enact policies and 
pricing schemes that reduce deadheading.  
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1 INTRODUCTION 
The past decade has seen a dramatic growth in the use of app-based ride-hailing (or ride-sourcing) 
services around the world (Statista, 2019). App-based ride-hailing is an internet platform-based 
service that facilitates the real-time matching of drivers who are willing to provide a ride and 
potential passengers based on the spatial proximity between the potential “matches”. In app-based 
ride-hailing, provided by what are now labeled as Transportation Network Companies (or TNCs) 
(such as Uber, Lyft, Ola, and Didi) who use a dynamic matching algorithm, it is strictly necessary 
to request a ride in advance through a smartphone app. This is in contrast to traditional taxi-based 
ride-hailing services where riders physically hail a taxi from the street or elsewhere without prior 
notification/booking. App-based ride-hailing enables consumers to ascertain a vehicle’s real-time 
location and estimated arrival time, and all monetary transactions are conducted through an on-
line platform (Cohen and Shaheen, 2016; Shaheen et al., 2016). Further, app-based ride-hailing 
facilitates shared (pooled) travel in a seamless fashion for individuals who would like to share 
travel costs and reduce their carbon footprint. In many parts of the world, the difference between 
traditional taxi ride-hailing and app-based ride-hailing services, at least in terms of passenger 
service, is fading, with traditional taxi ride-hailing companies also allowing the use of a smart 
phone app to request a ride. App-based ride-hailing is the modern transformed version of the 
traditional taxi-based ride-hailing service that is here to stay (Komanduri et al., 2018). Because of 
this, the term “ride-hailing” has become synonymous to “app-based ride-hailing”. In the rest of 
this paper, app-based ride-hailing will simply be referred to as “ride-hailing” unless explicitly 
mentioned otherwise. 

Despite the numerous advantages of modern ride-hailing services, there are concerns that 
arise in the context of the increasing adoption of ride-hailing services. Perhaps the most pressing 
concern is the increased VMT due to deadheading trips or empty trips. These are trips that are 
made by ride-hailing vehicles when there are no passengers in the vehicle. While it behooves TNCs 
to match drivers and riders in ways that reduce deadheading time and distance (to minimize waiting 
time and maintain cost affordability), it is estimated that between 35% and 50% of the total 
distance traveled by ride-hailing vehicles is lost to deadheading (Cramer and Krueger, 2016; 
Henao and Marshall, 2019; Komanduri et al., 2018). This has led some to argue that ride-hailing 
is at least partially responsible for worsening traffic congestion in a number of cities (LeBlanc, 
2018; Erhardt et al., 2019). 

Even though deadheading trips constitute a significant share of the distance traveled by 
ride-hailing vehicles, until recently, most of the research on ride-hailing has focused on passenger 
trips (i.e., trips involving transportation of passengers from pick-up locations to drop-off 
locations). Information on such passenger trips are easy to obtain by conducting surveys of 
individuals and eliciting responses to questions regarding ride-hailing use, purpose of ride-hailing 
trip, and spatial-temporal characteristics of the trips (see, for example, Clewlow and Mishra, 2017 
and Lavieri and Bhat, 2019). However, it is more difficult to obtain survey-based diaries of 
deadheading trips from ride-hailing drivers, because ride-hailing drivers are a smaller segment of 
the population than those who request ride-hailing services. Another approach to obtain 
information on deadheading is through disaggregate trip-level data from ride-hailing vehicles. But 
such data were not easily available until 2017, when an app-based ride-hailing company “Ride 
Austin” released anonymized data on all ride-hailing passenger trips that were served on their 
platform over a ten month period between 2016 and 2017 (Ride Austin, 2017). The availability of 
this data presents an opportunity to impute and analyze deadheading trips at a disaggregate trip-
level. Specifically, in this paper, we focus on the deadheading trips that are made in search of a 
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new passenger after dropping off any previous passenger(s). One could also examine deadheading 
portions of trips in which there may be some passengers already in the ride-hailing vehicle, where 
the ride-hailing vehicle travels (with no benefit to existing passengers in terms of time or 
movement toward destinations) to pick-up an additional new passenger in a pooled/shared-ride 
mode of operation. However, given the very low use of ride-hailing in a pooled mode, at least in 
the U.S. (Lavieri and Bhat, 2019), and the inherent complexity in identifying deadheading portions 
of non-empty ride-hailing trips, the analysis (or inclusion) of this component of deadheading is 
left to a future research effort. Besides, as discussed later, the data used in this study precludes any 
shared/pooled ride-hailing, thus rendering the examination of deadheading portions of non-empty 
trips impractical. 

In summary, in this paper, we develop a model to predict the location of the next passenger 
pick-up when the origin of the deadheading trip (or the drop-off location of the previous passenger) 
is known. An immediate reaction may be that such deadheading trips are simply a derivative of 
where passengers are picked up and dropped off. But this is not true, because deadheading trips, 
at a micro-level, are about which ride-hailing vehicle is assigned to a specific passenger pick-up. 
So, just knowing passenger pick-up locations and passenger drop-off locations do not provide 
information about deadheading. Of course, ride-hailing companies have a specific dynamic 
matching algorithm that matches ride-hailing vehicles to passenger pick-up requests, but TNCs 
consider the algorithm as being proprietary. Also, TNCs use such an algorithm to optimize 
business operations and revenue, while the emphasis in this research is to allow planners to account 
for the spatial-temporal patterns of deadheading trips in their urban and regional travel models to 
predict overall spatial-temporal patterns of traffic flow. In other words, while the goal of the 
models developed by TNCs would be to identify strategies for controlling ride-hailing demand and 
supply in a way that maximizes their revenue and profits, the goal of our model is to predict 
passenger pick-up patterns for ride-hailing vehicles based on historic data so that it can be 
simulated in travel demand forecasting frameworks. Two additional points along these lines. There 
is no doubt that fleet characteristics of the TNC, pricing considerations such as surge pricing, and 
related service characteristics, as well as driver attributes, can affect deadheading trips. But such 
characteristics are not available in the context of survey data used for traditional urban and regional 
travel demand models, and certainly are not available for use in forecasting with travel demand 
models. A second issue is that, in the U.S., TNCs assign pick-ups to a specific driver based on 
location proximity at non-airport locations or based on a digital queuing system (with the driver 
with the longest wait time in the queue) at airports (Griswold, 2018). Drivers are not provided 
information on where the assigned pick-up’s drop-off point is until the driver gets to the pick-up 
point. This is done deliberately to avoid a situation where drivers do not accept a pick-up 
assignment based on where the pick-up is to be dropped. And drivers get steeply penalized if they 
do not accept, on a routine basis, assigned rides. In effect, driver attributes play a relatively small 
role in acceptance or not of pick-up rides assigned, which implies that driver attributes do not play 
a substantial role in deadheading trip patterns.1 In recognition of these two issues, our model uses 
location specific attributes of the deadheading trip’s origin as well as attributes of the potential 
destinations to predict the subsequent passenger pick-up location after a passenger drop-off within 
                                                      
1 The situation is a little different in some places outside the U.S. For example, Didi, once it receives a ride request, 
sends that request to all nearby drivers (Xu et al., 2018; Jiang and Zhang, 2018). Drivers then respond positively or 
not to the request, and then Didi uses an algorithm to release the “deal” to a specific driver from among those who 
have responded (if no driver responds, the request is aborted). This is different from the operation of Uber and Lyft in 
the U.S., where the TNC directly assigns a pick-up to a specific driver (the driver has about 15 seconds to not accept, 
but routine non-acceptances get on the record of the driver).  
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the context of a regional travel demand model setting (as opposed to a micro-level profit-
maximizing supply-demand matching setting). The location specific attributes used here include 
employment opportunities, built environment attributes, and socio-demographic characteristics. 
Such location-related variables are routinely used (typically at a traffic analysis zone or TAZ level) 
in travel demand model estimation and forecasting.  A nonlinear-in-parameters multinomial logit 
model of pick-up location, given an earlier drop-off location, is estimated and the model results 
are used to gain insights on the factors that affect the propensity of passenger pick-ups at different 
locations and the distance that a ride-hailing driver travels in order to find a new passenger. When 
combined with a ride-hailing passenger drop-off model (essentially these would be determined 
within the context of the trip distribution model in traditional demand models), the current model 
provides the complete spatial-temporal pattern of predicted ride-haling deadhead trips (as 
discussed later in Section 6.3).  

The remainder of this paper is organized as follows. Section 2 gives a brief overview of 
the past studies on ride-hailing. Section 3 presents a description of the data used in this study, while 
Section 4 explains the modeling methodology. Section 5 presents model estimation results. Section 
6 presents a discussion of the potential planning and forecasting applications of the models 
developed in this study. Finally, Section 7 offers concluding thoughts. 

 
2 LITERATURE REVIEW 
Deadheading trips may be viewed as a corollary of passenger trips.  After a passenger is served, a 
deadheading trip is very likely to take place as the ride-hailing driver proceeds to the next pick-up 
location.  As such, deadheading trip destinations correspond to locations of ride-hailing passenger 
pick-up locations. In this section, we briefly introduce some of the studies on ride-hailing 
passenger trip pick-up locations and refer to them later in Section 5 to contextualize the results. 
Further, we explain in more detail other studies that use the Ride Austin dataset and study 
deadheading trips. 

Many studies in the literature document the characteristics of ride-hailing service users and 
trip characteristics through a variety of surveys and secondary data collection efforts. One of the 
most comprehensive surveys on ride-hailing usage in the United States was conducted by Clewlow 
and Mishra (2017). They conducted a survey of ride-hailing users across seven major cities – 
Boston, Chicago, Los Angeles, New York, San Francisco, Seattle, and Washington D.C. Other 
studies that involved surveys of ride-hailing usage include Henao and Marshall (2019), Lavieri 
and Bhat (2019), and Rayle et al. (2016). Rayle et al. (2016) surveyed ride-hailing users in San 
Francisco, while Lavieri and Bhat (2019) surveyed commuters who used ride-hailing in the Dallas-
Fort Worth metropolitan area. Henao and Marshall (2019) signed up to drive for ride-hailing 
companies, Uber and Lyft, in the Denver area and surveyed the passengers that rode in their 
vehicles. By serving as drivers, they were also able to estimate the distance traveled while 
deadheading. Some studies have attempted to derive insights on ride-hailing behavior from larger 
scale travel surveys (as opposed to targeted ride-hailing user surveys). Examples of such studies 
include: Dias et al. (2017), who studied ride-hailing usage using the 2017 Puget Sound regional 
household travel survey; Alemi et al. (2018), who used the 2015 California millennials survey; 
and Young and Farber (2019), who studied ride-hailing usage in Toronto.  

Since TNCs were reluctant to release trip-level ride-hailing data until recently, a few 
studies, such as those by Cooper et al. (2018) and Kooti et al. (2017), have attempted to collect 
this data using novel data collection techniques. Cooper et al. (2018) obtained data on the 
movement of deadheading ride-hailing vehicles in the city of San Francisco directly through the 
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Application Programming Interfaces (API) of Uber and Lyft. They repeatedly queried the Uber 
and Lyft servers for the locations of vehicles that are available for hire around 200 synthetically 
generated clients spread around the city. Using this approach, they obtained the coordinate traces 
of deadheading Uber and Lyft vehicles in the city for a duration of 40 days. Kooti et al. (2017) 
extracted data on Uber’s ride-hailing trips from Yahoo’s email servers. They access the receipts 
sent by Uber to passengers as well as the reports sent by Uber to drivers and combine these reports 
with data on the owners of the email accounts to understand the socio-demographic profile of Uber 
passengers and drivers. 

A few studies have attempted to address the issue of measuring and quantifying 
deadheading directly. Cramer and Krueger (2016) compared the deadheading durations of app-
based ride-hailing and traditional taxis in the cities of Boston, Los Angeles, New York, San 
Francisco and Seattle. They measured the capacity utilization as the proportion of time for which 
there is a passenger in the ride-hailing vehicle to the total duration of operation of the vehicle. 
They were able to obtain the citywide percentages for capacity utilization directly from Uber. The 
same metric was computed for regular taxis using data from a wide range of sources. In virtually 
all cities, the capacity utilization for ride-hailing was higher than that for traditional taxis, with the 
difference being the smallest in New York. The capacity utilization for ride-hailing ranged from 
43.6% in Seattle to 54.3% in San Francisco. They estimated the percentage of distance traveled 
while deadheading to be 35.8% in Los Angeles and 44.8% in Seattle. Henao and Marshall (2019) 
estimated the share of deadheading distance based on their own driving data when serving as 
drivers for Uber and Lyft. They report 40.8% of their total distance traveled (VMT) being lost to 
deadheading. 
 Ride Austin was one of the first TNCs to make data on individual passenger trips publicly 
available. Ride Austin is a non-profit that began operating in the city of Austin, Texas on June 16, 
2016 when other companies, notably Uber and Lyft, were forced to cease operations because they 
were unable to abide by the city’s regulations (Kelly, 2016). By the beginning of 2017, Ride Austin 
held around one-third of the ride-hailing market share in the city. Since the release of the trip-level 
data, a number of studies utilizing this data have been conducted (see, for example, Dias et al., 
2017, Lavieri et al., 2018, Komanduri et al., 2018, and Wenzel et al., 2019). In the specific context 
of deadheading, the relevant studies are Komanduri et al. (2018) and Wenzel et al. (2019). 
Komanduri et al. (2018) assumed that a deadheading trip occurs whenever the time gap between 
consecutive passenger trips made by a driver is less than 30 minutes. The deadheading distances 
were calculated as the straight-line distances between the origins and destinations. If the time gap 
between passenger trips was more than 30 minutes, it was assumed that drivers would not deadhead 
for the entire time gap. Instead, they assumed that two deadheading trips with distances of two 
miles each and durations of five minutes each would have occurred within that interval. The first 
deadheading trip would occur immediately after the drop-off of one passenger and the next 
deadheading trip would occur immediately before the subsequent passenger pick-up. Based on 
these assumptions, they estimated the percentage of deadheading miles traveled by ride-hailing 
vehicles to be 37%. In a more recent study, Wenzel et al. (2019) also used a similar approach to 
identify deadheading trips. Unlike Komanduri et al. (2018), Wenzel et al. (2019) assumed that 
continuous deadheading occurs between consecutive passenger trips that are less than 60 minutes 
apart. They also used a correction factor for converting straight-line distances to network distances. 
They estimated the length of an average deadheading trip that occurs between consecutive 
passenger trips to be 55% of the average passenger trip length. Additionally, they imputed the 
location of residences of drivers based on the spatial median of their first pick-up and last drop-off 
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locations from every shift. A new ride-hailing shift is assumed to have begun if a passenger is 
picked up eight hours after the previous passenger is dropped off. Using the imputed locations of 
driver residences, the deadheading distances at the beginning and ending of shifts were also 
computed. Using these assumptions, the overall percentage of deadheading distance was estimated 
to be 45%.   

The approach adopted in this paper to identify deadheading trips is similar to that used by 
Komanduri et al. (2018) and Wenzel et al. (2019).  In this paper, only the deadheading trips made 
for repositioning vehicles between drop-off and pick-up locations of consecutive passengers are 
considered. While other studies have largely estimated deadheading miles at an aggregate scale as 
a percentage of the total distance traveled (by ride-hailing vehicles), this paper makes an important 
contribution by modeling deadheading at the disaggregate level of individual trips. This provides 
a deeper understanding of the variations in deadheading patterns across time and space, while also 
identifying the key factors that contribute to deadheading variations. To build a model of 
deadheading (i.e., pick-up location for next passenger) with a rich specification for use in travel 
demand models, the ride-hailing trip data needs to be fused with secondary data sources including 
socio-demographic data, network travel times and distances, built environment data, and 
employment data. The explanatory variables used in the model are variables that are regularly used 
in the context of travel demand forecasting. The insights from such a model would prove 
invaluable in predicting locations with high potential for deadheading (hotspots) and devising 
countermeasures to alleviate the adverse effects of deadheading mileage. Further, the modeling 
framework is such that it can easily be introduced into commonly used travel demand modeling 
frameworks such as the four-step model. To capture the variety of purposes for which ride-hailing 
trips are made at different times in a day, variables that measure employment opportunities at the 
potential destinations and identifiers for special generators, such as the Austin Bergstrom 
International Airport (ABIA) and the main campus of the University of Texas at Austin, are 
included in the model. Separate models are then estimated for different time periods of a day, thus 
providing an understanding of temporal variation in deadheading across the region.  
 
3 DATA DESCRIPTION 
The primary dataset used in this study is the dataset on ride-hailing passenger trips released by 
Ride Austin (2017). Deadheading trips were inferred and imputed based on the passenger trips in 
this dataset. The ride-hailing data was supplemented with data from several other sources. The 
Smart Location Database (SLD) was used to obtain data on socio-demographic, built environment, 
and other characteristics of census block groups in the study area (U.S. EPA, 2014). Some of the 
variables in the SLD were updated using more recent figures obtained from the 2016 American 
Community Survey (ACS) dataset. The network distances (skims) used in this study are based on 
the zoning and network information of the study area as used by the Capital Area Metropolitan 
Planning Organization (CAMPO) in their travel demand forecasting models. CAMPO is 
responsible for transportation planning in the city of Austin. The zoning and network information 
were acquired for the counties of Burnet, Bastrop, Caldwell, Hays, Travis and Williamson. The 
six counties comprise a total of 2102 traffic analysis zones (TAZs). 
  
3.1 Ride Austin Passenger Trips Dataset 
The Ride Austin dataset contains the anonymized records of every passenger trip made using the 
Ride Austin application between early-June 2016 and mid-April 2017. There are 1,494,125 trip 
records in this dataset. Very few trips were recorded in the initial months of the operation of Ride 
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Austin. To better capture ride-hailing usage patterns in steady state, only data for the period of 
October 2016 to mid-April 2017 (corresponding to 195 days of data) are used in this study. Each 
record in the dataset includes the coordinates of the origin and destination, the trip start and end 
times, and identifiers for the driver and passenger. The service did not allow for the sharing of 
rides between strangers. In other words, drivers would receive new ride requests only when there 
were no passengers in the vehicle. This is in contrast to the ride-sharing services provided by some 
of the competing TNCs (e.g., Uber Pool and Lyft Shared) where new passengers may be picked 
up enroute to the destination of a passenger already in the vehicle. The lack of a ride-sharing option 
ensures that each passenger trip in the dataset is associated with only one passenger account. 

The location coordinates in the dataset are censored to three decimal places to protect 
passenger privacy. If the coordinates were truncated to three decimal places and not rounded, this 
corresponds to a maximum radial error in distance measurement of approximately 147 meters 
(about 500 feet). The passengers may also have walked some distance from their original drop-off 
point to reach their final destination. The error in the observed location caused by these factors is 
unlikely to have a substantial impact on our modeling efforts because the attributes of an area 
generally would not vary significantly over a distance of 500 feet. Even if the designated area type 
changes within this distance, such as from urban to suburban, the variation is likely to be gradual 
so that it would be reasonable to consider either locations as suburban or urban. Besides, the 
average area of a traffic analysis zone (or TAZ) used as the spatial unit of analysis is of the order 
of 2.5 square miles (as presented later in Table 1). Assuming a square pattern, the size dimension 
of a TAZ is about 1.6 miles or 8500 feet. Thus, misclassifications of a location into a TAZ would 
be of the order of 10% [ 8500 8000 8000) / (8500 8500)(8500    ] which should not affect the 
model results in any substantial way.  

Since it is computationally demanding to model locations as a continuous measure in the 
context of travel demand forecasting, all locations were mapped to their corresponding TAZs. A 
map of the average number of daily ride-hailing passenger trips generated by each TAZ (on a per 
square mile basis to account for differential TAZ sizes) is shown in Figure 1. The figure also shows 
the classification of the study area into urban, suburban and rural areas. Within the urban area, the 
central region with relatively high commercial and business activity is designated as the Central 
Business District (CBD). In terms of density of origin of passenger trips, the zones adjacent to the 
University of Texas and the CBD zones had the highest ride-hailing trip originations per square 
mile, consistent with students availing of ride-hailing services for their trips as well as patrons of 
bars and other entertainment places in the CBD. In terms of the total number of trip originations, 
the zone containing the ABIA generated the greatest number of ride-hailing passenger trips. This 
TAZ was also the destination for the greatest number of ride-hailing trips (this gets a little masked 
in Figure 1 because the zone containing the airport is a large one, leading to a density of 
originations that is less than that for the University and Austin downtown areas). In particular, 
4.1% of all ride-hailing trips originated in the airport TAZ, and 6% of all ride-hailing trips ended 
there.  

The average number of ride-hailing passenger trips generated by hour of the day and day 
of the week are shown in Figure 2. The demand for ride-hailing trips in Austin does not follow the 
usual time-of-day distributions of travel demand with peaks in the morning and the afternoon, a 
finding also reported by Komanduri et al. (2018). In Austin, the highest frequency of ride-hailing 
trips occurs on Friday and Saturday late night periods (and correspondingly Saturday and Sunday 
early morning periods). Since the purpose and frequency of ride-hailing trips vary by time-of-day, 
four separate models are estimated for the time periods of 7AM to 10AM, 10AM to 4PM and 4PM 
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Figure 1  Average Number of Daily Ride-Hailing Passenger Trips Generated by Each TAZ  

(Per Square Mile) 
 



8 

to 7PM on weekdays, and 10PM to 1AM the next day on Friday and Saturday. In the remainder 
of the paper, these time periods are referenced as AM Peak, Mid-day, PM Peak and Weekend 
Night respectively.2 The AM peak, mid-day and PM peak periods were selected for modeling 
because these are the four distinct time periods often considered in travel demand forecasting 
models (Cambridge Systematics et al., 2012, Chapter 4). Additionally, the weekend night period 
is considered separately because of the exceptionally high rate of utilization of ride-hailing services 
in this period. 
 

 
Figure 2  Average Number of Ride-Hailing Passenger Trips by Time-of-Day and Day-of-

Week 
 
3.2 Location Attribute Databases 
Various socio-demographic, employment, built environment, and transportation network-related 
attributes of locations in Austin were obtained from the Smart Location Database (SLD), CAMPO 
travel model databases, and the American Community Survey (ACS) dataset. The SLD and the 
ACS datasets provide attribute values at the census block group level, while the CAMPO dataset 

                                                      
2 To be precise, a deadheading trip is assigned to a particular time period if its destination time-stamp is within the 
time period. For example, if a deadheading trip’s destination time-stamp is between 7AM and 10AM on a weekday, 
it is designated as an AM peak deadhead trip (that is, if a passenger is picked up between 7AM and 10AM, the previous 
deadheading trip leading up to the passenger pick-up is assigned to the AM peak).  
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provides attribute values at the TAZ level. Because the census block group boundaries did not 
match the TAZ boundaries exactly, GIS overlay techniques and weighted aggregation and 
allocation methods were employed to aggregate SLD and ACS data from the census block level to 
the TAZ level.    

Descriptive statistics for TAZ attributes constructed from the SLD, ACS, and CAMPO 
datasets are presented in Table 1, by type of TAZ (CBD, urban, suburban, or rural). The variables 
in Table 1 are the ones considered in our model specification, though not all the variables in Table 
1 appear in the final model specification. 

 
Table 1  Descriptive Statistics for TAZ Attributes 

   Average over TAZs in Data 
  All CBD Urban Suburban Rural Source Year 

Population               
Age < 18 228.6 2.4 225.0 348.1 129.5 ACS 2016 
18 ≤ Age < 35 258.1 22.0 377.1 261.9 106.4 ACS 2016 
35 ≤ Age < 65 366.1 23.5 385.2 513.8 214.1 ACS 2016 
65 ≤ Age 92.5 5.4 81.6 133.1 70.8 ACS 2016 
Caucasian 746.9 45.8 815.5 999.4 442.1 ACS 2016 
African American 68.0 1.6 87.1 87.4 27.3 ACS 2016 
Other race 130.5 5.9 166.3 170.2 51.4 ACS 2016 
Employed 481.8 37.1 589.8 611.5 234.8 ACS 2016 
Total 945.3 53.4 1068.9 1257.0 520.8 ACS 2016 

No. of HH               
0 vehicle 17.5 3.3 32.7 11.0 4.2 SLD 2010 
1 vehicle 122.2 22.4 187.7 113.7 47.9 SLD 2010 
2+ vehicle 205.6 10.9 210.4 280.9 134.3 SLD 2010 
Income < $50,000 130.5 7.3 186.0 124.8 66.1 ACS 2016 
$50,000 ≤ Income < $100,000 108.4 8.3 132.0 136.0 55.1 ACS 2016 
$100,000 ≤ Income < $150,000 55.5 5.3 56.9 84.0 28.9 ACS 2016 
$150,000 ≤ Income 49.3 10.8 43.7 87.1 23.4 ACS 2016 
HH Size = 1 95.8 19.1 146.7 93.3 34.6 ACS 2016 
HH Size = 2 115.3 10.8 137.1 141.6 65.3 ACS 2016 
HH Size = 3 53.4 1.4 60.0 74.8 26.4 ACS 2016 
HH Size = 4+ 79.2 0.5 74.8 122.2 47.2 ACS 2016 
Total 343.6 31.8 418.6 432.0 173.5 ACS 2016 

No. of employment           
Basic 93.8 28.2 159.5 80.3 23.5 CAMPO 2015 
Retail 100.5 81.7 186.1 79.0 12.7 CAMPO 2015 
Service 219.8 583.5 437.1 139.0 19.1 CAMPO 2015 
Education (K-12) 23.1 1.4 28.9 31.2 8.9 CAMPO 2015 
Education (Higher) 19.0 32.1 44.1 4.9 0.1 CAMPO 2015 
Total 456.2 727.0 855.7 334.5 64.3 CAMPO 2015 

Area (mi²) × 100 252.3 1.5 25.0 117.1 653.1 CAMPO 2015 
Hourly frequency of transit per 
square mile at PM peak 

283.1 2186.9 702.6 7.0 0.1 SLD 2012 
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There is some inconsistency in the year corresponding to different datasets. This is 
especially so for the SLD data on the number of vehicles (from 2010) and the hourly frequency of 
transit per square mile in the PM peak (from 2012). However, it is unlikely that there were 
substantial changes in these attributes at the zonal level within a span of six years or so, and thus 
the use of these attribute values as a means to explain the 2016-2017 ride-hailing travel patterns 
was considered acceptable. As shown in Table 1, the number of employment opportunities in a 
TAZ is disaggregated into four categories – basic, retail, service, and education, based on the 
Standard Industrial Classification (SIC) code of employment industry (U.S. DOL, 2019).  This 
disaggregation is used to recognize the varying nature of ride-hailing trip demands based on 
activity purpose and time-of-day (see, for example, Lavieri and Bhat, 2019). 

 
4 METHODOLOGY 
The Ride Austin dataset provides information on passenger trips, including the time stamp and 
location of the beginning and end of every passenger trip. Deadheading trips occur between the 
drop-off and pick-up of consecutive passenger trips. Unless the drop-off location of one passenger 
coincides with the pick-up location for the next passenger, there will be some non-zero distance 
associated with deadheading. The driver cannot pick up a new passenger while transporting 
another passenger because a ride-sharing option was not available in the period during which this 
data was collected.  

This section offers a detailed description of the procedure used to impute deadheading trips 
(Section 4.1), the econometric framework for modeling destination of deadheading trips (Section 
4.2), the procedures used to construct the choice set of possible destinations for model estimation 
(Section 4.3), and the considerations involved in designing a valid specification for which all 
coefficients can be identified (Section 4.4). 
 
4.1 Imputing Deadheading Trips 
Using the unique driver identifier (ID) and the start and end times of passenger trips, it is possible 
to assemble the roster of passenger trips served by each driver over the 195-day period covered by 
the data. Between the drop-off of one passenger and the pick-up of the next passenger, the 
following may happen: 

1. The driver begins searching for a new passenger immediately after dropping off the previous 
passenger. This process may involve the relocation of the ride-hailing vehicle to a location 
where the driver feels that passenger pick-ups are more likely, either based on past experience 
or because of surge pricing (surge pricing is a pricing scheme enacted by TNCs to manage 
ride-hailing demand and driver supply). When a passenger pick-up request is received, the 
driver proceeds to the pick-up location of the passenger. In this scenario, the travel between 
the drop-off location of one passenger and the pick-up location of the next passenger 
constitutes a single deadheading trip. This represents the first category of deadheading trips. 

2. The driver may take a break from ride-hailing to perform other activities (such as eating out) 
or going home to rest. For example, consider a driver who drops off a passenger at location 
A, then travels to eat meal at location B, then travels home to location C, and then starts 
another round of ride-hailing by picking up a passenger at location D. In this case, what 
constitutes deadheading is somewhat ambiguous. For sure, the trip from location B to C 
(returning home to rest) is not a deadheading trip (in the context of the definition used in this 
paper). One may consider the trip from A to B to be a deadhead, but it is difficult to say for 
sure because location B is chosen by the driver voluntarily. The only trip in this chain that 
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may be considered a deadhead trip with certainty is the trip from C to D, as the driver starts 
a new chain of ride-hailing trips. The deadheading associated with these kinds of complex 
patterns (where the driver participates in personal activities and ceases service between ride-
hailing trips) correspond to a second category of deadheading trips. 

 
The Ride Austin data does not provide a clear way of distinguishing between these two 

types of deadheading categories. This is because the data only has the pick-up and drop-off time-
stamps and locations of the ride-hailing trips, and no information on the ride-hailing vehicle 
location between passenger trips. Thus, in the second category above, the data would only show 
the time-stamp of the drop-off at location A and the time-stamp of the pick-up at location D. 
Assuming that all the travel between A to D constitutes a deadhead would be incorrect. It is 
necessary to identify only “true” ride-hailing deadhead trips, but this is not possible based on the 
information available in the Ride Austin data (for the second category noted above). Therefore, a 
rule-based approach was adopted to infer deadheading trips. The rule is based on the duration of 
the deadhead time window (that is, the time window between consecutive passenger trips of the 
ride-hailing vehicle).  

The time spent by drivers in searching for a new passenger can vary widely based on the 
ride-hailing market. Based on anecdotal evidence (Uber Drivers Forum, 2017), the passenger 
search duration is in the order of minutes in highly populated cities such as Dallas-Fort Worth and 
Las Vegas while it can be more than an hour in small towns. Figure 3 shows the cumulative 
probability distribution of the time duration between the start of a passenger trip and the end of the 
previous passenger trip in the Ride Austin dataset for different periods of the day. This duration is 
generally longer for the weekday AM peak and shortest for the weekend night period. This is 
consistent with the high level of ride-hailing demand during the weekend night period, which 
naturally leads to more frequent passenger pick-ups. The elbowing of the cumulative distribution 
function near the one hour mark seems to indicate that, in most cases, the duration of time spent 
by drivers in searching for new passengers would be less than an hour (the same assessment was 
also made by Wenzel et al., 2019). Over a full day, the time gap between trips is less than one hour 
in 72% of the cases. If the time gap is more than an hour (between trips), it is more likely that the 
driver stopped serving passengers and made trips to perform other activities. Based on the above 
position, we assume that if the time gap between the consecutive passenger trips is less than one 
hour, the distance between the destination of the first passenger and the origin of the next passenger 
would constitute a true deadheading trip of the first category. Travel segments corresponding to 
time gaps in excess of one hour are ignored in this study due to the not unreasonable position that 
it is much less likely that such travel would constitute true deadheading.  

Based on the one-hour rule noted above, a total of 46505, 109287, 88882, and 191849 
deadheading trips were identified in the AM Peak, Mid-day, PM Peak and Weekend Night periods, 
respectively. The average shortest path distance between the origins and destinations of 
deadheading trips was found to be 2.54 miles, while the average shortest path distance of passenger 
trips in the dataset is 4.53 miles. An estimate of the deadheading distance as a percentage of the 
total distance traveled by ride-hailing vehicles is about 36%.  This value is likely to be a lower 
bound because while the passenger trips are likely to be direct from origin to destination, the 
deadhead trips may not be as direct since ride-hailing drivers may cruise around while waiting for 
the next demand request. 
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Figure 3  Distribution of the Time Gap Between Ride-hailing Trips by Time-of-Day 
 

4.2 Econometric Framework 
This study employs a random utility maximization framework to predict the destination TAZ of a 
deadheading trip, given the origin TAZ of the deadheading trip. Each TAZ has an intrinsic 
propensity (or utility) associated with being the destination of a deadheading trip. This may also 
be considered as a measure of the propensity of obtaining the next passenger pick-up in a TAZ 
location. TAZs generally cover a wide area and may comprise several elemental locations, each 
associated with a utility of being the destination. The utility of a TAZ, which is a measure of the 
propensity of obtaining the next pick-up from within the TAZ, may be viewed as an aggregate of 
the utilities of all elemental locations within the TAZ.  

Let jD  be the number of deadheading destination points within TAZ j, or alternatively, the 

number of elemental passenger pick-up points within TAZ j. If jD  is relatively large (as is usually 

the case with passenger pick-up points within a zone), and assuming that the propensity 
distribution of passenger pick-ups at different points within the zone are about the same, the TAZ-
level utility function of a destination TAZ j for a deadheading trip n originating in TAZ i may be 
written as (see Daly, 1982):  

lo )g(nij j nijU D  ijβ x ,  (1) 

where, ijx  is an independent variable vector that includes variables related to the impedance 

between zones i and j, the non-size characteristics of TAZ j, and interactions between impedance 
measures, characteristics of TAZ i, and characteristics of TAZ j. nij  is a random term assumed to 

be distributed IID Gumbel across deadheading trips, zonal deadheading origins, and zonal 
deadheading destinations. β is a parameter vector and η is a scalar parameter to be estimated. In 
Equation (1), the log transformation for the size term is essential because it guarantees that if two 
destination zones (with identical non-size zone attributes) are merged into one, the probability of 
choosing the combined zone is exactly the sum of the probabilities of choosing the original two 
zones when η=1. jD  is not easily quantifiable. However, jD  may be represented by a set of proxy 
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observable size variables such as employment in zone j, population of zone j, and land area of zone 
j. Let jz  represent a vector of proxy size variables for zone j and let δ be a corresponding vector 

reflecting the contribution of the proxy size variables to the actual zone size jD . Then, Equation 

(1) may be rewritten as: 

)log(nij j nij ij nijU V       ijβ x δ z . (2) 

The values of the elements of the δ vector should be greater than or equal to zero, because 
increasing any proxy size measure for a zone must increase the chances that the zone will be a 
destination zone for a deadhead trip. Thus, the vector δ vector itself is parameterized as 

exp( ),δ = γ  and the vector γ is estimated and then translated back into the vector δ. Also, for 
identification purposes, one of the elements of the δ vector should be normalized to a specific 
value. Then, the coefficients on the other size variables provide the importance of these other size 
variables in attracting deadhead trips (i.e., passenger trip originations from the zone) relative to the 
normalized attribute. Finally, ijV  represents the systemic component of the utility function in 

Equation (2). The magnitude of the parameter η in Equation (2) characterizes the presence of 
common unobserved zonal attributes affecting the attractiveness of all elemental alternatives in a 
zone as deadhead destinations. For example, consider a uniformly elevated attractiveness of 
elemental destinations within a zone. This results in cannibalization of sorts in terms of passenger 
pick-ups (because prospective passengers may go to any elemental location within a zone, all of 
which are highly favorable; and going to one elemental location implies a drop in pick-up at 
another elemental location). This parameter is expected to lie between 0 and 1, with a value of 1 
denoting no cannibalization effects and a value of zero essentially indicating such a high 
cannibalization level that the number of elemental locations within a zone (i.e., the zone size) does 
not matter. Another way to see this is to write the probability expression for a deadheading trip n 
with origin TAZ i and destination TAZ j as: 
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where i , is the choice set of possible destination TAZs for a trip originating in TAZ i. As η 

decreases from the value of 1, an increase in the size of a zone j, jD , has less and less of an effect 

on the probability of choice of alternative j. The model in Equation (3) is a nonlinear-in-parameters 
multinomial logit model (NPMNL) because of the presence of the multiple size effects (as captured 
by the ( ) jδ z component in the utility function of Equation (2)).3 The estimation of the model is 

                                                      
3 Note that this NPMNL would collapse to a traditional multinomial model in the case when there is a single size 
measure. In such a case, the ( ) jδ z  collapses to z1 (with the normalization of 1 on this single size measure, as needed 

for identification), and the utility function of Equation (2) becomes 
1 .log( )nij nijU z   ijβ x This is the familiar 

linear-in-parameters utility functional form, with a log-transformation of the single size measure. But when there are 
multiple size measures (say J size measures), the utility function takes the form 

1 2 2 3 3 ,log( ... )nij J J nijU z z z z        ijβ x with the parameter η as well as the parameters 

1( 2,3,... ; 1)j j J   to be estimated simultaneously. This results in the nonlinear in-parameters specification (see 

also Ben-Akiva and Lerman, 1985; page 260-261).  
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accomplished by using the maximum likelihood method in the GAUSS matrix programming 
language. 
 
4.3 Choice Set Formation 
In Equation (3), one could assume that the choice set i  consists of all TAZs in the study area 

(2102 TAZs). However, in reality, only a subset of all possible TAZs will represent the potential 
destination choice set for any deadhead trip. This is because the behavioral and operational process 
determining deadhead trips is very likely to limit deadhead distance, as customers seek low wait 
times, and drivers and ride-hailing companies seek to minimize non-revenue time (miles). Ignoring 
this aspect of choice set determination will lead to inconsistent parameter estimates (Bhat, 2015). 
The issue then becomes one of determining an appropriate behavioral rule for the destination 
choice set generation process. In the Ride Austin dataset, 99.3% of all deadheading trips are less 
than 15 miles in length. Therefore, 15 miles is used as the threshold distance and the very small 
number of deadheading trips that had a distance greater than 15 miles were removed. Specifically, 
for a deadheading originating in TAZ i, the choice set i  was formed by including only those 

TAZs that are within a distance of 15 miles (shortest network distance) from the origin TAZ. The 
sizes of the choice sets formed by applying this rule ranged between 12 and 949. The average 
choice set size for a deadheading trip was 865.41.  

If the choice set used for estimation has a large number of alternatives, there will be several 
TAZs that have a near zero probability of being selected. This creates issues with convergence 
when using a maximum likelihood framework for estimating the values of β, δ, and η. To avoid 
this issue and to reduce computation time, we used only samples of the complete choice sets for 
estimation. As discussed in detail in McFadden (1978), in the case of the multinomial logit model 
(MNL) (in its linear-in-parameters or nonlinear-in-parameters form), the parameters are 
consistently estimated from a sample of alternatives. Nerella and Bhat (2004) further show that 
the true parameters are accurately recovered for the MNL even with a sample choice set of 1/40 
of the actual choice set. In our estimation, we used a sample choice set of about 1/30 of the actual 
choice set; that is, we used 30 randomly selected TAZs from those that are within 15 miles of the 
originating TAZ for the deadheading trip. Specifically, for a trip n between origin i and destination 
j, the choice set sample n  was generated by including the TAZ j and twenty-nine other TAZs 

chosen at random without replacement from the choice set i .4   

 
4.4 Specification 
The model specification was guided by the variables that were found to be significant for 
predicting ride-hailing demand in earlier studies and the attributes that were available through the 
ACS dataset and SLD. In addition, the model specification included a measure of impedance 
between the origin and destination and a measure of the spatial accessibility of the destination. A 
healthy dose of intuitive/conceptual reasoning and expectations were considered during the 
specification to ensure basic face-validity of the results.  
 

                                                      
4 Sampling of choice sets is relatively common in logit based location choice modeling approaches, and enables the 
analyst to make a trade-off between the amount of information used for estimation and computational convenience. 
Previous studies have used choice set sample sizes of seven (Ben-Akiva et al., 1984; Bhat et al., 1998), 10 (Guo and 
Bhat, 2007; Lopez and Greenlee, 2016), 11 (Ben-Akiva et al., 1984) and 30 (Zhang and Guhathakurta, 2018). 
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4.4.1 Impedance measure 
The travel times between zones for the different times-of-day were generated using CAMPO’s 
travel demand forecasting model. Any monotonic transformation of the travel time between an 
origin TAZ i and a destination TAZ j can be used as a measure of impedance. In our final 

specification, we use the square root of the travel time5 between the TAZs ( ijt ) as the impedance 

measure. This choice of impedance measure was arrived at by comparing the goodness of fit that 
would be obtained when using different impedance measures with a simplified specification on a 

sample of the dataset. Specifically, the impedance measures that we compared were ijt , 2
ijt ,

ln( )ijt , and ijt  itself. The impedance measures were evaluated based on the log-likelihood at 

convergence of the specification provided below in Equation (4), estimated on a sample dataset 
with 5000 observations from each of the four time periods: 

21 4 53( ) ( ) ( )nij ij ij ij ij iji iU c t u c t rc t n s        , (4) 

where ( )ijc t  is the measure of impedance between TAZs i and j, iu  is an indicator of the origin i 

being urban (takes a value of one if the origin TAZ is an urban TAZ, and zero otherwise), ir  is 

another indicator of the origin i being rural (takes a value of one if the origin TAZ is a suburban 
TAZ, and zero otherwise; the origin being suburban is treated as the base), ijn  is an indicator to 

denote i and j being neighbors (takes a value of 1 if the boundary of TAZ i touches the boundary 
of TAZ j), and ijs  indicates whether or not a destination TAZ j is the same as the origin TAZ i. 1  

captures the effect of impedance on utility if the origin TAZ is in a suburban area. 1 2( )  and 

1 3( )   would be the effect of impedance on utility if the origin TAZ is in an urban area and 

rural area, respectively. We expect the quantities 1 , 1 2( )   and 1 3( )   to be negative as 

drivers should be less likely to pick-up passengers from TAZs that are further away. In the final 
specification, the impedance measure is introduced into the size independent component (the ijx  

vector in Equation (2)).  
  
4.4.2 Accessibility measure 
The retail and service accessibility of the destination zone is included in the model specification. 
This measure indicates the degree to which a candidate destination zone for a deadhead trip is 
close to other candidate destination locations with high retail and service opportunities. In the 
current analysis, the retail and service accessibility of a candidate destination zone j is computed 
using the Hansen-type accessibility measure: 

1

1 N

l
j

l
j

l

lS
M

t

R

N 


  ,  (5) 

where N is the total number of TAZs, lR  and lS  are, respectively, the number of retail and service 

employment opportunities in TAZ l, jlt is the travel time from TAZ j  to TAZ l , and α is a 

constant parameter (α>0). α controls the extent to which travel time controls the effect of proximity 
to retail and service opportunities. As α increases in magnitude, it implies that the relative 
                                                      
5 The travel time from a TAZ to itself (intra-zonal travel time) is assumed to be half the travel time to the nearest TAZ 
(Venigalla et al., 1999). 
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positioning of retail and service opportunities in space has a lesser and lesser impact on the 
attractiveness of any specific candidate destination zone.  In our final model specification, we use 
an α value of 1.2 to compute accessibility. This value was arrived at by systematically comparing 
several specifications with the accessibility measures calculated using different values of α ranging 
from 0.6 to 3. Overall, large values of the accessibility variable jM  indicate more retail/service 

opportunities in close proximity of zone j, and small values indicate zones that are spatially isolated 
from other retail/service opportunities. 

The coefficient of the accessibility measure (say λ, on the accessibility measure jM ) 

captures the effect of the retail and service opportunities in nearby zones. A negative coefficient   
( 0)  would imply that the retail and service opportunities in nearby zones have a competing 
effect on the retail and service locations within the zone. That is, a TAZ that is not close to other 
TAZs with a high number of retail/service opportunities attracts more deadheading trips. 
Equivalently, a TAZ that is close to other TAZs with a high number of retail/service opportunities 
would attract fewer deadheading trips (this “competition” situation can happen because the lack 
of retail/service opportunities in close proximity to a specific zone can attract considerable 
shopping/retail activity of individuals who then want to be picked up from the zone after their 
activity there). On the other hand, a positive coefficient ( 0)   suggests that the agglomeration 
pattern of retail and service opportunities enhances the attractiveness of individual locations for 
activity participation. That is, a zone that is close to other zones with a high number of retail/service 
opportunities attracts a number of deadheading trips. The effect of competition versus 
agglomeration of shopping locations was explored previously by Bhat et al. (1998), who find that 
the effect of having other shopping locations nearby is primarily competitive.  
  
4.4.3 Conditions for identification and validity of the likelihood function 
As mentioned in Section 4.2, one of the coefficients of the variables used in size term (δ) must be 
normalized to a constant (a value of one is adopted here) to allow for the identification of all 
coefficients. The variable that is normalized must have a statistically significant effect on the size 
term, because we are pre-specifying it to have an impact on the size term. Experimentation with 
preliminary specifications revealed that the number of retail employment opportunities had a 
significant impact for all time-of-day periods. Therefore, this variable was used for normalization. 

Another issue to be considered when building the specification is that the size term must 
always be strictly positive. It is possible that there are TAZs for which jz  is a zero vector (it cannot 

be negative because of the nature of variables in jz ). This would make the utility of those TAZs 

undefined. To avoid this issue, the area of the TAZ is retained as one of the variables in the size 
term even when it is statistically insignificant. The presence of this variable ensures that the size 
term is positive. 
  
5 EMPIRICAL RESULTS 
Deadheading trips were identified for the time periods of AM peak, mid-day, PM peak, and 
weekend night using the approach described in Section 4.1. Two-thirds of the trips were used for 
estimation, while the other one-third were set aside for validation. The destination TAZs for each 
time period were modeled separately. Section 5.1 presents the estimation results for the NPMNL 
model and inferences are drawn from the estimated coefficients. Section 5.2 presents a comparison 
of the goodness-of-fit between the NPMNL model and a simple Multinomial Logit (MNL) model. 
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5.1 NPMNL Model Estimation 
For the estimation of the NPMNL model, all of the variables provided in Table 1 and the variables 
discussed in Section 4.4 were considered. Additionally, indicator variables denoting the area type 
of TAZs (urban, suburban, or rural), whether an urban TAZ belongs to the Central Business 
District (CBD), and TAZs corresponding to the airport (ABIA) and the University of Texas 
campus were included in the specification. The final specification was arrived at by sequentially 
dropping explanatory variables that were found to be insignificant. Table 2 shows the coefficients 
estimated using the NPMNL model for different time periods in a day. The table also provides the 
t-stats of the estimated coefficients. The t-stat is the ratio of the deviation of the estimated 
coefficient from a hypothesized value (the numerator) and the standard error of the estimated 
coefficient (the denominator). The hypothesized value is set to zero for computing the t-stat for all 
coefficients except that of the logarithm of the size term. A high value of the t-stat for these 
coefficients (say greater than 1.96) indicates that the departure of the estimated coefficient from 
zero was not simply a fluke because of the sample used (to be precise, if the t-stat is higher than 
1.96, there is a 95% probability that we can reject the hypothesis that the coefficient is actually 
zero in the population; that is, the coefficient is statistically significant, or, equivalently, that the 
corresponding variable does play a role in affecting the destination of deadheading trips). For the 
coefficient of the logarithm of the size term, the t-stat is computed with respect to a hypothesized 
value of one. As explained in Section 4.2, a value of one for this coefficient would indicate that 
there is no competing influence between elementary destinations within the same TAZ. 
 
5.1.1 Influence of impedance 
The model allows for the effect of impedance on deadheading trip destination to be different for 
different area types of the origin TAZ. In our model specification we considered the suburban and 
rural area types to be the base area type for estimating the effect of impedance. Therefore, the 
coefficient of “Travel Time½” denotes the effect of impedance for trips originating from suburban 
or rural areas. The coefficients of the interaction terms between the area type of the origin and the 
impedance capture the differential effect of impedance of trips starting from the other area types 
when compared to the trips starting from suburban or rural areas. Also note that since TAZs inside 
the CBD are all urban, the coefficient of the interaction between the origin being inside the CBD 
and the impedance term gives the differential impact of impedance of trips starting in the CBD 
when compared to that of trips originating in urban areas. To illustrate, the effect of impedance for 
deadheading trips originating from suburban/rural, urban and CBD areas in the Weekend Night 
period are -1.4249, -1.4249 – 0.5621 = -1.987 and -1.4249 – 0.5621 + 0.2787 = -1.7083 
respectively. The effect of impedance is negative for all area types indicating that passenger pick-
ups are more likely to be made closer to the origin of the deadheading trip. The relative magnitudes 
of these impedance coefficients indicate that deadheading trips originating in urban areas are likely 
to be shorter than those originating in suburban or rural areas. This is likely due to higher demand 
for ride-hailing in denser urban areas, leading to shorter distances between drop-off and pick-up 
locations. The effect of impedance on deadheading trips originating within CBD zones in 
comparison to the effect on trips originating in urban areas outside the CBD is not consistent across 
time periods. Deadheading trips originating in the CBD are shorter in the PM peak period, but 
longer in the mid-day and weekend night period. This may be due to a larger number of work-
based ride-hailing trips occurring in the PM peak period, consistent with what Lavieri and Bhat 
(2019) found for the Dallas-Fort Worth region. Since the CBD has a relatively high employment 
density (the highest ratio of average total number of employment to average TAZ area according 
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to Table 1), the higher demand for ride-hailing in the CBD region in the PM peak period will result 
in lower deadheading distances. The effect of impedance is further nuanced by the intrazonal and 
neighboring zone indicators. These variables help capture the possible non-linearities in the effect 
of impedance on the utility of a TAZ.  These indicators depict differential effects by time-of-day.  
It appears that deadheading trips in the peak periods (which are more likely to be associated with 
work-based passenger trips) are less likely to be within the same zone or in neighboring zones. On 
the other hand, weekend night deadheading trips are more likely to have origins and destinations 
within the same vicinity of one another. Interestingly, for the mid-day period, deadheading trips 
seem to be less likely to be within the same zone but more likely to be between adjacent zones. 
Further exploration of ride-hailing passenger trip patterns and characteristics would provide 
additional insights on the reasons for these findings. 
 
5.1.2 Influence of built environment attributes 
The area types of destination alternatives were included in the specification. The suburban area 
type was treated as the base by assuming its coefficient to be zero. The estimation results indicate 
that deadheading destinations (that is, passenger pick-ups) are more likely to be in urban areas than 
in CBD and suburban areas. Similarly, deadheading destinations (passenger pick-ups) are more 
likely to occur in suburban areas than in the rural areas. Urban areas are the most likely destinations 
for deadheading trips (markets for ride-hailing passenger pick-ups). This could be because urban 
areas have a higher population density relative to other areas (the average population density of 
the urban TAZs outside the CBD is 5002.7 while that of the CBD TAZs is 4780.7). Previous 
studies have also found ride-hailing passenger demand to be higher in urban areas (Clewlow and 
Mishra, 2017). Lavieri et al. (2018) has shown that ride-hailing demand tends to be more in densely 
populated areas.  
 There is a higher propensity for deadheading trip destinations to be in the TAZ that houses 
the airport (ABIA). Previous studies have already established that ride-hailing is a popular mode 
for airport access/egress passenger trips (Lavieri et al., 2018; Rayle et al., 2016). Also, the 
likelihood of a deadheading trip destination in the TAZ housing the University of Texas campus 
is higher than from other TAZs during the mid-day and PM peak periods, and lower than from 
other TAZs during the AM peak and weekend night periods. The last result is not surprising, 
because passenger pick-ups are unlikely to happen at the University of Texas campus on weekend 
nights (the campus itself is not the hub of activity over the weekend nights).  
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Table 2  Estimation Results for NPMNL Model of Deadheading Trip Destination (Next Passenger Pick-up Location) 

Variable 
  AM Peak Mid-day PM Peak Weekend Night 

Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

TAZ Size Independent Attributes                 
Impedance (mi½) measures              

Travel Time½ -1.6436 -64.89 -1.5137 -90.25 -1.5947 -79.39 -1.4249 -72.79 
Travel Time½ × Origin is urbana -0.2974 -10.73 -0.2473 -13.74 -0.3289 -15.52 -0.5621 -27.56 
Travel Time½ × Origin is in CBDa -- -- 0.1731 12.56 -0.1021 -4.12 0.2787 22.31 

Destination same as origin -0.7931 -15.14 -0.1145 -3.75 -0.5169 -15.54 0.3193 13.65 
Destination is a neighbor of origin -0.2977 -11.23 0.0357 2.15 -0.0773 -4.35 0.0814 6.30 
Built environment attributes              

Ruralb -1.5254 -6.24 -0.8879 -7.55 -0.5101 -4.50 -- -- 
Urbanb 1.0448 29.62 0.7437 31.71 0.4323 17.11 0.9780 41.90 
Central business district (CBD) b -0.6734 -23.62 -0.1636 -9.52 -0.5067 -27.10 -0.4683 -46.86 
Presence of ABIA 1.6627 15.22 3.4996 72.31 3.9906 69.63 5.5956 147.52 
Presence of UT main campus -0.6007 -10.54 0.5594 20.44 0.5589 16.21 -0.0420 -1.68 

Transit frequency at PM peak (mi-2h-1) (/1000) 0.5893 12.21 0.6132 19.68 0.2608 6.74 0.9708 39.64 

TAZ Accessibility/Size Attributes                 
Retail and service accessibility (/104) 0.3774 47.70 0.4547 80.70 0.4865 71.00 0.7570 184.28 
Size measures         

Employment variables         
Retail employment 1.0000 (fixed) 1.0000 (fixed) 1.0000 (fixed) 1.0000 (fixed) 
Basic employment -- -- -- -- 0.0530 3.40 -- -- 
Service employment 0.5704 8.06 0.2330 22.85 0.2231 23.35 -- -- 
Education employment -- -- -- -- -- -- -- -- 

Demographic variables         
No. HHs with income ≥ $150K (/1000) 16.5283 8.96 4.0955 23.75 5.2876 28.29 1.4854 37.33 
No. of people aged 18-35 years (/1000) 2.9941 9.00 0.7078 24.53 0.4230 20.41 0.1205 26.80 
No. HHs without vehicles (/1000) -- -- 0.2080 1.70 -- -- -- -- 
No. of Single person HHs (/1000) 5.6403 7.54 0.6052 7.78 0.6940 10.4940 -- -- 

Area (mi2) 0.0067 0.11 0.0001 0.01 0.0001 0.01 0.0002 0.18 
Log of composite zonal size measurec 0.7038 81.41 0.7057 120.90 0.8046 118.51 0.6482 136.13 

a   Base area type is Suburban/Rural 
b   Base area type is Suburban 
c    

 t-stats for coefficient being different from 1 
--  Not statistically significantly different from zero at the 90% level of confidence and removed from the specification 
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 The hourly frequency of transit per square mile of the TAZ (during PM peak) is used as a 
proxy for the transit connectivity of TAZs. In all the time periods, there is a higher likelihood for 
deadheading destinations (passenger pick-ups) to be in TAZs that are better served by transit. To 
some degree, this may be indicative of a competitive substitution effect between ride-hailing and 
transit, as has been reported in previous studies (Dias et al., 2017; Schaller, 2018). TAZs with 
better transit service are also likely to be locations with more attractions, employment and 
population concentrations, and destination opportunities. Therefore, these locations are likely to 
see higher levels of ride-hailing demand, thus increasing the probability that they will be 
destinations of deadheading trips.  
 
5.1.3 Influence of TAZ accessibility/size attributes 
The positive sign on the retail and service accessibility variables shows that the spatial clustering 
of retail and service opportunities is associated with a higher frequency of deadheading trip 
destinations (passenger pick-ups), suggesting an agglomeration effect (see Section 4.4.2). This 
could be because such areas constitute “attraction-sheds” for consumers who perceive a large 
variety of service and retail opportunities, and seek ride-hailing pick-ups at the end of their 
shopping/dining pursuits. Another reason for this finding may be that higher retail and service 
accessibility renders it easier for ride-hailing drivers to pick-up passengers from nearby TAZs. 
Ride-hailing drivers may prefer to cruise in search of passengers in and around TAZs that have 
high accessibility. Previous research has indicated that individuals use ride-hailing services to 
avoid driving under the influence and the hassle of finding and paying for parking (Clewlow and 
Mishra, 2017; Lahkar, 2018). Indeed, the coefficient for retail and service accessibility is higher 
in the weekend night period, suggesting that popular drinking locations in Austin lie within close 
proximity to each other and depict a high propensity for passenger pick-ups.  

In addition to the relative positioning of TAZs in terms of retail and service opportunities, 
there is a pure size effect of retail and service employment, as captured by the number of 
employment opportunities (note that the coefficient on retail employment is normalized to one for 
identification). Interestingly, basic employment, as part of the size measure, impacts deadheading 
trip destination attractiveness only for the PM peak, a finding that certainly deserves additional 
investigation. The number of employment opportunities in education was found to be insignificant 
for predicting ride-hailing demand. However, this insignificance manifested only after including 
the indicator variable for the presence of the University of Texas at Austin (UT) main campus. 
This implies that once the effect of the UT main campus is captured, other locations with education 
employment opportunities do not contribute significantly to deadheading destination 
attractiveness. The relative magnitudes of the size measures clearly indicates that retail 
employment is the primary driver of deadheading trip attractiveness (passenger pick-up 
propensity) relative to employment in other sectors. As indicated earlier, the area of a zone does 
not contribute much to the zone attractiveness as a deadheading destination, but is included to 
ensure that the size measure does not take a value of zero for any TAZ. Finally, under the size 
measures, the coefficient for the log of the zonal size measure η is estimated to be less than 1, 
indicating that there is some degree of cannibalization of prospective passengers by the different 
elemental attraction locations within a zone. Indeed, earlier studies on shopping trips and work 
trips have also found competing effects between elemental locations within the same TAZ in 
attracting individuals (Bhat et al., 1998). 

In terms of the effects of demographic attributes within the size measure, in all of the time 
periods, deadheading trip destinations are more likely (that is, passenger pick-ups are higher) in 
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locations with a larger presence of high-income households, and also in areas with a higher number 
of individuals aged between 18 and 35 years. This is consistent with previous studies that have 
repeatedly identified the demographic group of wealthy younger adults to be the most frequent 
users of ride-hailing services (Alemi et al., 2018; Clewlow and Mishra, 2017; Rayle et al., 2016). 
Interestingly, TAZs with a higher number of zero-vehicle households attract more deadheading 
trips only in the mid-day period. Several past studies have found that areas with lower vehicle 
ownership rates are associated with higher ride-hailing passenger pick-up demand (Lavieri et al., 
2018; Clewlow and Mishra, 2017). The results also indicate that deadheading trip destinations 
(passenger pick-up demand) are likely to be observed in areas with a large presence of single 
person households, consistent with previous findings (e.g., Henao and Marshall, 2019) that ride-
hailing users are more likely to be single and unmarried. The coefficients associated with the race-
related variables were all insignificant and therefore do not appear in Table 2. This is different 
from the studies of Lavieri et al. (2018) and Lavieri and Bhat (2019), both of which noted a lower 
propensity to use ride-hailing among non-Hispanic whites. 
 
5.2 Measures of Fit 
In this section, the goodness-of-fit of the NPMNL models is compared with that of simpler MNL 
models. All variables in the category of “TAZ Size independent attributes” in Table 2 are used in 
the MNL model specification. Since the MNL model does not allow for the nonlinear-in-parameter 
structure, the effect of TAZ size (in Equation (1)) must be captured by a single proxy variable for 
size that is strictly positive. In the specification for the MNL model, the TAZ area is used for this 
purpose.  

The metrics used for measuring the goodness-of-fit are log-likelihood, adjusted likelihood 
ratio index (ALRI), and average probability of correct prediction. To measure the model goodness-
of-fit for the estimation datasets, the adjusted likelihood ratio index (ALRI; Windmeijer, 1995) is 
calculated as:  
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where, )( ˆL   is the likelihood of the model at convergence, ( )L c  is the likelihood at convergence 
of a naïve model, and Q is the difference in number of parameters between the naïve model and 
the estimated model. The naïve model refers to selecting a TAZ from the choice set at random, 
corresponding to a model where all estimated parameters are zero. Similarly, the predictive ALRI 
is calculated, with the likelihoods computed with respect to the validation sample instead of the 
estimation sample. The log-likelihoods and ALRIs are computed using the sampled choice sets 
that have 30 TAZs (including the destination). The average probability of correct prediction is 
computed using the full choice set containing all TAZs within 15 miles of the origin. The 
likelihood ratio test is used to statistically compare the goodness-of-fits of the NPMNL models 
and the MNL models for all time periods.  

The goodness-of-fit statistics are presented in Table 3. An average probability of correct 
prediction in the order of 0.01 is quite reasonable considering that the average choice set size is 
865.41 (note that a random TAZ selection would provide an average probability of correct 
prediction of only 0.0012; see third row of Table 3). The NPMNL model outperforms the MNL 
model in every metric for all time periods. The likelihood ratio test statistic between the NPMNL 
and the MNL models clearly illustrates the statistical superiority of the NPMNL model (the figures 
in Table 3 for the test statistic are far larger than the corresponding table chi-squared value with 
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the appropriate degrees of freedom at even the 0.0001 significance level for all the time-of-day 
models). Similar results are found in the validation sample, providing clear evidence that the 
superior data fit of the NPMNL in the estimation sample is not simply an artifact of overfitting.  
 

Table 3 Goodness-of-Fit and Validation Statistics for the NPMNL and MNL Models 

Summary Statistic AM Peak Mid-day PM Peak 
Weekend 

Night 

Estimation Sample      

No. observations 31003 72858 59261 127899 
Log-likelihood at zero -105447.32 -247804.44 -201558.36 -435009.74 
Probability of correct prediction 
(random selection) 

0.0012 0.0012 0.0012 0.0012 

NPMNL         
Number of parameters 17 19 19 15 
Log-likelihood at convergence -67575.69 -156952.16 -112213.67 -241202.17 
ADLRI 0.3590 0.3666 0.4432 0.4455 
Probability of correct prediction 0.0110 0.0195 0.0290 0.0150 
MNL         
Number of parameters 12 13 13 12 
Log-likelihood at convergence -70344.57 -163140.72 -117388.93 -254079.04 
ADLRI 0.3328 0.3416 0.4175 0.4159 
Probability of correct prediction 0.0094 0.0178 0.0259 0.0127 
Likelihood ratio test statistic 5537.76 12377.12 10350.53 25822.81 
Chi-square table value at the 
0.0001 significance level 

2
5 25.74   2

6 27.86   2
6 27.86   2

3 21.11   

Validation Sample      
No. observations 15502 36429 29621 63950 
Log-likelihood at zero -52725.36 -123902.22 -100746.87 -217506.57 
Probability of correct prediction 
(random selection) 

0.0012 0.0012 0.0012 0.0012 

NPMNL         
Number of parameters 17 19 19 15 
Predictive Log-likelihood -33790.79 -77944.95 -56543.28 -120449.76 
Predictive ADLRI 0.3588 0.3708 0.4386 0.4462 
Probability of correct prediction 0.0108 0.0194 0.0280 0.0147 
MNL      
Number of parameters 12 13 13 12 
Predictive Log-likelihood -35175.59 -81212.28 -59242.70 -126816.17 
Predictive ADLRI 0.3326 0.3444 0.4118 0.4169 
Probability of correct prediction 0.0097 0.0171 0.0251 0.0128 

 
6 IMPLICATIONS AND APPLICATIONS OF MODEL SYSTEM 
The models developed in this paper provide key insights into the nature of deadheading trips and 
can be used to guide the development of policies related to ride-hailing services. Additionally, the 
modeling framework of this study can be incorporated in travel demand forecasting models, which 
do not currently take into account the impacts of deadheading trips. This section offers a discussion 
of the implications and applications of the model system developed in this study. Section 6.1 
provides some of the direct implications of the model results presented in Section 5.1. A useful 
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metric for policy makers and TNCs interested in reducing deadheading is the expected 
deadheading distance at various locations. Section 6.2 illustrates how this metric may be 
computed. Section 6.3 presents a discussion on how the number of deadheading trip interchanges 
may be computed from the model results.  
 
6.1 Planning and Policy Implications 
The distance traveled per deadheading trip seems to be higher if the deadheading trip originates 
(or if the previous passenger was dropped off) in a suburban or rural area. This may be because it 
is relatively more difficult to find a new passenger in these areas and hence the driver needs to 
travel a farther distance for the next passenger pick-up. This may suggest that it would be prudent 
to discourage ride-hailing in suburban and rural areas so that the amount of deadheading mileage 
can be minimized.  However, if policies that penalize or discourage ride-hailing services to operate 
in suburban and rural areas are implemented, the consequences of such policies need to be 
considered carefully.  It is generally difficult to serve these areas with conventional transit (due to 
lower densities) and ride-hailing services constitute a convenient mobility option, especially for 
the transportation disadvantaged in these locations. The fact is that ride-hailing services fill an 
important mobility gap in areas that are not well served by other modes of travel.  The question 
then arises as to how ride-hailing services in these areas can be deployed and priced in such a way 
that deadheading is minimized while fully realizing the mobility benefits that ride-hailing provide.    
 The model results suggest that ride-hailing caters to individuals who engage in social and 
entertainment activities in the weekend night period. The use of ride-hailing for these activities 
has merit because it leads to a reduction in the incidence of driving under the influence or using 
transit while intoxicated. In fact, several cities have witnessed a drop in driving under the influence 
after ride-hailing services became popular (Rabin, 2018; Richards, 2018). Also, ride-hailing 
demand is higher in zones well served by transit, particularly in the mid-day and PM peak periods 
when people are more likely to be engaging in out-of-home activities. Whether this is indicative 
of a competitive effect on transit usage remains to be determined, although recent evidence 
suggests that ride-hailing is likely to be substituting transit trips (Schaller, 2018), but 
complementing transit in some markets (Hall et al., 2018). However, when coupled with the 
finding that ride-hailing demand is higher in areas with higher retail and service accessibility and 
in urban areas, it is entirely possible that ride-hailing pick-ups are occurring in activity centers 
which have traditionally been better served by transit in the first place.  In addition, it is likely that 
ride-hailing drivers prefer to search these areas for passenger pick-ups. Ride-hailing drivers 
searching specific areas for passengers can reduce waiting times and bolster ride-hailing demand 
in these areas. 
 It appears that ride-hailing is still primarily used by the niche demographics of young adults 
and wealthy households. If TNCs or urban planners wish to increase the use of ride-hailing in the 
city to reduce vehicle ownership, reduce need for parking, and promote Mobility-as-a-Service 
(MaaS), targeted efforts must be made to encourage the use of ride-hailing among other 
demographic groups. A reduction in space allocated to parking would allow cities to convert 
existing parking land to other valuable uses. 
 
6.2 Computation of Expected Deadheading Distance 
It is in the best interest of city planners, TNC operators, and society at large to minimize 
deadheading.  The model developed in this paper can be used to compute expected deadheading 
distance for various locations. Once areas associated with higher expected deadheading distances 
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are identified, policies and pricing schemes can be enacted to discourage individuals from making 
ride-hailing trips to these areas. However, the potential deadheading reductions associated with 
such strategies should be weighed against the potential adverse impacts on mobility enhancements 
that ride-hailing could provide such areas.  The expected deadheading distance originating from a 
TAZ can be computed as shown in Equation (7) using the probability mass function of TAZs being 
selected as the destination:  
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i j ijE d d P
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where ijP  is the probability that a deadheading trip originating at TAZ i ends at TAZ j as computed 

by Equation (3) and ijd  is the network distance between the TAZs. The average deadheading 

distance in the PM peak period is mapped in Figure 4. To measure the accuracy of the expected 
deadheading distances predicted by the model, the predicted value is compared against the 
empirically calculated value of the expected deadheading distance for each TAZ. The expected 
deadheading distances are calculated empirically only for the 698 TAZs that have at least 10 
deadheading trips originating within their boundaries. The mean absolute percentage error in the 
predicted expected deadheading distance across all of the TAZs is 16.66%, which is on the high 
side, but not completely uncommon in such models (for example, see Section 5.1.4 of Ferdous et 
al., 2011). As expected, deadhead distances are smaller in higher density urban areas and larger in 
outlying suburban and rural areas. 

6.3 Incorporation into Travel Demand Forecasting Models 
It is relatively easy to forecast ride-hailing passenger trips in travel demand forecasting models. 
The mode choice model can be updated based on information gathered from travel surveys to 
reflect the use of ride-hailing options. The end points of passenger trips form the origins of 
deadheading trips. Once the origin of a deadheading trip is known, the destination of the trip can 
be determined based on the probability function given in Equation (3). If ijB  is the number of 

passenger trips that go from TAZ i to TAZ j, then the number of deadheading trips odM  between 

an origin TAZ o and a destination TAZ d can be expressed as: 

ood
i

di oM B P , (8) 

where odP  is the probability that a deadheading trip originating at TAZ o ends at TAZ d as 

computed by Equation (3). The above expression assumes that all ride-hailing vehicles that drop a 
passenger at TAZ o will make only one trip to pick up the next passenger. In other words, it is 
assumed that all deadheading trips belong to the first category as defined in Section 4.1. In reality, 
some drivers may end the ride-hailing session and return home or proceed to perform other 
personal activities. The deadheading trips resulting from the pursuit of these other personal 
activities are not modeled in this study. However, accounting for these deadheading trips in at least 
some manner is likely to be better than completely ignoring them. 
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Figure 4  Expected Deadheading Distance from TAZs in the PM Peak Period 
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7 CONCLUSIONS 
The research in this paper is motivated by the rapidly increasing use of ride-hailing options in 
cities around the world.  The use of ride-hailing services leads to empty vehicle mileage because 
ride-hailing service drivers (often) need to travel some finite distance to pick-up their next 
passenger after dropping off a prior passenger.  These trips, referred to as deadheading trips, have 
important implications for vehicle miles of travel (VMT), traffic congestion, and carbon footprint 
of auto travel. Although there is considerable research dedicated to studying ride-hailing passenger 
trips and their characteristics, there is very little research on deadheading trips thus rendering it 
challenging to formulate strategies to reduce deadheading mileage and to account for such trips in 
travel demand forecasting models.   

This paper presents a model for forecasting the destinations of deadheading trips. A dataset 
of deadheading trips was generated by imputing such trips from a dataset on ride-hailing passenger 
trips released by the TNC, Ride Austin. The model provides valuable insights on the factors that 
affect deadheading trip patterns at different time periods in a day and at different locations. The 
model is sensitive to location specific characteristics related to the built environment, employment 
opportunities, and socio-demographic characteristics. The goodness-of-fit of the nonlinear-in-
parameters multinomial logit (NPMNL) model developed in this paper is found to be significantly 
better than that of a simple multinomial logit (MNL) model. The paper presents a detailed 
discussion of possible applications of the model for transportation planning and travel demand 
forecasting.  

A shortcoming of this study is that the model only accounts for deadheading trips that occur 
when the driver is searching for a new passenger after dropping off the previous passenger. There 
is another category of deadheading trips that involve the driver stopping the ride-hailing session 
and traveling to perform other activities. The dataset used in this study was not suitable for 
modeling this category of deadheading trips. Also, the results in this paper do not apply to shared 
ride-hailing services where unrelated passengers can share rides. Because the Ride Austin platform 
did not provide this service at the time when the data was collected, this mode of ride-hailing could 
not be considered. Also, when incorporating the deadheading trip model into a travel demand 
forecasting model, it is important to recognize that most of the conventional travel demand 
forecasting models assume that all trips occur along the path with the lowest impedance. Since at 
least a part of the deadheading trip may be utilized to search for new passengers, the resulting path 
to the next pick-up location may not be along the path with the lowest impedance. The model 
presented in this paper only identifies the destination of the deadheading trip and not the path taken 
to reach that destination. Modeling the actual path taken in the search for new passengers would 
be a worthwhile endeavor for future research in terms of obtaining more accurate VMT 
implications of deadheading trips.  
 Another limitation of our study is that the model developed in this paper is not sensitive to 
the supply-side characteristics of ride-hailing such as vehicle availability, wait times, and pricing. 
These characteristics could potentially affect deadheading. When the number of vehicles searching 
for passengers (vehicle availability) is low, it is more likely that drivers would be matched to 
passengers that are far away. This phenomenon is referred to as “Wild Goose Chase (WGC)” by 
Castillo et al. (2018). WGCs can result in higher wait times for passengers and longer deadheading 
for drivers. Ride-hailing companies have identified surge pricing as an effective mechanism for 
managing ride-hailing supply and demand to ensure that WGCs do not occur (Castillo et al., 2018). 
Our model does not capture the intricate relationships between the supply, demand and price and 
its potential impact on deadheading. The reader is referred to studies by Bai et al. (2018), Castillo 
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et al. (2018), Nourinejad and Ramezani (2020) and Zha et al. (2016) for recent attempts at 
developing theoretical frameworks for modeling the relationships between characteristics related 
to supply, demand and price. The relation between supply and demand would also depend on the 
specific algorithms used by the ride-hailing companies for matching drivers with passengers. 
Using theoretical frameworks and numerical experiments, Xu et al. (2019) and Yang et al. (2020) 
explore the effectiveness of different matching strategies for optimizing the performance of ride-
hailing systems. In all the aforementioned studies, supply and demand side characteristics are 
modeled in the aggregate. They do not consider the heterogeneity of these characteristics over 
space because of different socio-demographic and built-environment characteristics. Just as there 
are limitations in our study, these other studies are also substantially limited because they ignore 
the heterogeneity in ride-hailing demand over space. Doing so invites what has long been referred 
to as the “ecological fallacy” in analysis methodology (see Robinson, 1950, Duncan et al., 1961), 
and will, in general, result in inaccurate estimates and results due to aggregation bias (see also 
Koppelman, 1974). Besides, wait times and surge pricing considerations are intricately tied with 
demand patterns, not simply supply issues (after all, wait times will be high for a given supply 
when demand is high, and surge pricing is related to demand not just supply). In addition, many 
of these studies are based on numerical experiments, rather than actual empirical data. In contrast, 
we model the ride-hailing demand-side characteristic of passenger pick-up opportunities 
endogenously as a function of spatio-temporally varying characteristics at the disaggregate level 
of trips using actual empirical data. 
 There have also been studies that focus exclusively on the supply-side of ride-hailing. Most 
of these studies are based on data collected using a ride-hailing service’s publicly accessible 
Application Programming Interface (API). The data collected in this manner is rich in supply-side 
characteristics such as wait times, surge pricing and vehicle availability. Hughes and MacKenzie 
(2016) and Wang and Mu (2018) have used data collected in this manner to model waiting times 
based on socio-demographic and built-environment variables. These studies find that wait times 
are generally lower in areas with high population density. They also find that race and wealth of 
the local demography does not necessarily affect wait-times. Even though the models used in these 
studies make use of socio-demographic and built-environment variables to model wait-times, the 
effect of ride-hailing demand is not explicitly captured by these variables. In effect, these models 
can be viewed as “reduced-form” efforts rather than structural models that explicitly consider 
spatio-temporal patterns of demand. In this manner, they are unlike our study where we 
endogenously model the number of pick-up opportunities in different areas with the size term using 
actual data on passenger pick-ups.  

Data collected through ride-hailing APIs have also been used to develop models for 
predicting surge pricing. Battifarano and Qian (2019) develop a model for making short-term 
predictions of surge-pricing based on past surge-pricing information, network characteristics and 
occurrence of special events. Since the objective of the model was only to undertake a short-term 
prediction, and past surge pricing was used as an explanatory variable, socio-demographic 
characteristics or built-environment characteristics were not used in the model. Jiao (2018) 
explores the characteristics of Uber’s surge pricing in the city of Austin during the 4th of July 
weekend of 2015. They focus on modeling only the temporal variations of surge prices. They use 
the time of day and the other supply-side variable of expected waiting time as the independent 
variables for modeling surge pricing. Unfortunately, the aforementioned studies on surge pricing 
do not include any variable related to ride-hailing demand as explanatory variables. Surely, issues 
of surge pricing should technically be based on demand patterns, not on past surge-pricing 
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information (after all, surge pricing is fundamentally based on a demand-supply imbalance!). Thus, 
these earlier studies can be improved by including a measure of ride-hailing demand directly or 
endogenously in a manner similar to what is described in this paper. 

To summarize, while our demand-side study misses some important supply-side 
considerations, earlier supply-side studies have also missed out on important demand-side issues. 
A valuable avenue for further research then is to combine data on the demand-side and the supply-
side to develop a more comprehensive empirical model for ride-hailing trip patterns. More ride-
hailing companies have recently started sharing data on ride-hailing passenger trips. In 2018, DiDi 
– the TNC with the largest market share in China – made the data on all ride-hailing trips that 
occurred within a span of two months in the city of Chengdu, China, available to researchers.6 
More recently, the city of Chicago passed an ordinance that requires TNCs to publish anonymized 
and disaggregate ride-hailing trip data every quarter. The first batch of this data was made available 
in April 2019.7 TNCs are still reluctant to explicitly share disaggregate data on the supply side. 
However, as mentioned earlier, it is possible to collect information on supply-side characteristics 
through the ride-hailing services Application Programming Interface (API). As such, the scope for 
formulation and developing comprehensive integrated demand-supply models for ride-hailing trip 
patterns is wide open and constitutes a ripe direction for future research. 
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