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SECTION 1 

1.1 Description of Matrix M used to Derive the Distribution of Vector yu 

Create a matrix M of size  )()
~

( GEQGEQ


  whose elemens are all initialized to zero. Then, 

for every individual q, consider a matrix qM  of size  )()
~

( GEGE


 filled with zeros. Insert 

an identity matrix of size E into the first E rows and E columns of the matrix qM . Next, consider 

the rows from 1to1 1  IEE , and columns from .to1 1IEE   These rows and columns 
correspond to the first nominal variable. Insert an identity matrix of size )1( 1 I  after 
supplementing with a column of ‘-1’ values in the column corresponding to the chosen alternative. 
Next,  consider the rows 1IE   through 221  IIE and columns 11  IE  through 

21 IIE  correspond to the second nominal variable. Again position an identity matrix of size 

)1( 2 I  after supplementing with a column of ‘-1’ values in the column corresponding to the 
chosen alternative for the second nominal variable. Continue this procedure for all G nominal 

variables. Insert this matrix qM  in the matrix M occupying the rows  1)
~

(*)1(  GEq to 

 )~
()

~
(*)1( GEGEq  and columns  1)(*)1(  GEq


to  )()(*)1( GEGEq


 . 

 
1.2 Rearrangement Matrices yR  and uR  used to Partition B

~
 and Ω

~
 

Consider a rearrangement matrix R of size  )~
()

~
( GEQGEQ  filled with zeros. Then, for 

every individual q, consider a identity matrix qR  of size )
~

( GE  . Insert first H rows of matrix 

qR  into matrix R occupying rows  1*)1(  Hq to  HHq  *)1( and columns 

 1)
~

(*)1(  GEq to  )~
()

~
(*)1( GEGEq  . Next insert the remaining )

~
( HGE   rows 

of matrix qR  into matrix R occupying rows  1)
~

(*)1(  HGEqQH to 

 )~
()

~
(*)1( HGEHGEqQH  and columns  1)

~
(*)1(  GEq to

 )~
()

~
(*)1( GEGEq  . Divide the matrix R into two submatrices  

]))
~

(:1,[1( GEQ:QH RRy  and ]))
~

(:1),
~

(:1[(~ GEQGEQQH RRu . For example: Consider 

the case with two individuals and one continous, two ordinal, one count and two nominal variables 
with three alternatives each. Then the matrix R may be written as: 
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  (S.1)   

Now, consider the following re-arranged vectors and matrices:  

  vector1)(  
~~  QHBRB yy ,   vector1)

~
(  

~~
~~  EQBRB uu ,  matrix )(  

~~
QHQH  yyy RΩRΩ , 

 matrix )
~~

(  
~~

~~~ EQEQ  uuu RΩRΩ , and  matrix )
~

(  
~~

~~ EQQH  uyuy RΩRΩ . 

 
SECTION 2 

The CML Estimation Approach 
To develop the CML function corresponding to Equation (B.2) in Appendix B of the main paper, 

first we extract from the mean vector B
~

 and covariance matrix Ω
~

, relevant components qq B
~

 and 

qq Ω
~

 (as well as lowqq  ,ψ


 from lowψ


 and upqq  ,ψ


 from upψ


) for each (and every) pair of individuals 

q and q . To do so, define a selection matrix qq D  of size )]
~

()
~

(2[ GEQGE  and qq V  of size 

)
~~

2( EQE  (see Section A.1 Step-1 and Step-2 of Supplement Appendix A for construction 

details).  Then the vectors qq B
~

, lowqq  ,ψ


,  upqq  ,ψ


 and matrix qq Ω
~

 can be extracted from B
~

, lowψ


, 

upψ


 and Ω
~

 as follows:   vector]1))
~

(2[ 
~~   GEqqqq BDB ,  vector)1

~
2(  ,   Elowqqlowqq ψψ


V , 

 vector)1
~

2(  ,   Eupqqupqq ψψ


V , and   ))matrix
~

(2)
~

(2(  
~~

GEGEqqqqqq   DΩDΩ . Next, for 

each pair of individuals, we partition vector qq B
~

 and matrix qq Ω
~

 into components relevant to 

continuous variable components )( qq y  and ordinal, count and nominal variable components 

).~( qq u  To do so, define a selection matrix qq R  of size  )~
()

~
(2 GEQGE  (see Supplement 
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Appendix A.1 Step-3 for construction details). Then vector qq B
~

 and matrix qq Ω
~

  can be 

partitioned into the components corresponding to continuous and non-continuous variable 

components as follows:   vector1)2(  
~~

,,   Hqqqqqq BB yy R ,   vector1)
~

2(  
~~

~,~,   Eqqqqqq BRB uu , 

 matrix )22(  
~~

,,, HHqqqqqqqq   yyy RΩRΩ ,  matrix )
~

2
~

2(  
~~

~,~,~, EEqqqqqqqq   uuu RΩRΩ , and 

 matrix )
~

22(  
~~

~,,~, EHqqqqqqqq   uyuy RΩRΩ . That is, 
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~,,
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~~
~
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qq ΩΩ
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Ω .            (S.2) 

Thus the conditional distribution of qq u~  given qq y , may be written as: mean  

)
~

(
~~~

,
1

,~,~,~, yyuyuu ByBB qqqqqqqqqqqq 

  ΩΩ


 and variance  uyyuyuu ~,

1
,~,~,~,

~~~~
qqqqqqqqqq 


  ΩΩΩ-ΩΩ


. In the 

last step, we arrange the elements inside the vector uB ~,qq 


, ,lowqq ψ


,  ,upqq ψ


 and matrix u~,qq Ω


 so that 

the elements corresponding to all ordinal variables of both individuals q and q  (i.e., 2N ordinal 
variables) are stacked together, followed by elements corresponding to all count variables (i.e., 2C  
count variables) and in the end the elements corresponding to  all  nominal variables (i.e., 2G 
nominal variables). This arrangement makes it easy to enumerate pairs of observed outcomes for 
forming the CML function. To achieve such ordering, define a matrix qq F  of size )

~
2

~
2( EE   (see 

Supplement Appendix A.1 Step-4 for construction details). Then the elements can be rearranged 

as follows: uu BB ~,~, qqqqqq  


F ,  ,lowqqqq,lowqq   ψψ


F ,  ,upqqqqqq   ψψ up,


F , and qqqqqqqq   FΩFΩ uu ~,~,


.   

Finally, replace the last G
~

2 elements of the lower threshold vector ,lowqq ψ


 from   to zero. That 

is,  
G,lowqq ECN ~

2
]

~
2:1)(2[ 0ψ


.  

Now, to explicitly write the CML function in terms of standard (multivariate) normal 
density and cumulative distribution functions, define ω  as the diagonal matrix of standard 

deviations of the matrix Δ, using );(. *ΔR  for the multivariate standard normal density function 

of dimension R and correlation matrix *Δ  ( 11* 



 ωΔωΔ ), and );(. *ΔE  for the multivariate 

standard normal cumulative distribution function of dimension E and correlation matrix *Δ . Also, 

define a set of two selection matrices: vgH  of size )]
~

2([ EI g   and gg Y  of size 

)]
~

2()2[( EII gg   , constructed as described in Supplement Appendix A.2. Using these 

selection matrices, let   ,~ vg,qqvg,vgqq HΩHΩ   u


 ,~,, ggqqggggqq   YΩYΩ u


  

   
 

vvqq

vqqvqq
upvμ

 ~,

~,,
,

u

uup Bψ



 


Ω




, 
   

 
vvqq

vqqvqq
lowvμ

 ~,

~,,
,

u

ulow Bψ



 


Ω




, and 
 

   
vvqqvvqq

vvqq
vvρ




 

 ~, ~,

 ~,

uu

u

ΩΩ

Ω




, where   vqq upψ ,


 represents the vth  

element of  ,upqq ψ


 (and similarly for other vectors), and  
vvqq   ~,uΩ


represents the thvv   element of 

the matrix  ~,uqq Ω


. Then, one may write the CML function as follows: 
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                (S.3) 
In Equation (S.3), for each pair of individuals q and q  , the first component corresponds to the 
marginal likelihood of the continuous outcomes for the two individuals, the second component 
corresponds to the likelihood of pairs of outcomes across all ordinal and count outcomes, the third 
component corresponds to the pairwise likelihood of ordinal/count outcomes and nominal 
outcomes, and the last component corresponds to the pairwise likelihood for the nominal 
outcomes.  

Among all the multivariate normal cumulative distribution (MVNCD) integrals in 
Equation (S.3), the maximum dimension of integration is the sum of alternatives of nominal 
variables with the two highest numbers of alternatives minus 2. To solve such MVNCD integrals 
within the CML estimation routine, Bhat (2011) proposed the use of an analytic approximation 
method. This approach, labelled the MACML approach, as demonstrated by Bhat and Sidharthan 
(2011), is at least as accurate as simulation based approaches in retrieving model parameters, albeit 
computationally much faster and robust in that the approximate CML surface is smoother and 
easier to maximize than the traditional simulation-based likelihood surfaces.  
 

We write the resulting equivalent of Equation (S.3) computed using the analytic 

approximation for MVNCD as )()( ,

1

1 1

λλ qqMACML

Q

q

Q

qq
MACML LL 



 
  . The MACML estimator is then 

obtained by maximizing the logarithm of )(λMACMLL , which involves computation of pairwise log-

likelihoods (i.e., )(log , λqqMACMLL  )  for 2/)1( QQ  pairs. The asymptotic covariance matrix of the 

parameters )(MACML λV  may be estimated by the inverse of Godambe’s (1960) sandwich 

information matrix.  

     
QQ

---

MACML




111 ˆ ˆ ˆ)(ˆ
)(

HJHλG
λV                                                                                     (S.4)        

The reader is referred to Zhao and Joe (2005), Bhat (2014), and Sidharthan and Bhat (2012) for 

more details on the calculations of the Hessian matrix ( Ĥ ) and the Jacobian matrix ( Ĵ ) in the 
above expression (Sidharthan and Bhat, 2012 provide these details for spatial models).   
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As spatial dependency decreases with an increase in the distance between any two 
individuals, one can reduce the number of pairings (between individual observations) in the 
MACML function by neglecting all the pairings beyond a certain threshold distance. To determine 
this threshold distance, analyst can estimate the model with different threshold distances and 
choose the one that minimizes the total variance across all parameters as given by the trace of the 
asymptotic covariance matrix )(λMACMLV . 

One final consideration relevant to model estimation is that the matrix Σ


 for each 
observation has to be positive definite. The simplest way to guarantee this is to ensure that the 

(L×L) correlation matrix Γ is positive definite, and each matrix gΛ


(g=1,2,…,G) is also positive 

definite. To do so, we parameterize the CML function in terms of the Cholesky parameters for 
these matrices. Further, because the matrix Γ is a correlation matrix, we write each diagonal 

element (say the aath element) of the lower triangular Cholesky matrix of Γ as 





1

1

21
a

j
ajp , where 

the ajp  elements are the Cholesky factors to be estimated. In addition, note that the top diagonal 

element of each gΛ


 matrix has to be normalized to one (as discussed in Appendix A of the main 

paper), which implies that the first element of the Cholesky matrix of  each gΛ


 is fixed to the value 

of one. Also, the spatial autoregressive parameter ),...,2,1( Llδl   should be constrained between 

0 and 1 ) 11( lδl  , for which we parameterize the spatial autoregressive parameter as  

  lδδ ll    )]exp(1/[1


.  However, in our case, we expect the parameter to be positive, because 

the spatial dependence is being introduced in the latent pschological constructs, and this impose 
the ‘+’ sign.  
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Supplement Appendix A: Construction of Selection Matrices 

A.1. To Extract Relevant Components from B
~

 and Ω
~

 for a pair of individuals q and q , and 
rearrange elements in the order of ordinal, count and nominal variables  

To build the CML function, we use a set of selection matrices such that one can extract the relevant 
components from vectors B

~
 and matrix Ω

~
 for a pair of individuals q and q .  The selection 

matrices are described below:  

Step-1: A matrix qq D  of size  )~
()

~
(2 GEQGE   filled with zeros. Insert an identity matrix of 

size )
~

( GE  in first )
~

( GE  rows and columns  1)
~

(*)1(  GEq to

 )~
()

~
(*)1( GEGEq  . Next, insert another identity matrix of size )

~
( GE  in rows 

)1
~

( GE  to )]
~

(2[ GE  and columns  1)
~

(*)1(  GEq to  )~
()

~
(*)1( GEGEq  .  

Step-2: A matrix qq V  of size )
~~

2( EQE  filled with zeros. Insert an identity matrix of size )
~

(E  in 

first )
~

(E  rows and columns  1)
~

(*)1(  Eq to  EEq
~

)
~

(*)1(  . Next, insert another identity 

matrix of size )
~

(E  in rows )1
~

( E  to )
~

2( E  and columns  1)
~

(*)1(  Eq to  EEq
~

)
~

(*)1(  .  

Step-3: A matrix qq R  of size  )~
()

~
(2 GEQGE   filled with zeros. Then, for individual q, 

consider an identity matrix qR  of size )
~

( GE . Insert first H  rows of the matrix qR  into 

matrix qq R  occupying first H rows and columns  1)
~

(*)1(  GEq to

 )~
()

~
(*)1( GEGEq  . Next insert the remaining )

~
( HGE   rows of matrix qR  into 

matrix qq R  occupying rows  12 H to  )~
(2 HGEH  and columns  1)

~
(*)1(  GEq to

 )~
()

~
(*)1( GEGEq  . For individual q , Insert first H rows of matrix qR  into matrix qq R

occupying rows )1( H  to )2( H  and remaining )
~

( HGE   rows of matrix q R  into matrix 

qq R  occupying rows  1~
2  EH to  EH

~
22  and columns  1)

~
(*)1(  GEq to

 )~
()

~
(*)1( GEGEq  . Divide the matrix qq R  into two submatrices  

])[RR )
~

(:1,21(, GEQH:qqqq  y  and ])[RR )
~

(:1),
~

(2:12(~, GEQGEHqqqq  u . 

Step-4: Now, define a matrix qq F  of size )
~

2
~

2( EE   filled with zeros. Next, perform the steps 

described below to arrange the elements inside the vector uB ~,qq 


 and matrix u~,qq Ω


 in the order of 

ordinal, count and nominal variables.  

Step-4.1 Insert an identity matrix of size N in first N rows and N columns. Insert another identity 
matrix of size N in rows (N+1) to (2N) and columns )1

~
( E  to )

~
( NE  .  
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Step-4.2 Again, insert an identity matrix of size C in rows (2N+1) to )2( CN   and columns  
)1( N  to )( CN  . Insert another identity matrix of size C in rows )12(  CN  to )22( CN   

and columns )1
~

(  NE  to )
~

( CNE  .  

Step-4.3 Finally, insert an identity matrix of size G
~

 in rows )122(  CN  to )
~

22( GCN   and 

columns )1(  CN  to )
~

(E . Insert another identity matrix of size G
~

 in rows )1
~

22(  GCN  

to )
~

2( E  and columns  )1
~

(  CNE  to )
~

2( E .  

 
A.2. To write the CML function in terms of standard normal density and cumulative 
distribution functions 

Define a set of two selection matrices as follows: (1) vgH  is a )
~

2( EI g   selection matrix with an 

entry of ‘1’ in the first row and the thv column and an identity matrix of size 1gI  occupying the 

last 1gI  rows and the 

th
g

j
jICN 








 





1)1(22
1

1

through 

th
g

j
jICN 








 

1

)1(22 columns 

(with the convention that 0)1(
0

1


j

jI ), and entries of ‘0’ everywhere else, (2) gg Y  is a 

)
~

2()2( EII gg    selection matrix with an identity matrix of size ( 1gI ) occupying the first    

( 1gI ) rows and the 

th
g

j
jICN 








 





1)1(22
1

1

through 

th
g

j
jICN 








 

1

)1(22 columns 

(with the convention that 0)1(
0

1


j

jI ), and another identity matrix of size )1( gI  occupying 

the last )1( gI  rows and the 

th
g

j
jICN 








 





1)1(22
1

1

through 

th
g

j
jICN 








 



1

)1(22

columns; all other elements of gg Y  take a value of zero. 
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SECTION 3 
 

Table 1. Descriptive statistics of independent variables  
Variable Categories Percentage 

Age of school going children 
5-10 years old 47.37 
11-15 years old 40.83 
16-18 years old 11.80 

Gender of school going children 
Boys 51.80 
Girls 48.20 

Household monthly income 

Less than 25K 7.70 
25K – 49,999 16.18 
50K – 74,999 16.68 
75K – 99,999 16.77 
100K or more 42.67 

Race 

Caucasian 69.78 
African-American 7.39 
Asian 9.72 
Hispanic 12.07 
Others 1.04 

Households with fraction of adults (25 
or more) with 

High school degree or less 25.45 
Some college degree  25.73 
Bachelor’s degree 27.69 
Graduate degree 21.13 

Households with fraction of adults in 
age group  

19-30 years 7.87 
31-45 years 51.70 
46-60 years 36.43 
61 or more 4.00 

Households with number of full-time 
workers 

0 5.21 
1 58.66 
2 33.36 
3 or more 2.77 

Households with number of part-time 
workers 

0 67.93 
1 28.80 
2 or more 3.27 

Households with number of workers 
with the option to work from home 

0 75.62 
1 21.43 
2 or more 2.95 

Households with number of workers 
with flexible work time 

0 42.26 
1 44.52 
2 or more 13.22 

Family type 
Nuclear 93.41 
Single-parent 6.59 

Housing type 
Detached 81.75 
Duplex 6.54 
Apartment or townhouse 11.71 

Tenure 
Own 80.05 
Rent 19.95 

Distance to school 

Less than ¼ mile 11.29 
Between ¼ to ½ mile 10.37 
Greater than ½ mile and less than or equal 
to 1 mile 

14.47 

Greater than 1 mile and less than or equal 
to 2 miles 

21.43 

More than 2 miles 42.44 
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SECTION 4 

Table 2. Parameter estimates of exogenous variable effects on non-nominal variables 

Dependent variables 
Constants 

Thresholds for ordinal variables between… 
Dispersion 
parameter* 

Variance A little bit of an 
issue & somewhat 

of an issue  

Somewhat of an 
issue & very 

much an issue 

Very much an 
issue & a serious 

issue 
Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Household average commute 
distance (miles) 

2.428 3.80 ---- ---- ---- ---- ---- ---- ---- ---- 0.770 4.06 

Walk/bike issue: 
violence/crime along the route 

0.072 1.67 0.419 10.22 0.779 13.91 1.035 17.54 ---- ---- ---- ---- 

Walk/bike issue: speed of 
traffic along the route 

3.543 2.37 1.154 6.71 2.757 11.16 4.117 15.65 ---- ---- ---- ---- 

Walk/bike issue: amount of 
traffic along the route 

3.667 2.52 1.353 10.33 2.848 15.56 4.268 18.16 ---- ---- ---- ---- 

Number of biking episodes in 
past week 

-2.355 -3.01 ---- ---- ---- ---- ---- ---- 0.062 86.63 ---- ---- 

Number of walking episodes in 
past week 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Number of times public transit 
used in past week 

0.424 2.65 ---- ---- ---- ---- ---- ---- 0.098 86.00 ---- ---- 

Vehicle ownership 1.384 4.79 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

At least one working adult 
uses public transit/walk/bike 
as mode to work 

-0.097 -2.31 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

* The t-stat for dispersion parameter is calculated with respect to numerical value of 5 as oppose to zero. This is due to the fact that negative binomial count 
model collapses to Poisson count model for a dispersion parameter value of 5 or more. 
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Table 2 (cont.) Parameter estimates of exogenous variable effects on non-nominal variables 

Dependent variables 

Number of children 
(18 years or less) in 

the household 

Household income (base: 75K or more) Number of full-
time workers 

Number of part-
time workers Less than 25K 25K-49,999 50K-74,999 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Household average commute 
distance (miles) 

0.052 1.73 -0.720 -6.37 -0.372 -4.96 -0.118 -2.66 ---- ---- -0.162 -3.38 

Walk/bike issue: 
violence/crime along the route 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Walk/bike issue: speed of 
traffic along the route 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Walk/bike issue: amount of 
traffic along the route 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Number of biking episodes in 
past week 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Number of walking episodes in 
past week 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Number of times public transit 
used in past week 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Vehicle ownership 0.017 2.27 -0.308 -1.91 -0.110 -2.18 ---- ---- 0.229 2.63 0.234 4.78 

At least one working adult 
uses public transit/walk/bike 
as mode to work 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

 

 

 

 

  



11 

 

Table 2 (Cont.) Parameter estimates of exogenous variable effects on non-nominal variables 

Dependent variables 

Number of workers 
with the option to 
work from home 

Housing type  
(base: detached) 

Tenure  
(base: owned) 

Duplex 
Apartment or 
Townhouse 

Rented 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Household average commute 
distance (miles) 

---- ---- ---- ---- ---- ---- ---- ---- 

Walk/bike issue: violence/crime 
along the route 

---- ---- ---- ---- ---- ---- ---- ---- 

Walk/bike issue: speed of 
traffic along the route 

---- ---- ---- ---- ---- ---- ---- ---- 

Walk/bike issue: amount of 
traffic along the route 

---- ---- ---- ---- ---- ---- ---- ---- 

Number of biking episodes in 
past week 

---- ---- ---- ---- ---- ---- ---- ---- 

Number of walking episodes in 
past week 

---- ---- ---- ---- ---- ---- ---- ---- 

Number of times public transit 
used in past week 

---- ---- ---- ---- ---- ---- ---- ---- 

Vehicle ownership -0.039 -3.08 -0.257 -2.42 -0.610 -5.65 -0.176 -2.34 

At least one working adult uses 
public transit/walk/bike as 
mode to work 

---- ---- ---- ---- ---- ---- ---- ---- 
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Table 3. Parameter estimates of exogenous variable effects on residential location choice  

Variables 

Residential location  
(base: less than 1000 housing units per sq mile) 

1000-1999 2000-3999 4000 or more 
Coeff T-stat Coeff T-stat Coeff T-stat 

Constants 0.584 6.42 0.563 11.04 0.238 1.75 

Family type (base: nuclear family)       

   Single-parent ---- ---- 0.018 1.44 0.018 1.44 

Household income (base: less than 100K)       

   100K or more ---- ---- -0.037 -2.47 ---- ---- 

Housing type (base: detached)       

   Duplex ---- ---- ---- ---- 0.099 6.60 

   Apartment or Townhouse ---- ---- 0.072 2.44 0.302 4.65 

Number of workers with the option to 
work from home 

---- ---- -0.028 -2.15 -0.028  -2.15 

 

In addition to the above observed effects of exogenous variables, we estimated the following covariance 
matrix (t-statistics in parenthesis) between the differences of error terms with respect to the error term of 
the lowest density residential location alternative: 

















(1.70) 59.0(2.74) 76.0(3.37) 59.0 

(2.61) .131(1.98) 97.0 

(fixed) 00.1

     

Note that the terms in the parentheses represent the t-statistic values. Since this is a differenced error-
covariance matrix (Λ), a clear interpretation of the elements of this matrix is not straightforward.  

 

 

 


