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ABSTRACT   
Activity-travel choices of individuals are influenced by spatial dependency effects. As individuals 
interact and exchange information with, or observe the behaviors of, those in close proximity of 
themselves, they are likely to shape their behavioral choices accordingly. For this reason, 
econometric choice models that account for spatial dependency effects have been developed and 
applied in a number of fields, including transportation. However, spatial dependence models to 
date have largely defined the strength of association across behavioral units based on spatial or 
geographic proximity. In the current context of social media platforms and ubiquitous internet and 
mobile connectivity, the strength of associations among individuals is no longer solely dependent 
on spatial proximity. Rather, the strength of associations among individuals may be based on 
shared attitudes and preferences as well.  In other words, behavioral choice models may benefit 
from defining dependency effects based on attitudinal constructs in addition to geographical 
constructs. In this paper, frequency of usage of car-sharing and ride-hailing services is modeled 
using a generalized heterogeneous data model (GHDM) framework that incorporates multi-
dimensional dependencies among decision-makers. The model system is estimated on the 2014-
2015 Puget Sound Regional Travel Study survey sample, with proximity in latent attitudinal 
constructs defined by a number of personality trait variables. Model estimation results show that 
social dependency effects arising from similarities in attitudes and preferences are significant in 
explaining shared mobility service usage. Ignoring such effects may lead to erroneous estimates 
of the adoption and usage of future transportation technologies and mobility services.   
 
Keywords: spatial dependence, social interactions, attitudinal proximity, values and behavior, 
shared mobility service usage, latent constructs.   
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1. INTRODUCTION 
Incorporating notions of interdependency in explaining travel patterns and locational choice 
behavior of decision makers has garnered much interest in the recent past (Dugundji and Walker, 
2005; Blume and Durlauf, 2003; Bhat et al., 2016). A key differentiating factor in these studies is 
that they account for the nature of proximity amongst decision makers, which results in varied 
forms of networks over which feedback or inter-dependency effects propagate. Proximity is 
defined as the degree of closeness between decision makers and can be measured along different 
dimensions - geographic space, social space, and attitudinal space (lifestyle preferences, attitudes 
and values).  Proximity in geographic space has traditionally accrued importance in econometric 
models that account for dependency amongst decision makers (Dugundji and Walker, 2005; Bhat 
et al., 2016), largely due to the idea that decision makers’ preferences and choice behavior are 
shaped by dyadic exchanges between individuals in close spatial proximity of one another. 
However, several studies have pointed out that social influence is pervasive and a decision maker’s 
choices are not isolated from the influence of other decision makers in his or her social sphere 
(Brock and Durlauf, 2001; Arentze and Timmermans, 2008).  

Recent advances in technology and the accompanying growth in social media platforms 
such as Facebook and Twitter have rendered spatial separation practically moot as much of social 
interaction occurs virtually (Hackney and Axhausen, 2006). Research in social interactions has 
considered associations within tight social networks such as among family members (Arentze and 
Timmermans, 2009) as well as wider networks extending to colleagues, friends, and virtual social 
media connections (McPherson et al., 2001; Axhausen, 2008; Carrasco et al., 2008; Bhat, 2015a). 
However, there is limited knowledge of (a) the topology of such networks and their influence on 
transportation decisions, (b) the feasibility of using global networks of decision makers in such a 
social space, and (c) methods to operationalize the strength of relationships in such networks 
(Hackney and Axhausen, 2006). Adding to this is the arduous and often intractable task of 
extracting information about social network connections from conventional travel and land-use 
survey data (Axhausen, 2008). As a result, research that accounts for the influence of social 
networks in shaping travel behavior is rather sparse. Even in the limited literature on this topic, 
studies have utilized associative, aggregate-level networks where decision makers are grouped by 
planning zone and observed socio-demographic or economic characteristics (Yang and Allenby, 
2003; Dugundji and Walker, 2005) as opposed to innate lifestyle preferences, values, and attitudes.  

In pursuit of a framework that can accommodate social dependency effects in studying 
travel behavior, this paper extends the concept of proximity-based dyadic interactions by 
introducing the idea of attitudes, habits and lifestyle preferences as a new dimension and measure 
of proximity. As opposed to the physical networks that are based on observable socio-spatial 
variables, latent social networks are introduced in this paper. In this paradigm, the inter-
dependency among decision makers originates from similarity in the attitudinal space. The 
methodology is applied in this study to account for both interdependencies amongst decision 
makers in spatial-attitudinal space and dynamics of self-selection due to inherent attitudes, 
preferences, and habits affecting the frequency with which individuals use car-sharing and ride-
sourcing mobility services.  

This topic is of particular relevance as the urban transportation landscape has been 
significantly disrupted by the emergence of mobility-on-demand services, inspired by the concept 
of a sharing economy (Hannon et al., 2016). Two such services that figure prominently in this era 
of smart-mobility are car-sharing and ride-sourcing services. Car-sharing services, which are car-
rentals by the hour or minute, afford consumers all of the benefits of automobile ownership without 
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incurring high fixed costs of purchase, insurance, and maintenance (Shaheen et al., 2009). Car-
sharing systems offer potential benefits such as efficient mobility with lower car ownership levels, 
lower demand for parking, and lower acquisition and usage costs (Baptista et al., 2014). Ride-
sourcing refers to a mobility-on-demand service that offers a lower cost alternative to taxis, 
provides door-to-door service, and can be hailed, monitored, and paid for using technology-based 
platforms (Dias et al., 2017). Ride-sourcing services have elicited mixed reactions from policy 
makers and planners. On one hand, such services offer an alternative to driving, provide first- and 
last-mile connectivity to public transit, and potentially reduce the need for personal auto ownership 
(Metcalfe and Warburg, 2012; Silver and Fischer-Baum, 2015). Critics, on the other hand, argue 
that ride-sourcing services increase vehicle miles of travel (VMT) by inducing latent demand and 
creating empty VMT as drives cruise in search of trips, compete with and erode the shares of green 
modes (public transit, walking, and bicycling), and cater mostly to the young and the wealthy 
(Rayle et al., 2016). While a number of studies on car-sharing and ride-sourcing services have 
explored the role of socio-economic and built environmental factors (Coll et al., 2014; Kim, 2015; 
Clewlow, 2016; Rayle et al., 2016) in shaping usage of such services, there is a paucity of literature 
that examines inter-dependencies in attitudinal space that impact usage patterns of these mobility-
on-demand services. Studies by Efthymiou et al. (2013) and Dias et al. (2017) have acknowledged 
the crucial role of underlying attitudes and lifestyle preferences in shaping the adoption and use of 
such services. Anable (2005) found that attitudes are important predictors of an individual’s mode 
switching potential. Latent constructs are introduced in this study to both capture effects of 
underlying attitudes and lifestyle preferences as well as self-selection in modeling frequency of 
usage of ride-sourcing/car-sharing services.  

The effort reported in this paper uses data from the 2015 Puget Sound Regional Travel 
Study (PSRC, 2015) to model the monthly usage of ride-sourcing and car-sharing services for 
adults, which constitutes the ordinal variable of interest. The study considers two latent constructs 
relevant to urban travel and locational behavior: pro-environment attitude and neo-urban (active) 
lifestyle propensity. It should be noted that the paper’s focus is only on short-term travel choices, 
and hence variables reflecting long-term household decisions, such as residence type and vehicle 
ownership, are included only as exogenous covariates to explain the ordinal variable of interest.   

The reminder of the paper is organized as follows. The next section presents relevant 
literature and sets a foundation for going beyond spatial measures to define proximity in modeling 
travel behavior. The third section describes the dataset, while the fourth section presents the 
behavioral and methodological frameworks. The fifth section presents model estimation results.  
Discussion and concluding thoughts are offered in the sixth and final section. 
 
2. BEYOND SPATIAL MEASURES OF DEPENDENCE 
The study of attitudes, perceptions, habits, and lifestyle preferences has been of interest to travel 
behavior researchers due to their role in shaping human activity-travel choices (Kitamura et al., 
1997; Bagley and Mokhtarian, 2002). This notion is further reinforced by theories in social 
psychology which evaluate how such personality traits shape short-term and long-term behavior, 
and recognize that a decision maker’s behavior often tends to conform to the social constraints and 
norms of the individual’s cohort or reference group. Theory of Reasoned Action (Fishbein, 1980) 
and Theory of Planned Behavior (Ajzen, 1991) suggest that attitudes and lifestyle preferences play 
an important role in shaping behavior in different contexts. Subjective norms – the sum of 
normative beliefs due to social pressure to conform to one’s reference group – also influence 
behavior. For example, people who perceive themselves to be pro-environmental may bicycle to 
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work or buy a clean-fuel vehicle to align their actions with those of other pro-environmental 
decision makers. These three influences (attitudes, lifestyle preferences, and subjective norms), 
which contribute to consistent patterns of behavior, have been termed as reasoned influences. In 
addition to reasoned influences, Van Acker et al. (2010) consider unreasoned influences as an 
additional determinant of travel behavior. Unreasoned influences include habits and dependencies, 
and trace their origins to the Theory of Repeated Behavior (Ronis et al., 1989). This theory 
suggests that repeated behavior is motivated more by habit than attitudes.  

Unlike some of the social networks mentioned previously, a decision maker may not 
necessarily interact with group members in the same attitudinal space either physically or virtually 
(refer to example of bicycling to work). Social inter-dependency engendered through passive 
observation of individuals in a similar attitudinal space is a simple and powerful construct that is 
yet to be fully explored. It is therefore hypothesized that a decision-makers’ position in attitudinal 
space can suppress or promote different courses of action, a behavioral phenomenon that policy 
makers can leverage to achieve mobility goals. Within the context of accommodating 
dependencies, this study adopts a spatial lag structure for the outcome variable of interest. The 
latent constructs reflecting attitudes, habits, and preferences are based on observed psychometric 
indicators and/or other variables describing observed behavior (e.g., smartphone ownership) and 
scores for these latent constructs are estimated using Bhat’s (2015b) Generalized Heterogeneous 
Data Model (GHDM). These latent constructs serve to introduce dependencies amongst decision 
makers in the attitudinal space.  

In conventional spatial econometric models, the autocorrelation among decision makers is 
diffused via a weight matrix that is based on a spatial network measuring distances between 
decision makers (e.g., Paleti et al., 2013). Elements in each row of the matrix reflect the absolute 
spatial influence of all decision makers on a given decision maker. In this paper, the network 
topology is determined by both spatial (geographical) and attitudinal (non-spatial) proximities, the 
latter incorporating attitudes, preferences, and habits. The influence of attitudinal and spatial 
networks is disentangled by using coefficients for each proximity measure. This opens up the 
possibility for one measure counteracting the influence of another; for example, even when 
decision-makers are in close geographical proximity, differences in their attitudes, preferences, 
and habits may outweigh their spatial proximity.  
 
3. DATA DESCRIPTION 
The data for this study is derived from the Puget Sound Regional Travel Study that involved survey 
data collection in 2014 and 2015 covering a five-county area in the State of Washington. In 
addition to collecting information about socio-economic, demographic, and activity-travel 
characteristics, the survey asked respondents to provide information about attitudes, preferences, 
and technology (e.g., smartphone) ownership and usage.  Data about residential location choice 
preferences, and membership and usage of shared mobility services such as ride-hailing, bike-
share, and car-share services, was collected through the survey.  All relevant variables used in this 
study were extracted from the 2015 edition of the survey data set, except for the variables that 
capture the frequency of use of technology platforms (smartphone apps and websites) for obtaining 
travel-related information.  These two variables are available in the 2014 edition of the survey; 
these variables are imputed into the 2015 data set based on ordered probit models of technology 



 

4 

use estimated on the 2014 data.1 The resulting imputed variables are ordinal variables that measure 
the frequency of use of technology platforms for obtaining travel-related information. The 
categories of the ordinal variables, based on measures of usage over the past 30 day period, are: 
never, less than one day per week, one day per week, and two or more days per week. 

The analysis is limited to adults (age 18 years or above). The dependent variable of interest 
is the frequency of using ride-sourcing services (e.g., Uber and Lyft) and/or car-sharing services 
(e.g., ZipCar and car2go) in the past 30 days.  Information on this variable is derived from ordinal 
indicators measuring level of usage as reported by the respondents.  The seven-level ordinal scale 
includes the following:  

 Never 
 I do this, but not in the past 30 days 
 1-3 times in the past 30 days 
 1 day per week 
 2-4 days per week 
 5 days per week 
 6-7 days per week 
 
The two disruptive mobility services are considered together in this study because both are 

technology-enabled, and involve the use of vehicles not owned by the traveler.2 To account for 
very small sample sizes in some categories, and for computational tractability, a more aggregate 
three-point ordinal scale was used to represent the level of usage:  

 Never 
 Occasionally, but not in the past 30 days 
 Used service in past 30 days with any frequency 
 

                                                 
1 Details of the imputation can be found in the online supplement: 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/SocialConnections/OnlineSupplement.pdf. A “transferability of 
behavior” assumption has to be made. There were no significant changes in land use or modal investments in the Puget 
Sound Region. Traffic volumes, vehicle miles of travel, and transit ridership remained largely unchanged between 
2014 and 2015 (Astroza et al., 2017). 
2 Dias et al. (2017), in another study, showed that the determinants of the usage of both ride-sourcing and the most 
recent (i.e. app-based) iterations of car-sharing systems are quite similar. Specifically, they found that, in addition to 
similar directionalities of effects of observed individual characteristics that influence the use of these two services, the 
error terms in the ride-sourcing propensity equation and the car-sharing propensity equation (considered as two 
separate dependent variable equations) were strongly (and significantly) positively correlated. This suggests that the 
usage of these services not only share similarities on how they are affected by the exogenous (observed) variables, but 
also similarities on how they are affected by unobserved factors. The data from Dias et al.’s study also shows a 
reasonable amount of customer overlap in the use of these two services: in particular, while a majority of respondents 
do not use either of the two services, of those who use at least one of the two services, 36% use both the services. In 
this paper, we combine the use of car-sharing and ride-sourcing into a single dependent variable because of the 
documented similarities in the use of these services, but also because of (1) our emphasis on accommodating inter-
individual interactions in the use of non-personal auto modes of travel (the main contribution of this paper), and (2) 
the relative paucity of individuals using the individual services in the current data to support the rich inter-individual 
specification being considered here. Of course, an extension of the current research would be to develop a joint 
framework that accommodates inter-individual interactions within the context of a joint bivariate model of car-sharing 
and ride-sourcing, perhaps with a more recent data set that has a much larger number of individuals using each of the 
car-sharing and ride-sourcing services.  



 

5 

The final cleaned and filtered sample used for analysis and model estimation included 2170 
adults. A majority of the individuals in the analysis sample are in the middle age groups. There are 
more females than males, and full-time employed individuals constitute nearly one-half of the 
sample. About 36 percent of the sample is unemployed. Only about six percent of the sample 
reported being a student, a similar percent reported not having a driver’s license, and about 70 
percent of the sample reported owning a smartphone. About 12 percent of the sample resides in 
households with no vehicles, about 30 percent of the sample report living in high-density census 
blocks of 5000 or more households per square mile. Nearly 20 percent of the sample reside in 
single-person households, and an almost equal percent reside in nuclear family households with 
children. The income distribution shows that 34 percent of individuals reside in households that 
make over $100,000 per year. Only 10 percent of the sample has membership in car- or bike-share 
services.  An examination of the dependent variable of interest shows that 81 percent of the sample 
has never used car-share or ride-sourcing services in the past 30 days. This is consistent with the 
notion that shared mobility services are relatively new entrants in the transportation landscape. A 
detailed tabulation of descriptive sample characteristics is not provided in the interest of brevity.  
 
4. BEHAVIORAL AND METHODOLOGICAL FRAMEWORKS 
This section offers a detailed description of the behavioral and methodological frameworks 
adopted in this study.  
 
4.1 Linking Latent Constructs With Usage Patterns – A Behavioral Framework 
The behavioral framework adopted in this study is shown in Figure 1. Latent constructs that 
describe an individual’s innate attitudes and lifestyle preferences are linked to the proclivity to 
adopt and use shared mobility services in this framework. Latent attitudinal constructs are modeled 
as functions of exogenous variables and manifest themselves in the data set as indicator variables 
(specifically, binary, ordinal frequency, and ordinal attitudinal indicator variables) that represent 
observed travel and locational choice behavior as well as responses to attitudinal questions.  
Instead of explicitly modeling the impacts of these latent constructs on shared mobility service 
usage, the latent constructs are used to induce dependency effects between individuals. That is, 
over and above the dependency effects attributable to spatial proximity, dependency is also created 
within a latent social network of individuals who are proximally located in attitudinal space. The 
latent factors considered in this study include an individual’s “neo-urban lifestyle propensity” and 
“pro-environmental attitude”, both of which have surfaced repeatedly in the literature as 
determinants of activity-travel choices, especially in the context of shared mobility service usage 
(Lavieri et al., 2017; Astroza et al., 2017). 
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Figure 1. Overview of Behavioral Framework 
 

A pro-environmental attitude has been found to be significantly associated with shared 
mobility use (e.g., Efthymiou et al., 2013; Burkhardt and Millard-Ball, 2006).  It has been shown 
in these studies that pro-environmental individuals eschew use of personal vehicles in favor of the 
use of transit and non-motorized modes and exhibit a higher affinity towards use of ride-sourcing 
and car-sharing services.  In this study, two ordinal attitudinal variables and two ordinal frequency 
variables in the data set are considered representative of a pro-environmental attitude:  

 Importance of residing close to transit (measured on a five-point scale: very 
unimportant to very important) 

 Importance of residing in a walkable neighborhood with access to local activities 
located nearby (measured on a five-point scale: very unimportant to very important) 

 Frequency of bicycling episodes (more than 15 minutes) in past 30 days (measured on 
a four point scale: never, I do – but not in past 30 days, more than once in past 30 
days – but at most one day per week, and two or more days per week) 

 Frequency of walking episodes (more than 15 minutes) in past 30 days (measured on 
the same four-point scale as frequency of bicycling episodes) 

The neo-urban lifestyle propensity is comprised of three unique features – use of 
technology to access travel-related information, proclivity for shared-space and collaborative 
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ownership (i.e., proclivity to participate in the shared economy), and level of importance attached 
to residing in locations close to work and social-recreational activities. It has been shown in 
previous studies that these three attitudinal traits are significantly associated with the use of car-
share and ride-sourcing services (Astroza et al., 2017; Montgomery, 2015). In this study, one 
ordinal frequency indicator, one binary indicator, and three ordinal attitudinal/interest indicator 
variables are tested as indicators of a neo-urban lifestyle propensity:  

 Frequency of using technology-based platforms (smartphone apps and/or websites) 
for travel information in past 30 days (measured on same four-point scale as 
frequency of walking and bicycling episodes) 

 Smartphone ownership (binary indicator) 

 Level of interest in participating in an autonomous vehicle car-share system 
(measured on a five-point scale: not at all interested to very interested) 

 Importance of residing in a home location close to highways or major roads 
(measured on a five point scale: very unimportant to very important) 

 Importance of living within a 30-minute work commute (measured on a five scale: 
very unimportant to very important) 

Table 1 presents a summary of the indicator variables for the analysis sample. Being close to 
highways and major roads is generally considered less important than being within a 30-minute 
work commute and having a walkable neighborhood with local activities nearby. A majority of 
the sample is not at all interested in using an autonomous car-share system for daily travel. The 
frequency of walking is substantially larger than the frequency of bicycling. About 22 percent own 
a smartphone, but never use apps for travel information. About 30 percent own a smartphone and 
use apps one or more days per week for travel information. About 31 percent of the sample never 
uses technology platforms for travel information. On the other hand, 23 percent do so two or more 
times per week. The statistics in the table show that there is considerable heterogeneity in the 
population with respect to residential location preferences, interest in autonomous car-share 
adoption, and use of technology platforms for travel information. 

The modeling framework consists of two primary components, namely, the Generalized 
Heterogeneous Data Model (GHDM) and the spatially lagged ordinal response model with a 
composite weight matrix that includes both spatial and aspatial (attitudinal) components. Within 
the GHDM, there are two submodels – a latent structural equation model (SEM) and a latent 
measurement equation model (MEM). In the latent SEM, the latent psychological constructs are 
represented as linear functions of exogenous variables with the usual stochastic error terms. In the 
latent MEM component, psychometric indicators along with observed travel behavior indicators 
are posited as functions of latent constructs, exogenous variables, and other endogenous outcomes. 
The SEM and MEM sub-models are estimated jointly in a simultaneous equations modeling 
framework. However, because the emphasis of this study is on the spatially lagged ordinal 
response model with a composite weight matrix, the presentation of the methodology in the next 
section focuses on the second component of the model system. Details about the GHDM 
formulation to model the latent constructs can be found in Bhat (2015a). The GHDM is estimated 
using the Maximum Approximate Composite Marginal Likelihood (MACML) approach (Bhat, 
2011).  
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Table 1. Descriptive Statistics of Indicator Variables 

Attitudinal (Ordinal) Indicator Variables  

Importance of factor in choosing  
home location 

Response Distribution 
Very 

Unimportant 
1 

Unimportant 
2 

Neutral 
3 

Important 
4 

Very  
Important 

5 
Close to major roads/highways 14.8% 16.0% 22.2% 34.6% 12.4% 
Being within 30-minute commute to work  11.0% 6.1% 17.7% 20.4% 44.8% 
Being close to public transit 15.4% 10.4% 17.8% 25.3% 31.1% 
Having a walkable neighborhood and being 
near local activities 

5.3% 6.7% 10.3% 33.2% 44.4% 

Level of interest in use of… 

Response Distribution 
Not at all 
interested 

Somewhat 
uninterested 

Neutral 
Somewhat 
interested 

Very 
Interested 

Autonomous car-share system for daily travel 55.4% 6.7% 11.9% 14.0% 11.7% 
Frequency (Ordinal) Indicator Variables  

Frequency of participating in… 

Response Distribution 

Never 
I do, but not in 
the past 30 days 

More than once in 
past 30 days but at 
most 1 day/week 

Two or more 
days/week 

Bicycling (15 min or more) 62.7% 20.7% 8.4% 8.2% 
Walking (15 min or more) 8.3% 6.0% 18.7% 66.9% 

Frequency of… 
Smartphone ownership and 

app use for travel info Frequency of: 
Technology-based platforms 

for travel info  
Don’t own smartphone 30.0% Never 31.1% 
Own smartphone but never 
use apps for travel info 

21.8% Less than one day per week 33.2% 

Own smartphone and use 
apps less than one day per 
week for travel info  

18.9% One day per week 12.9% 

Own smartphone and use 
apps one or more days per 
week for travel info 

29.4% Two or more times per week 22.8% 

 
4.2 Capturing Dependency Effects Using a Spatial Lag Structure 
This section describes the approach to model the ordinal variable of interest (frequency of car-
sharing and/or ride-sourcing in the past 30 days) with spatial-attitudinal dependency effects. The 
ordinal variable has three levels corresponding to usage of shared mobility services: never, 
occasionally but not in the past 30 days, and one or more times in the past 30 days.  

The use of a spatial lag structure allows choice behavior of a decision maker to be 
influenced by that of peers in the geographic-attitudinal space. While proximity in geographic 
space is derived using spatial distances between residence locations of decision makers, the 
proximity in attitudinal space is based on a latent social network defined by similarities in attitudes 
and lifestyle preferences. These are captured by the two latent constructs considered in the study: 
pro-environment attitude and neo-urban lifestyle propensity. The dependency effects due to each 
dimension of proximity are disentangled using separate coefficients for each proximity measure. 

In the following discussion, consider a sample of Q  decision makers denoted by index q 
(1, 2, 3,…, Q) and L latent variables denoted by index l ( 2L   in this study). Let each latent 
variable for individual q be represented by qlz . Each of these latent variables is written as a 

function of observed covariates and a stochastic error component within the SEM submodel of the 
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GHDM. For later use, collect all of the constructs for latent variable l across all individuals q in 
the vector 1 2( )z l l l lQz ,z ,..., z '. Also, let the expected value of this vector, as obtained from the 

GHDM, be ˆlz . 

The ordinal variable of interest for decision maker q, in the spatial lag structure, is specified 
in terms of exogenous covariates as follows,  

1

γ  x
Q

q qq' q' q q
q'=

y = ρ w y + ' +ξ    , qy = k  if 1 qq,k - q,kψ <ψy<    (1) 

where qy  is the underlying continuous latent response variable whose partitioning relates to the 

K  levels of the ordinal variable, and γ  is the vector (dimension A×1) of coefficients associated 

with the qx  (A×1) vector of exogenous covariates (excluding the constant). Let the idiosyncratic 

error term qξ  be standard normally distributed and independently and identically distributed across 

decision makers. Let qq'w  be the ),( qq   element of the row-normalized multi-dimensional weight 

matrix W (Q×Q) with zeros on the diagonal ( 0qqw ,


 
Q

qq
qqw 1) and ρ (0 < ρ < 1) be the auto-

regressive parameter. In vector notation, the consolidated formulation for all individuals Q is given 
as, 

 y Wy xγ   ρ     (2) 

where )~ ,...,~ ,~(~
21  Qyyyy  and 1 2( , ,..., )  Qξ ξ ξ ' are (Q×1) vectors, x is (Q×A) matrix of exogenous 

variables for individuals. Through a simple matrix operation, the equation can now be rewritten 
as:  

y Tx Tγ      (3) 
1( )Q ρ  T I W    (4) 

where QI  is an identity matrix of size Q. The vector y  is multivariate normally distributed with 

mean Txγ and covariance matrix 'TT , i.e., ~ ( , ')y T γx TTQMVN  . 

The crux of this paper lies in the formulation of the composite weight matrix W, which 
engenders the interdependencies amongst decision makers in geographic and attitudinal space. The 
composite weight matrix is a combination of spatial and non-spatial (one corresponding to each 
latent construct) weight matrices. Unlike previous formulations (e.g., Yang and Allenby, 2003), 
the number of constituent weight matrices does not explode with an increasing number of non-
spatial measures of proximity. Instead the non-spatial proximity (in attitudinal space) is 
parsimoniously expressed using a reduced number of latent variable - distance matrices. The 
composite weight matrix W (Q×Q) is specified as follows,  

1

exp( ( ))W D D
L

spatial l non-spatial
l=

l+ κ      (5) 

where, Dspatial  is a (Q×Q) spatial distance matrix that is derived using latitude-longitude 

coordinates of decision makers’ residential locations. Dl
non-spatial  is the (Q×Q) non-spatial distance 

matrix, based on attitudinal proximity on latent variable l (1, 2,…, L). Further,  1 2, ,..., L    are 

coefficients associated with the non-spatial proximity measures derived from each of the L latent 
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variables. The element-by-element exponentiation operator allows for negative values for kappa 
while still ensuring non-negativity of the final weights. The coefficient associated with spatial 
distance is fixed to unity to ensure econometric identification.  

The non-spatial distance matrix Dl
non-spatial , associated with latent variable l, is populated 

using a (Q×Q) matrix ˆ
lZ  that is expressed as the Kronecker product of the ẑl  (Q×1) vector of 

predicted values for latent variable l and a 1,1 Q  (1×Q) row vector of ones. Due to the non-

directionality of differences in latent lifestyles and preferences across decision makers, the 

absolute difference of ˆ
lZ  with its transpose  ˆ 'lZ  is taken. This results in a (Q×Q) distance matrix 

of attitudinal proximity on latent variable l given by,   

 1

2

,

1

1

ˆ

ˆ
ˆ ˆ 1 1 ... 1

ˆ

z 1

,l

,l

l l ×QQ

Q,l

z

z
=

...

z

 
 
   
 
 
  

Z    (6) 

1 2 1

2 1 2

1 2

ˆ ˆ ˆ ˆ0 | | ... | |

ˆ ˆ ˆ ˆ| | 0 ... | |ˆ ˆ| ( ) ' |
... ... ... ...

ˆ ˆ ˆ ˆ| | | | ... 0

D

,l ,l ,l Q,l

,l ,l ,l Q,ll
lo l

Q,l ,l Q,l ,l Q×Q

n n-spatial

z z z z

z z z z

z z z z

  
     
 
    

Z Z   (7) 

 
where ˆq,lz  is the qth element of vector ẑl . 

An important note here is that the non-spatial proximity measures among decision agents, 
as constructed above, are based on the expected values of the latent constructs as opposed to their 
actual values. The main reason for this formulation is that the sample is but a random fraction of 
the population of interest. It is impossible to represent every individual in spatial or social space, 
and therefore more appropriate to consider a sampled neighbor in spatial or social space as 
representative of many others in the population who may be in that space. It may then be 
intrinsically more appropriate to consider the expected value of a sampled neighbor’s latent 
construct (representing the larger set of individuals in the population with the same observed 
characteristics that impact the latent variable of the sampled neighbor), and examine the distance 
of this expected value from the expected value of the sampled individual in question.  

The spatial distances matrix ( Dspatial ) and the non-spatial distance matrices ( Dl
non-spatial ) are 

normalized (divided by the maximum value) before they enter Equation (6) to adjust for scale 
differences. Prior to feeding the composite weight matrix W into the SORP model (Equation 2), 
the diagonal elements of W are set to zero and W is row-normalized to ensure that each decision 
maker gets the same net influence from all other decision makers. 

The parameters to be estimated in the ordered probit model with spatial and non-spatial 
dependencies are the vector of exogenous coefficients γ , the auto-correlation parameter ρ, (M–1) 

thresholds of the ordinal variable ( 0 1 2 1   K K -ψ = - ,ψ = ,- <ψ <ψ ...<ψ < ), and κ

 1 2, ,..., L    coefficients associated with the non-spatial weight matrices. The likelihood 

function L(θ) for the model takes the following form, 
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( ) ( ) ( | , ')y = m y Txγ TT y
y

Q

D

L = P = f d


      (8) 

where ),...,,,,...,,,,~( 12121  KL γθ  is the )1)((  KLA  vector of coefficients to be 

estimated, ) ,..., ,( 21 Qyyyy , ) ,..., ,( 21 Qmmmm  is the (Q×1) vector of actual observed level of 

frequency of using car-sharing and/or ride-sourcing. yD~  is the domain of integration defined as

},...,2,1, ~:~{ ,1,~ QqyyD mqqmqy    . Qf (.) is the multivariate normal density function of 

dimension Q  with mean Txγ  and correlation matrix 'TT . The autoregressive parameter ρ is 

reparametrized as 
exp( )

1+ exp( )

ρ
ρ=

ρ



  to ensure that 10    and the likelihood function is maximized 

with respect to 

ρ . The true value of ρ can be easily extracted after the estimation process. The 

likelihood function is maximized using a pair-wise composite marginal likelihood (CML) 
approach (Bhat, 2011). Dependency effects dilute very quickly as distance between observations 
increases (Castro et al., 2013). Based on statistical tests discussed in Bhat (2011), a distance 
threshold of eight miles is adopted and only those pairs of observations falling within this distance 
band are included in the CML function. 
 
5. MODEL ESTIMATION RESULTS 
This section presents a detailed discussion of the model estimation results of the GHDM and 
Spatial Ordered Response Probit (SORP) model components with various forms of dependency 
effects among decision-makers. The final model specification was adopted, after testing an 
extensive number of alternative specifications, based on a combination of behavioral interpretation 
and statistical significance. In the following sections, only results for the SEM submodel of the 
GHDM (which determines the latent constructs) and the SORP model component are presented. 
The MEM submodel is not of primary importance in this paper; it simply serves as the vehicle to 
estimate the SEM submodel by establishing correspondence between latent constructs and their 
observed indicators.   
 
5.1 Structural Equation Model (SEM) Component of GHDM 
Table 2 presents estimation results for the SEM component of the GHDM. In general, results are 
behaviorally intuitive and consistent with expectations. Younger individuals are likely to be more 
pro-environmental and favor a neo-urban lifestyle. Females exhibit a greater sensitivity to the 
environment, a finding consistent with previous research (Kalof et al., 2002; McCright 2010).  
Income is strongly related to pro-environmental attitudes, with individuals in lower income 
households exhibiting greater levels of the pro-environmental attitude.  Individuals with a college 
education are likely to be pro-environmental and favor active neo-urban lifestyles, consistent with 
the notion that they are likely to have greater awareness of the ill-effects of pollution.  Households 
with children are more likely to reside in suburban locations in larger homes; consistent with such 
a lifestyle, individuals in these households express lower levels of the pro-environmental attitude 
or preference for a neo-urban lifestyle. An interesting finding is that the correlation between error 
terms is insignificant.  The model specification may have captured all key effects, or it is possible 
that positive and negative correlations due to unobserved effects canceled out.  
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Table 2. Estimation Results for Structural Equation Model of GHDM 

Structural Equation Component Pro-environment attitude Neo-urban lifestyle propensity 

Variable Coefficient t-stat Coefficient t-stat 

Age (base: 55 + years old) 
    18 to 24 years old 
    25 to 34 years old 
    35 to 44 years old 
    45 to 54 years old 

 
0.565 
0.374 
0.423 
0.183 

 
3.12 
4.31 
4.35 
1.99 

 
1.648 
1.396 
1.208 

-- 

 
4.22 
4.55 
4.65 
-- 

Female (base: male) 0.137 2.13 -- -- 

Education (base: lower than Bachelor’s) 
    Bachelor’s degree 
    Graduate degree 

 
0.432 
0.678 

 
5.64 
7.84 

 
0.489 
0.500 

 
4.75 
4.65 

Income (base: $75,000 or more per year)
    Less than $24,999 per year 
    $25,000 - $49,999 per year 
    $50,000 - $74,999 per year 

 
0.552 
0.110 
0.104 

 
4.94 
1.34 
1.27 

 
-- 
-- 
-- 

 
-- 
-- 
-- 

Employment status (base: unemployed) 
   Full-time, part-time or self-employed 

 
0.164 

 
2.33 

 
1.032 

 
4.73 

Household structure (base: no kids) 
  At least one kid (0-17 years) 

 
-0.325 

 
-3.79 

 
-0.306 

 
-1.78 

Correlation between latent variables -- 

 
5.2 Spatial Ordered Response Probit (SORP) Model with Dependency Effects 
Table 3 presents estimation results for the SORP model with spatial and non-spatial (attitudinal) 
dependencies. The dependent variable is the frequency of using shared mobility services. For 
comparison purposes, models with no dependency effects and only spatial dependency effects 
(autocorrelation) are also presented alongside the SORP model that incorporates multi-
dimensional spatial and non-spatial dependencies.   

In general, frequent users of shared mobility services are younger individuals, more 
educated, employed full-time, and reside in higher income households. All of these indications are 
consistent with findings reported elsewhere in the literature (e.g., Smith, 2016; Dias et al., 2017).  
Those who own smartphones are more likely to use shared mobility services; this is presumably 
because the use of shared mobility services often requires the ownership of a smartphone. Female 
smartphone owners who use apps fairly regularly for travel information are less likely to use shared 
mobility services, possibly due to safety considerations and the consistent finding reported in the 
literature that females carry a greater burden of chauffeuring and household maintenance activities, 
thus engendering greater levels of trip chaining and joint travel (Garikapati et al., 2014). Such 
travel patterns are not as conducive to shared mobility service usage. Higher levels of vehicle 
ownership are associated with lower levels of shared mobility service use frequency, a finding that 
is consistent with expectations and prior literature (Coll et al., 2014).  
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Table 3. SORP Model with Spatial and Non-Spatial Dependencies 

Exogenous effects on frequency of using ride-sourcing 
and/or car-sharing in past 30 days 

Aspatial ORP 
SORP with Spatial 
Dependencies Only 

SORP with Spatial & 
Non-Spatial 

Dependencies 
Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Age (base: 45 or more years)       
18 to 24 years old 0.881 4.49 0.906 10.97 0.598 5.26 
25 to 34 years old 0.661 6.90 0.777 16.11 0.492 5.04 
35 to 44 years old 0.527 5.41 0.573 12.05 0.336 3.77 
Work Status       
Full-time, part-time or self-employed (base: unemployed) 0.381 3.95 0.432 9.02 0.227 3.37 
Student (base: not a student) 0.253 1.93 0.172 2.94 0.254 12.95 
Income (base: above $100,000)       
Below $25,000 -0.684 -4.57 -0.445 -6.57 -0.741 -19.34 
$25,000 - $49,999 -0.581 -5.10 -0.513 -8.49 -0.736 -23.31 
$50,000 - $74,999 -0.366 -3.26 -0.194 -3.30 -0.385 -19.21 
$75,000 - $99,999 -0.397 -3.51 -0.156 -2.59 -0.318 -17.27 
Educational attainment (base: less than a bachelor’s degree)       
Bachelor’s degree 0.386 3.78 0.217 4.10 0.184 4.87 
Graduate degree 0.430 4.00 0.249 4.66 0.182 4.13 
Smart-phone ownership and frequency of usage for travel 
information in past 30 days (base: do not own a smart-phone) 

      

Own smart-phone but never use apps 0.881 6.42 0.923 14.25 0.959 22.52 
Own smart-phone and use apps less than once a week 0.800 5.77 0.799 12.22 0.834 22.81 
Own smart-phone and use apps once or more a week 1.080 7.62 1.079 16.49 1.116 23.31 
Own smart-phone and use apps once or more a week × female -0.249 -2.28 -0.222 -4.27 -0.263 -14.16 
Residential location density (base: low density)       
High density 0.694 7.64 0.246 5.83 0.497 25.40 
High density × presence of at least one kid -0.416 -2.15 -0.293 -2.95 -0.300 -11.25 
Vehicle ownership and residence type (base: no vehicles)       
One vehicle and single-family residence -0.505 -3.51 -0.344 -4.85 -0.606 -21.45 
Two or more vehicles and single-family residence -1.207 -8.32 -0.892 -12.58 -1.259 -26.21 
One vehicle and multi-family residence -0.653 -5.43 -0.564 -10.57 -0.648 -23.19 
Two or more vehicles and multi-family residence -0.608 -3.79 -0.383 -5.41 -0.597 -20.69 
ρ  -- -- 0.562 2.24 0.895 2.02 

1κ  (pro-environment attitude) 

2κ  (neo-urban lifestyle propensity) 

-- 
-- 

-- 
-- 

-- 
-- 

-- 
-- 

0.883 
1.151 

2.79 
2.53 
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What is particularly noteworthy is that the model coefficients differ in magnitude among 
the model forms.  This suggests that the use of models that do not account for dependencies may 
offer erroneous forecasts and estimates of policy impacts. Also, the auto-correlation term, , is 
statistically significant in both models. In addition, parameters representing social dependency 
arising from proximity in the attitudinal space are also statistically significant for both attitudinal 
constructs considered in this paper. They are positive in value, suggesting that diffusion effects are 
at play. Taken together, and comparing coefficients on the non-spatial proximity contributions 
with the normalized value of one for the spatial proximity contribution, the net result is that both 
social and spatial proximity contributions are important, statistically significant, and of the same 
order of magnitude in diffusion effects. As more people use shared mobility services, the more 
visible they become to the rest of the population – both from a spatial perspective and a social 
(attitudinal and lifestyle) perspective.   

Finally, the adjusted composite likelihood ratio test (ADCLRT) was used to compare 
model fit, and it was found that the SORP that accounted for multi-dimensional dependencies 
performed significantly better than other model forms. The composite log-likelihood (CLL) 
function values at convergence are respectively -837319, -680959, and -637788 for the aspatial 
ORP, SORP with only spatial dependency, and SORP with multi-dimensional dependency. The 
ADCLRT computations yield 2 statistics that are statistically significant at any level of 
confidence, demonstrating the importance of accounting for multi-dimensional dependency effects 
in activity-travel choice models. 

 
6. DISCUSSION AND CONCLUSIONS 
Individuals interact with one another as an inevitable part of living in a society. People observe 
what others do, interact and exchange information with others, and modify their own behaviors, 
choices, attitudes, and goals in response to societal forces. Yet, many travel models continue to 
ignore the forces of inter-dependency when simulating activity-travel choices. Models (largely in 
the research domain) that recognize inter-dependency are often limited to accounting for intra-
household interactions among family members. Models that purport to capture influences beyond 
the immediate confines of the household do so through spatial dependency effects that are purely 
based on measures of geographic proximity. For example, people may purchase environmentally 
friendly vehicles, bicycle and walk, use transit, or let their children walk to school in response to 
observing what their neighbors do and interacting with them.   

However, in an era of social media platforms and ubiquitous connectivity, inter-
dependencies may no longer be solely influenced by geographic proximity. Rather, the strength of 
association among individuals may be influenced by attitudes, values, preferences, and 
perceptions. Those with similar attitudes and lifestyle preferences may interact more closely (for 
example, in online communities and forums), and such social interactions may lead to reinforcing 
and snowballing effects of the already held similar attitudes and preferences.3  

This paper makes a fundamental contribution to the literature by proposing an econometric 
methodology that is capable of simultaneously accounting for both spatial and non-spatial 
(attitudinal) dependency effects. The model system takes the form of a simultaneous equations 
model system with latent constructs that describe individual attitudes and lifestyle preferences as 

                                                 
3 For decades, researchers have showed that individuals tend to interact and build relationships with other people with 
similar attitudes (Adams, 1967; Byrne et al., 1986; Davis and Rusbult, 2001; Alves, 2018). In today’s increasing and 
ubiquitous digital world, it only stands to reason that such interactions have increased due to virtual connectivity, 
because of the expansion of the interaction space from what earlier used to be confined to physical proximity space. 
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a function of measured indicators in survey data. The proximity among individuals with respect to 
the latent constructs is explicitly incorporated (along with spatial measures of separation) into the 
weight matrix that captures the strength of association across observations. The formulation is able 
to disentangle the strength of the inter-dependency due to attitudinal proximity from that due to 
spatial proximity. 

The model system is applied to the study of the frequency of use of shared mobility 
services, including car-sharing and ride-sourcing services. Two latent constructs, representing pro-
environmental attitude and preference for a neo-urban lifestyle, are used to account for non-spatial 
dependency effects. A spatially ordered response model (SORP) is estimated within a larger 
Generalized Heterogeneous Data Model (GHDM) framework to examine the dependency effects.  
It is found that both spatial and non-spatial (attitudinal) dependency effects are significant in 
explaining the use of emerging shared mobility services and that both of these effects are 
comparable in magnitude. The model that accounted for both sources of dependency offered 
statistically better goodness-of-fit than models that ignored one or both sources.   

The model system shows that diffusion effects are at play, not just based on distance but 
also based on non-spatial attitudinal and lifestyle variables. Such models can help in developing 
estimates of market adoption of emerging transportation technologies as they capture the diffusion 
effects engendered by multiple sources. Policy strategies aimed at enhancing shared mobility 
service usage can be better informed via models that capture various inter-dependency effects.  
Agencies interested in seeing greater adoption of these services could identify virtual groups and 
forums that may be targeted for information campaigns, incentives and rebates, and seeking 
assistance in spreading the word. Through such mechanisms, agencies may be able to realize 
significant change in behavior in response to various strategies by leveraging the power of 
diffusion effects that influence people’s activity-travel choice behaviors. 
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