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ABSTRACT 
This paper formulates a multiple discrete-continuous probit (MDCP) land-use model within a 
spatially explicit economic structural framework for land-use change decisions. The spatial 
MDCP model is capable of predicting both the type and intensity of urban development patterns 
over large geographic areas, while also explicitly acknowledging geographic proximity-based 
spatial dependencies in these patterns. At a methodological level, the paper focuses on specifying 
and estimating a spatial MDCP model that allows the dependent variable to exist in multiple 
discrete states with an intensity associated with each discrete state. The formulation also 
accommodates spatial dependencies, as well as spatial heterogeneity and heteroscedasticity, in 
the dependent variable, and should be applicable in a wide variety of fields where social and 
spatial dependencies between decision agents (or observation units) lead to spillover effects in 
multiple discrete-continuous choices (or states). A simulation exercise is undertaken to evaluate 
the ability of the proposed maximum approximate composite marginal likelihood (MACML) 
approach to recover parameters from a cross-sectional spatial MDCP model. The results show 
that the MACML approach does well in recovering parameters. An empirical demonstration of 
the approach is undertaken using the city of Austin parcel level land use data. 
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1. INTRODUCTION 

Land-use change models are used in a variety of fields such as planning, urban science, 

ecological science, climate science, geography, watershed hydrology, environmental science, 

political science, and transportation to examine future land-use scenarios as well as to evaluate 

the potential effects of policies directed toward engendering a socially or economically or 

ecologically desirable pattern of future land-use that minimizes negative externalities. More 

recently, there has been substantial attention in the scientific literature on biodiversity loss, 

deforestation consequences, and carbon emissions increases caused by patterns of urban and 

rural land-use development, and associated climate change impacts (for example, see Lewis et 

al., 2011). This is not surprising, since one of the most important “habitat” elements 

characterizing Earth’s terrestrial and aquatic ecosystems is the land use pattern (another is 

climate pattern, which is increasingly becoming closely related to the land use pattern). In this 

paper, we contribute to the vibrant and interdisciplinary literature on land-use analysis by 

proposing a new econometric approach to specify and estimate a model of land-use change that 

is capable of predicting both the type and intensity of urban development patterns over large 

geographic areas, while also explicitly acknowledging geographic proximity-based spatial 

dependencies in these patterns. As such, the motivations of this paper stem both from a 

methodological perspective as well as an empirical perspective. At a methodological level, the 

paper focuses on specifying and estimating a spatial multiple discrete-continuous probit (MDCP) 

model that allows the dependent variable to exist in multiple discrete states with an intensity 

associated with each discrete state. The formulation also accommodates spatial heterogeneity and 

heteroscedasticity in the dependent variable, and should be applicable in a wide variety of fields 

where social and spatial dependencies between decision agents (or observation units) lead to 

spillover effects in multiple discrete-continuous choices (or states). At an empirical level, the 

paper models land-use in multiple discrete states, along with the area invested in each land-use 

discrete state, within each spatial unit in an entire urban region. The model is a hybrid of three 

different strands of model types used in the land-use analysis literature.  

The next section discusses the econometric context for the current paper, while the 

subsequent section presents the empirical context.  
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The Econometric Context 

In the past decade, there has been increasing interest and attention on recognizing and explicitly 

accommodating spatial (and social) dependence among decision-makers (or other observation 

units) in urban and regional modeling, agricultural and natural resource economics, public 

economics, geography, sociology, political science, and epidemiology. The reader is referred to a 

special issue of Regional Science and Urban Economics entitled “Advances in spatial 

econometrics” (edited by Arbia and Kelejian, 2010) and another special issue of the Journal of 

Regional Science entitled “Introduction: Whither spatial econometrics?” (edited by Partridge et 

al., 2012) for a collection of recent papers on spatial dependence, and to Elhorst (2010), Anselin 

(2010), Ferdous and Bhat (2013) and Brady and Irwin (2011) for overviews of recent 

developments in the spatial econometrics field. Within the past few years, there has particularly 

been an explosion in studies that recognize and accommodate spatial dependency in discrete 

choice models. The typical way this is achieved is by applying spatial lag and spatial error-type 

structures developed in the context of continuous dependent variables to the linear (latent) 

propensity variables underlying discrete choice dependent variables (see reviews of this literature 

in Fleming, 2004; Franzese and Hays, 2008; LeSage and Pace, 2009; Hays et al., 2010; Brady 

and Irwin, 2011; and Sidharthan and Bhat, 2012). The two dominant techniques, both based on 

simulation methods, for the estimation of such spatial discrete models are the frequentist 

recursive importance sampling (RIS) estimator (which is a generalization of the more familiar 

Geweke-Hajivassiliou-Keane or GHK simulator; see Beron and Vijverberg, 2004) and the 

Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see LeSage and Pace, 2009). 

However, both of these methods are confronted with multi-dimensional normal integration, and 

are cumbersome to implement in typical empirical contexts with even moderate estimation 

sample sizes (see Bhat, 2011 and Franzese et al., 2010). Recently, Bhat and colleagues have 

suggested a maximum approximate composite marginal likelihood (MACML) inference 

approach for estimating spatial multinomial probit (MNP) models and a composite marginal 

likelihood (CML) inference approach for estimating spatial binary/ordered probit models. The 

MACML approach uses the CML approach, but also makes an additional analytic approximation 

to evaluate the multivariate normal cumulative distribution (MVNCD) function during 

estimation. These methods are easy to implement, require no simulation, and involve only 

univariate and bivariate cumulative normal distribution function evaluations, regardless of the 
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number of alternatives, or the number of choice occasions per observation unit, or the number of 

observation units, or the nature of social/spatial dependence structures.  

At the same time that spatial considerations are receiving widespread attention in the 

discrete choice literature, multiple discrete-continuous (MDC) models have also seen substantial 

application in different disciplines, including regional science (Kaza et al., 2012), transportation 

(Bhat, 2005; 2008; Bhat et al., 2013a), time use (Habib and Miller, 2008; Pinjari and Bhat, 

2010), marketing and retailing (Kim et al., 2002; Allenby et al., 2010; Satomura et al., 2011), 

energy economics (Ahn et al., 2008), environmental economics (see von Haefen et al., 2004; 

Kuriyama et al., 2010), and tourism (LaMondia et al., 2008; Van Nostrand et al., 2013). In MDC 

situations, consumers may consume multiple alternatives at the same time, with a continuous 

dimension of the amount of consumption associated with each alternative. To be precise, there 

are multiple alternatives, with zero consumption of an alternative implying that the alternative is 

not consumed, and a positive consumption amount implying that the alternative is consumed. 

Examples of such MDC contexts include land-use type and intensity of land-use over a spatial 

unit, household vehicle type holdings and usage, consumer brand choice and purchase quantity, 

and recreational destination location choice and number of trips. While a variety of modeling 

approaches have been used in the literature to accommodate MDC choice contexts, the one that 

has dominated the recent literature is based on a utility maximization framework that assumes a 

non-linear (but increasing and continuously differentiable) utility structure to accommodate 

decreasing marginal utility (or satiation) with increasing investment in an alternative. Consumers 

are assumed to maximize this utility subject to a budget constraint. The optimal consumption 

quantities (including possibly zero investments in some alternatives) are obtained by writing the 

Karush-Kuhn-Tucker (KKT) first-order conditions of the utility function with respect to the 

investment quantities. Researchers from many disciplines have used such a KKT approach, and 

several additively separable and non-linear utility structures have been proposed. Of these, the 

general utility form proposed by Bhat (2008) subsumes other non-linear utility forms as special 

cases, and allows a clear interpretation of model parameters. In Bhat’s utility function form and 

other more restrictive utility forms, stochasticity is introduced in the baseline preference for each 

alternative to acknowledge the presence of unobserved (to the analyst) factors that may impact 

the utility of each alternative (the baseline preference is the marginal utility of each alternative at 

the point of zero consumption of the alternative). As in traditional discrete choice models, the 
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most common distributions used for the kernel stochastic error term (across alternatives) are the 

generalized extreme value (GEV) distribution (see Bhat, 2008; Pinjari, 2011; Castro et al., 2012) 

and the multivariate normal distribution (see Kim et al., 2002 and Bhat et al., 2013b). The first 

distribution leads to a closed-form MDC generalized extreme value (or MDCGEV) model 

structure, while the second to a MDC probit (or MDCP) model structure. In both these structures, 

the analyst can further superimpose a mixing random distribution of coefficients in the baseline 

preference to accommodate unobserved heterogeneity across consumers (or observation units). 

Assuming a normal mixing error distribution, the use of a GEV kernel error term leads to a 

mixing of the normal distribution with a GEV kernel (leading to the mixed MDCGEV model or 

MMDCGEV structure), while the use of a probit kernel leads back to an MDCP model structure 

(because of the conjugate nature of the multivariate normal distribution in terms of addition). In 

this paper, we will use the MDCP structure because it allows us to use the MACML inference 

approach even in the presence of spatial dependence. This is the first such formulation and 

application of a spatial MDCP model in the econometric literature.1  

 

The Empirical Context 

There are several approaches to studying and modeling land-use change. Irwin and Geoghegan 

(2001) and Irwin (2010) provide a good taxonomy of these approaches. In the current paper, we 

derive our empirical discrete choice model based on drawing elements from three different types 

of models proposed and applied in the literature.  

The first type of models, usually referred to as pattern-based models and developed by 

geographers and natural scientists, is well suited for land-use modeling over relatively large 

geographic extents (such as urban regions or entire states or even countries). The unit of analysis 

in these pattern-based models is typically an aggregated spatial unit (such as a large grid or a 

traffic analysis zone or a Census tract or a County or a State). One basis for these models 

originates from the mathematical representations of the discrete state of a cell (a very fine 

disaggregate unit of space) as a deterministic or probabilistic function of the states of 

neighboring cells in an earlier time period (see, for example, Wu and Webster, 1998; Clarke et 

                                                            
1 A couple of recent studies using an MDC structure have accommodated spatial effects in the systematic component 
of utility (see Kaza et al., 2012 and Richards et al., 2012). However, these models are no different from aspatial 
MDC models from a formulation and estimation standpoint, since the resulting model is the closed-form MDCEV 
model.   
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al., 1997; Engelen and White, 2008). In these cellular automata-based models, the analyst 

hypothesizes the nature of the deterministic or probabilistic updating functions, simulates the 

states of cells over many “virtual” time periods, and aggregates up the states of the cells at the 

end to obtain land-use patterns. While such models may be able to “fit” the land-use patterns at 

the aggregated spatial unit level, the imposed updating functions are not based on actual data. 

Thus, there is no direct evidence linking the updating mechanism at the cell level to the spatial 

evolution of land-use patterns at the aggregate spatial unit level. Also, since such models do not 

use exogenous variables such as sociodemographic characteristics of spatial units, transportation 

network features, and other environmental features as the basis for explaining land-use, the 

policy value of these models is limited. An alternative basis of pattern-based models is to use 

empirical models estimated at the aggregate spatial unit level that relates variables such as 

distance to urban center, pedoclimatic or biophysical factors of the land in the spatial unit (such 

as slope, water content, aeration, and elevation), and transportation network and accessibility 

variables to land-use patterns (see, for example, Landis and Zhang, 1998a, 1998b; Brown et al., 

2000; Parker et al., 2003; Brown and Duh, 2004; Robinson and Brown, 2009). Once estimated, 

these models can be used in a simulation setting to predict land-use patterns in response to 

different exogenously imposed policy scenarios. Unfortunately, these empirical models have not 

been formulated in a manner that appropriately recognizes the multiple discrete-continuous 

nature of land-use patterns in the aggregated spatial units. Further, these models typically do not 

adequately consider population characteristics of spatial units in explaining land-use patterns 

within that unit.  

The second type of models, usually referred to as process-based models and considered 

by economists, is based on explicitly modeling landowners’ decisions of land-use type choice for 

their parcels. The most important aspect of these process-based models is that they explicitly 

consider the human element in land-use modeling; that is, landowner decisions (regarding the 

type of land-use to invest their parcel in), as influenced by a suite of economic, biophysical, 

accessibility, and policy variables, are acknowledged as the fundamental drivers of  land-use 

patterns. The emphasis is on using the land-owner as the unit of analysis, rather than a piece of 

land. To elucidate, landowners are considered as economic agents who make forward-looking 

inter-temporal land use decisions based on profit-maximizing behavior regarding the conversion 

of a parcel of land to some other economically viable land use (for example, see Capozza and Li, 
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1994 and Towe et al., 2008). The stream of returns from converting a parcel from the current 

land-use to some other land-use is weighed against the costs entailed in the conversion from the 

current land-use to some other land-use. The premise then is that the land use at any time will 

correspond to the land use type with the highest present discounted sum of future net returns 

(stream of returns minus the cost of conversion). Such process-based models allow for the 

analysis of a rich set of policy scenarios, by enabling the modeling of individual-level behavioral 

changes to exogenously imposed policy scenarios. However, in addition to difficulties associated 

with incorporating spatial considerations at this micro-level, the data and computing demands 

can be very high when using process-based models, especially when the analysis is being 

conducted at the level of entire urban regions or states in a country (see Kaza et al., 2012). 

Further, individual landowners may not have carte blanche authority to develop their land any 

way they want to, because of the presence of land-use and zoning regulations. Besides, multiple 

parcels in very close proximity tend to get similarly developed, because multiple parcels can be 

under the purview of a single decision-making agent such as a county board or a community 

board (see McMillen and McDonald, 1991; Mayer and Somerville, 2000; Munroe et al., 2005).   

The third type of models, referred to as spatial-based models, puts emphasis on spatial 

dependence among spatial units (in pattern-based models) or among landowners (in process-

based models), as caused by diffusion effects, or zoning and land-use regulation effects, or social 

interaction effects, or observed and unobserved location-related influences (see Jones and 

Bullen, 1994 and Miller, 1999). Indeed, as expressed by Tobler’s (1970) first law of geography, 

“everything is related to everything else, but close things more so”. While some of these 

proximity-based spatial effects may be accommodated through the appropriate construction of 

spatial variables (such as accessibility to city centers and market places), there will inevitably be 

unobserved spatial variables (such as say neighborhood soil quality or attitudes/politics) that will 

create unobserved dependencies in land-use patterns of proximally located spatial units. Several 

different spatial formulations have been considered in land-use modeling to accommodate such 

spatial dependencies, though the two most dominant remain the spatial lag and spatial error 

formulations. Of these, the spatial lag structure is more appealing.2 The spatial lag formulation 

                                                            
2 As emphasized by McMillen (2010), it is much easier to justify a parametric spatial lag structure when 
accommodating spatial dependence, while the use of a parametric spatial error structure is “troublesome because it 
requires the researcher to specify the actual structure of the errors”. Beck et al. (2006) also find theoretical and 
conceptual issues with the spatial error model and refer to it as being “odd”, because the formulation rests on the 
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also generates spatial heteroscedasticity. In addition to the spatial lag-based and resulting 

heteroscedasticity effects just discussed, it is also likely that there is spatial heterogeneity (i.e., 

differences in relationships between the dependent variable of interest and the independent 

variables across decision-makers or spatial units in a study region (see, Fotheringham and 

Brunsdon, 1999; Bhat and Zhao, 2002; Bhat and Guo, 2004). Thus, it behooves the analyst to 

accommodate local variations (i.e., recognize spatial non-stationarity) in the relationship across a 

study region rather than settle for a single global relationship.  

In the current study, we adopt an aggregate spatial unit of analysis of a quarter-of-a-mile 

square grid cell to study land-use over an entire urban region of Austin, Texas, with each grid 

having the “option” of investing (and converting) from one package of land-uses to another 

alternative package of land-uses. In doing so, some grids can invest entirely in a single land-use. 

The grid-level land-use is obtained by aggregating underlying parcel-level land-use information. 

However, we supplement this pattern-based modeling view with a process-based modeling view. 

Specifically, while the clear linkage between parcels and their human landowners in typical 

process-based models is admittedly not present, we consider a rich set of population 

demographics of the citizenry of each aggregate grid to approximate a collective decision-

making process for that grid. In addition, the land-use in a grid may also be determined by 

community or county boards through zoning regulations. Besides, by using a grid size that is not 

too aggregate, we retain some of the process-based model characteristics of having a connection 

between the spatial unit of analysis and human decision-makers. But since there is no clear label 

possible for the decision-maker of a grid, we will use the terminology of the “grid” both as a 

spatial unit of analysis as well as the decision-maker for the spatial unit of analysis. The hybrid 

model just discussed is further enhanced by considering all the spatial analysis aspects 

considered in spatial-based models. Thus, while Kaza et al. (2012) also consider a hybrid land-

use model based on Bhat’s (2008) MDCEV model, we consider the important spatial issues of 

dependence and heterogeneity due to unobserved as well as observed factors, as well as the 

resulting spatial heteroscedasticity, in our modeling approach. We also accommodate a general 

                                                                                                                                                                                                
“hard to defend” position that “space matters in the error process but not in the substantive portion of the model”. As 
they point out, the implication is that if a new independent variable is added to a spatial error model “so that we 
move it from the error to the substantive portion of the model”, the variable magically ceases to have a spatial 
impact on neighboring observations. Of course, the procedure developed here can also be extended to Spatial Durbin 
and other spatial specifications, but we leave these for future application efforts. The basic concepts we propose here 
to accommodate spatial dependence in MDCP models are the same regardless of the spatial dependence structure. 
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covariance matrix for the utilities of grid investments in the land-use categories. In 

accommodating all these effects, we adopt an MDCP model rather than the MDCEV model, 

since it is next to impossible to incorporate global spatial issues within the MDCEV structure 

when dealing with even a moderate number of spatial units.  

 

2. MODELING METHODOLOGY 

Model Formulation 

We derive the spatial MDCP model in the empirical context of the type and intensity of land-use 

over a grid, though the same formulation can be used in the many other multiple discrete-

continuous contexts identified in the section entitled “The Econometric Context”. Also, in the 

discussion in this section, we will assume that each grid has the potential to invest in all possible 

land-uses. The case when some grids cannot be developed for specific land-use purposes (say, 

due to zoning or hazard mitigation restrictions) poses no complications whatsoever, since the 

only change in such a case is that the dimensionality of the integration in the likelihood 

contribution changes from one grid to the next. The next section presents the set-up for the 

aspatial MDCP model in a way that makes it convenient to extend to the spatial MDCP set-up 

discussed in the subsequent section.  

 

The Aspatial MDCP Model 

Let )..., ,2 ,1( Qqq   be the index for grids and let )..., ,2 ,1( Kkk   be the index for land use 

types. In the empirical context of this paper, the alternative land use types include (1) residential 

land-use (including single family, duplexes, three/four-plexes, apartments, condominiums, 

mobile homes, group quarters, and retirement housing), (2) commercial land-use (including 

commercial, office, hospitals, government services, educational services, cultural services, and 

parking), (3) industrial land-use (including manufacturing, warehousing, resource extraction 

(mining), landfills, and miscellaneous industrial), and (4) undeveloped land-use (including open 

and undeveloped spaces, preserves, parks, golf courses, and agricultural open spaces). The last 

among these alternatives serves as an “essential outside good” in that all grid cells inevitably will 

have at least some of their land area that remains undeveloped.3  

                                                            
3 The presence of the “undeveloped” land use category as an outside good ensures that each grid is invested in at 
least one of the alternatives. This is in the spirit of the Hicksian composite commodity approach in consumer theory 
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Following Bhat (2008), consider a vector qx  of dimension 1K  with elements qkx  

)0( qxqk  , where qkx  is a specific value of land-use investment in land-use type k in grid q 

To determine grid q’s optimal allocation of its land area qE  among the K alternative land-uses 

(that is, to obtain the optimal values of qkx ), we consider the presence of a baseline utility qk  

qk( > 0) for each land-use type k and grid q that represents the marginal utility at the point of 

zero parcel area under land use k in grid q. The idea is that the first unit of land in grid q will be 

assigned to the land-use type k that has the highest baseline utility. But the marginal utility 

accrued from investing in any land-use type k is assumed to decrease as the grid is invested more 

and more in the land-use type k. Thus, at some point, an additional unit of investment in land-use 

type k may provide less marginal value than the first unit of investment in some other land-use 

type k’, at which point there is investment in land-use type k’. Assume this process plays out 

until all the land area qE is allocated among the many land-uses. In that case, the marginal utility 

of the consumed alternatives at the optimal point will be equal, and will be greater than the 

baseline marginal utility of the non-consumed alternatives. This conceptualization forms the 

basis for the MDCP model. Formally, consider the following utility-maximizing function subject 

to the binding land area constraint: 

(1) qKqK

K

k k

qk
qkkq x

x
U ln1ln)(max

1

1




 















 




qx    





K

k
qqk Exs.t. 

1

, 

                                                                                                                                                                                                
in that one replaces all the elementary alternatives that are not of primary interest (for example, the non-built up 
land-use types in the empirical analysis of the current paper) by a single composite “undeveloped” land use. The 
analysis proceeds then by considering the composite good as an “outside” good and modeling consumption in this 
outside good as well as in the more finely categorized “inside” goods representing the group of main interest to the 
analyst (in this case, the alternatives other than the undeveloped land-use category). This approach is very general, 
and can be used to study any categorization of land-use types. For example, in some land-use and climate change 
studies, the amount of area in dense vegetation may be the focus of interest, in which case the area in dense 
vegetation may be included as an “inside” land use category, while still maintaining other kinds of undeveloped land 
and perhaps even built-up land uses as an “outside” category. Finally, we should note that the model developed in 
this paper can be easily modified to the case when there is no outside category, and zero investment is possible in all 
land-use categories.  
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where the utility function )( qqU x  is quasi-concave, increasing and continuously differentiable.4 

k is a parameter associated with land-use type k. The utility function form in Equation (1) 

allows corner solutions (i.e., zero consumptions) for the land-use alternatives 1 through 1K  

through the parameters k  (as long as : 0k 1..., ,2 ,1  Kk ). On the other hand, the 

functional form for the final land-use alternative (the undeveloped land-use alternative) ensures 

that some land in each grid is in an undeveloped state (this can be easily proved given the 

specific utility structure used; see Bhat, 2008). The parameter k  for the first 1K  land-use 

types also contributes to the rate at which the marginal utility of investing in land-use type k 

decreases with increasing investment kx  in the land-use type, which can be seen by computing 

the marginal utility of consumption with respect to good )1..., ,2 ,1(  Kkk : 

1

1
)(

















k

qk
qk

qk

q x

x

U


qx

. As long as k >0, the marginal utility decreases with increasing qkx , 

as required. Further, if k increases, the rate of the marginal utility decrease itself decreases.  

To complete the model structure, the baseline utility qk , which has to be non-negative, is 

parameterized as follows for each alternative: 

(2) ,~)ln(or)~exp(),~exp( *
qkqkqkqkqkqk   qkqqkqqk zβzβz      

where qkz~  is a D-dimensional vector of attributes that characterizes land-use type k and grid q 

(including a dummy variable for each alternative except the last outside alternative, to capture 

intrinsic preferences for each alternative relative to the last alternative), qβ  is a grid-specific 

vector of coefficients (of dimension 1D ), and qk  captures the idiosyncratic (unobserved) 

characteristics that impact the baseline utility of land-use type k and grid q. We assume that the 

error term vector ),...,,( 21  qKqq qξ  is multivariate normally distributed for a given grid q : 

),(~ Λ0


KKq MVNξ , where ),( Λ0


KKMVN  indicates a K-variate normal distribution with a mean 

vector of zeroes denoted by K0  and a covariance matrix .Λ


 Further, to allow heterogeneity in 

                                                            
4 The utility form in Equation (1) is a restrictive form of the more general utility form proposed by Bhat (2008). In 
our empirical analysis, we started from the more general form and estimated alternative estimable restrictive forms. 
But the specific form in Equation (1) provided the best representation of utility. Additional details of the origins of 
the utility form may be found in Bhat (2008).  
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responsiveness to exogenous variables across grids (i.e., spatial heterogeneity), we consider qβ  

as a realization from a multivariate normal distribution with mean vector b and covariance 

'LLΩ . That is, ),(~ Ωbβ Dq MVN .  It is not necessary that all elements of qβ  be random; that 

is, the analyst may specify fixed coefficients on some exogenous variables in the model, though 

it will be convenient in presentation to assume that all elements of qβ  are random. The vectors 

qβ  and qξ  are assumed to be independent of each other. For future reference, we also write

qq βbβ
~

 , where ),(~
~

Ω0DDq MVNβ .5 

As in the multinomial probit model, only differences in the logarithm of the baseline 

utilities matter, not the actual logarithm of the baseline utility values (see Bhat, 2008). Thus, it 

will be easier to work with the logarithm of the baseline utilities of the first 1K  alternatives, 

and normalize the logarithm of the baseline utility for the last alternative to zero. That is, we 

write: 

(3) 

.for0

)(,~~, 

)()~~(

**

**

Kk

Kk

qKqKqK

qKqkqkqk

qKqkqKqkqk













qKqkqkqkq

qKqkq

zzzzβ

zzβ

                

It should be clear from above that only the covariance matrix, say Λ of the error differences 

)( qKqkqk   , is estimable, and not the covariance matrix Λ


 of the original error terms. 

Further, with the formulation as in Equation (1), where the sum of the investments across land-

use types (which constitute the dependent variables) is equal to the total land area in the grid, an 

additional scale normalization needs to be imposed (see Bhat, 2008). A convenient normalization 

is to set the first element of Λ (that is, 11Λ  to one). Further, technically speaking, the fully 

unrestricted substitution pattern implied by the full covariance matrix for Λ comes at the 

expense of rendering the estimated parameters of the Λ matrix completely uninterpretable (see 

Train, 2009; page 113 for a similar discussion in the case of traditional multinomial probit 

models). The approach we adopt in this paper to make the parameters behaviorally interpretable 

is to impose the not-so-implausible structure that, for each grid,  the error term of the “outside” 

                                                            
5 Note, however, that the parameters (in the βq vector) on the dummy variables specific to each alternative (except 
the last) have to be fixed parameters in the cross-section model, since their randomness is already captured in the 
covariance matrix .Λ


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alternative qK  is independent of the error terms of the inside alternatives ).1 ..., ,2 ,1(  Kkqk  

With this assumption, each covariance matrix element of Λ can then immediately be interpreted 

as a direct indicator of the extent of variance and covariance in the utilities of the inside 

alternatives.6 

The analyst can solve for the optimal consumption allocations corresponding to Equation 

(1) by forming the Lagrangian and applying the Karush-Kuhn-Tucker (KKT) conditions. The 

Lagrangian function for the problem, after substituting )exp( qkqk    (equal to 

1 ..., ,2 ,1for)exp(  Kkqkqkq zβ  and equal to Kk  for1)0exp( ) in Equation (1) is: 

(4) 






 







 







K

k
qqkqqK

K

k k

qk
qkqkqqkkq Exx

x
L

1

1

1

)(ln1ln)
~

exp( 


 zβzb ,   

where q  is the Lagrangian multiplier associated with the land area constraint (that is, it can be 

viewed as the marginal utility of total land area). The KKT first-order condition for the “optimal” 

investment *
qKx  in undeveloped land (which is always positive for each grid) implies the 

following:   ;0 
1* 



qqKx 
 

that is,   1* 


 qKq x . The KKT first-order conditions for the optimal 

land investments for the inside alternatives (the *
qkx  values for )1 ..., ,2 ,1  Kk  are given by: 

(5) 01 )
~

exp(

1*















q
k

qk
qkqkqqk

x



zβzb  , if 0* qkx , 1 ..., ,2 ,1  Kk   

01 )
~

exp(

1*















q
k

qk
qkqkqqk

x



zβzb , if 0* qkx , 1 ..., ,2 ,1  Kk . 

                                                            
6 To be precise, assume that the variance of 

qK  is 0.5. Then, to normalize 11Λ  to one, we should have that the 

variance of 
1q  is also 0.5. Let the variance of )1 ,... ,3 ,2(  Kkqk  be 2

k  and the covariance between 
qk  and  

) ;1 ..., ,3 ,2 ,1(' kkKkqk   be .kk  Then, the matrix Λ of the error differences )( qKqkqk   is: 







































2
11,31,21,1

1,3
2
32313

1,223
2
212

1,11312

5.05.05.05.0

5.05.05.05.0

5.05.05.05.0

5.05.05.01

KKKK

K

K

K

















Λ
.  
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Substituting   1* 


 qKq x into the above Equation, and taking logarithms, we can rewrite the KKT 

conditions as:  

(6) 0~)(*  qkqKqkqk VVy  , if 0* qkx , 1 ..., ,2 ,1  Kk    

0~)(*  qkqKqkqk VVy  , if 0* qkx , 1 ..., ,2 ,1  Kk , 

where 









 1ln

*

k

qk
qk

x
V

qkzb  for 1 ..., ,2 ,1  Kk ,  *ln qKqK xV  , and qkqkε  qkq zβ
~~ .  

 

The Spatial MDCP (or SMDCP) Model 

We retain all notations from the aspatial model, and begin the formulation of the spatial model 

from Equation (3), and write the logarithm of the baseline utilities (taken as the difference from 

the logarithm of the baseline utility of the last alternative) for the alternatives as follows: 

(7) 
.for0

1 ..., ,2 ,1for,

Kk

Kkw

qK

q
kqqqkqkqk



 






 qkq zβ
            

The only difference from Equation (3) is the presence of the component 



q

kqqqk w   in the 

logarithm of the baseline utilities for the inside alternatives. This component takes the typical 

spatial lag specification used extensively in spatial econometrics, and causes the logarithm of the 

baseline utilities to be spatially interdependent across grids based on the spatial proximity of 

grids. In particular, 
qq

w 
is a distance-based spatial weight corresponding to grids q  and q  (with 

0qqw  and 


 
q

qqw 1) for every q, and k )10(  k  is the spatial lag autoregressive 

parameter specific to land-use type k )1 ..., ,2 ,1(  Kk . 7  

                                                            
7 Unlike other spatial econometric studies in the context of traditional unordered discrete choice (such as Sener and 
Bhat, 2012 and Sidharthan and Bhat, 2012) that do not allow the spatial lag parameter to vary across alternatives, we 
allow this parameter to vary across alternatives in the current study, as should be obvious from the subscript k in δk. 
This is because of an important nuance. In the current study, the spatial dependence patterns for the first K–1 
alternatives effectively determine the spatial pattern for the last Kth alternative (because of the land-use constraint). 
We expressly acknowledge this “identification” problem in spatial dependence by not allowing the spatial lag on the 
Kth alternative (that is using this Kth alternative as the base for introducing spatial dependence effects). Of course, 
this Kth alternative is easily identified in the current paper as the “outside” alternative that is always chosen. 
However, in traditional discrete choice models where only one “inside” alternative can be chosen (and a similar 
identification problem arises because only utility differences matter), deciding which alternative to use as the base 
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The reader will note that the spatial specification in Equation (7) allows spatial spillovers 

for the same land-use type as well as across land-use types. This is because, as in standard 

discrete choice models where the spatial lag structure is applied to the linear (latent) propensity 

variables underlying the discrete choice dependent variable (see reviews of this literature in 

LeSage and Pace, 2009; Hays et al., 2010; Brady and Irwin, 2011; and Sidharthan and Bhat, 

2012), the spatial lag structure of Equation (7) is associated with the linear (latent) log(baseline 

utility) measure underlying the multiple discrete-continuous variable. Thus, even as a variable in 

a certain grid A increases the investment intensity in a specific land-use type in that grid 

(because of say a positive effect of the variable on the (log) baseline utility of the specific land-

use type), it leads to an increase in investment intensity in the same land-use type of neighboring 

grids (assuming a positive spatial autoregressive lag coefficient in Equation (7) for the land-use 

type, as we would generally expect).8 At the same time, everything else being the same, an 

increase in the investment intensity in land-use type k in grid A and other neighboring grids will 

have a negative effect on investment intensity in other land-use types in grid A and the 

neighboring grids (because the area of each grid is fixed). Thus, the specification does allow 

spatial spillover effects across land-use types.  

We now set out additional notation to write the baseline utility in a compact form. Define 

the following: 

 vectors]1)1[() ..., , ,(,),...,,( 1211,21   Kεεε q,KqqKqqqq qεψ  

] vectors1)1([    ) ..., , ,(        ,...,, 21  KQ, Qεεεε)ψψψ(ψ Q21  

                                                                                                                                                                                                
for introducing spatial dependence is not at all clear. Importantly, the determination of the base alternative for spatial 
dependence effects is not innocuous, since different results would be obtained by using different alternatives as the 
base (this exchangeability problem has seldom been discussed in the literature). This is the reason that earlier studies 
of traditional unordered discrete choice models impose the same spatial lag parameter for all alternatives, which 
resolves the identification problem as well as does not have the problem of non-unique results.  
8 An increase in qk  leads to an increase in ).exp( qkqk   Then, as discussed in the previous section of the paper, 

1

1
)(
















k

qk
qk

qk

q x

x

U


qx . Thus, as the baseline utility 

qk  increases for a grid q, the marginal utility at any 

consumption level 
qkx  (including at )0qkx also increases. By the formulation, then, the likelihood of grid q being 

invested in land-use type k increases, as does the amount of land invested in land-use type k if the grid is already 
invested in the land-use type k. Overall, there is then an increase in investment intensity in land-use type k in grid q 
because of both these discrete as well as continuous effects. In our spatial MDCP model based on Equation (7), an 
increase in the baseline utility 

qk  also increases the baseline utility for grid type k for neighboring grids, which 

increases investment intensity in land-use type k even in these neighboring grids.  
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]matrix )1([) ,..., ,(],matrix )1[() ,..., ,( , DKQDK  QKqqqq zzzzzzz 211-21 z , and 

) vector1()
~

,..,
~

,
~

(
~

 QDQ21 ββββ . 

Let KIDEN be the identity matrix of size K . Also, define the following matrices: 

(8) ]matrix)1([

000

000

000

000

QDKQ 

























Q

3

2

1

z

z

z

z












z , and                                                        

(9) matrix])1()1[(

000

000

000

000

1

3

2

1





























KK

K
















δ .                                                                

Let W
~

 be the )( QQ   weight matrix with weight 
qq

w 
as its elements, and let QQ1  be a )( QQ 

matrix with each element taking the value of one. Next, define )
~

(*.)( 1-KQQ IDENW1  δW , 

where “” is the kronecker product and “ *. ” stands for the element-by-element multiplication 

of two matrices. Let   ]matrix )1()1([1
)1(  

 KQKQKQ WIDENS . Then, we can write 

Equation (7) for all alternatives )1 ...., ,2 ,1(  Kkk and all grids Qq ..., ,2 ,1 in matrix notation 

as: 

(10)   vector]1)1([)
~

(
~  KQεβbεβb zSSzzzSψ


.               

Let e].[ indicate the the  element of the column vector ].[ , and let kKqd qk  )1( . Equation 

(10) can be equivalently written as: 

(11)     .1..., ,2 ,1,)
~

(  Kk
qkqk ddqk εβb zSSz

                  

Using the same approach as for the aspatial case, the KKT conditions for the land-use pattern for 

each grid q  take the same form for *
qky  as in Equation (6) with the new definitions of qkV

)1 ..., ,2 ,1(  Kk , qKV , and qk~  as follows: 
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(12)   









 1ln

*

k

qk
dqk

x
V

qk 
bSz for 1 ..., ,2 ,1  Kk ,                                                                        

 *ln qKqK xV  , and  
qkdqk )zS( εβ 

~~  .                 

Now, stack the elements )1..., ,2 ,1(*  Kkyqk  in the following order: 

(13)  vector,1)1( a,),...,,( 1,21   Kyyy Kqqqq
*y and                                                                   

vector1))1( ( a,),...,,( *
1 

 KQ*
Q

*
2

* yyyy . 

Define the following additional matrices:  

(14) ],vector1)1[(),...,,( 1,21   KVVVVVV qKKqqKqqKqqB
                                                  

    

vector]1)1([),...,,(  KQQBBBB 21 . 

It is easy to see that *y has a mean vector of B. To determine the covariance matrix of *y , define 

the following additional matrices: 

]matrix )1()1([
~

 KQKQΛIDENΛ Q , 

(15) ]matrix )1()1([ 
~  KQKQzΩ)(IDENzΩ Q

 , and                                                       

]matrix )1()1([ 
~~

 KQKQS]ΩΛS[Σ . 

Then, we obtain that ).,(~ )1( Σy * B KQMVN                   

 

3. MODEL ESTIMATION 

Development of the Maximum Likelihood Estimator 

Let )',...,,( 121  Kγ . The parameters to estimate in the spatial MDCP model include the γ  

parameter vector, the b vector, the elements of the spatial lag parameter matrix δ, and the 

covariance matrices - Λ  and Ω . The data provide information on the vector of exogenous 

variables qz  for each grid q, the spatial weight matrix W
~

, and the observed land-use square 

footage vector across the land-use alternatives in each grid q: )( ,21
*  *

Kq
*
q

*
qq ,...x,xxx . Note that a 

specific grid may not be invested in some land-use types, in which case the corresponding *
qkx  

values take a value of zero. Let θ be the collection of these parameters: 

 )Vech(,)Vech(),Vech(,, ΩΛδθ bγ  , where )(Vech Λ  and )(Vech Ω  represent the column 
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vector of upper triangle elements of Λ  and Ω , respectively, and )(Vech δ represents the column 

vector of diagonal element of δ.  

Next, partition the vector *y  into a sub-vector *yNC
~  of length NCL ×1 

)])1(0([  KQLNC  corresponding to the grid and land-use type combinations in which there 

is no land investment, and another sub-vector *yC
~  of length CL ×1 ( )]1(0[  KQLC ) for the 

grid and land-use type combinations in which there is land investment ( )]1([  KQLL CNC ). 

In forming the sub-vector *yC
~  , the outside alternative is not included. Let    








 

 *** yyy CNC
~,~~ , 

which may be obtained from *y  as *Ry*y~ , where R is a re-arrangement matrix of 

dimension )1()1(  KQKQ with zeroes and ones. For example, consider the case of three 

grids and five land-use alternatives. The last alternative is the “undeveloped” land-use state, 

which is the outside alternative. Among the remaining four alternatives, let grid 1 be invested in 

alternatives 1 and 4 (not invested in alternatives 2 and 3), let grid 2 be invested in alternatives 2 

and 3 (not invested in alternatives 1 and 4), and let grid 3 be invested in alternative 1 (not 

invested in alternatives 2, 3, and 4). In this case, .5and7  CNC LL   Then, the re-arrangement 

matrix R is: 

(16) ,

000100000000

000001000000

000000100000

000000001000

000000000001

100000000000

010000000000

001000000000

000010000000

000000010000

000000000100

000000000010





























































C

NC

R

R
R    

where the upper sub-matrix NCR  corresponds to the grid and land-use alternative combinations 

with no land investment (of dimension )1(  KQLNC ) and the lower sub-matrix CR  
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corresponds to the grid and land-use alternative combinations (excluding the outside alternative 

for each grid) with positive land investment (of dimension )1(  KQLC ). Note also that 

** yR~
NCNC y  and ** yR~

CC y .9 

      Consistent with the above re-arrangement, define BH R
~  , BH NC NCR~

, 

BHC CR
~  , and RΣRΣ ~

.  Define       .,...,*







 

 *
Q

*
2

*
1 xxxx  Then, the maximum likelihood 

function may be obtained as: 

(17)   ,
~

,
~

|,)det()(Prob)( )1(
* 




NCL

C

0

LNC Σ0hJθ
NCh

NCdh Hx KQML fL    

where )det(J  is the determinant of the Jacobian of the transformation from *y to the 

consumption quantities *x  (see Bhat, 2008). The matrix J of dimension ( )CC LL  is block-

diagonal with each block matrix qJ  of size )( qCqC LL  corresponding to a specific grid q qCL(  is 

the number of inside alternatives in which grid q is invested in). The block diagonality of J 

arises because 0
*






hq
x

yqk for all qq   and qCLhk
~

,  ( qCL
~

 is the set of inside alternatives in 

which grid q is invested, so that qCL  is the cardinality of the set qCL
~

; for future use, we will also 

define NCqL ,

~
 as the set of alternatives in which grid q   is not invested in, with NCqL ,  being the 

cardinality of the set NCqL ,

~
). Let qCL


 be the set of all land-use alternatives in which grid q is 

invested in (that is, those in the set qCL
~

 plus the outside alternative K). Using the derivation 

approach in Bhat (2005) for each block matrix qJ , and due to the block-diagonality of the larger 

matrix J, we are able to write: 

(18) 





















































 
 qCqC Lk k

kqk

Lk kqk

k
Q

q

x

x  





1

1
)det(

*

*
1

J .                         

                                                            
9 RNC has as many rows and columns as the number of grid and land-use alternative combinations with no land 
investment (each column corresponds to an alternative except the Kth alternative). Then, for each row, RNC has a 
value of “1” in one of the columns corresponding to a grid- alternative combination that is not invested in (starting 
from the first alternative that is not invested in for the first grid and working down to the last alternative that is not 
invested in for the last grid). Each row has strictly one column with a value of “1” and the value of “0” everywhere 
else. A similar construction is involved in creating the RC matrix. 
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The likelihood function in Equation (17) involves integration of dimension NCL . This is of very 

high dimensionality in the typical case of sample sizes of 500 grids or more. The lower bound of  

NCL  is equal to zero, corresponding to the case when each grid is invested in each land-use 

alternative. The upper bound is equal to QK *)1(  , corresponding to the case when each grid is 

invested in only the undeveloped (outside) land-use alternative state. Of course, in practice, the 

situation will be somewhere between these two extreme values for NCL , but the value for NCL will 

be sufficient to render maximization of the likelihood function using traditional simulation 

methods almost impractical.  In particular, existing estimation methods, including the Maximum 

Simulated Likelihood (MSL) method and the Bayesian Inference method, become cumbersome 

and encounter convergence problems even for moderately sized Q (Bhat et al., 2010). In this 

paper, we instead use Bhat’s Maximum Approximate Composite Marginal Likelihood 

(MACML) inference approach for estimation. 

 

The MACML Approach 

The MACML approach combines a composite marginal likelihood (CML) estimation approach 

with an approximation method to evaluate the multivariate standard normal cumulative 

distribution (MVNCD) function. The composite likelihood approach replaces the likelihood 

function with a surrogate likelihood function of substantially lower dimensionality, which is then 

subsequently evaluated using an analytic approximation method rather than simulation 

techniques. This combination of the CML with the specific analytic approximation for the 

MVNCD function is effective because it involves only univariate and bivariate cumulative 

normal distribution function evaluations, regardless of the spatial and/or temporal complexity of 

the model structure. The approach is able to recover parameters and their covariance matrix 

estimates quite accurately and precisely because of the smooth nature of the first and second 

derivatives of the approximated analytic log-likelihood function (unlike the non-smooth first and 

second derivatives that arise in simulation approaches). The MVNCD approximation method is 

based on linearization with binary variables (see Bhat, 2011). 

The MACML approach, similar to the parent CML approach, maximizes a surrogate 

likelihood function that compounds much easier-to-compute, lower-dimensional, marginal 

likelihoods (see Bhat, 2014 for a recent extensive review of CML methods; Lindsay et al., 2011; 



20 

Bhat, 2011; Varin et al., 2011; and Yi et al., 2011 are also useful references). The CML 

approach, which belongs to the more general class of composite likelihood function approaches 

(see Lindsay, 1988), may be explained in a simple manner as follows. In the SMDCP model, 

instead of developing the likelihood function for the entire set of Q observations, as in Equation 

(17), one may compound (multiply) pairwise probabilities of grid q having the land-use pattern 

*x q , grid q  having the land-use pattern *
qx  , grid q   having the land-use pattern *

qx  , and so on. 

The CML estimator (in this instance, the pairwise CML estimator) is then the one that maximizes 

the compounded probability of all pairwise events. The properties of the CML estimator may be 

derived using the theory of estimating equations (see Cox and Reid, 2004; Yi et al., 2011). 

Specifically, under usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191; Xu 

and Reid, 2011), the CML estimator is consistent and asymptotically normal distributed (this is 

because of the unbiasedness of the CML score function, which is a linear combination of proper 

score functions associated with the marginal event probabilities forming the composite 

likelihood; for a formal proof, see Bhat, 2014). Parameter restrictions in the CML estimation 

approach may be tested using the composite likelihood ratio statistic (see Bhat, 2014). 

To write the pairwise CML function, let NCqNCqNCqq LLL ,,,    and ., CqqCCqq LLL    

Define a vector *y qq   of size  1)1(2 K  as follows: 

(19)    







 

 
*
q

*
q yy ,*

qqy .                           

Let qq Δ  be a selection matrix of size .2 Q  This matrix has the value of “1” in the top row and 

the column q , and the value of “1” in the bottom row and column q . All other cells of this 

matrix are filled with values of zero. Then, ),,(~ )1(2 qqqq
* By  ΣKqq MVN  where 

BB qqqq )1  KIDEN(Δ , and .)) 11   KK IDEN(ΔΣIDEN(ΔΣ qqqqqq  Next, define the 

re-arrangement matrices qq R  (of dimension )1(2)1(2  KK ), NCqq ,R  (of dimension 

)),1(2  KL NCqq ,  and Cqq ,R  (of dimension ))1(2  KL Cqq ,  similar to the corresponding re-

arrangement matrices defined on the entire sample for the maximum likelihood approach. Also, 

define  ,
~

, qqNC,qq BB   NCqqR ,
~

, qqC,qq BB   CqqR  and 





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




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~~

~~
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ΣΣ

ΣΣ
RΣRΣ , 



21 

where NCqqqqNCqqNCqq ,,,

~
  RΣRΣ , CqqqqCqqCqq ,,,

~
  RΣRΣ , and CqqqqNCqqCNCqq ,,,,

~
  RΣRΣ . Let 
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CqqCqq  where 

NCqq ,Σ
ω  is the diagonal matrix of standard deviations of NCqq ,Σ


 

and 
Cqq ,

~
Σ

ω is the diagonal matrix of standard deviations of Cqq ,

~
Σ . Let 

Cqq ,
~

Σ
ω be the product of the 

diagonal elements of 
Cqq ,

~
Σ

ω , and write the determinant of the Jacobian corresponding to grids q

and q   as 

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J . Then, using the marginal and 

conditional distribution properties of the multivariate normal distribution, the pairwise CML 

function for the SMDCP model can be written as: 
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The CML function above requires the computation of the multivariate normal cumulative 

distribution (MVNCD) function that is utmost of dimension 2*)1( K integrals (instead of 

QK *)1(   in the full maximum likelihood case). Such integrals may be computed easily using 

the MVNCD approximation method embedded in the MACML method (the MVNCD function 

approximates the pairwise probabilities in Equation (20) using only univariate and bivariate 

cumulative normal distribution functions; see Bhat, 2011 and Bhat and Sidharthan, 2011).  

The MACML estimator is obtained by maximizing the logarithm of the function in 

Equation (20) after evaluating the MVNCD function using the analytic approximation. Since the 

MACML estimator entails only the computation of univariate and bivariate cumulative normal 

distribution functions, it is extremely quick to evaluate. The covariance matrix is given by the 

inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005). Bhat 

(2011) exploits the fading spatial dependence pattern implied by the spatial lag structure (due to 

the decaying nature of the distance weight matrix, combined with the spatial lag parameter being 

less than 1) to propose a specific implementation of Heagerty and Lumley’s (2000) windows 

sampling procedure to estimate this sandwich information matrix. 
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The pairwise CML function of Equation (20) comprises 2/)1( QQ  grid pairs of 

probability computations. To further accelerate the estimation, one can reduce the number of grid 

pairs because spatial dependency drops quickly with inter-grid distance. In fact, as demonstrated 

by Bhat et al. (2010) and Varin and Czado (2010), retaining all pairs not only increases 

computational costs, but may also reduce estimator efficiency. We examine this issue by creating 

different distance bands and, for each specified distance band, we consider only those pairings in 

the CML function that are within the spatial distance band. Then, we develop the asymptotic 

variance matrix )ˆ(θVCML  for each distance band and select the threshold distance value that 

minimizes the total variance across all parameters as given by )]ˆ([ θVCMLtr   (i.e., the trace of the 

matrix )]ˆ([ θVCML ).    

A final issue regarding estimation. The analyst needs to ensure the positive definiteness 

of the two covariance matrices Ω and Λ. Once this is ensured, and as long as kk  10  , Σ 

will be positive definite. In our estimation, the positive-definiteness of each of the Ω and Λ 

matrices is guaranteed by writing the logarithm of the pairwise-likelihood in terms of the 

Cholesky-decomposed elements of these matrices, and maximizing with respect to these 

elements of the Cholesky factor. Essentially, this procedure entails passing the Cholesky 

elements as parameters to the optimization routine, constructing the covariance matrix internal to 

the optimization routine, then computing Σ, and finally picking off the appropriate elements of 

the matrix for the pairwise likelihood components. To ensure the constraints on the 

)1 ..., ,2 ,1(  Kkk autoregressive terms, we parameterize these as )]
~

exp(1/[1 kk   . Once 

estimated, the  
~

k estimates can be translated back to estimates of .k  

 

4. SIMULATION STUDY 

There are two objectives of this simulation study. The first is to examine the ability of the 

MACML estimator to recover parameters from finite samples in the spatial MDCP model by 

generating simulated data sets with known underlying model parameters. The second is to 

examine the effects of (a) imposing a restrictive independent and identically distributed 

covariance among the baseline utilities of the alternatives, (b) ignoring spatial heterogeneity, and 

(c) ignoring spatial dependence.  
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Experimental Design 

We consider a four alternative case in the simulation exercise, as in the empirical analysis of the 

current study. The last alternative, as in the earlier sections, is assumed to be the outside 

alternative. Assume three independent variables in the qkz  vector in the baseline utility. The 

values of each of the three independent variables for the alternatives are drawn from a standard 

univariate normal distribution, and a synthetic sample of 2000 realizations of the exogenous 

variables is generated, corresponding to Q=2000 grids. The spatial pattern of the grids as well as 

the total land area of each grid is based on an actual grid configuration obtained from the 2010 

land use survey data for Austin, Texas (this is the data set also used in the empirical analysis of 

this paper in Section 5; the use of an actual grid configuration lends more credibility to the 

simulation exercise rather than generating a synthetic grid configuration). For the weight matrix 

)
~

(W , we use a continuous inverse of distance specification in the simulation analysis based on 

the line distance (in kilometers) between the centroids of the grids on the coordinate system.10 

Once generated, the independent variable values, the grid configuration and weights, and the grid 

total area are held fixed in the rest of the simulation exercise. 

The coefficient vector qβ  is allowed to be random according to a bivariate normal 

distribution for the first two variables, but set to be fixed for the third variable. The mean vector 

for qβ  is assumed to be b = (0.5, –1, 1). The covariance matrix Ω for the two random 

coefficients is specified as follows: 

(21) 


























80.000.0

60.090.0

80.060.0

00.090.0

00.154.0

54.081.0
ΩΩLLΩ .  

The Cholesky decomposition of Ω guarantees the positive definiteness of Ω. In the estimations, 

the likelihood function is reparameterized in terms of the lower Cholesky factor ΩL , and the 

three associated Cholesky parameters 9.01 Ωl , 6.02 Ωl , and 8.03 Ωl  are estimated.  

                                                            
10 More generally, the spatial weight matrix may be based on a continuous representation of distance (such as the 
inverse distance, or the inverse of the square of distance, or the inverse of exponential distance) or on a discrete 
representation of distance (such as a simple contiguity indicator of whether or not two grids are adjacent), or on a 
hybrid representation of distance (such as the shared boundary length between two contiguous grids). These 
different representations and functional forms for the weight matrix may be tested in any empirical context, as we 
undertake in our empirical analysis in Section 5.  
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Collectively, these three parameters, stacked vertically into a column vector, will be referred to 

as Ωl . Next, the covariance matrix Λ for ),( 3,21  qqqq   is specified as follows (see also 

Section 3):  

(22) 

.

80.000.000.0

20.090.000.0

90.070.000.1

80.020.090.0

00.090.070.0

00.000.000.1

49.181.090.0

81.030.170.0

90.070.000.1

99.050.031.050.040.050.0

31.050.080.050.020.050.0

40.050.020.050.000.1
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ΛΛLL

Λ

                

In the above matrix, the first element is normalized (and fixed) to the value of 1.  There are five 

Cholesky matrix elements to be estimated in ΛL  ( 7.01 Λl , 9.02 Λl , 9.03 Λl , 2.04 Λl , 

and 8.05 Λl ). Collectively, these elements, vertically stacked into a column vector, will be 

referred to as l . 

In the simulations, we set the k parameters for the first three alternatives to the value of 

one. The three k parameters to be estimated are collected in the vector l . Finally, to examine 

the potential impact of different levels of spatial dependence on the ability of the CML approach 

to recover model parameters, we consider two sets of values of the spatial autoregressive 

coefficients corresponding to low dependence )3.0,2.0,1.0( 321    and high dependence

)8.0,7.0,6.0( 321   .  

The set-up above is used to develop the ]1)1([ KQ  vector Szb  and the covariance 

matrix Σ (see the section entitled “The Spatial MDCP (or SMDCP) Model”). Since 

),(~ )1( Σψ SzbKQMVN , a specific realization of the  ]1)1([ KQ  vector for ψ is drawn from 

the multivariate normal distribution with mean Szb  and covariance structure Σ. Then, using 

subsets of this ψ vector corresponding to each grid, and the specified   vector, we generate the 

investment quantity vector *x q , using the forecasting algorithm proposed by Pinjari and Bhat 

(2011). The above data generation process is undertaken 30 times with different realizations of 

the ψ
 
vector to generate 30 different data sets each for the low spatial dependence case and the 

high spatial dependence case. The datasets had a good proportion of grids that are not invested in 
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one or more of the first three alternatives (by construction, all grids are invested in the fourth 

alternative). On average, across all the datasets, the percentage of grids solely in one of the first 

three alternatives was 21.5 percent, in only two of the first three alternatives was 30.0 percent, 

and in all three was 48.5 percent.  

The MACML estimator is applied to each data set to estimate data specific values of 

δlllb   and , , , , γΛΩ . A single random permutation is generated for each individual (the random 

permutation varies across individuals, but is the same across iterations for a given individual) to 

decompose the multivariate normal cumulative distribution (MVNCD) function into a product 

sequence of marginal and conditional probabilities (see Section 2.1 of Bhat, 2011).11 All the 

2/)1( QQ  pairings of grids are considered in the MACML estimator. The estimator is applied 

to each dataset 10 times with different permutations to obtain the approximation error, computed 

as the standard deviation of estimated parameters among the 10 different estimates on the same 

data set. 

 

Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the spatial 

MDCP model and the corresponding standard errors is evaluated as follows: 

(1) Estimate the MACML parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED values 

across the data sets to obtain a mean estimate. Compute the absolute percentage (finite 

sample) bias (APB) of the estimator as: 

(23) .100
 valuetrue

 valuetrue-estimatemean 
APB

                                                                           
 

(3) Compute the standard deviation of the MED values across datasets, and label this as the 

finite sample standard error or FSSE (essentially, this is the empirical standard error). 

                                                            
11 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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(4) For each data set, compute the mean standard error for each model parameter across the 10 

draws. Call this MSED, and then take the mean of the MSED values across the 30 data sets 

and label this as the asymptotic standard error or ASE (essentially this is the standard 

error of the distribution of the estimator as the sample size gets large). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute the relative 

efficiency of the estimator as: 

(24) .
FSSE

ASE
efficiency Relative 

                                                                                               
 

Relative efficiency values in the range of 0.8-1.2 indicate that the ASE, as computed using 

the Godambe matrix in the CML method, does provide a good approximation of the FSSE. In 

general, the relative efficiency values should be less than 1, since we expect the asymptotic 

standard error to be less than the FSSE. But, because we are using only a limited number of 

data sets to compute the FSSE, values higher than one can also occur. The more important 

point is to examine the closeness between the ASE and FSSE, as captured by the 0.8-1.2 

ranger for the relative efficiency value. 

(6) Compute the standard deviation of the parameter values around the MED parameter value for 

each data set, and take the mean of this standard deviation value across the data sets; label 

this as the approximation error (APERR).   

 

Additional Restrictive Model Comparisons with the Proposed Model 

The main purpose of the methodology proposed here is to accommodate (1) a full covariance in 

the baseline utilities (within each grid), (2) spatial heterogeneity (across grids) in the 

responsiveness to exogenous variables, and (3) spatial dynamics that generate dependency 

effects in the land-use types and intensities (across grids). To examine the implications of 

ignoring these considerations when they are actually present, we estimate three additional 

models on the 30 data sets generated for the high spatial dependence level. The first model, 

which we will refer to as the spatial IID MDCP (or SIMDCP) model, assumes a restrictive 

independent and identically distributed specification for the error terms in the baseline utilities; 

that is, for the )..., ,2 ,1( Kkqk   terms. This translates to the following restrictive covariance 

matrix for the qε  vector:  
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The second model, which we will refer to as the spatial homogenous MDCP (or SHMDCP) 

model assumes away any spatial heterogeneity; that is, it assumes that all the elements of the 

covariance matrix Ω (and, therefore, the elements of the Ωl vector) are identically zero. The third 

model, which we will refer to as the aspatial MDCP (or simply the MDCP) model, restricts all 

the spatial autocorrelation coefficients to zero; that is, it assumes that all the δ parameters are 

identically zero. We compare these three restrictive formulations with the proposed SMDCP, 

based on the APB measure for all non-constrained parameters and the adjusted composite log-

likelihood ratio test (ADCLRT) value (see Pace et al., 2011 and Bhat, 2011 for more details on 

the ADCLRT statistic, which is the equivalent of the log-likelihood ratio test statistic when a 

composite marginal likelihood inference approach is used; this statistic has an approximate chi-

squared asymptotic distribution).  

For the comparisons, we use a single replication per data set (the replication is the same 

one for the SMDCP model and all the restrictive models; that is, we use a single permutation per 

individual that varies across individuals but is held fixed across the SMDCP and other models). 

We do so rather than run 10 replications for each of the SMDCP and the more restrictive models 

because, as we will present in the next section, the approximation error in the parameters is 

negligible for any given data set. The ADCLRT statistic needs to be computed for each data set 

separately, and compared with the chi-squared table value with the appropriate degrees of 

freedom. In this paper, we identify the number of times (corresponding to the 30 model runs, one 

run for each of the 30 data sets) that the ADCLRT value rejects the SIMDCP, SHMDCP, and 

MDCP models in favor of the SMDCP model.   
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Simulation Results 

Recoverability of Parameters in the SMDCP Model. Tables 1a and 1b present the results 

for the first part of the simulation exercise focusing on parameter recoverability. Table 1a 

corresponds to the low spatial dependence case, while Table 1b corresponds to the high spatial 

dependence case. As indicated earlier, there are four alternatives ),4( K  leading to up to a six 

]2*)1([  K  dimensional integral in the CML function.  

The parameter estimate results in Tables 1a and 1b indicate that the MACML method 

does very well in recovering the parameters, as can be observed by comparing the mean 

estimates of the parameters with the true values. The absolute percentage bias (APB) is no more 

than 5 percent for any parameter (see column titled “Absolute Percentage Bias”) in the low 

dependence case, with an overall mean value of 1.90 percent across all parameters, as indicated 

at the bottom of the table (see the row labeled “overall mean value across parameters”). The 

APB values are somewhat higher for the high dependence case (Table 1b), with an overall mean 

value of 3.4 percent across all parameters. This is not surprising, since the high dependence case 

generates high interdependence between grids, and leads to a much more non-linear surface of 

the CML function over which to optimize. Between the low and high dependence cases, there are 

no substantial differences in recovery ability for the mean value of coefficients on the exogenous 

variables in the baseline utility function and the covariance matrix of these coefficients (i.e., the 

b vector elements and the Ωl vector elements). However, there are differences in the recovery 

ability for the other parameters, with the APB values being relatively high for the γ vector values 

in the high dependence case.  This result is a reflection of somewhat greater difficulty in pinning 

the satiation parameters in the presence of spatial autoregressive parameters. As indicated earlier, 

a higher spatial autoregressive parameter causes the logarithm of the baseline utilities to be more 

spatially interdependent across grids, thus increasing the non-linearity in the baseline utility 

function (see Equation 11). At the same time, the satiation parameters (captured by the elements 

of the γ  vector) generate non-linearity in the overall utility function (see Equation 1). Both these 

non-linearities come together in the probability expression through their combined presence in 

the qkV  component in Equation (12), which manifests itself in the mean of the distribution over 

which there is an integration in the CML function of Equation (20). Thus, as one form of non-
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linearity (i.e., generated by the spatial autoregressive parameter vector δ) increases, it becomes 

difficult to estimate the γ parameter vector contributing to another form of non-linearity.  

The APB values for the parameters of the Cholesky decomposition of the covariance 

matrix associated with the error term (i.e., the l values) are generally small and lower than 5 

percent. The highest APB is for the 4l  parameter, though this could also be attributed to the 

low true value of this parameter (which inflates the absolute percentage bias value). Finally, the 

recovery of spatial autoregressive parameters is exceptionally good in the low dependence case, 

with all three parameters having an associated APB value of zero (simply a remarkable 

happenstance). The parameters are also quite well recovered in the high dependence case, though 

not as well as in the low dependence case, a result of the additional non-linearity generated in the 

CML function. 

The standard error estimates of the parameters indicate good empirical efficiency of the 

MACML estimator. Across all parameters, the finite sample standard error (FSSE) is a mere 2 

percent of the mean parameter estimate in the low spatial dependence case and 4.8 percent of the 

mean parameter estimate in the high spatial dependence case, indicating very good empirical 

efficiency of the MACML estimator for the SMDCP model. Another observation from the finite 

sample standard error estimates is that these estimates (as a percentage of the mean estimates) 

are generally higher for the γ parameters relative to the other parameters, specifically for the high 

spatial dependence case, reinforcing the finding earlier that the γ parameters are more difficult to 

recover than other parameters.  

The finite sample standard errors and the asymptotic standard errors obtained using the 

Godambe matrix in the CML method are also close, with the relative efficiency value between 

0.8-1.2 for most of the parameters in both the low dependence and high dependence cases. The 

efficiency values are outside the 0.8-1.2 range for some elements of the mean vector of qβ ,
 

some of the Cholesky decomposition elements of the error covariance matrix (i.e., the elements 

of the l vector) and some of the spatial autoregressive parameters (i.e., the elements of the δ 

vector). However, even this is rather deceptive, since the values are simply an artifact of the low 

values of the finite sample error and asymptotic standard error for these parameters. In particular, 

the absolute differences in the finite sample error and asymptotic standard error are quite small 

even for these parameters. For instance, the relative efficiency values for the elements of the δ 
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vector in the low dependence case are consistently low, but the absolute difference between the 

finite sample error and asymptotic standard error ranges from 0.001 to 0.003. Overall, the 

average relative efficiency across all the parameters is 0.92 for the low dependency case and 1.03 

for the high dependency case, indicating that the asymptotic formula is performing well in 

estimating the finite sample standard error. Further, as for the FSSE values, the ASE estimate 

from the MACML procedure, on average across all parameters, is only 2.24 percent of the mean 

estimate in the low dependence case and 4.8 percent of the mean estimate in the high dependence 

case, indicating good efficiency of the MACML procedure even using the ASE estimate for the 

FSSE. 

Finally, the last column of Tables 1a and 1b present the approximation error (APERR) 

for each of the parameters, because of the use of different permutations. These entries indicate 

that the APERR is of the order of 0.005 or less, across both the low dependence and high spatial 

dependence cases. More importantly, the approximation error (as a percentage of the FSSE or the 

ASE), averaged across all the parameters, is of the order of 7.5 percent of the sampling error for 

the low dependence case and of the order of 3.5 percent of the sampling error for the high 

dependence case. This is clear evidence that even a single permutation (per observation) of the 

MACML estimator provides adequate precision, in the sense that the convergent values are about 

the same for a given data set regardless of the permutation used for the decomposition of the 

multivariate probability expression within the MACML approach. This is indeed a remarkable 

result. 

 

Comparison between the SMDCP Model and more Restrictive Models. In this section, we 

compare the performance of the SMDCP model formulation with the more restrictive 

formulations, when the data generated actually conforms to the SMDCP (see the section entitled 

“Additional Restrictive Model Comparisons with the Proposed Model”). This provides a sense of 

the biases that may accrue from using a restrictive specification.  

The comparison of the SMDCP model with the spatial IID MDCP (or SIMDCP) model 

tests the restriction that there is no covariance in the unobserved determinants of the baseline 

utilities of the land-use types within each grid. The column panel entitled “SIMDCP model” in 

Table 2 presents the mean estimates and the APB values for the elements of the Ωl , γ, and δ  

vector (the elements in the l vector are all constrained as shown in Equation (25)). As can be 
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observed, the mean estimates are, in general, not as close to the true parameters as in the SMDCP 

model. This is particularly noticeable for the γ vector elements, with the APB for the parameter 

3  being as high as 42 percent. The overall APB across all parameters is 9.64 percent relative to 

4.05 percent in the SMDCP model, clearly indicating the biases that occur if one assumes a 

restrictive independent and identically distributed specification for the error terms in the baseline 

utilities when the data does not conform to such a specification (note that the overall APB of 

4.05 percent for the SMDCP model is computed based on the 30 datasets and the same single set 

of replications as for the SIMDCP model; also, the overall APB value for the SMDCP model in 

this comparison is computed excluding the l vector elements that are constrained in the 

SIMDCP model). The superiority of the SMDCP model is further reinforced by the ADCLRT 

test with five degrees of freedom (corresponding to the five elements in the l vector). The table 

chi-squared value with five degrees of freedom is 11.07 at the 95 percent confidence level, and 

the ADCLRT test value between the SMDCP and SIMDCP models exceeds this value for each 

of the 30 data sets. Thus, the ADCLRT clearly rejects the SIMDCP model in favor of the 

SMDCP model.  

 The comparison of the SMDCP model with the spatial homogenous MDCP (or 

SHMDCP) model tests the restriction that there is no randomness across grids in the response to 

exogenous covariates; that is, the restriction that all elements of the covariance matrix Ω (and, 

therefore, the elements of the Ωl vector) are identically zero. The column panel entitled 

“SHMDCP model” in Table 2 presents the mean estimates and the APB values for the elements 

of the b, l , γ, and δ vectors. As should be obvious, the APB values are very large across the 

board, with an average APB value of over 32 percent relative to 3.52 percent for the SMDCP 

models for the elements of the b, l , γ, and δ vectors. Clearly, there are large biases in the 

parameters when heterogeneity is ignored, as also reflected in the fact that the ADCLRT test 

value between the SHMDCP and SMDCP models is higher than the table chi-squared value with 

three degrees of freedom for each of the 30 datasets at even beyond the 99 percent confidence 

level (the appropriate table chi-squared value is 11.34). Thus, ignoring spatial heterogeneity can 

lead to serious model misspecification and inferences.  

           Finally, the comparison of the SMDCP model with the MDCP model tests the restriction 

that there are no spatial interdependence effects at play; that is, that all the elements of the δ 
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vector are identically zero. Again, the mean APB of 13.53 percent in the MDCP model is higher 

than the mean APB of 3.61 percent for the non- δ parameters in the SMDCP model. The APB 

for the γ vector elements are again the highest, with that for the 3  parameter being 76 percent. 

In particular, there is a substantial underestimation in the γ parameters. The table chi-squared 

value with three degrees of freedom is 11.34 at the 99 percent confidence level, and the 

ADCLRT test value between the SMDCP and MDCP models exceeds this value for each of the 

30 data sets in our simulation. 

           Overall, the simulation results show that, irrespective of the magnitude of spatial and 

temporal dependences, the MACML estimator recovers the parameters of the proposed spatial 

MDCP very well. The MACML estimator also seems to be quite efficient based on the low 

FSSE estimates. Further, the asymptotic standard error formula estimates the FSSE quite well, 

and the approximation error due to the use of the analytic approximation is very small. 

Additionally, the results clearly highlight the bias in estimates if error covariance, or spatial 

heterogeneity, or spatial dependence is ignored when both are actually present. An interesting 

suggestion from our simulation study is that ignoring spatial heterogeneity is of much more 

serious consequence than ignoring error covariance effects or spatial lag dynamics. Further 

theoretical and empirical exploration of this finding is left for future work. 

 

5. APPLICATION DEMONSTRATION 

In this paper, we demonstrate the application of the proposed SMDCP model by analyzing land-

use patterns in Austin, Texas. 

 

The Data and the Context 

The data used in this study is drawn from parcel-level land-use inventory data for the year 2010, 

as obtained from the City of Austin, TX. This data is available in the Environmental Systems 

Research Institute’s (ESRI’s) shape file format. The land use type for each parcel is available at a 

fine level of detail; however, for the current study, the land use types are aggregated into the 

following four mutually exclusive land use categories: (1) commercial land-use (including 

commercial, office, hospitals, government services, educational services, cultural services, and 

parking), (2) industrial land-use (including manufacturing, warehousing, resource extraction 

(mining), landfills, and miscellaneous industrial uses), (3) residential land-use (including single 
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family, duplexes, three/four-plexes, apartments, condominiums, mobile homes, group quarters, 

and retirement housing), and (4) undeveloped land-use (including open and undeveloped spaces, 

preserves, parks, golf courses, and agricultural open spaces). The last among these alternatives 

serves as an “essential outside good” in that all grid cells inevitably will have at least some of 

their land area that remains undeveloped  

For the current analysis, an area measuring 377.98 km2 (145.94 mi2) covering the central 

business district and important surrounding areas is considered. As shown in Figure 1a, there are 

two major highways (Interstate Highway 35 and Loop-1 MoPac) in the study area, running 

roughly parallel to each other and from the northeast to southwest.  In addition, several other 

major thoroughfares in the Austin area are also represented, including Ben White Blvd (State 

Highway 71) that forms the southern boundary of the study region, US-290, US-183 that runs 

diagonally from the northwest to the southeast at the north end of the study area and then directly 

south at the south end of the study area, Loop 360, and FM-2222. Several major arterials also go 

through the study area, including Lamar Blvd (roughly parallel to IH-35 and MoPac, and 

between these two highways), Parmer Lane (toward the north), Cesar Chavez Street (just south 

of the downtown area), Martin Luther King Jr (MLK) Blvd (just north of the downtown area), 

Congress Avenue, and Dessau Road. In the rest of this paper, we will use the label “major 

thoroughfares” to refer to both the major thoroughfares as well as the major arterials identified 

above. Also, we will consider the Austin Central Business District (CBD) zone as the “square” 

bounded by Lamar Blvd to the west, MLK Blvd to the north, IH-35 to the east, and Cesar 

Chavez to the south (see Figure 1a).  

The study area is divided into 2383 square grids, each of size 0.25 mi   0.25 mi (an area 

of 0.0625 square miles). The use of grids as the unit of analysis is not new, and has been adopted 

earlier in, amongst many others, Kline (2003) and Kaza et al. (2012). Each grid can be in 

multiple land-uses, and we obtain the grid-level square footage in each of the four land-use types 

(that, together, constitute the multiple-continuous dependent variable in our model system) by 

aggregating the underlying parcel-level land-use inventory data obtained from the City of Austin. 

If there are no parcels at all in a specific land-use type in a grid, then the square footage in that 

land-use type in the grid is equal to zero (corner “solution” in the terminology of Section 2). On 

the other hand, if there are one or more parcels of a specific land-use type in a grid, the square 

footage in that land-use type in the grid is positive, and has a continuous intensity component. 
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Thus, the multiple discrete-continuous dependent variable vector for a specific grid q may be 

)0125.0,0000.0,0500.0,0000,.0(* qx , which indicates that the grid is invested in the second and 

fourth land-use types, but not the first and third land-use types (note also that the sum of the 

elements equals 0.0625 square miles). All the explanatory variables for the analysis are created 

through appropriate aggregation to the grid-level, using geographic information system (GIS) 

data obtained from the City of Austin (except for the floodplains data, which were obtained from 

the Capital Area Council of Governments).12 

The explanatory variables include (1) road access measures (distance to MoPac, distance 

to IH-35, distance to US-183, and distance to other nearest major thoroughfares), (2) distance to 

nearest school, (3) distance to the nearest hospital, (4) fraction of grid area that is under a 

floodplain, (5) an interaction term of proximity to road access with proximity to the floodplain 

(distance to nearest road divided by distance to the nearest floodplain), (6) average elevation of 

the grid, and (7) whether the grid is in the Austin CBD zone or not. To construct distances (in 

miles) from each grid to the roadways, a road network data in polyline format (obtained from the 

City of Austin) was overlaid on the analysis area, and the Euclidean distance from the grid 

centroid to the roadways was calculated. School and hospital data were available as point data, 

which were overlaid on the analysis area to obtain the distance from a grid centroid to the nearest 

school and hospital. To calculate the amount of area under a floodplain for each grid, the 

floodplain polygon shape file was intersected with the grid structure and the intersected area was 

obtained as the area under a floodplain for the corresponding grid. To construct distances from 

each parcel to the nearest floodplain, the floodplain data in polygon format (obtained from the 

Capital Area Council of Governments) was overlaid onto the analysis area, and Euclidean 

distances were computed from each grid centroid to the nearest floodplain polygon. To calculate 

the average elevation of a grid, all the contour lines passing through the grid were recorded, and 

their average was assigned as the average elevation of the grid.13  Further, we classified each grid 

into whether or not it was a “high elevation” grid. In particular, grids with an average elevation 

greater than 0.10 miles were classified as high elevation grids. We tested both forms of the 

average elevation explanatory variable (i.e., as a continuous variable and categorical variable) in 

                                                            
12A floodplain is an area susceptible to flooding. Such areas in the United States are identified by the Federal 
Emergency Management Agency (FEMA) in its Flood Insurance Rate Maps, which show spatial regions likely to be 
affected by a 100-year flood (1 percent chance of a flood of this magnitude during the year).  
13 A contour line is a line joining the points of equal elevation above a given level, such as mean sea level. 
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the utility specification and retain the specification which provides better data fit. The 

assignment of a grid as belonging to the CBD zone or not was based on whether any part of the 

grid was in the CBD zone. 

Among the exogenous variables, we expect grids located in close proximity to the major 

highways and thoroughfares to be more likely to be developed. On the other hand, we expect 

grids located far from highways and thoroughfares to remain undeveloped, as there is no 

incentive (less or no net returns) to convert the area into commercial, industrial or residential 

land use. This should also be obvious from Figures 1b through 1d that map developmental 

patterns to the location of roadways in the study area. The clustering of commercial development 

in and around the major highways and thoroughfares is very obvious in Figure 1b. For the 

industrial land-use in Figure 1c, one can once again notice the clustering of industrial land-use in 

and around US-183, especially in the vicinity of US-183 and MoPac at the north end of the study 

area, around US-183 between Dessau Road and US-290 at the east end, and in the neighborhood 

of US-183 at the southeast end of the study area. The clustering of industrial land-use around 

US-183 is not surprising, since this thoroughfare is an important diagonal conduit in Austin that 

passes close to the airport at the southeast end, and has good connectivity to IH-35, while also 

being away from the downtown area of Austin that is expensive for the large amounts of land 

needed for industrial purposes. The pattern of residential development is less obvious from the 

figure, because of the dense development of residences all through the study area.  

The proximity to schools is likely to be associated with commercial and residential land-

use development (see Li and Liu, 2007), while proximity to hospitals is likely to be an incentive 

for development of a grid into commercial land use. This latter effect may be attributable to the 

need for commercial outlets such as eateries and shopping places for hospital employees, and 

patients and guests. Additionally, we expect grids with a high percentage of area under a 

floodplain to be less likely to be built up.  Further, we consider an interaction effect of distance 

to the nearest roadway divided by distance to the nearest floodplain. This captures the potential 

“push-pull” nonlinear positive effect generated by the interaction of distance from roadways and 

distance to a floodplain. Thus, grids that are distant from roadways may still be developed, - if 

the grids are also far away from floodplains. Similarly, grids that are close to a floodplain may 

still be developed, - if the grids are close to roadways. Such “push-pull” effects would be 

reflected by a negative sign on the “distance to nearest roadway divided by distance to the 
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nearest floodplain” variable specific to the commercial, industrial, and residential alternatives. 

Next, grids at higher elevations are more likely (than those at lower elevation) to be in an 

undeveloped state or in residential land-use than in commercial and industrial land-uses, while 

we expect grids in the CBD zone to be primarily invested in commercial land-use (this is also 

reflected in Figures 1b through 1d). The CBD zone in Austin also has several running areas, 

parks, nature preserves, and picnic trails to promote outdoor activities and active living, and 

these are reflected in a higher intensity of land-use in the undeveloped state (relative to 

residential and industrial land-use) in the CBD zone (though this is not discernible from Figure 1 

because we have not shown the undeveloped land-use state in the study area). Finally, there is a 

distinct clustering pattern in the land-use development for each of the three land-use types, 

suggesting the importance of considering spatial dependency effects.   

Table 3a provides descriptive statistics on the dependent variable relating to the 

investment in each land-use type. Note again that there is both a discrete element as well as a 

continuous element to the dependent variable. If a grid is not invested in a specific land-use type, 

the area in that land-use type is zero. If a grid is invested in a specific land-use type, the area in 

that land-use type is positive and has a continuous component corresponding to the square miles 

invested in that land-use type. Thus, the dependent variable vector in the model, which 

corresponds to the areas in each land-use type for each grid, has elements that take a value of 

zero or, if positive, a continuous value. The second column of Table 3a indicates the number 

(percentage) of grids invested in each land-use type.  As expected, all grids have some land area 

that is undeveloped, as reflected in the last row of the first numeric column. Among the other 

land-use types, the highest percentage (82 percent) of grids is invested in residential land-use, 

while only a small percentage (24 percent) of grids is invested in industrial land-use 

(equivalently, 18 percent of grids have zero land-use invested in residential land-use and 76 

percent of grids have zero land-use invested in industrial land-use). A little more than half of all 

grids are invested in commercial land-use. The third column of the table provides the intensity of 

investment among those grids invested in each land-use type. The column indicates that, on 

average, a grid that is invested in residential land-use has a larger area invested in this land-use 

than the area investment in commercial or industrial land-uses among grids invested in these 

other land-use types (note that the sum across rows for this column exceeds 0.0625 square miles 

because the averages for each land-use type are taken only across those grids that have some 
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positive investment in the land-use type). The last two columns in Table 3a provide information 

on the fraction of grids that are solely in undeveloped land, and the fraction of grids invested in 

multiple “inside” land-use types. In particular, the last row of these two columns indicates that 

only 8 percent of all grids are solely in an undeveloped state, while 92 percent of grids are 

invested in at least one of commercial, industrial, or residential land-uses in addition to having 

some land in an undeveloped state. The other rows indicate, for example, that only 8 percent of 

grids that are invested in the commercial land-use (in addition to having some land in an 

undeveloped state) are not also invested in any of the other two land-uses of industrial and 

residential land-uses, while 92 percent of such grids are invested in at least one of industrial or 

residential land-uses. The results also show, consistent with Figures 1b through 1d, that a grid is 

more likely to be invested solely in residential land-use than to be invested solely in commercial 

or industrial land-uses. Overall, these last two columns very clearly indicate that grids are likely 

to be invested in multiple land-use types at once, strongly supporting the use of a multiple 

discrete-continuous model for grid-level land-use modeling. 

  

Model Specification 

Several weight matrix specifications were considered in our empirical analysis to characterize 

the nature of the dynamics of the spatial lag dependence. These included (1) a contiguity 

specification that generates spatial dependence based on whether or not two grids are contiguous, 

(2) another contiguity specification but based on shared boundary length, (3) the inverse of a 

continuous distance specification where the distance is measured as the Euclidean distance (crow 

fly distance) from the centroids of each grid, (4) the inverse of the square of the continuous 

distance specification, and (5) the inverse of the root of the continuous distance specification. For 

the last three continuous distance-based specifications, we also explored alternative distance 

bands to select the pairs of observations for inclusion in the composite marginal likelihood 

(CML) estimation. As indicated earlier, this distance band determination may be based on 

minimizing the trace of the variance matrix of parameters given by )]ˆ([ θVCMLtr . Our results did 

not show substantial variations in the trace value for different distance bands (regardless of the 

specific continuous functional form used to represent the distance separation and the variable 

specification used), though the best estimator efficiency was obtained at about 0.25 miles for all 

the three continuous distance specifications formulations and all variable specifications we 
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attempted. Further, the results indicated that for all variable specifications, the best spatial weight 

matrix specification was consistently the inverse of the continuous distance specification with the 

0.25 mile distance band. This determination was based on the composite likelihood information 

criterion (CLIC) statistic, which may be used to compare the data fit of non-nested formulations 

(see Varin and Vidoni, 2005). This CLIC statistic takes the form shown below: 

(26)  1)ˆ(ˆ)ˆ(ˆ)ˆ(logCLIC  θHθJθ trLCML ,                                                                                           

 where θ̂  is the estimated model parameter vector, and )ˆ(ˆ θJ  and )ˆ(ˆ θH  are the “vegetable” and 

“bread” matrices used in the estimation of the asymptotic variance matrix )ˆ(θVCML  (see Bhat, 

2011 for details of how these matrices may be estimated in a spatial context). In the current 

context, the weight specification that provides the highest value of the CLIC statistic is preferred 

over the other competing weight specifications. Of all the weight matrix specifications that were 

considered here, the best specifications and the corresponding CLIC statistics are presented in 

Table 3b. The results in the table clearly show the superiority of the inverse of the continuous 

distance specification over other weight matrix specifications. Thus, all subsequent results in this 

paper correspond to the inverse distance weight specification with a 0.25 mile distance band.  

Concurrent with the weight matrix specification, we also explored several different 

variable specifications and functional forms of the variables, including linear and non-linear 

functional forms for continuous variables (such as the logarithm of distance, the square of 

distance, and spline variables that allow piece-wise linear effects of distance from grid centroid 

to roadways). In addition, we also considered dummy variables for different ranges of distance 

for these variables (for instance, grid is within 2 miles of IH-35). Further, various interactions of 

the many variables were also considered whenever adequate observations were available to test 

such interaction effects. The final specification was based on intuitive, data fit, and statistical 

significance considerations. Interestingly, all the distance variables were best reflected in linear 

continuous form. On the other hand, the average elevation variable was best reflected in 

categorical form. Table 3c provides descriptive statistics of the independent variables in the final 

specification. The results of the final specification themselves are discussed in the next section.  
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Model Estimation and Results 

Table 4a presents the results of the proposed SMDCP model. The entries provide the estimate of 

each “row” exogenous variable on the “column” baseline utility, along with the corresponding t-

statistic of the estimate. Note that we have only three land-use alternatives listed in Table 4a 

because the “undeveloped” land-use alternative constitutes the base alternative. Also, in the case 

of a random coefficient on a specific variable, we provide both a mean estimate with the 

corresponding t-statistic as well as an estimate of the standard deviation of the distribution of the 

parameter with its corresponding t-statistic. In this regard, we attempted a (normally distributed) 

random coefficients specification for the variables through a general specification of the Ω  

matrix. However, only the variance parameters corresponding to the constant specific to 

commercial land-use turned out to be statistically significant. Further, we could not reject the 

null hypothesis that the off-diagonal (covariance) elements of the Ω  matrix corresponding to 

these random coefficients were all zero.  

            The first row of variables in Table 4a corresponds to the alternative specific constants for 

each land-use alternative. These constant terms do not have any substantive interpretations, and 

simply represent adjustments to the baseline utilities of alternatives after accommodating the 

other variables in the model. The presence of a statistically significant standard deviation for the 

commercial land use constant indicates that there is unobserved heterogeneity in grid 

investments in commercial land-use, attributable perhaps to such unobserved factors as zoning 

regulations and community perceptions regarding commercial development. In the following 

sections, we discuss the effects of the non-constant variables on the baseline utilities.  

 

Variable Effects on the Baseline Utility of Alternatives. The results in Table 4a show that 

grids in the proximity of MoPac are more likely to be invested in commercial and residential 

land uses and less likely to be invested in industrial land use relative to being in an undeveloped 

state (technically, but equivalently, the results show that as distance from MoPac increases, grids 

are more likely to be invested in industrial land use and less so in commercial and residential 

land uses (relative to being undeveloped). This is not surprising, since MoPac connects the north 

of Austin directly to the CBD area of Austin.  On the other hand, grids that are close to IH-35 

have, on average, a higher propensity of being invested in commercial and industrial land use 

than residential land use. IH-35 is the major interstate highway passing through Austin, and 
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serves as a main north-south conduit for both passenger and truck movement in the region and 

beyond. The low mean propensity for residential land use in the proximity of IH-35, may be 

attributable to a desire to live somewhat away from the traffic congestion and noise pollution 

problems that accompany living in and around IH-35, though the results indicate substantial 

heterogeneity in this effect. Also, as discussed in the section entitled “The Data and the Context”, 

the majority of industrial areas are located in the proximity of US-183, which is captured in the 

model through the highly statistically significant negative coefficient on the baseline utility of 

the industrial land use alternative. As expected, the propensity to invest under commercial and 

industrial land uses decreases with increase in distance from thoroughfares (though there is 

substantial heterogeneity in this effect for the industrial land-use alternative). This is a reflection 

of the importance of ease of access to thoroughfares for commercial and industrial businesses 

(see Carrión-Flores and Irwin, 2004 and Chakir and Parent, 2009 who also discuss how 

proximity to major roadways can impact land use decisions). On the other hand, the propensity 

to invest in residential land use increases with increase in distance to thoroughfares, perhaps 

because households would rather keep some distance from high traffic activity areas.  

           Other results of the effects of variables on the baseline utilities are consistent with the 

hypotheses in the section entitled “The Data and the Context”, though there are substantial 

heterogeneity effects across grids in the push-pull influence of distance to thoroughfares divided 

by distance to floodplains, and the high elevation dummy variable effect specific to commercial 

land-use. As expected, the baseline utility for the commercial and undeveloped land-uses is 

higher than for the industrial and residential land-uses for grids contained within the CBD zone. 

           Finally, in Table 4a, the satiation parameter estimates indicate that, when there is 

investment in each of the commercial, industrial, and residential land uses, the residential land 

use investment intensity in a grid (in terms of square miles) tends to exceed that of the 

commercial and industrial land use intensities (note that the k   parameter corresponding to 

residential land use is much higher than the corresponding parameters for the commercial and 

industrial land uses). This result is also consistent with the higher mean acreage (per grid) in 

residential land-use than the mean acreage in commercial and industrial land uses.  

 

Variance-Covariance Parameters. The estimated variance-covariance structure among 

the baseline utilities (that is, the Λ  matrix) is presented in Table 4b. The variance term (i.e., the 



41 

diagonal element) indicates a high variance in the baseline utility of industrial land-use. There is 

also a significant and high covariance (implied correlation of 0.62) between the baseline utilities 

for commercial and industrial land use, indicating the presence of common unobserved grid-

specific factors that increase (or decrease) the propensity of a grid to be invested in these two 

land-uses. A similar positive and significant covariance (implied correlation of 0.26) exists in the 

investments in residential and commercial land-uses, though there is little covariance (implied 

correlation of 0.08) in the industrial and residential baseline utilities.  

 

Spatial Dependency Parameters. The results indicate the presence of spatial dependence 

in land use development decisions. Specifically, the estimated spatial autoregressive coefficient 

k  is 0.300 for the commercial land-use alternative (t-statistic of 2.36), 0.623 for the industrial 

land-use alternative (t-statistic of 2.09), and 0.477 for the residential land-use alternative (t-

statistic of 4.95). These estimates strongly support the hypothesis of the presence of spatial 

dependency effects in the baseline utilities of proximally located spatial grids. That is, there is 

strong evidence of dyadic dependence between proximally located grids. 

 

Model Selection and Statistical Fit. The statistically significant spatial autoregressive 

parameters are evidence of the presence of spatial dependency (across grids) in the baseline 

utility for each alternative. Another way to examine the role of spatial dependence is to compare 

the data fit of the proposed SMDCP model with an aspatial MDCP model that ignores spatial 

dependence. This can be undertaken using the adjusted composite likelihood ratio test 

(ADCLRT). In Particular, the composite log-likelihood value for the SMDCP model is -

76250.00 (43 parameters estimated) and for the MDCP model is -76320.00 (40 parameters 

estimated). The ADCLRT statistic is 34.72, which is much higher than the corresponding critical 

chi-squared value with three degrees of freedom at any reasonable level of significance. This 

result clearly indicates the superiority of the SMDCP model relative to the MDCP model. 

 

Aggregate Elasticity Effects  

The estimated parameter coefficients in Table 4a provide a sense of the direction of variable 

effects on the baseline utilities of different land use types. However, these estimated parameters 

do not directly provide the magnitude of the impact of variables on the acreage investment in 
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each land use category. To characterize the magnitude and direction of variable effects on 

acreage in each land use category, we compute the aggregate-level elasticity effects of variables. 

Specifically, we examine the effects of variables on the expected share of each land use 

alternative across all the grids. We achieve this by computing the share of each land use category 

in a grid and aggregating these shares across grids for each land use category. Note that the 

shares incorporate both the discrete and continuous elements, because the share of a specific 

land-use type in a grid can decrease because that land-use type is not invested in anymore or 

because of a decrease in the intensity of investment in that land-use type even if it is still invested 

in. Similarly, the share of a specific land-use type in a grid can increase because that land-use 

type is invested in (and was not before) and now has a positive investment intensity, or because 

of an increase in the intensity of investment in that land-use type if that land-use type is already 

invested in. 

           Specifically, for the SMDCP model, we use the following procedure. We first draw a 

realization of the vectors b and δ from their sampling distributions, and construct a realization of 

the ]1)1([ KQ  vector bSz . Next, because we allow random parameters, we draw a realization 

from the sampling distribution of Ω  (which is the covariance matrix of qβ
~

; see Section 2.3). 

Subsequently, we also draw a realization from the sampling distribution of Λ (which is the 

covariance matrix of q ). Using these, and the expression in Equation (15), we obtain a 

realization of the covariance matrix Σ . Then, we draw a realization from the vector1)1( KQ  

ψ  using the realization of bSz  and the realization of Σ  (note that )(~ )1( Σzψ b,SKQMVN ). 

Using the realization of ψ , we use the Pinjari and Bhat (2011) forecasting algorithm to predict 

the share of each land use category for each grid (based on ψ  and the realizations of the satiation 

parameters from their respective sampling distributions). The expected aggregate share of each 

land-use alternative is obtained by averaging the corresponding predicted land use share for that 

alternative across all grids. With the preliminaries above, we compute an aggregate “elasticity” 

effect for each variable. For dummy variables, the procedure is as follows: (1) set the value of 

the dummy variable to zero for all the grids in the sample and compute the expected share of 

each land use category, (2) set the value of the dummy variable to one for all the grids in the 

sample and compute the expected share of each land use category, and (3) compute the effective 

percentage change in the expected share of each land use category across all grids in the sample 
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by taking the difference between the expected share obtained in step (2) and step (1) and dividing 

by the result from step (1). For continuous variables, we increase the value of the variable by 25 

percent for each grid and compute the percentage change in the expected shares.  

           The procedure in the previous paragraph provides the aggregate elasticity effects of 

variables for one set of realizations from the sampling distributions of the parameters (and 

accommodates random coefficients too). In the current paper, we take 10,000 sets of realizations, 

and compute a mean aggregate elasticity effect for each variable and each land-use alternative as 

the average of the aggregate elasticity effects across the 10,000 realizations. The standard 

deviation of these values provides the standard error of the aggregate elasticity effects. For 

convenience, we will label the mean aggregate elasticity effects simply as the elasticity effects in 

the presentation below.   

 A similar, but easier to implement, procedure is used to obtain the elasticity effects and 

the standard errors of these effects from the MDCP model. The elasticity effects and their 

standard errors for the MDCP and SMDCP models are presented in Table 4c. The first entry in 

Table 4c indicates that, in general, a grid located 25 percent farther away from MoPac (than 

another otherwise observationally identical grid) would be about 4.92 percent less invested in 

commercial land use than the grid closer to MoPac. Other entries may be similarly interpreted.14 

The last sub-column within each land use alternative column provides the P value for the 

difference in elasticity estimates between the MDCP and SMDCP models. A “––” in this column 

implies that the difference is not statistically significant even at the 0.2 level of significance. 

            The elasticity effects of both the MDCP and SMDCP models are in the same direction for 

most variables, and are consistent with the discussions in the previous section. However, the 

elasticity effects from the SMDCP model are generally higher in magnitude than those from the 

MDCP model, a consequence of the spillover effects in the SMDCP model that causes a spatial 

multiplier effect. Specifically, a change in a variable for one grid (say grid A) does not only 

directly influence the baseline utilities for this grid, but affects the baseline utility of neighboring 

grids as well due to the positive spatial autocorrelation parameters (this is captured by S matrix 

in Equation 10). The MDCP model ignores such spatial dependencies and assumes that a change 

in a variable at one grid impacts only the land use at that grid. The differences in the elasticity 

                                                            
14 Very technically speaking, if all grids were located 25 percent farther away from MoPac than their current 
locations, the aggregate share of commercial land-use in the entire study region would decrease by 4.92 percent. But 
the more informal interpretation provided in the text is easier to comprehend.  
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effects between the MDCP and SMDCP models are statistically significant for many variables 

and land-use type alternatives. In addition, for a couple of variables, the elasticity effects from 

the MDCP and SMDCP models are even in the opposite directions. For example, the MDCP 

model predicts an increase (by 5.64 percent) in industrial land use share due to a 25 percent 

increase in the distance between a grid and the nearest thoroughfare, while the SMDCP model 

predicts, more in tune with expectations, a decrease (by 7.84 percent) in industrial land use share 

for the same situation. So, overall, there are differences in the elasticity predictions between the 

MDCP and SMDCP models, both in terms of magnitude as well as direction of effect. Combined 

with the improved data fit offered by the SMDCP model, the elasticity effects highlight the 

importance of considering spatial dependency rather than a priori ignoring this dependency. 

 

6. CONCLUSIONS 

This paper formulates a spatial multiple discrete-continuous probit (SMDCP) model that should 

be applicable in a wide variety of fields where social and spatial dependencies lead to spillover 

effects in multiple discrete-continuous choices (or states). The paper also accommodates spatial 

heterogeneity in response to exogenous covariates and heteroscedasticity in the dependent 

variable. The resulting model formulation becomes too cumbersome to be estimated using 

existing estimation methods, including the frequentist recursive importance sampling (RIS) 

estimator and the Bayesian Markov Chain Monte Carlo (MCMC) estimator. Instead, we propose 

the use of a maximum approximate composite marginal likelihood (MACML) estimation method 

for the proposed SMDCP model. The MACML method is easy to implement, requires no 

simulation, and involves only univariate/bivariate cumulative normal distribution evaluations.  

The paper undertakes a simulation exercise to evaluate the ability of the MACML 

approach to recover model parameters. The simulation results show that, irrespective of the 

magnitude of spatial and temporal dependences, the MACML estimator recovers the parameters 

of the model very well. The MACML estimator also seems to be quite efficient, and the 

approximation error due to the use of the analytic approximation is very small. Additionally, the 

simulation study demonstrates that ignoring error covariance across the baseline utility of 

alternatives within spatial units, or spatial heterogeneity, or spatial dependence, when present but 

ignored, will introduce substantial bias in model parameters.  
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 The model system proposed in the current paper is applied in a demonstration exercise to 

examine urban land development intensity levels using grid-level data from Austin, Texas. The 

empirical results provide important insights regarding land-use investment in multiple types of 

land-uses simultaneously. The results also indicate the superiority, in terms of data fit, of the 

SMDCP model relative to its restrictive variants. Future efforts need to continue to undertake 

simulation experiments to evaluate the performance of the MACML approach for estimating 

models with spatial dependence, and should also focus on harnessing the potential of the 

proposed SMDCP model for analyzing multiple discrete-continuous contexts in a wide variety of 

disciplines. Further, future efforts should consider using a more disaggregate classification 

system for the land-use categories and should include square-footage prices by land-use type as 

covariates within the baseline utility function. Doing the latter would enable the computation of 

valuation measures such as, for example, calculating the marginal willingness to pay for being 

one mile closer to MoPac, or the implied willingness to pay to reside one mile closer to a school. 

To obtain such valuations, one would follow the prediction procedure of Bhat and Pinjari (2011) 

to compute the difference, at the individual grid level, in the expected value of the optimal utility 

between the after situation (moving the grid closer to MoPac or closer to a school) and the before 

situation.  The difference, when normalized by the marginal utility of income (or the negative of 

the marginal effect of price on overall utility), provides the marginal willingness to pay measures 

at the individual grid level. This can be aggregated up across grids to obtain an aggregate 

willingness to pay measure. If square-footage prices are included, it would also be helpful for 

compensating valuations related to policies such as zoning and greenbelt preservation (i.e., 

undeveloped land preservation). Here, one would again predict the expected value of optimal 

utility after imposing constraints (for example, a grid cannot be developed) and the expected 

value of optimal utility without any constraints, take the difference between the two, and divide 

by the marginal utility of income.  
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TABLE 1a: Simulation results for the four-alternative case with 30 datasets for low spatial 

dependency (based on a total of 30×10 runs/dataset=300 runs) 
 

 
 

Parameter 

 
 

True 
Value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage 
Bias (APB) 

Finite 
Sample 
St. Err. 
(FSSE) 

Asymptotic 
St. Err. 
(ASE) 

Relative 
Efficiency 

Approximation 
Error  

(APERR) 

1b    0.5  0.48 0.02 4.00 0.024 0.030 1.25 0.001722 

2b   -1.0 -1.02 0.02 2.00 0.029 0.028 0.97 0.001781 

3b    1.0  0.99 0.01 1.00 0.023 0.024 1.04 0.001225 

1l    0.9  0.86 0.04 4.44 0.024 0.021 0.88 0.002232 

2l    0.6  0.58 0.02 3.33 0.024 0.029 1.21 0.001310 

3l    0.8  0.78 0.02 2.50 0.028 0.031 1.11 0.001480 

1γ    1.0  0.98 0.02 2.00 0.038 0.038 1.00 0.003031 

2γ    1.0  0.97 0.03 3.00 0.048 0.039 0.82 0.003029 

3γ    1.0  0.96 0.04 4.00 0.049 0.042 0.86 0.003965 

1l    0.7  0.70 0.00 0.00 0.025 0.019 0.76 0.001797 

2l    0.9  0.91 0.01 1.11 0.023 0.016 0.70 0.001309 

3l    0.9  0.90 0.00 0.00 0.021 0.018 0.86 0.002493 

4l    0.2  0.21 0.01 5.00 0.014 0.016 1.14 0.002852 

5l    0.8  0.80 0.00 0.00 0.016 0.012 0.75 0.002362 

1δ    0.1  0.10 0.00 0.00 0.005 0.004 0.80 0.000065 

2δ    0.2  0.20 0.00 0.00 0.008 0.006 0.75 0.000175 

3δ    0.3  0.30 0.00 0.00 0.011 0.008 0.73 0.000324 

Overall mean value across 
parameters 0.01 1.90 0.024 0.022 0.92 0.001832 
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TABLE 1b: Simulation results for the four-alternative case with 30 datasets for high spatial 
dependency (based on a total of 30×10 runs/dataset=300 runs) 

 

 
 

Parameter 

 
 

True 
Value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage 
Bias (APB) 

Finite 
Sample 
St. Err. 
(FSSE) 

Asymptotic 
St. Err. 
(ASE) 

Relative 
Efficiency 

Approximation 
Error 

(APERR) 

1b    0.5  0.48 0.02 4.00 0.041 0.052 1.27 0.000943 

2b   -1.0 -1.04 0.04 4.00 0.038 0.047 1.24 0.000792 

3b    1.0  0.98 0.02 2.00 0.022 0.028 1.27 0.000704 

1l    0.9  0.87 0.03 3.33 0.019 0.023 1.21 0.000866 

2l    0.6  0.58 0.02 3.33 0.053 0.047 0.89 0.001881 

3l    0.8  0.80 0.00 0.00 0.041 0.046 1.12 0.001093 

1γ    1.0  0.94 0.06 6.00 0.081 0.082 1.01 0.002657 

2γ    1.0  0.96 0.04 4.00 0.085 0.081 0.95 0.001008 

3γ    1.0  0.89 0.11     11.00 0.070 0.054 0.77 0.000640 

1l    0.7  0.71 0.01 1.43 0.017 0.017 1.00 0.001736 

2l    0.9  0.90 0.00 0.00 0.009 0.012 1.33 0.002966 

3l    0.9  0.89 0.01 1.11 0.020 0.018 0.90 0.002270 

4l    0.2  0.19 0.01 5.00 0.037 0.029 0.78 0.002260 

5l    0.8  0.83 0.03 3.75 0.019 0.015 0.79 0.001317 

1δ    0.6  0.60 0.00 0.00 0.048 0.037 0.77 0.000842 

2δ    0.7  0.69 0.01 1.43 0.109 0.105 0.96 0.001897 

3δ    0.8  0.74 0.06 7.50 0.110 0.129 1.17 0.005074 

Overall mean value across 
parameters 0.03 3.40 0.048 0.049 1.03 0.001703 
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TABLE 2: Effects of ignoring error covariance, spatial heterogeneity and spatial autocorrelation 
when present (for the high spatial dependence case) 

 

Parameters 
True 
Value 

SIMDCP* SHMDCP+ MDCP# 

Mean      
Est. 

Absolute 
Percentage Bias 

(APB) 

Mean     
Est. 

Absolute 
Percentage Bias  

(APB) 

Mean     
Est. 

Absolute 
Percentage Bias  

(APB) 

1b    0.5  0.42 16.00  0.36 28.00  0.48 4.00 

2b   -1.0 -1.07 7.00 -1.02   2.00 -1.01 1.00 

3b    1.0  0.98   2.00  0.88 12.00  1.01 1.00 

1l    0.9  0.89    1.11 ––a ––  0.89 1.11 

2l    0.6  0.63    5.00 –– ––  0.57 5.00 

3l    0.8  0.79    1.25 –– ––  0.82 2.50 

1γ    1.0  0.85  15.00  0.73 27.00  0.66 34.00 

2γ    1.0  0.81  19.00  0.67 33.00  0.49 51.00 

3γ    1.0  0.58  42.00  0.26 74.00  0.24 76.00 

1l    0.7 –– ––  0.85 21.43  0.69 1.43 

2l    0.9 –– ––  1.25 38.89  0.91 1.11 

3l    0.9 –– ––  0.99 10.00  0.90 0.00 

4l    0.2 –– ––  0.32 60.00  0.21 5.00 

5l    0.8 –– ––  1.20 50.00  0.85 6.25 

1δ    0.6  0.58  3.33  0.96 60.00 –– –– 

2δ    0.7  0.71  1.43  0.80 14.29 –– –– 

3δ    0.8  0.78  2.50  0.64 20.00 –– –– 

Overall mean value across 
parameters  0.09  9.64  0.24 32.19  0.13    13.53 

Mean composite log-
likelihood value at 

convergence 
-123728.0236 -127060.8099 -124231.3780 

Number of times the 
adjusted composite 
likelihood ratio test 

(ADCLRT) statistic favors 
the SMDCP modelb 

All thirty times when 
compared with 

07112
95.0,5 .   value (mean 

ADCLRT statistic is 26.31) 

All thirty times when 
compared with 

34.112
99.0,3    value 

(mean ADCLRT statistic is 
53.95)

All thirty times when 
compared with 

34.112
99.0,3    value 

(mean ADCLRT statistic is 
27.47)

*SIMDCP: Spatial IID MDCP.                                                                                                             
+SHMDCP*: Spatial homogeneous MDCP.                                                                                                    
#MDCP: Aspatial MDCP.                                                                                                                                      
a  A “––”entry in a cell indicates that the corresponding parameter is not estimated and is fixed to the value  
mentioned in the section entitled “Additional Restrictive Model Comparisons with the Proposed Model”.                                               
b  The mean composite log-likelihood value for the SMDCP model at converged parameters is -122377.2998. 
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TABLE 3a: Descriptive statistics of land-use type investments (the dependent variable) in the study 

area  
 

Land-use type 

Total number 
(percent) of grids 
invested in land-

use typea 
Mean land-use area 

invested (sq mi) 

Number of grids 
(percent of total number) 

invested…. 

only in land-use 
type and the 

undeveloped land-
use state 

in other (inside) 
land-use types 

too 

Commercial 1304 (55) 0.0136 103 (8) 1201 (92) 

Industrial  579 (24) 0.0134  52 (9)  527 (91) 

Residential 1953 (82) 0.0267  744 (38) 1209 (62) 

Undeveloped  2383 (100) 0.0283 197 (8) 2186 (92) 

a Percentages across rows in the column do not sum to 100 percent because each grid can be invested in multiple 
land-use types simultaneously. 
 

 
 
 
 

TABLE 3b: Model selection based on the weight matrix specification 
 

 Weight Matrix Specification 

Contiguous 
grid 

Shared 
boundary 

length 

Inverse of 
continuous 

distance  
(0.25 mile 

distance band)

Inverse of the 
square of 

continuous 
distance  

(0.25 mile 
distance band) 

Inverse of the 
root of 

continuous 
distance  

(0.25 mile 
distance band)

Log-composite likelihood 
at convergence 

-76320.00 -149000.00 -76250.00 -78370.00 -76290.00 

Trace Value     628.20      3347.00     530.00      561.40      547.50 

CLIC statistics -76948.20 -152347.00 -76780.00 -78931.40 -76837.50 
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TABLE 3c: Descriptive statistics of the independent variables used in the model 
 

Variable Minimum Maximum Mean Standard Deviation

Distance to MoPac (mi) 0.002 7.782 2.52 1.70 

Distance to IH-35 (mi) 0.001 8.393 2.64 1.87 

Distance to US-183 (mi) 0.004 7.892 2.55 1.88 

Distance to nearest thoroughfare (mi) 0.001 2.183 0.50 0.35 

Distance to nearest school (mi) 0.005 4.465 1.55 0.96 

Distance to nearest hospital (mi) 0.001 2.623 0.65 0.44 

Area under floodplain (fraction) 0.000 1.000 0.09 0.16 

Distance to nearest thoroughfare / 
Distance to nearest floodplain 

0.000 10.041 1.80 1.52 

Average elevation (mi) 0.079 0.187 0.12 0.02 

High elevation indicator variable 0.000 1.000 0.82 0.38 

CBD indicator variable 0.000 1.000 0.02 0.12 
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TABLE 4a: Estimation results (t-statistics in parenthesis) 
 

Variables 
Spatial Multiple Discrete Continuous Probit (SMDCP) Model

Commercial Industrial Residential 

Alternative specific constant 
    Standard deviation 

-0.488 (-1.15) 
 0.442  (4.49) 

1.283  (2.37) 
––* 

-1.715 (-1.79) 
–– 

Distance to MoPac (miles) -0.069 (-4.51)  0.169  (3.03) -0.063 (-5.47) 

Distance to IH-35 (miles) 
    Standard deviation 

-0.115 (-3.52) 
–– 

-0.383 (-5.35) 
–– 

0.039  (4.15) 
0.118  (4.42) 

Distance to US-183 (miles) –– -0.323 (-7.95) –– 

Distance to nearest thoroughfare (miles) 
    Standard deviation 

-0.325 (-2.27) 
–– 

-1.900 (-3.83) 
2.883  (6.45) 

       0.251  (2.888) 
–– 

Distance to School (miles) -0.216 (-3.49) 0.536  (3.33)  -0.455 (-10.51) 

Distance to Hospital (miles) -0.255 (-7.11) 0.224  (3.44) 0.027  (1.58) 

Fraction of grid area under floodplain -0.015 (-8.92) -0.022 (-5.41) -0.010 (-9.70) 

Distance to nearest thoroughfare 
/Distance to floodplain 
    Standard deviation 

-0.358 (-8.88) 
0.246  (2.15) 

-0.372 (-2.98) 
0.416  (2.13) 

0.090  (4.13) 
0.165  (6.42) 

High elevation indicator variable 
    Standard deviation 

-0.265 (-4.51) 
0.989  (6.57) 

-1.429 (-7.74) 
–– 

0.180  (3.50) 
–– 

CBD indicator variable –– -1.079 (-2.55) -0.776 (-6.84) 

Satiation parameter  8.873 (19.01)  3.502 (10.56) 44.939 (14.47) 

Spatial lag parameter     0.300  (2.36) 0.623  (2.09) 0.477  (4.95) 

           * A “––”entry in the table indicate that the variable is not statistically significant.    

 
 

TABLE 4b: Variance-covariance matrix estimates (t-statistics in parenthesis) 
 

Land Use Commercial Industrial Residential 

Commercial 
1.000 
(fixed) 

1.445 
       (4.33) 

0.204 
(2.30) 

Industrial  
5.375 
(3.22) 

0.138 
(2.66) 

Residential   
0.596 
(4.94) 
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TABLE 4c: Aggregate level elasticity effects of the MDCP and SMDCP models (standard-error in parenthesis) based on 1000 runs 

Scenario 
Commercial Industrial Residential Undeveloped 

MDCP SMDCP P+ MDCP SMDCP P+ MDCP SMDCP P+ MDCP SMDCP P+ 

A 25% increase in distance to MoPac 
-4.92 
(1.82) 

-9.87  
(1.68) 

0.02 
6.95 

(1.28) 
19.86  
(5.24) 

0.01 
-5.91 
(2.09) 

-8.34  
(2.36) 

–– 
-0.11  
(0.38) 

0.08 
(0.32) 

–– 

A 25% increase in distance to IH35 
-6.80 
(4.17) 

-0.15  
(5.47) 

0.17 
-7.26   
(1.37) 

-15.40 
(5.23) 

0.07 
3.79  

(2.76) 
13.02  
(2.79) 

0.01 
0.65  

(0.58) 
0.14 

(1.10) 
–– 

A 25% increase in distance to US-183 
 2.86  
(1.15) 

6.13 
(3.21) 

0.17 
-5.78  
(1.75) 

-16.47 
(4.11) 

0.01 
2.40  

(0.83) 
3.29    

(1.81) 
–– 

0.42  
(0.32) 

0.01 
(0.59) 

–– 

A 25% increase in distance to nearest 
thoroughfare 

-2.15 
(0.38) 

-3.09  
(5.44) 

–– 
5.64   

(1.19) 
-7.84 
(6.80) 

0.03 
4.37  

(1.03) 
9.05    

(1.29) 
0.00 

1.03  
(0.86) 

0.07 
(0.64) 

–– 

A 25% increase in distance to nearest 
school 

-1.69 
(1.04) 

-9.57  
(1.58) 

0.00 
5.67   

(2.16) 
8.61    

(2.15) 
0.17 

-3.64 
(1.68) 

-15.12 
(3.24) 

0.00 
0.30  

(0.23) 
0.34 

(0.61) 
–– 

A 25% increase in distance to nearest 
hospital 

-9.19   
(1.84) 

-11.30    
(1.80) 

0.20 
9.68 

(3.14) 
23.45  
(5.44) 

0.01 
4.64  

(3.22) 
0.79    

(0.89) 
0.13 

-0.56  
(0.47) 

-0.05 
(0.21) 

–– 

A 25% increase in fraction of grid 
area under floodplain 

-2.73 
(1.06) 

-3.20  
(1.11) 

–– 
-1.79  
(0.93) 

-2.76  
(1.16) 

–– 
-1.13 
(0.61) 

-5.66  
(1.83) 

0.01 
0.61  

(0.07) 
0.57 

(0.82) 
–– 

A 25% increase in distance to nearest 
thoroughfare and a 25% decrease in 
distance to floodplain 

-4.31 
(1.43) 

-6.81  
(3.50) 

–– 
-1.56  
(0.49) 

-6.05   
(3.32) 

0.09 
6.27  

(0.99) 
12.41  
(1.35) 

0.00 
-0.34 
(0.86) 

-1.34 
(1.11) 

–– 

A switch of the grid location from 
lower elevation to higher elevation 

32.44 
(4.46) 

46.93 
(21.34) 

–– 
-49.26 
(2.65) 

-43.21 
(13.04) 

–– 
41.77 
(3.78) 

41.80 
(22.78) 

–– 
0.36  

(0.52) 
0.39 

(1.73) 
–– 

A switch of the grid location from 
non CBD zone to CBD zone 

13.40 
(2.78) 

28.16 
(22.78) 

–– 
-53.39 
(3.55) 

-70.84 
(18.45) 

0.18 
-42.91 
(3.09) 

-47.88 
(27.85) 

–– 
1.56  

(1.27) 
7.06 

(2.97) 
0.04 

*A “––” implies that the difference is not statistically significant even at the 0.2 level of significance. 
+P value of the difference. 
 


