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ABSTRACT 

This paper formulates a model that extends the traditional panel discrete choice model to include 

social/spatial dependencies in the form of dyadic interactions between each pair of decision-

makers. In addition, the formulation accommodates spatial correlation effects as well as allows a 

global spatial structure to be placed on the individual-specific unobserved response sensitivity to 

exogenous variables. We interpret these latter two effects, sometimes referred to as spatial drift 

effects, as originating from endogenous group formation. To our knowledge, we are the first to 

suggest this endogenous group formation interpretation for spatial drift effects in the 

social/spatial interactions literature. The formulation is motivated in a travel mode choice 

context, but is applicable in a wide variety of other empirical contexts.  Bhat’s (2011) maximum 

approximate composite marginal likelihood (MACML) procedure is used for model estimation. 

A simulation exercise indicates that the MACML approach recovers the model parameters very 

well, even in the presence of high spatial dependence and endogenous group formation tendency. 

In addition, the simulation results demonstrate that ignoring spatial dependence and endogenous 

group formation when both are actually present will lead to bias in parameter estimation. 

 

Keywords: Spatial interactions, social interactions, spatial lag, spatial drift, endogenous group 

formation, maximum approximate composite marginal likelihood, panel data. 
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1. INTRODUCTION 

1.1. Background 

The decision of an individual to use a particular form of travel mode, or the decision of an 

individual to participate in leisure and other physical activities, or the decision of a household to 

purchase a certain type of vehicle are all examples of activity-travel behavior choices where 

discrete choices of one agent may be inter-related with those of others based on spatial and/or 

social proximity. There is now a substantial academic literature on this topic in several fields, 

including marketing, economics, regional science, and transportation. This is not surprising, 

since spatial/social interactions can be exploited by decision-makers to achieve desired system 

end-states. That is, reinforcing spatial/social interactions imply that a stimulus applied to one 

decision agent can get magnified through the agent’s interactions with other agents, so that the 

aggregate-level effect of a policy can be higher than the sum of individual-level effects. As a 

simple illustration of this point, consider a travel mode choice context, and assume that the non-

motorized mode use propensity of one individual influences that of her/his residential neighbors 

(this may happen because, for example, the pro-bicycle attitude or health consciousness of one 

individual rubs off on other neighbors of the individual through social interactions).  Then, a 

limited-funding information campaign to promote the use of non-motorized modes of 

transportation would do well to target individuals from different neighborhoods, rather than 

targeting individuals from the same neighborhood. Doing so will benefit from the “ripple wave” 

(or spatial multiplier) effect caused by intra-neighborhood social exchanges, so that the 

aggregate-level effect of the information campaign on non-motorized mode use can be 

substantial.  

A challenge, however, when investigating the issue of social/spatial interactions, is to 

isolate these interactions from other “spurious” sources that may inappropriately get manifested 

as social/spatial interactions (in the current paper, we will refer to social/spatial interactions in 

the strict context of some form of dyadic interaction between individuals located in close social 

or spatial proximity, and accommodate it using a spatial lag effect commonly adopted in the 

spatial econometrics literature; this effect is also oftentimes referred to as the endogenous 

interaction effect in the literature, as in Elhorst, 2010 and Manski, 1993). Using Manski’s 

terminology, the “spurious” sources of the spatial lag effect may include unobserved correlation 

effects and/or exogenous interaction effects (the latter are also sometimes referred to as 
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contextual effects). The former source, as generally discussed in the literature, relates to 

unobserved factors that drive the decisions of decision agents located in close proximity of one 

another. For instance, two spatially proximate neighborhoods may both have good continuous 

bicycle pathways and/or seating areas along walking pathways. If these detailed 

bicycle/pedestrian infrastructure characteristics are not available to the analyst, and are not 

accounted for, the resulting unobserved correlation would get manifested as a spurious 

social/spatial interaction effect (because of the elevated use of non-motorized mode use in the 

two neighborhoods). The second spurious source, exogenous variable effects, relates to the 

exogenous variables of one agent directly impacting the decision-making of a neighboring agent 

(as opposed to the indirect impact through the social/spatial interaction effect). For instance, this 

may occur if the pedestrian facilities in one neighborhood affect the decision of an agent in an 

adjacent neighborhood to walk more.  

 

1.2. Overview of Earlier Literature on Identification in Models of Spatial/Social Interaction 

Many earlier studies have examined the case of identification with cross-sectional data in the 

presence of social/spatial (i.e., endogenous) interactions as well as exogenous interaction effects 

(with or without unobserved correlation effects; see Blume et al. 2011 for an extensive review). 

Several of these studies have been undertaken in the context of a linear-in-means model (such a 

model relates the outcome of each individual linearly to her/his characteristics, the mean 

outcome or the mean expected outcome of the person’s reference group, and the mean 

exogenous characteristics of the reference group). The studies also typically assume peer social 

interaction effects only within exclusive groups (that is, individuals are partitioned in groups, and 

individuals in a group are influenced by all members within the group and no one outside the 

group; in the notation of the next section, the weight matrix W is block-diagonal, with each 

block diagonal representing the interactions within a group). In these studies, the spatial/social 

weight used to capture the strength of the social and exogenous interaction effects between two 

agents is essentially )(/1 ign  (or a minor variant of this weight), where )(ign  is the number of 

agents belonging to the group g of which i is a part.  Manski (1993) uses the above specification 

of the interaction effects and assumes the absence of unobserved correlation effects, while 

Moffitt (2001) excludes the individual i in computing )(ign  and assumes that all groups have the 

same size. Lee (2007), on the other hand, uses the same specification as Mofitt (2001), but also 
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allows the group sizes to vary across groups and accommodates a fixed unobserved group effect 

(that is, a common group unobserved effect that influences all the dependent variable outcomes 

in the group and may be correlated with the exogenous variables). Lee shows how the group size 

variation, along with the linkage of group sizes to overall sample size, allows the disentangling 

of social/spatial and exogenous interaction effects. Davezies et al. (2009) study the same 

formulation as Lee and show that identification is achieved even without the linking of group 

sizes to overall sample size, but as long as there are at least three different group sizes. 

Bramoulle et al. (2009) develop general necessary and sufficiency results for identification of 

social/spatial and exogenous interaction effects, and show how their results admit those of 

Manski, Mofitt, Lee, and Davezies as special cases. They further show that as soon as the weight 

matrix is not based on partitioning individuals into exclusive groups, but allows each individual 

to have her or his own network of reference individuals in a spatial/social network structure, this 

immediately is sufficient to allow identification (in an asymptotic sense) of spatial/social and 

exogenous interaction effects under the assumption that there are no unobserved correlation 

effects. They also extend their results to the case of fixed unobserved effects. However, in doing 

so, they go back to allocating individuals to exclusive groups and allowing group-specific 

unobserved effects (that generate correlation across members within the groups) while allowing a 

network interaction structure within the group. Using a differencing approach (similar to that 

used in linear panel data models), they eliminate the unobserved effects within each group (and 

avoid the incidental parameters problem) and then are able to disentangle the social/spatial 

interaction effects and the exogenous interaction effects, Lee et al. (2010) also study the case of 

multiple groups, with a spatial/social network autoregressive weight structure for the 

unobservables within each group to capture proximity-based preference correlations within the 

network as well as a group-specific unobservable effect to accommodate common environmental 

factors affecting individuals within each group. They eliminate the fixed effects using a specific 

approach they propose, and also show how the non-linearity introduced by such a network 

weight matrix (though now strictly within each group) facilitates identification of spatial/social 

interaction effects, exogenous interaction effects, and the unobserved autoregressive correlation 

effects within individuals within a group. It is important to note that Lee et al.’s approach is 

immediately applicable to the case of a single large network of individuals without any exclusive 

group assignment into smaller networks. The take-away is that, theoretically speaking, using a 
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network structure for the social/spatial interactions and the exogenous interaction effects, as well 

as a (different) network structure for the unobserved correlation effects among agents, in general, 

will allow identification of all three effects – spatial/social interactions, exogenous interaction 

effects, and unobserved correlation effects.   

Separate from the linear-in-means model studies discussed above, a handful of studies 

have examined identification considerations in discrete choice models (Brock and Durlauf, 2001, 

2006, 2007; Soetevent and Kooreman, 2007; Krauth, 2006). These studies, like Manski (1993), 

Mofitt (2001), and Lee (2007), also consider strict group interaction effects (that is individuals 

are partitioned into exclusive groups, and interactions effects are confined strictly within groups). 

They formulate the underlying latent continuous propensity or utility of an individual for an 

alternative as a linear function of individual characteristics, the mean observed discrete choice 

share (or the mean expected discrete choice share) for the alternative in the group in which the 

individual belongs, and the mean exogenous characteristics of that group. These studies show 

that in the absence of unobserved group correlation effects, the social/spatial interaction effects 

can be disentangled from the exogenous interaction effects because, while the exogenous 

interaction effects linearly affect the utility of an alternative, the endogenous interaction effects 

are based off choice shares (and the transformation from the utilities to choice is non-linear). 

That is, the non-linearity inherent in the transformation from utility to choice probability can be 

exploited for identification purposes. The above holds for the case when the density function of 

the kernel error component defining the type of discrete choice model is pre-specified (such as 

an extreme value distribution), but also if the density function is left unspecified but with some 

additional assumptions. In the presence of unobserved group correlation effects, things become 

quite difficult and Brock and Durlauf (2007) identify specific conditions that may help 

identification in this case (such as, for example, the unimodality of the density functions of the 

unobserved group effects).  Recently, Bhat et al. (2014a) discussed why identification of spatial 

interaction effects and exogenous interaction effects are possible in discrete choice and non-

linear models using a different specification than the ones discussed above. Specifically, Bhat et 

al. use a specification in which the underlying continuous variables (alternative utilities in a 

discrete choice model or a propensity measure in ordinal/count models) that determine a non-

continuous outcome is a linear function of exogenous variables, a weighted mean of exogenous 

variables (exogenous interaction effects), and a weighted mean of the underlying continuous 



5 

variables of other individuals. They refer to the latter as the social/spatial interaction effect. The 

difference between this specification and the Brock and Durlauf-type specification is that Bhat et 

al.’s specification is essentially what is referred to as a spatial Durbin specification (see LeSage 

and Pace, 2011) in the spatial econometrics literature for continuous observed dependent 

variables, but now applied to the underlying continuous variables determining the non-

continuous outcomes. The other difference between Bhat et al.’s specification and that of Brock 

and Durlauf is that Bhat et al. use a network weight matrix for the social/spatial as well as the 

exogenous interaction effects as opposed to the strict exclusive group formation specification 

used in Brock and Durlauf. However, Bhat et al.’s discussion regarding identification in their 

specification holds true even if the interaction effects were confined in strict groupings of 

individuals. Overall, there has been limited empirical work on network level interactions even in 

a linear context, and very little empirical work on network level interactions in a discrete choice 

context (much of the latter literature is from the spatial analysis field, but, until the recent 

introduction of a composite marginal likelihood approach by Bhat (see Bhat, 2011, Bhat et al., 

2014a, Bhat, 2014) for accommodating network level spatial effects, it was not practical to 

estimate such models with moderate sized samples.  

The studies above consider cross-sectional data. As soon as one has panel data, any 

unobserved group or network fixed effects in the case of strict group partitioning can be 

accommodated in a straightforward way by a differencing scheme in the linear models or using a 

conditional likelihood given sufficient statistics (see Chamberlain, 1984 and Bartolucii and 

Nigro, 2010). In this case, or the case of a single large network with panel data, it becomes easier 

and more stable to estimate unobserved correlation effects across individuals if we assume that 

the pattern of this unobserved correlation remains stable over time (effectively, we are able to 

control for individual-specific unobserved heterogeneity and allow network correlation effects 

across individuals through these unobserved heterogeneity terms).  

To put the discussion above together, identification of each of the spatial/social 

interaction effects, exogenous variable effects, and unobserved correlation effects is theoretically 

feasible if a single large network is being considered in the linear model. When a discrete choice 

model is considered instead of a linear model, the non-linearity of such a model further facilitates 

theoretical identification. Finally, the presence of panel data can further help identify unobserved 
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correlation effects in a network model if we assume that the pattern of the correlation effects do 

not change over time. 

A caveat though to the above conclusion. While it is true that identification of the 

social/spatial interaction effects, exogenous interaction effects, and unobserved correlation 

effects can be facilitated by a network interaction structure, non-linear models, and panel data, 

disentangling these empirically can still be a challenge and can lead to imprecise estimation.  

Specifically, disentangling spatial/social interaction effects from exogenous interaction effects, 

particularly in the presence of unobserved correlation effects, can lead to empirical identification 

problems due to weak identification (see, for example, Elhorst, 2010 and Blume et al., 2011). 

That is, there is fundamental difficulty in empirically disentangling social/spatial interaction 

effects and exogenous interaction effects, particularly in the presence of unobserved correlation 

effects and regardless of the model specification. So, it is not surprising that most studies either 

control only for the unobserved correlation effects (with the implicit assumption of the absence 

of exogenous variable effects) or only for the exogenous variable effects (with the implicit 

assumption of the absence of unobserved correlation effects). In this study, we will control for 

unobserved correlation effects but assume the absence of exogenous variable effects, because of 

the difficulty in motivating exogenous variable effects in many transportation contexts.1 Note 

also that the specification used in the current paper is based on social/spatial interaction effects 

and unobserved correlation effects operating at the level of underlying propensity variables 

dictating observed discrete outcomes. Thus, the implication of ignoring exogenous variable 

effects is that the propensity, for example, to use a specific mode for an individual is affected by 

the propensity to use that mode by those in close proximity of the individual, not directly by the 

income values or the built environments of those in close proximity of the individual.  

                                                 
1 Our approach, in a traditional continuous dependent variable setting, leads to what is referred to as the Kelejian-
Pruscha (KP) model (though, as we will discuss later, the model we propose is for an unordered-response discrete 
dependent variable and extends the KP model in important ways). The alternative of considering exogenous variable 
effects and ignoring unobserved correlation effects, in a traditional continuous dependent variable setting, is referred 
to as the spatial Durbin model. The reader is referred to LeSage and Pace, 2009 and Elhorst, 2010 for discussions. 
Both these authors suggest that, given the identification problems in introducing both these effects (along with the 
social/spatial interaction or spatial lag effect), there are benefits to starting with the spatial Durbin model as the most 
general specification. This is because ignoring spatial dependence in the errors in continuous variable models leads 
only to inefficiency loss, while ignoring spatial dependence in the exogenous variables leads to biased and 
inconsistent estimates due to the omitted variable problem. However, this discussion does not extend to discrete 
choice models, where the typical spatial dependence structure used for the error disturbance also adds to error 
heteroscedasticity, which leads to biased and inconsistent estimates of the discrete choice model. Further, as 
discussed in the main text, in many transportation contexts, it may be easier to motivate unobserved error correlation 
effects.  
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1.3. Unobserved Individual-Level Heterogeneity and Spatial Drift Effect 

Unobserved individual heterogeneity refers to variations (due to unobserved factors) across 

decision agents in the preference for each alternative as well as in the responsiveness to 

exogenous variables. Thus, as discussed in Bhat and Sardesai (2006) and Pinjari and Bhat (2006) 

in a travel mode choice context, individuals may have different intrinsic preferences for specific 

modes due to unobserved lifestyle preferences and unobserved location factors, and may also 

have different sensitivities to exogenous variables such as travel times, costs, and residential 

built environment attributes (land-use mix, transit availability and accessibility, household 

density, employment density, bicycle facility density, street block density, etc.). For instance, a 

pro-bicycle attitude that does not change over time and is unobserved would lead to a higher than 

average utility for the bicycle alternative, while a time-conscious person would be highly 

sensitive to travel time during all her/his choice instances. This would then translate to an 

individual-specific random coefficients formulation, leading also to a stationary across-time 

correlation for the same individual in the case of panel or repeated mode choice data. Ignoring 

the presence of such unobserved heterogeneity will, in general, lead to biased and inconsistent 

parameters on all model parameters, including the social/spatial interaction effect. In addition, 

because of the spatial nature of decision agents’ locations, some earlier studies have suggested 

that these unobserved individual-level heterogeneity effects should be correlated over decision 

agents based on the spatial (or social) proximity of the agents’ locations, which is then referred 

to as spatial drift (see Bradlow et al., 2005 for a discussion). For example, Mittal et al. (2004) 

argues that locations in close proximity may share common climactic or lifestyle values that can 

lead to unobserved correlation in their sensitivity to specific marketing variables. On the other 

hand, almost all social interaction studies accommodate only what is referred to as a group 

unobserved effect in which individuals are segmented into exclusive groups with a fixed 

unobserved effect that commonly affects the outcomes of all individuals within the group (and 

also generates correlated unobserved effects among individuals within each group). Such a 

specification does not accommodate unobserved individual heterogeneity across individuals 

within the same group, and assumes no correlation effects across individuals of different groups. 

In this paper, we move away from strictly groupwise interaction effects with equal 

intensity of interaction among individuals within a group (equivalent to a block diagonal weight 

matrix with equal values of all non-diagonal entries within each block-diagonal and zero values 
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on the diagonal) to a very general single network interaction effects model with unequal 

intensities of interaction among all individuals (equivalent to a general weight matrix with non-

equal values of non-diagonal entries and zero values on the diagonal). In spatial econometrics, 

the first type of model is referred to as a local interaction model, while the second is referred to 

as a global interaction model (Anselin, 2003). Our reason for the use of a global interaction 

model is that, in spatial contexts where the grouping is generally based on geographic areas (such 

as census tracts or block groups or neighborhoods), the assumption that that there would be no 

interaction effects or no unobserved correlation effects between two individuals very close to one 

another in space but in different geographic areas is difficult to defend. The use of predefined 

spatial pockets for capturing interaction effects and correlation effects also leads to what is 

referred to as the modifiable areal unit problem or MAUP (see Guo and  Bhat, 2008 for a 

detailed discussion of this issue), which is substantially reduced by our use of a global network 

interaction structure.  In addition, we adopt a general spatial drift specification in which we allow 

a network-based unobserved correlation structure not simply for the overall error term, but also 

for individual coefficients on exogenous variables. This correlation structure is not only due to 

unobserved location-specific unobservables that may be correlated over space, but also 

motivated from the perspective of self-selection in the social interactions literature (see Mofitt, 

2001 and Hartman et al., 2008). The resulting self-selection, if not controlled for, can manifest 

itself as social/spatial interactions. For example, again in the travel mode choice context, 

households and individuals who intrinsically prefer walking or bicycling (say due to their 

environmental consciousness) may locate themselves in close proximity of one another, because 

of unobserved factors such as good walk and bicycle path continuity of their immediate 

neighborhood. Similarly, households and individuals who are transit-oriented may be drawn 

toward locations with such built environment factors as good land-use mixing, high built-up 

density, and good transit availability and accessibility. The net result in the examples above is 

that individuals and households with similar mode use propensities and sensitivity to observed 

built environment attributes may be in close proximity, but this is not a result of social/spatial 

interactions after locating in a neighborhood or the causal influence of built environment 

attributes. That is, there is the possibility of residential self-selection of individuals based on 

mode-use propensities. If this residential self-selection is ignored, it can incorrectly manifest 

itself as a spatial lag effect based on dyadic interactions and/or built environment effects. 
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Interestingly, there have been studies in the transportation and other fields that accommodate 

residential self-selection effects due to clustering based on travel preferences, but these have not 

considered spatial interaction (lag) effects (see for example, Bhat and Guo, 2007, Mokhtarian 

and Cao, 2008, Tsai, 2009, and Bhat et al., 2014b). These studies run the reverse risk that true 

spatial lag effects can be manifested as spurious self-selection effects, completely ignoring the 

social multiplier effect of transportation and land-use policies. Of course, ignoring one or both of 

the self-selection and spatial lag effects will, in general, provide incorrect estimates of the “true” 

effects of neighborhood attributes on travel mode, which can potentially lead to misinformed 

built environment design policies.2  

 

1.4. The Current Study and its Many Dimensions 

The current study is set in the context of examining commute mode choice using multi-day data, 

though the model formulation is applicable for any other unordered-response choice situation. In 

doing so, we accommodate several econometric aspects relevant to spatial panel unordered 

discrete choice models.  

Figure 1 show the different components of a comprehensive mode choice model. The 

elements at the bottom of the figure represent non-spatial components, while the three elements 

at the top of the figure represent the spatial components. The next two sections discuss these 

components in more detail. 

 

1.4.1. The non-spatial components 

The first non-spatial component (first box in the bottom row of Figure 1) refers to the direct 

effect of exogenous variables (referred to as built environment effects, but can also represent 

other exogenous variables in the model). The second and third non-spatial components in the 

bottom row correspond to the choice-occasion specific error terms in the modal utilities, with the 

second one capturing the cross-alternative covariance in the utilities (due to heteroscedasticity 

and dependence in the random utilities across alternatives) at each choice occasion of the 

individual. In essence, this component allows the presence of unobserved factors that engenders 

correlation in the utilities of modes at each choice occasion of each individual (such as, for 

                                                 
2 Econometrically speaking, relative to Lee et al. (2010), our paper differs in that we allow a global network 
structure (equivalently, a single group in Lee et al.’s study), and also accommodate a network-based unobserved 
correlation structure for the overall error term as well as for individual coefficients on exogenous variables. 
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example, the need to travel with others simultaneously increasing or decreasing the modal 

utilities ascribed to the public transportation alternatives) and allows the magnitude of 

unobserved effects to vary across alternatives at each choice occasion of each individual (for 

example, ride comfort may vary substantially for public transportation based on the specific 

equipment used to serve a route, while ride comfort may be more uniform for the car mode).  

The third component entitled “cross-time fading unobserved preference” accommodates time-

varying dependency effects across the utilities of the same individual at different points in time. 

These time-varying effects may be attributed to the effects of recent experiences and events that 

influence the environmental or other perceptions of individual agents. As such, these effects fade 

over time, with the perceptions/attitudes at a particular time being much more affected by 

perceptions/attitudes in the recent past than those from sometime back (for example, a sociable 

person may prefer public transportation modes more so than her/his peers for all choice 

occasions, but the person’s sociable characteristic may also change over time resulting in fading 

correlation in public transportation utility over time). Note that these cross-time fading 

unobserved preference effects are being introduced in the model structure so that the formulation 

is generic, and is applicable to both panel as well as repeated choice data. In general, the 

inclusion of these time dependency effects will be more appropriate for panel data than for 

repeated choice data over a very short time frame. The fourth and fifth components at the bottom 

of Figure 1 correspond to individual-specific unobserved preference and unobserved response 

sensitivity, both of which are time-invariant across the many choice instances of the same 

individual (see Section 1.3). The presence of multi-day data enables the estimation of such 

individual-specific unobserved variations in preference and response sensitivity, which also 

generate a time-invariant dependency in the utilities of each mode across the repeated choices of 

the same individual.  

 

1.4.2. The spatial components 

The accommodation of the non-spatial components leads to a general aspatial panel unordered 

model. In this paper, we superimpose three types of spatial effects, as discussed intuitively in 

Sections 1.1 and 1.3, and econometrically below.   

The spatial/social dependencies (originating from dyadic interactions as motivated in 

Section 1.1) among the choices of spatially proximate decision-makers are considered by 
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assuming a spatial (autoregressive) lag structure (across individuals) for the utility function of 

each mode (labeled as the spatial lag effect in Figure 1). Such spatial lag structures have seldom 

been considered in the spatial econometric literature for unordered-response discrete choice 

models, because they require the evaluation of a multi-dimensional integral of the order of the 

number of decision agents multiplied by the number of alternatives less one. In the past five 

years or so, researchers have started to find ways to break the impasse in estimating spatial 

unordered models. Examples include Carrión-Flores and Irwin (2004), Smirnov (2010), Chakir 

and Parent (2009), and Sidharthan and Bhat (2012). Among these, the first two avoid 

multidimensional integration through the use of a two-step instrumental variable estimation 

technique after linearizing around zero interdependence, and so work well only for the case of 

large estimation sample sizes and weak spatial dependence. Chakir and Parent (2009) employ a 

Bayesian MCMC method, which requires extensive simulation, is time-consuming, is not 

straightforward to implement, and can create convergence assessment problems (Franzes et al., 

2010). Sidharthan and Bhat (2012) use Bhat’s (2011) maximum approximate composite marginal 

likelihood (MACML) approach that is based on a combination of an analytic approximation for 

the evaluation of the multivariate cumulative normal density (MVNCD) function and a 

composite marginal likelihood (CML) approach. They also show that the MACML approach is 

able to recover parameters accurately in simulation experiments. In this paper, we build upon the 

spatial lag specifications of these earlier studies by adding other spatial considerations in the 

model structure. 

In addition to the spatial lag effect, the formulation in the paper allows the presence of a 

spatial structure on the individual-specific unobserved factors that influence the overall valuation 

(or utility) of each mode by each individual (labeled as “spatial structure on individual-specific 

unobserved preference” in Figure 1). We do so by employing a spatial autoregressive structure 

for the random effects, which captures both unobserved location-specific unobservables 

impacting modal outcomes that may be correlated over space, and individuals locating in space 

based on unobservable modal preferences (see discussion in Section 1.3). This is the traditional 

structure used for the spatial error model in spatial econometrics (see Pace and LeSage, 2011), 

though we combine this with a spatial lag structure in a Kelejian-Prucha-like specification and 

apply the specification to repeated choice data as opposed to cross-sectional data. As in the case 

of the pure spatial lag model, there have been very few applications of the spatial error model for 
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unordered discrete choice models, again because of the dimensionality of integration involved in 

the resulting likelihood function. Bhat et al. (2010) and Sener and Bhat (2012) estimate spatial 

error models for unordered choice situations, but the copula approach they use is not applicable 

to cases where there is also a spatial lag effect nor is the copula approach easily extended to the 

case when spatial drift effects also are to be considered. On the other hand, the MACML method 

used by Sidharthan and Bhat (2012) for the spatial lag model is applicable in a straightforward 

way to accommodate spatial correlation effects (see Bhat et al., 2013 for additional details).  

Finally, as discussed earlier in Section 1.3, individuals are likely to vary in their 

sensitivities to relevant exogenous determinants based on unobserved location-specific factors 

and/or self-selection driven clustering of individuals associated with unobserved lifestyle 

preferences. These individual-specific response variations are likely to have a spatial correlation 

pattern based on the residential location of individuals (this effect is labeled as “Spatial structure 

on individual-specific response sensitivity” in Figure 1). Such a spatially-structured response 

heterogeneity effect is accommodated through a spatial autoregressive structure on the random 

coefficients of variables (the spatial correlation effect, along with the spatially-structured 

response heterogeneity effect, represent the spatial drift effect, as shown in Figure 1). This model 

structure is more general than the Kelejian-Prucha structure (Elhorst, 2010) that includes a 

spatial lag structure and an additional autoregressive structure but only on the constant parameter 

(this is what we have labeled as “spatial structure on individual-specific unobserved preference” 

in Figure 1, and discussed in the previous paragraph). That is, the Kelejian-Prucha structure 

considers only the spatial lag and spatial correlation effects, but not the spatially-structured 

response heterogeneity effect. Additionally, we develop our structure for unordered discrete 

choice models, while the Kelejian-Prucha structure is for linear or ordered-response models.3  

The approach we propose is also novel in its accommodation of residential self-selection 

through a spatial drift interpretation. In contrast, the typical approach to accommodate residential 

                                                 
3 In the spatial literature, spatial drift effects have been typically incorporated using the geographically weighted 
regression (GWR) approach of Brunsdon et al. (1998) (some other approaches, such as spatial adaptive filtering and 
multi-level modeling, are either too ad hoc or too restrictive in capturing spatial drift effects, and are not often used; 
see Mittal et al., 2004 for a discussion). The GWR approach allows spatial dependence in parameters based on 
spatial proximity, but is not able to disentangle the spatial drift effects from the direct parameter effect. On the other 
hand, being able to do so is important in many cases. For example, in our mode choice context, the effects of neo-
urbanist developments on mode shares, net of residential self-selection effects (as captured by spatial drift), is 
important in its own right. Our formulation explicitly and directly captures spatial dependence in the random 
coefficients and is able to isolate the mean direct effect of each exogenous variable, while also controlling for spatial 
lag and spatial error effects.  
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self-selection has been to jointly model residential location and travel choices (see Bhat and Guo, 

2007 and Mokhtarian and Cao, 2008 for detailed reviews of the approaches used to 

accommodate self-selection effects). In these earlier approaches, it is literally infeasible to also 

consider spatial lag effects that may be at play in specific empirical contexts. At the same time, 

we have to acknowledge that, in the current study, the emphasis is on the modal choice outcome 

and the disentangling of spatial/social interaction effects, unobserved correlation effects and 

residential self-selection effects, and “true” built environment effects on mode choice. The 

residential location pattern itself is considered exogenous (that is, the weight matrix W used to 

capture social/spatial interaction patterns and spatial drift patterns in assumed exogenous).4 In 

other words, the effects of changes in exogenous variables is assessed on mode choice, keeping 

the residential pattern fixed (even if the notion that individuals locate themselves in part based on 

unobserved-to-the-analyst modal preferences and tastes is accommodated; this is self-selection 

with respect to unobservable variables). This approach may be justified from the notion that 

modal choices and residential choices are made at different timescales (see also Blume et al., 

2011 for a similar argument). Thus, an improvement in public transportation service or an 

improvement in bicycle infrastructure in selected corridors or areas will likely impact modal 

choice before potentially influencing residential choices. But in estimating the mode choice 

model, we accommodate for the possibility that unobserved modal choice preferences and 

sensitivities to modal choice determinants may themselves have affected (in part) residential 

choice patterns. This is achieved through the spatial drift effects. In assessing any social/spatial 

interaction effects and built environment effects on modal choices, these unobserved correlation 

effects in preferences/sensitivity across individuals based on residential choice have to be 

controlled for. In the longer run, the analyst can have a separate model of residential choice, 

followed by the mode choice model proposed here, to obtain the combined long-term effects 

based on residential location changes as well as modal changes. 

 

                                                 
4 In the terminology of the social network formation literature, we accommodate self-selection effects caused by 
residential patterns in modeling modal choice, though we do not jointly model the coevolution of residential network 
formation (that is, the W matrix) and the modal outcome. That is, the network literature (see, for example, Steglich 
et al., 2010 and Christakis and Fowler, 2013) considers the network formation and behavior outcomes as closely 
intertwined and evolving over time, with each influencing the other in a dynamic fashion. We do not examine such a 
dynamic system of network and behavior coevolution in this paper.  
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1.5. Structure of the Paper 

This paper, at once, combines spatial lag effects, spatial structure on individual-specific 

unobserved preference and response heterogeneity effects, and time series effects in a 

multinomial probit model formulation. In addition, the formulation is framed in a panel-type 

setting to estimate a model from multiple choice instance data from the same individual.  

 The rest of this paper is structured as follows. In the next section, we present the proposed 

model formulation. We start our model development by first incorporating the non-spatial 

components, followed by the spatial components. Section 3 discusses the estimation procedure 

and identification considerations. Section 4 then describes a simulation study undertaken to 

demonstrate the functionality of our formulation and its ability to recover spatial parameters. 

Finally, Section 5 concludes the paper and propose avenues for future research. 

  

2. MODEL FORMULATION  

In the following presentation, we will use the label “individual” to refer to a worker who has to 

make a mode choice decision for her/his commute. IIDEN  will refer to an identity matrix of size 

I, T1  will refer to a )1( T column vector of ones, and TT1  to a )( TT  matrix of ones. For ease 

in presentation, we will also assume that all alternatives are available to all individuals, and that 

the number of choice instances is the same across all individuals (these assumptions are 

innocuous and can be easily relaxed, but make the notations easier). Let the utility qtiU  accrued 

by individual q (q = 1, 2, …, Q) during choice occasion t (t = 1, 2, …, T) for alternative i (i = 1, 

2, …, I) be a function of a )1( K column vector of exogenous variables qtix  (excluding a 

constant). In the usual utility maximization decision principle, the individual chooses the 

alternative that provides her/him the highest utility at any choice occasion. That is, individual q 

selects alternative i at choice occasion t if .ijUU qtjqti  As in the typical random utility 

maximization formulation, the individual is assumed to be aware of all factors that impact her/his 

utility, but some of these factors are unobserved to the analyst (that is, qtiU  is random from the 

perspective of the analyst because of the presence of unobserved components).  

 



15 

2.1. Incorporating Built Environment Effects, Cross Alternative Choice Occasion-Specific 
Covariance, and Cross-Time Fading Unobserved Preference (the first three non-spatial 
components in Figure 1) 

Consider the following utility structure: 

qtiiqti aU ~~  qtixb                                                                                                                      (1) 

where ia~  represents the generic preference across all individuals for alternative i, b  is a )1( K

vector of coefficients, and qti~  is a normally distributed choice instance-specific error term 

uncorrelated with qtix  and also uncorrelated across individuals. The vector b  captures the built 

environment effects (along with the effects of other exogenous variables contained in qtix ). 

Next, to allow a general cross alternative choice occasion-specific covariance structure on the 

qti~  terms as well as a cross-time fading unobserved preference component, consider a first order 

autoregressive (AR1) temporal dependency process: 

qtiitqqti  ~~~
,1,   ,                                                                                                                       (2) 

where  10    is a temporal autoregressive parameter. The error term qti~ is temporally 

uncorrelated, but can be correlated across modes due to unobserved factors at time t that 

simultaneously increase or decrease the utility of specific combinations of modes: 

  ),
~

,(~~,...,~,~~
21 Ψ0η IIqtIqtqt MVN qt  where )

~
,0( ΨIMVN  refers to a multivariate normal 

distribution of dimension I with mean I0  and covariance Ψ
~

. The covariance matrix Ψ
~

 also 

allows the variance of the utilities to vary across alternatives at each choice occasion (see Section 

1.4.1). Note also that, in Equation (2), we allow the preference for each alternative to be 

correlated across choice occasions of the individual, though there is a fading correlation based on 

the duration between choice occasions (see Section 1.4.1).  If ,0 the implication is that there 

is no cross-time fading unobserved preference component across the choice instances of the 

same individual, and the model in Equation (1) collapses to a simple cross-sectional MNP model. 

On the other hand, if 0  but ,
~

IIDENΨ   the model in Equation (1) is a panel MNP model 

but with an independent and identically distributed (IID) error structure at each choice instance 

of the individual.  
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2.2. Incorporating Time-Invariant Individual-Specific Unobserved Preference and 
Response Sensitivity (the final two non-spatial components in Figure 1) 

Individuals are likely to be characterized by some unobserved personality traits that are time-

invariant (at least over the span of the data collection period of a panel) and that impact the 

utilities they associate with alternatives at each choice instance as well as their responsiveness to 

relevant exogenous variables (see discussion in Sections 1.3 and 1.4.1). This may be captured as 

follows: 

qtiitqqqiqtiitqqiiqti aU  ~~~~~)
~

(~
,1,,1,   qtiqtiq xβxβb '

      (3) 

where qiiqi a   ~~  with ia~  representing the average (across individuals) inherent preference for 

alternative i and qi  representing the deviation of individual q’s unobserved preference for 

alternative i from that of the average, and qq βbβ
~  with b representing the average (across 

individuals) response sensitivity vector and qβ
~

 representing the deviation vector of individual 

q’s responsiveness from that of the average. To complete the specification, assume a multivariate 

normal distribution for   ),(~',...,, 21 Λ0α


IIqIqqq MVN  and for  Ω0


,~
~

KKMVNqβ . 

 

2.3. Incorporating Social/Spatial Interaction (first spatial component in Figure 1) 

As discussed in Sections 1.1 and 1.4.2, we incorporate social/spatial dependencies through a 

spatial lag specification for the utilities as follows: 

 qtiitqqqi
q

tiqqqqti UwU  ~~~
,1,  


 qtixβ '                                                                            (4) 

where  10    is the spatial lag autoregressive parameter, qqw   is the usual distance-based 

spatial weight corresponding to individuals q  and q’ ( 0qqw  and 1



q

qqw   for all individuals 

q). The weight qqw  is assumed, as is typical in spatial econometrics, to converge to zero as the 

social/spatial distance between individuals q and q’ tends to infinity. 
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2.4.  Incorporating Spatial Drift (or Self-Selection) Effects (the final two spatial 
components in Figure 1) 

The spatial drift effects (discussed in Sections 1.3 and 1.4.2) are captured by allowing a 

structured dependency pattern in both the intrinsic mode-use preferences and the sensitivity to 

mode specific exogenous variables (i.e., in the qi~  terms for each alternative i and in the qβ

vector of Equation (4)). To do so, we use a spatial autoregressive structure for qi : 

 
'

'
~

q
qiqiqqqi τw   , where  10   θθ  is a residential self-selection parameter that captures 

the intensity of residential clustering based on generic mode preferences. qiτ
~  is an unobserved 

individual-specific error term for mode i that is independent across individuals, but can be 

correlated across modes so that   )
~

,(~'~,...,~,~~
21 Λ0τ IIqIqqq MVN . Similar to the spatial 

structure on the unobserved preferences, we assume a spatial autoregressive structure on the 

unobserved sensitivities for each variable k: qkkk bβ ~q , where kb  is the mean effect of the kth 

variable in the qtix  vector, and qk
q

kqqqkqk γβwλβ ~~~

'
''   .  10   kk   is the residential self-

selection parameter that captures the intensity of residential clustering based on the unobserved 

sensitivities for the attribute represented by the kth variable in the qtix  vector, and qkγ
~  is an 

individual-specific normally distributed term capturing unobserved sensitivity to the kth variable 

in the qtix  vector. Define  qKqqq γγγ ~,...,~,~~
21γ , and assume that qγ

~  is a realization of a 

multivariate normal distribution with a mean vector of zeros and covariance matrix Ω
~

: 

 Ω0γ
~

,~~
KKq MVN . 

 

2.5. Matrix Form of Model  

We now put together Equation (4) with the spatial drift effects discussed in the previous section, 

and write the resulting equation in matrix form. To do so, define A
~

 as an )1( I vector whose 

elements are   Iaaa ~,...,~,~~
21A  and W as the )( QQ  spatial weight matrix with elements qqw   

Further, also define qα


 as an )1( I vector   qIqqq  
,...,, 21α , α


 as a )1( QTI vector 

        ' ,...,' ,' 21 QTTT α1α1α1α


, and τ~  as a )1( QTI  vector 
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  )'~(,...,)'~(,)'~(~
21 QTTT τ1τ1τ1τ . Then    ταIDEN1Wα ~ )(  

ITT . Letting G be 

the )( QTIQTI   matrix given by    1 ITTQTI IDEN1WIDENG  , we can write 

.~τ Gα   Next, let    Qγγγγ ~,...,~,~~
21 )1( QK vector,   Kbbb ,...,, 21b )1( K vector, 

  qkqq βββ
~

,...,
~

,
~~

21qβ )1( K vector,   Qβββ
~

,...,
~

,
~~

21β  )1( QK  vector, and let λ  be a )( KK 

diagonal matrix with elements kλ . Then,   γβλWβ ~~~  . Let D  be the )( QKQK  matrix 

given by    1 KQK λIDENWIDEND . Then, we can write γDβ ~~  .  

We will now write Equation (4) in matrix form, using previously defined notation as well 

as several additional matrices: ) ,...,,( 21  qtIqtqt xxxqtx  )( KI  matrix,  ) ,...,,( 21  qTqqq xxxx  

)( KTI   matrix,  ) ,...,,( 21  Qxxxx   )( KQTI   matrix, ),...,,( 21  qtIqtqtqt UUUU  )1( I  vector, 

),...,( 21  qTqqq UUUU  )1( TI vector, ),...,( 21  QUUUU  )1( QTI vector, 

)~,...,~,~(~
21  qTIqtqtqt η  )1( I vector, )~,...~,~(~

21  qTqqq ηηηη  )1( TI  vector, )~,...~,~(~
21  Qηηηη  

)1( QTI vector. Further, define the following matrices: 

),matrix (

0000

0000

0000

0.000

~,)matrix(

010000
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000010

000001

000000

3

2

1

QKQTITT

Q




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

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












































x

x

x

x

xR























      11   ITIQIQQTI IDENRIDENIDENIDENRIDENIDENC   

)( QTIQTI   matrix,     1)(  ITQTI IDENIDENWIDENS   )( QTIQTI   matrix, 

 Λ1IDENτ
~

)~Var(  TTQ , ΩIDENγ
~

)~Var(  Q , GτGΛ  )~Var( , 

matrix) ( 
~

QTIQTIQT  ΨIDENΨ and      xDγDxΩ ~ ~Var ~ . Then Equation (4) in matrix 

notation takes the following form: 

   ),
~~

(~ ~~~~~
 Ξ,BηCγDxτGxA1SU QT QTIMVN  b    (5)                      
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where    S'CCΨΩΛSΞxA1SB QT   
~

and)
~

(
~  b . In the equation above, b  represents 

the effects of built environment and other observed modal/individual attributes (the first non-

spatial component), Ψ  captures the cross-alternative choice occasion specific covariance (the 

second non-spatial component), C  captures the cross-time fading unobserved preference effect 

(the third non-spatial component), τG~  captures the combination of unobserved preference 

heterogeneity (the fourth non-spatial component) and the structured spatial drift dependency 

pattern in the intrinsic mode-use preferences (the second spatial component), γDx ~~  captures the 

combination of unobserved response heterogeneity (the fifth non-spatial component) and the 

structured spatial drift dependency in the sensitivity to mode specific exogenous variables (the 

third spatial components), and the matrix S  appears because of the spatial/social interaction 

effect (the first spatial component).   

The model proposed in this paper is very general, and nests several other spatial models 

in the literature as special cases. Table 1 illustrates these restricted versions of our general model. 

By using nested statistical tests, these restricted versions can be tested against our general model.  

 

2.6. Effects of Exogenous Variables  

The end-objective of models of the type discussed in the previous section is to examine the 

impact of exogenous variables on the discrete outcome of interest. In the setting that motivated 

the current model formulation, once estimated, the parameters of the model can be used to 

forecast the effect on mode choices of changing demographics or built environment variables 

embedded in the x vector. It can also be used by policy makers in different ways to examine a 

change in a variable for one individual on the mode choice probabilities of that individual (direct 

effect), and on the mode choice probabilities of other individuals (indirect effect). But, to 

summarize these effects, it is typical to compute “average” effects, as we discuss later. Further, 

the effects themselves can be computed in several ways. Here, we propose doing so in a way that 

is generalizable to any explanatory variable (whether it is a continuous explanatory variable or 

not) and to any magnitude of change in the explanatory variable (the procedure suggested in 

LeSage and Pace, 2009 and LeSage et al. (2011), on the other hand, is specific to continuous 

explanatory variables and to an infinitesimal change in an explanatory variable).  
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In many panel models of the type investigated here, the panel setting arises from a 

repeated choice situation (such as commute mode choice over different days of the week, or 

mode choice in a series of stated preference questions). This can be used to provide stable 

estimates of unobserved individual-specific unobserved heterogeneity effects, spatial drift 

effects, and social/spatial interaction effects. Once estimated, the choice occasion index t can be 

discarded (with  =0), and the utility function of individual q at any choice occasion may be 

written as: 

                                         (6) 

with  
'

'
~

q
qiqiqqqi τw   , and qk

q
kqqqkqk γβwλβ ~~~

'
''   . All notations are preserved from 

Section  2.4.  Next define the following (for ease in presentation, we maintain the same notations 

as in Section 2.4 for the re-defined vectors and matrices): 

),...,,( 21  qIqqq UUUU  and )~,...,~,~(~
2  qIqqiq η  ( 1I vectors), 

),...,,( 21  QUUUU  and )~,...,~,~(~
21  Qηηηη  ( 1QI vectors),   

),...,,( 21  qIqqq  
α  (I 1 vector),     )(,...,)(,)( 21 Q 

α  ( 1QI vector), 

  '~,...,'~,'~~
21 Qττττ  ( 1QI vector),    Qγγγγ ~,...,~,~~

21 )1( QK vector 

),...,,( 21  qIqqq xxxx  ( KI   matrix) , ),...,,( 21  Qxxxx  ( KQI   matrix),   (7) 

)matrix (
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~
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







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
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
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





, 

  matrix),()( QIQI  1
IQI IDENWIDEN S          

  matrix),(1 QIQIIQI  IDENWIDENG   

   matrix),(1 QKQKKQK  λIDENWIDEND  

matrix), ( 
~

QIQIQ  ΨIDENΨ    xDΩIDENDxΩ ~ ]
~

[ ~
Q  ( QIQI   matrix), and 

GΛIDENGΛ  ]
~

[ Q ( QIQI   matrix). 

),
~

(,~~;~~
qqi βbβxβ  


 qqiiqiqiqqi

q
iqqqqi aUwU  '
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Then, using other notations as in Section 2.5 and Section 3, we may write the following 

counterpart of Equation (5): 

   )
~~

(~~~~~~
Ξ,BηγDxτGxA1SU QIQ MVN  b ,  (8) 

where    S'ΨΩΛSΞxA1SB Q   
~

and)
~

(
~  b . 

The above QI×1-vector U  can be simulated many times (say 5000 times) using the estimated 

values of the parameters.  Next, the utilities across alternatives for each individual q for each of 

the draws are compared, and the alternative with the highest utility is designated as the “chosen” 

alternative for each of the draws for each individual. The predicted share of each alternative 

across the draws for each individual is an estimate of the probability of choice of the mode for 

the individual. The aggregate share (across individuals) of each mode is then readily obtained by 

averaging the individual-level probabilities of each mode. 

 The procedure to compute the effect of variables is then as follows. For continuous 

variables, one may increase the exogenous variable by some percentage value to estimate the 

impact. For discrete binary variables, one can set the value to zero for all individuals and then 

change to the value of one for all individuals to estimate the impact. Specifically, consider the 

case of increasing a continuous exogenous variable by 10%. To estimate this impact, first 

compute the aggregate modal shares as described in the previous paragraph for the base case. 

Then, increase the exogenous variable for the first individual by 10% (while keeping all other 

values fixed), and compute the predicted modal probabilities for the individual. Subsequently, 

the percentage change (from the base case) in the modal probabilities may be computed, and 

designated as the direct effect corresponding to the first individual. Similarly, the percentage 

change (from the base case) in the predicted modal probabilities for this first individual because 

of a 10% increase in the exogenous variable of all other  individuals (but not individual 1) is 

obtained, and designated as the indirect effect corresponding to a change in the exogenous 

variable for all other individuals. Finally, the overall percentage change (from the base case) in 

the predicted modal shares of the first individual because of a 10% increase in the tax rate of all 

individuals (including individual 1) is also obtained, and labeled as the total effect for the first 

individual.  This process can be repeated in turn for each of the individuals in the sample. Next, 

the overall measure of direct, indirect, and total percentage effects may be obtained as the 

average across the  individual-specific direct, indirect, and total percentage changes, 
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respectively.  Note that the total percentage effect will not be equal to the sum of the direct and 

indirect effects because we work with percentage changes. 

 

3. ESTIMATION APPROACH 

To develop the likelihood function for our model, let individual q’s observed choice of mode at 

choice occasion t be qtm . Next, define M  as an ][])1[( QTIQTI   block diagonal 

matrix, with each block diagonal having )1( I  rows and I columns corresponding to the tth 

choice occasion for individual q. Let this II  )1(  matrix correspond to an )1( I  identity 

matrix with an extra column of 1 ’s added as the qtm th column. For instance, consider the case 

of Q = 2, T = 2, and I = 4. Let individual 1 be observed to choose mode 2 at choice occasion 1 

and mode 1 at choice occasion 2, and let individual 2 be observed to choose mode 3 in choice 

occasion 1 and mode 4 in choice occasion 2. Then M  takes the form below. 
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Let MΞMΞBMB  ~
and

~
, and let   be the collection of parameters to be estimated: 

  , ,,...,,,,)
~

Vech(),
~

Vech(
~

 ;)
~

(Vech ; 21
  K, ΨΛAΩb  where Vech(Ω

~
) represents the 

row vector of upper triangle elements of Ω
~

. Then, the likelihood of the observed sample may be 

written succinctly as:  

),),((),(]0[Prob)( 1
)1()1(

*
Ξ ΞBωΞBMU  

 IQTIQTML FL                                   (10) 
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where )1( IQTF  is the multivariate cumulative normal distribution of )1(  ITQ  dimensions, 

)1(  IQT  is the standard multivariate cumulative distribution of )1(  ITQ  dimensions, Ξω is 

the diagonal matrix of standard deviations of Ξ (that is, Ξω is a diagonal matrix  with entries 

that represent the square root of the diagonal entries of Ξ ),  and .11  ΞΞ
* ωΞωΞ   

Despite advances in simulation techniques and computational power, the evaluation of a 

very high dimensional integral as in Equation (7) is literally infeasible using traditional 

frequentist and Bayesian simulation techniques. In a recent paper, Bhat (2011) proposed a 

maximum approximate composite marginal likelihood (MACML) inference approach in such 

cases.  

 

3.1. The MACML Estimation Technique 

The MACML approach combines a composite marginal likelihood (CML) estimation approach 

with an approximation method to evaluate the multivariate standard normal cumulative 

distribution (MVNCD) function. The composite likelihood approach replaces the likelihood 

function with a surrogate likelihood function of substantially lower dimensionality, which is then 

subsequently evaluated using an analytic approximation method rather than simulation 

techniques. This combination of the CML with the specific analytic approximation for the 

MVNCD function is effective because it involves only univariate and bivariate cumulative 

normal distribution function evaluations, regardless of the spatial and/or temporal complexity of 

the model structure. In simulation studies, the approach has been able to recover parameters and 

their covariance matrix estimates quite accurately and precisely because of the smooth nature of 

the first and second derivatives of the approximated analytic log-likelihood function (unlike the 

non-smooth first and second derivatives that arise in simulation approaches). The MVNCD 

approximation method is based on decomposition into a product of conditional probabilities, and 

the subsequent approximation of the conditional probabilities using a linear regression model 

structure (see Bhat, 2011). Note that this approximation method has nothing to do with 

linearization around the spatial correlation parameter, as in Klier and McMillen (2008) and 

Smirnov (2008). Rather, it simply is an approximation to evaluate the MVNCD function in any 

context.  

          The MACML approach, similar to the parent CML approach (see Varin et al., 2011 and 

Bhat, 2014 for recent reviews of the CML approach), maximizes a surrogate likelihood function 
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that compounds much easier-to-compute, lower-dimensional, marginal likelihoods (see Lindsay 

et al., 2011, Bhat, 2011, and Yi et al., 2011). The CML approach, which belongs to the more 

general class of composite likelihood function approaches (see Lindsay, 1988), may be explained 

in a simple manner as follows. Instead of developing the likelihood function for the entire set of 

Q observations, as in Equation (7), one may compound (multiply) pairwise probabilities of 

observation q having chosen alternative i at time period t and j at time t   and observation q  

having chosen alternative i at time period t and j at time t  , and so on. The CML estimator (in 

this instance, the pairwise CML estimator) is then the one that maximizes the compounded 

probability of all pairwise events.5 The properties of the CML estimator may be derived using 

the theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, under 

usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and Reid, 2011), 

the CML estimator is consistent and asymptotically normal distributed (this is because of the 

unbiasedness of the CML score function, which is a linear combination of proper score functions 

associated with the marginal event probabilities forming the composite likelihood; for a formal 

proof, see Xu and Reid, 2011 and Bhat, 2014). The CML function may be written as 
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ttqq ΞΞ
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 and ttqq Δ  is a )1()1(2  IQTI -selection matrix with an identity 

matrix of size ( 1I ) occupying the first )1( I  rows and the 

 thItTIq 1)1()1()1()1(  through  thItTIq )1()1()1(  columns, and 

another identity matrix of size ( 1I ) occupying the last ( 1I ) rows and the 

                                                 
5 This is the same estimator as the one used by Wang et al. (2013) in a spatial binary probit context and that they 
label as the partial maximum likelihood estimator (PMLE). However, papers using the pairwise CML for spatial 
econometric contexts and for even more general discrete choice contexts than the spatial binary probit were 
published by Bhat and colleagues earlier, as in Bhat and Sidharthan (2012), Sener and Bhat (2012), Castro et al. 
(2012), Bhat (2011), and Bhat et al. (2010). Some of these combine the CML method with the MVNCD 
approximation, which then becomes the MACML approach of Bhat (2011).  
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 thItTIq 1)1()1()1()1(  through  thItTIq )1()1()1(   columns. 

The matrix ttqq Δ  has zero elements everywhere else.  

The CML function above requires the computation of the multivariate normal cumulative 

distribution (MVNCD) function that is of dimension )1(2  I integrals (instead of 

)1(  KTQ  in the full maximum likelihood case). Such integrals may be computed easily 

using the MVNCD approximation method embedded in the MACML method. The CML 

estimator of  (obtained by maximizing the logarithm of Equation (8) with respect to  ) is 

consistent and asymptotically normally distributed with asymptotic mean   and covariance 

matrix given by the inverse of Godambe’s (1960) sandwich information matrix (see Bhat, 2014 

for a detailed discussion).6  To write the covariance matrix, let  2/)]1([
~  QTQTW  be the total 

number of pairings used in the CML function of Equation (11), and let the MVNCD function in 

ttqqL   of Equation (8) be evaluated using the MACML method, Then, the covariance matrix of 

the MACML estimator is 
       
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and the J matrix maybe empirically estimated as: 

                                                 
6 The CML estimator loses some asymptotic efficiency from a theoretical perspective relative to a full likelihood 
estimator, because information embedded in the higher dimension components of the full information estimator are 
ignored by the CML estimator. However, as presented in Bhat (2014), many studies have found that the efficiency 
loss of the CML estimator (relative to the maximum likelihood (ML) estimator) is negligible to small in applications 
on finite samples.  Besides, in spatial models, a maximum simulated likelihood (MSL) approach is needed for 
estimation because of the high dimensionality of integration. When simulation methods are used, there is also a loss 
in asymptotic efficiency in the maximum simulated likelihood (MSL) estimator relative to a full likelihood estimator 
(McFadden and Train, 2000). Consequently, it is difficult to state from a theoretical standpoint whether the CML 
estimator efficiency will be higher or lower than the MSL estimator efficiency. Bhat (2014) presents many studies 
that empirically compare the CML and MSL finite sample efficiency results in models where it is practical to 
implement the MSL, and concludes that “….any reduction in the efficiency of the CML approach relative to the 
MSL approach is in the range of non-existent to small”. In addition, while the MSL method encountered 
convergence problems even for relatively simple aspatial models, they noted that the CML approach exhibited no 
such problems, and had the benefit of substantially faster computational times.  
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The number of pairings in the MACML procedure in Equation (11) is   .2/)1( QTQT  

Strategies to reduce the pairings are discussed in detail in Bhat (2014), though we consider all 

pairings in the simulation study of the current paper.    

 

3.2. Identification and Positive Definiteness Considerations 

As usual, appropriate scale and level normalization must be imposed on ,
~
A ΨΛ

~
and

~
 for 

identifiability. Specifically, only utility differentials matter in discrete choice models. However, 

as discussed in Bhat (2011), the MACML inference approach, like the traditional GHK 

simulator, takes the difference in utilities against the chosen alternative during estimation. Thus, 

consider that the individual q chooses alternative qtm  at choice instance t. This implies that 

values of ),(~~
qtqmqiqim mi

qtqt
  and the covariance matrices 

qtmΛ  and are needed for 

individual q at choice occasion t. However, though different random effects differentials and 

different covariance matrices are used for different individuals and different choice occasions, all 

of these must originate in the same values of the undifferenced error term vector A
~

 and 

covariance matrices ΨΛ
~

and
~

. To achieve this consistency, we normalize .0~
1 qq   This 

implies that 0~
1 a . Also, we develop Λ  from 1Λ  by adding an additional row on top and an 

additional column to the left. All elements of this additional row and additional column are filled 

with values of zeros. Similarly, we construct Ψ  from 1Ψ  by adding a row on top and a column 

to the left. This first row and the first column of the matrix Ψ
~

 
are also filled with zero values. 

However, an additional normalization needs to be imposed on Ψ
~

 
because the scale is also not 

identified. For this, we normalize the element of Ψ
~

 
in the second row and second column to the 

value of one. Note that all these normalizations do not place any restrictions, and a fully general 

specification is the result. But they are needed for econometric identification, because, in MNP 

models, only the covariance matrix of the utility differences (from a base utility) are estimable 

and the scale of one of the utility differences has to be fixed.  

qtmΨ
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A final issue regarding estimation. The analyst needs to ensure the positive definiteness 

of the three covariance matrices ΨΛΩ
~

and ,
~

 ,
~

. Also, the spatial parameters  ,,...,,, 21 K  

need to be restricted between 0 and 1. In our estimation, the positive-definiteness of each of the 

three covariance matrices ΨΛΩ
~

and ,
~

 ,
~

 is guaranteed by writing the logarithm of the pairwise-

likelihood in terms of the Cholesky-decomposed elements of these matrices, and maximizing 

with respect to these elements of the Cholesky factor. To ensure the constraints on the spatial 

parameters, we parameterize all of the spatial elements appropriately. For example, we 

parameterize )]
~

exp(1/[1   , estimate ~ , and then obtain the estimate of .   

 

4. SIMULATION STUDY 

In this section, we undertake a simulation experiment with two objectives in mind. The first 

objective is to examine the ability of the MACML inference approach to recover the parameters 

from finite samples in our proposed model of travel mode choice. The second is to examine the 

effects of ignoring spatial lag effects and residential self-selection (i.e., spatial drift effects) when 

both are actually present. The use of a simulated exercise is valuable because the true parameters 

underlying the data generating process (DGP) are set by the analyst, and the analyst can evaluate 

the behavior of the MACML estimator for different levels of the spatial lag and spatial drift 

effects.  

 

4.1. Experimental Design 

A four-alternative choice situation (I = 4) with five choice occasions (T = 5) is considered for the 

simulation exercise. A total of Q = 200 individuals are assumed. The choice instance specific qti~  

error terms can have a first order autoregressive temporal dependency process: 

qtiitqqti  ~~~
,1,    . However, for repeated choice situations, we do not expect temporal 

variations in unobserved factors influencing an individual’s utility for a mode, and so we set 

0  in the simulation. The covariance matrix Ψ
~

 for the error term vector 

  



  qtIqtqt  ~,...,~,~~

21qtη is specified to be diagonal and fixed with variances of 0.5 along the 

diagonal.
 
Such a matrix is a restrictive case of the more general Ψ

~
 covariance matrix discussed 
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in Section 2.1. Note that such a structure simplifies the simulation, since the elements of Ψ
~

 are 

not estimated. The reason for such a restriction on the Ψ
~

 matrix in the simulation design is to 

direct attention on the issues of spatial effects, which is the focus of the current paper.  

          Three independent variables are used in the utility equation and each of them is generated 

from a standard univariate normal distribution (these are the elements of the qtix  vector). We 

consider the coefficient on the first variable to be fixed, but allow spatial drift (residential self-

selection) effects in the next two elements of the coefficient vector. In the notation of the 

previous section, .0
~

1 qβ  For the remaining two coefficients, we use the autoregressive 

specification as follows: qk
q

kqqqkqk γβwλβ ~~~

'
''    (k=2,3). The spatial drift (residential self-

selection) parameter is fixed across both the random coefficients in the experiments; .32 λλλ   

The covariance matrix Ω
~

 for the two random coefficients is specified as follows: 




























80.000.0

60.090.0

80.060.0

00.090.0

00.154.0

54.081.0~
~~
ΩΩ

LLΩ          (13) 

          The Cholesky decomposition of Ω
~

 guarantees the positive definiteness of Ω
~

. In the 

estimations, the likelihood function is reparameterized in terms of the lower Cholesky factor  

Ω
L ~ , and the three associated Cholesky parameters 9.0

1
~ 
Ω

l , 6.0
2

~ 
Ω

l , and  8.0
3

~ 
Ω

l  are 

estimated. Collectively, these three parameters, stacked vertically into a column vector, will be 

referred to as 
Ω

l ~ . The mean effects vector for the coefficients;   ',, 321 bbbb ; is set to b = (0.5, 

0.8, 1)’. In the simulation experiments, we do not consider separate random effects, as these are 

but one type of random coefficients on dummy variables defined in the qtix  vector. That is, in 

the notation of the previous section, .,0~~ iqa qiiqi   
  

To examine the potential impacts of different levels of spatial lag dependence and spatial 

drift (i.e., residential self-selection dependence) on the ability of the MACML approach to 

recover model parameters, we consider two values of the spatial lag autoregressive coefficient   

corresponding to low dependence ( = 0.25) and high dependence ( = 0.75), as well as two 

values of the spatial drift (residential self-selection) autoregressive coefficient   corresponding 

to low dependence ( = 0.25) and high dependence ( = 0.75).  Thus, in total, there are four 
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possible combinations of the spatial lag and drift autoregressive coefficients considered in the 

simulations. In the simulations, the 200 individuals are located on a rectangular grid with the 

longer side containing 50 locations spaced 1 unit apart and the shorter side containing 4 locations 

spaced 1 unit apart. The spatial weight matrix W (of size 200×200) is created using the inverse 

of the distance on the coordinate plane between observational units.   

     The simulation experiments entail assuming underlying “true” values for the above 

parameters and generating data sets for estimation. Specifically, using the pre-specified 

parameters, we develop the mean vector B and variance matrix Δ  of the utility vector U in 

Equation (5) for each of the four combinations of   and   just discussed. A )1( QTI  vector of 

the utility vector U  is drawn from the multivariate normal distribution with mean B and 

covariance structure Δ . Then, for each individual and choice occasion, the alternative with the 

highest utility is designated as the chosen alternative. This variable constitutes the discrete 

dependent variable. For each of the four combinations, the data generation process just discussed 

is undertaken 20 times with different realizations of the utility vector U from the values of B and 

Δ  to assemble a total of 80 datasets. The MACML estimator is then applied to each data set to 

estimate eight parameters: three mean coefficients on the exogenous variables (corresponding to 

the b1, b2, and b3 coefficients), the three standard deviation elements of the lower triangular 

Cholesky decomposition of covariance matrix ,
~
Ω  the spatial lag parameter δ, and the residential 

self-selection parameter λ.7 To be more specific, the MACML estimator is applied to each 

dataset 10 times with different permutations for the ordering of the conditional probabilities in 

the MVNCD computation to obtain the approximation error, computed as the standard deviation 

of estimated parameters among the 10 different estimates on the same data set (note that, within 

a dataset and for each of the ten runs, the permutation used varies across individuals, but is the 

same across iterations for a given individual). In future studies, one can use more than 20 

datasets for each combination, and more than 10 estimations for each dataset. Here, we confined 

ourselves to 20 datasets and 10 permutations per data set, because a total of 800 estimations (20 

                                                 
7 In the MACML approach, a single random permutation is generated for each choice instance (the random 
permutation varies across choice instances, but is the same across iterations for a given choice instance) to 
decompose the multivariate normal cumulative distribution (MVNCD) function into a product sequence of marginal 
and conditional probabilities (see Section 2.1 of Bhat, 2011). We also tested higher number of permutations, but 
noticed little difference in the estimation results, and hence settled with the single permutation per individual. 
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datasets per combination × 4 combinations × 10 permutations per dataset and each combination) 

have to be undertaken even with only 20 datasets.  

 

4.2. Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the model 

and their standard errors is evaluated as follows: 

(1) Estimate the MACML parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED values 

across the data sets to obtain a mean estimate. Compute the absolute percentage (finite 

sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
APB   

(3) Compute the standard deviation of the MED values across datasets, and label this as the 

finite sample standard deviation or FSSD (essentially, this is the empirical standard 

deviation). 

(4) For each data set s, compute the mean s.e. for each model parameter across the 10 draws. 

Call this MSED, and then take the mean of the MSED values across the 20 data sets and 

label this as the asymptotic standard error or ASE (essentially this is the standard error of 

the distribution of the estimator as the sample size gets large). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute the absolute 

percentage bias of the asymptotic standard error (APBASE) for each parameter relative to the 

corresponding finite sample standard deviation. 

100
FSSD

FSSD-ASE
APBASE   
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(6) Compute the standard deviation of the parameter values around the MED parameter value for 

each data set, and take the mean of this standard deviation value across the data sets; label 

this as the approximation error (APERR). Compute the APERR as a percentage of FSSD.  

 

4.3. Additional Restrictive Model Comparisons with the Proposed Model 

In addition to the above exercise to investigate the ability of the MACML model to recover 

parameters, we also examine the potential problems that could arise from ignoring spatial lag 

effects and spatial drift (residential self-selection) effects. To do so, we estimate two additional 

models on the 20 data sets generated for each combination of spatial and temporal dependence 

levels. The first model ignores the spatial lag autocorrelation coefficient   (that is, assumes  = 

0), while the second model assumes away the spatial-drift based residential self-selection 

autocorrelation coefficient   (that is, assumes  = 0). For ease in presentation, we will refer to 

the first model as the “No spatial lag” (NSL) model, and the second as the “No spatial drift” 

(NSD) model. We compare these two restrictive formulations with our general spatial (GS) 

model based on the mean APB measure across all parameters and the adjusted composite log-

likelihood ratio test (ADCLRT) value (see Pace et al., 2011 and Bhat, 2011).  For the 

comparisons, we use a single replication per data set (the replication is the same one for the 

generalized spatial (GS) model and all the restrictive models; that is, we use a single permutation 

per individual that varies across individuals but is held fixed across the GS and other models). 

We do so rather than run 10 replications for each of the GS and the more restrictive models 

because, as we will present in the next section, the approximation error in the parameters is 

negligible for any given data set. The ADCLRT statistic needs to be computed for each data set 

separately, and compared with the chi-squared table value with the appropriate degrees of 

freedom. Here we identify the number of times (corresponding to the 20 model runs, one run for 

each of the 20 data sets) that the ADCLRT value rejects the NSL and NSD models in favor of 

our proposed GS model. This is essentially an exploration of the power or the probability that we 

reject the null hypothesis (no spatial drift or no spatial lag) when the null hypothesis is false. 
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4.4. Simulation Results 

4.4.1. Recoverability of parameters in the low spatial lag case 

Tables 2a and 2b present the results for the low spatial lag case, with the first table representing 

the case of low spatial drift and the second table representing the case of high spatial drift. As 

indicated earlier, there are four alternatives )4( I in each set of alternatives, leading to a six 

]2*)1([  I  dimensional integral in the CML function. 

          The parameter estimation results in Table 2a indicate that the MACML method does very 

well in recovering the parameters for the low spatial dependency and low spatial drift case, as 

can be observed by comparing the mean estimates of the parameters (see the first sub-column 

under the main column entitled “parameter estimates”) with the true values (see the second 

column). The absolute percentage bias (APB) is no more than 2.7% for any parameter (see the 

column entitled “Absolute Percentage Bias”) with an overall mean value of 1.377% across all 

parameters, as indicated at the bottom of the table (see the row labeled “overall mean value 

across parameters”). However, the APB values are somewhat higher for the low spatial 

dependency and high spatial drift case in Table 2b, with a maximum APB value of 9.2% and an 

overall mean value of 5.712%. This is to be expected because a high value of the spatial drift 

parameter   leads to higher interdependence (due to unobserved factors) among individuals, 

which leads to a more non-linear surface of the CML function over which to optimize (relative to 

the case of a low spatial drift parameter). Not surprisingly, the highest degradation between the 

low spatial drift and high spatial drift cases is in the recovery ability of the spatial drift parameter 

itself. In the low spatial drift case, the mean APB for the spatial drift parameters 1 and 2  is a 

mere 1.08% relative to 9.48% in the high spatial drift case. The APB values for the elements of 

the Cholesky parameter vector 
Ω

l ~  and the spatial lag autocorrelation coefficient  are also quite 

a bit higher in the high spatial drift case relative to the low spatial drift case, because these 

elements enter the CML function in a rather non-linear fashion through sub-matrices of the 

covariance matrix MMΔ  . On the other hand, there is no substantial difference in recovery 

ability for the elements of the b  vector between the low and high spatial drift cases, because 

these elements enter the CML function more linearly through the sub-vector of the mean vector 

MB . Overall, it is important to note that, even in the high spatial drift case, the MACML still 

does a remarkable job of recovering parameters.             
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 The results in Table 2a also indicate good empirical efficiency of the MACML estimator 

for the low spatial lag-low spatial drift case, with the finite sample standard deviation (FSSD) 

ranging from less than one-seventieth of the mean estimated value (for 2 ) to about a sixth of the 

mean estimated value (for ).
3

~
Ω

l  Across all the parameters, the FSSD is 12.33 % of the mean 

parameter estimate. The MACML retains good empirical efficiency in the low spatial lag-high 

spatial drift case of Table 2b too, though the increase in the finite sample standard error (FSSD) 

values from the low spatial lag-low spatial drift case is clearly discernible. Across all parameters, 

the FSSD is 22.25 % of the mean parameter estimate for this second case, which is almost 

double of the first case. Importantly, between Tables 2a and 2b,  the mean of the FSSD values 

across the elements of the b vector (as a % of the corresponding mean parameter estimates) 

jumps from 10.89% to 27.81%, and the mean of the FSSD values across the 2  and 3  

parameters increases from 4.50% to 20.14%. 

          The finite sample standard errors and the asymptotic standard errors obtained using the 

Godambe matrix in the MACML method are close, with the APBASE values ranging between 

0.46-20.47 for all of the parameters in both the cases. The average APBASE across all the 

parameters is less than 10% for both the cases, indicating that the asymptotic formula is 

performing well in estimating the finite sample standard error.  

Finally, the last columns of Tables 2a and 2b present the approximation error (APERR) 

for each of the parameters as a percentage of the FSSD.8 While there is no hard metric for 

whether or not an APERR value is reasonable, APERR values of less than 25% of the FSSD may 

be considered reasonable (for instance, in Sandor and Train, 2004, the highest simulation 

deviation is about 24% of the sampling standard deviation in the best simulation method). The 

APERR values (as a percentage of the FSSD) are presented in the last column of the tables. The 

values range from 1.21%-5.25% for all parameters except the 2  and 3  parameters.  However, 

the APERR values (as a percentage of the FSSD) increase quite substantially to the order of 40% 

                                                 
8 As pointed out by McFadden (1989) and Sandor and Train (2004), approximation methods of any kind to evaluate 
the maximum of an analytically-intractable function will tend to show more variance in the convergent values (in 
repeated applications of the approximation with different sets of simulation draws in a simulated setting or different 
permutations of the conditional probability sequence in our MACML estimation setting) as the function gets flatter 
near the maximum. This is because errors introduced by simulation or other approximations can move the maximum 
considerably when the function is flat near the maximum. Of course, large sampling variances of the parameters 
embedded in a function means a large sampling variance of the function being maximized; that is, the larger the 
sampling variance of parameters, the higher in general will be the approximation error. Thus, we examine the extent 
of approximation error as a percentage of the finite sample standard deviation (or FSSD).  
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for 2  and 3  in Table 2a. However, this is because of the very low FSSD values for these two 

parameters in Table 2a. The APERR values themselves are still very small for both these 

parameters. Essentially, while the ratio of APERR to FSSD is of the same order for other 

parameters, this does not seem to hold for the 2  and 3 parameters, an issue that needs further 

investigation in future studies. The APERR values (as a percentage of the FSSD) are lower and 

of the order of 10% in the case with high spatial drift, though these values remain the highest 

compared to other values in Table 2b. Across all parameters, the APERR (as a percentage of 

FSSD) is of the order of 10% for the low spatial drift case and 5% for the high spatial drift case, 

suggesting that, overall, even a single permutation (per observation) of the MACML estimator 

provides adequate precision, in the sense that the convergent values are about the same for a 

given data set regardless of the permutation used for the decomposition of the multivariate 

probability expression within the MACML approach.  

 

4.4.2. Recoverability of parameters in the high spatial lag case 

Tables 2c and 2d present the results for the high spatial lag case, with the first table focusing on 

the low spatial drift case and the second table focusing on the high spatial drift case.  

          The results in Table 2c show again that the MACML method does very well in recovering 

the parameters for the low spatial drift case, with the order of the APB being about the same as in 

Table 2a. However, the APB values are once again somewhat higher for the high spatial drift 

case in Table 2d compared to the low spatial drift case in Table 2c. This mirrors the difference 

between the low and high spatial drift cases for the low spatial lag case. Also, as in the low 

spatial lag case, the highest degradation between the low spatial drift and high spatial drift cases 

for the high spatial lag case is again in the recovery ability of the spatial drift parameter itself. In 

the low spatial drift case, the mean APB for the spatial drift parameters 2  and 3  is a mere 

0.56% relative to 8.25% in the high spatial drift case. The APB values for the elements of the 

Cholesky parameter vector 
Ω

l ~  are also quite a bit higher in the high spatial drift case (mean APB 

value of 3.81%) relative to the low spatial drift case (mean APB of 0.96%). Overall, however, it 

is important to note that, even in the high spatial lag-high spatial drift case, the MACML still 

does a remarkable job of recovering parameters, with an overall mean value of 4.216%. 
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 As in the low spatial lag effect-low spatial drift case (Table 2a), the standard error 

estimates of the parameters for the high spatial lag effect-low spatial drift (Table 2c) case also 

indicate good empirical efficiency of the MACML estimator. Across all parameters, the finite 

sample standard error (FSSD) is about 15.20 % of the mean parameter estimate. However, the 

finite sample standard error (FSSD) is higher for the high spatial lag effect-high spatial drift case 

(Table 2d) at about 22.71 % of the mean parameter estimate. Once again, between Tables 2c and 

2d, the mean of the FSSD values across the elements of the b vector (as a percentage of the 

corresponding mean parameter estimates) jumps from 16.44% to 26.43%, and the mean of the 

FSSD values across the 1  and 2  parameters increases from 6.34% to 23.21%. All of these 

FSSD increases between the low spatial drift and high spatial drift cases are of the same order in 

this high spatial lag case as in the low spatial lag case. 

          The finite sample standard deviations and the asymptotic standard errors obtained using 

the Godambe matrix in the MACML method are close for both the low spatial drift case (Table 

2c) and the high spatial drift case (Table 2d), with the APBASE values ranging between 0.73%-

30.07% for all of the parameters in both the cases, indicating that the asymptotic formula is 

performing very well in estimating the finite sample standard deviation (note also that the values 

of the APBASE of about 30% correspond to the smallest FSSD values; the absolute difference 

between the FSSD and ASE is small even in these cases of high APBASE). As in the low spatial 

dependency case, the average APBASE across all the parameters is of the order of 10% in both 

the cases. 

Finally, the approximation errors (APERR) for each of the parameters in Tables 2c and 

2d are negligible in magnitude, with the APERR (as a percentage of the FSSD or the ASE), 

averaged across all the parameters, being of the order of 5% of the sampling error for the first 

case and of the order of 1.8% of the sampling error for the second case. This is again evidence 

that just a single permutation (per observation) of the MACML estimator provides adequate 

precision even for the higher spatial lag dependency cases.9  

 

                                                 
9 A peculiar observation related to the approximation error (as a percentage of the FSSD) is that it declines quite 
considerably for the 2  and 3  parameters as one moves from low spatial lag to high spatial lag and from low 

spatial drift to high spatial drift. Why this is so is left for future exploration.  
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4.4.3. Qualitative comparison of proposed method relative to earlier methods 

As indicated in the first section, many methods have been suggested to estimate spatial discrete 

choice models (see Bhat and Sener, 2009 and Bille, 2013 for reviews). However, a problem with 

these approaches is that they are, in general, not practically feasible for moderate-to-large 

samples of the size usually used in most transportation, urban science, and geographic micro-

level data contexts. But we provide a qualitative comparison of the proposed method to other 

spatial discrete choice estimation methods based on a study conducted by Calabrese and Elkink 

(2014) (CE) for the spatial case of a cross-sectional binary probit model with a simple spatial lag 

specification. We should caution that the comparisons below are intended simply to provide a 

picture of the performance of the methods. They are not strictly valid because of different spatial 

specifications (we include spatial lag, spatial drift effects and unobserved heterogeneity, while 

CE’s study is for a spatial lag specification), binary versus multinomial specifications, different 

spatial weight matrices, cross-sectional versus panel analysis, different numbers of explanatory 

variables in the simulation models, and different sample sizes.  

Our method does well in recovering parameters (including the spatial autoregressive 

coefficient) regardless of the value of the autoregressive coefficient. On the other hand,  

McMillen’s (1992) Expectation Maximization (EM) method and Klier and McMillen’s (2008) 

linearized Generalized Method of Moments (LGMM) method are well known not to do very well 

at high values of the spatial coefficient. In Calabrese and Elkink’s (2014) simulation study, for a 

true value of 8.0  with a sample size of 1500, the authors obtained a mean APB of over 30% 

for   for the EM method (over 70% for the LGMM method), relative to less than 1% APB in 

our more comprehensive spatial multinomial choice panel case with a true value of 75.0 and 

a sample size of 1000 (200 individuals x 5 choice occasions per individual).  The FSSD values 

for   are of the same order between the two methods, at about 1.6% of the true value for the EM 

method and 3.0% for our method. The FSSD for the LGMM method, though, is higher at about 

15% of the true value. Additionally, both the EM and LGMM methods do not provide an 

estimate of the precision of  , as estimated from a single sample (that is, they do not provide an 

asymptotic standard error estimate of  ), and the LGMM method does not guarantee that   will 

be in the interval [-1,1].  The recursive importance sampling (RIS) technique of Beron and 

Vijverberg (2004) (which is a full-information maximum simulated likelihood technique), and 

the markov chain Monte Carlo (MCMC) Bayesian method of LeSage (2000) as implemented by 
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Thomas (2007) perform relatively well in CE’s study for all values of the spatial autoregressive 

coefficient.  For the low range of   ( =0.1 in CE’s study and  =0.25 in our study), the RIS has 

an APB for   of about 4% compared to 19% for the MCMC and 0-5% in our study depending 

on the intensity of the spatial drift effect (see the APB values of   in Tables 2a and 2b).  The 

FSSD values, as a percentage of the true value, are in the 20-30% range for the RIS and MCMC 

methods for this low spatial autoregressive case compared to the 13-20% range (based on low or 

high spatial drift intensities) for our method. For the high range of   ( =0.8 in CE’s study and 

 =0.75 in our study), the  RIS has an APB for   of about 2% compared to 10% for the MCMC 

method and less than 1% for our method (regardless of spatial drift intensity). The FSSD values, 

as a percentage of the true value, are in the 2-4% range for the RIS and MCMC methods for this 

high spatial autoregressive case compared to 3% in our method.  

In terms of the coefficients on the explanatory variables, CE’s study indicates an APB in 

the 1-2% range for the EM, RIS, and MCMC methods, and 7% for the LGMM method, in the 

low spatial autoregressive coefficient case. This is as compared to an APB in the range of 0-3% 

in our approach.  The FSSD are in the range of 8-16% of the true value for all methods. 

However, in the high spatial autoregressive case, the other methods have rather high APBs, 

ranging from 35% for the MCMC to 50% for the RIS to over 80% for the EM/GLMM methods. 

This is in contrast to an APB of 0-6% in our approach. The FSSD values are, in general, quite 

high and in the range of about 25% for the RIS and our method in this high spatial autoregressive 

case. Interestingly, the FSSD are smaller for the MCMC (FSSD of about 7%) and the 

EM/GLMM methods (FSSD of about 1%).  

Overall, in terms of recovering the spatial autoregressive coefficient and the coefficients 

on the explanatory variables, our method does at least as well (and generally better than) the RIS 

and MCMC methods (both of which are known to have a downward sample bias), though these 

latter methods are unmanageable for the kinds of specifications and sample sizes on which we 

have implemented the MACML method in this paper. The appeal of our approach relative to the 

EM and GLMM methods should be quite obvious.  

 

4.4.4. Comparison between the generalized spatial model and more restrictive models 

In this section, we compare the performance of the generalized spatial (GS) model formulation 

with the more restrictive formulations, when the data generated actually conforms to the GS (see 
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Section 4.3). This comparison provides a sense of the biases that may accrue because of using a 

restrictive specification. Table 3 provides the results. As may be observed, two sets of mean APB 

values (across model parameters) are computed for the GS model, one for comparison with the 

“no spatial lag” (NSL) model and the second for comparison with the no spatial drift (NSD) 

model.  For comparison with the NSL model, the mean APB value for the GS model is computed 

without considering the APB value for the   parameter, because the   parameter is fixed at zero 

in the NSL model. For comparison with the NSD model, the mean APB value for the GS model 

is computed without considering the APB values for the 1  and 2  parameters (both of which 

are fixed to zero in the NSD model).  

The results indicate that the mean APB values are higher for the NSL and NSD models 

than for the GS model. Not surprisingly, the NSL model performs better in the two low spatial 

lag cases than in the two high spatial lag cases, since ignoring spatial lag dependence when such 

dependence is low should be of less consequence than ignoring such dependence when high. 

However, even in the two low spatial lag cases, the NSL model may be rejected compared to the 

“correct” GS specification based on the adjusted composite likelihood ratio test (ADCLRT) 

statistic (note that the GS specification rejects the simpler NSL specification for each of the 

twenty data sets generated). The NSL model performs very poorly for the two high spatial lag 

cases, with very poor ability to recover parameters. Similar results hold when comparing the 

NSD model (which ignores spatial drift) with the GS model, though the deterioration in the NSD 

model is not as substantial when moving from the low spatial drift case to the high spatial drift 

case (relative to the deterioration in the NSL model when moving from the low spatial lag to the 

corresponding high spatial lag case). Also, the NSD model performs better (in terms of mean 

APB) as compared to the NSL model for all four combinations of spatial lag and spatial drift 

parameters. But the NSL model too is rejected all twenty times in favor of the GS model for all 

four combinations, based on the ADCLRT test. An interesting suggestion from the simulation 

results above is also that ignoring the spatial lag effects (when present) is of much more serious 

consequence than ignoring spatial drift (i.e., residential self-selection) effects (when present). 

Further theoretical and empirical exploration of this finding is left for future work.  

 Overall, the simulation results show that, irrespective of the magnitude of the spatial lag 

and spatial drift effects, the MACML estimator recovers the parameters of the proposed GS 

model very well. The MACML estimator also seems to be quite efficient, based on the low 
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asymptotic standard error estimates of the parameters compared to the mean estimates of the 

parameters.  

 

5. CONCLUSIONS 

In many choice contexts, the discrete choice of one agent may be inter-related with those of 

others based on spatial and/or social proximity. The examination of such interactions is an area 

of active research in many fields, because a deeper understanding of the nature of such 

dependencies can be exploited by decision-makers to achieve desired system end-states in an 

efficient and cost-effective manner. A challenge, however, when investigating the issue of 

social/spatial interactions is to isolate these interactions from other “spurious” sources that may 

inappropriately get manifested as social/spatial interactions. These “spurious” sources can 

include correlation in unobserved factors of proximally located individuals and endogenous 

group formation. Thus, in a travel mode choice context, individuals and households with similar 

mode-use propensities may be drawn toward neighborhoods with specific observed built-

environment attributes. That is, there is the possibility of residential self-selection of individuals 

based on mode-use propensities. This self-selection is introduced in our formulation in the form 

of a spatial (drift) structure on individual-specific random effects and sensitivities to observed 

exogenous factors. In this way, the formulation, at once, considers a whole suite of non-spatial 

and spatial considerations in a single unified panel multinomial probit model.  

The paper proposes a maximum approximate composite marginal likelihood (MACML) 

inference approach to estimate the resulting discrete choice model. A simulation exercise is 

undertaken to evaluate the ability of the MACML approach to recover model parameters as well 

as to assess the empirical efficiency of the MACML estimator. The simulation results show that 

the MACML model recovers the parameters of the proposed model remarkably well. The 

MACML estimator is also quite efficient in the overall, and the asymptotic formula (based on the 

inverse of the Godambe information matrix) performs well in estimating the finite sample 

standard errors. In addition, the results clearly highlight the bias in estimates if spatial lag and/or 

spatial drift effects are ignored when both are actually present. Thus, in a travel mode choice 

context, the effects of built environment variables, and the intensity of social/spatial interactions 

and residential self-selection effects, can be mis-stated if the analyst ignores one or more of the 
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many non-spatial and spatial considerations that may be at work. The result can be misinformed 

policies directed toward effecting changes in travel mode choice behavior.  

Future efforts should focus on empirical applications of the proposed formulation, now 

that the feasibility of the approach has been demonstrated through a systematic simulation study. 

Indeed, it is hoped that our formulation and estimation approach will open the door for the 

extensive exploration of multiple aspatial and spatial effects impacting choice decisions.  
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Table 1: Restricted versions of proposed model structure 

Restriction Conclusion if the restriction is true 

0  No spatial lag (spatial drift due to residential self-selection, and time-
varying and time-invariant panel effects, still present) 

k  0 and 0 k  No spatial drift (residential self-selection) effects 

0  No time-varying unobserved effects 

IxI0Λ 
~

 No intrinsic preference effects, and cannot identify spatial drift (residential 
self-selection) effects based on intrinsic preferences (i.e. θ parameter) 

KxK0Ω 
~

 No heterogeneity in response to exogenous variables, and cannot identify 
spatial drift (self-selection) effects based on exogenous variables (i.e., the 
λ matrix parameters) 

All of the above Simple cross-sectional MNP 
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Table 2a: Simulation results for the four-alternative case with 20 datasets for low spatial 
dependency and low spatial drift (based on a total of 20×10 runs/dataset=200 runs) 

Parameter 
True 
Value 

Parameter Estimates Standard Error-related Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage 

Bias 
(APB) 

Finite 
Sample 
St. Dev 
(FSSD) 

Asymptotic 
St. Err. 
(ASE) 

APB of the 
asymt. 
St. Err. 

(APBASE) 

Approx.  
error as a 

% of FSSD 
(APERR) 

1b  0.50 0.502 0.002 0.304 0.0433 0.0431  0.46  3.00 

2b  0.80 0.791 0.009 1.074 0.1005 0.0948  5.67  1.69 

3b  1.00 0.977 0.023 2.288 0.1107 0.127 14.72  1.90 

1
~
Ω

l  0.90 0.876 0.024 2.696 0.1217 0.1332  9.45  2.88 

2
~
Ω

l  0.60 0.614 0.014 2.297 0.1082 0.1186  9.61  2.96 

3
~
Ω

l  0.80 0.794 0.006 0.787 0.1436 0.1142 20.47  2.50 

δ  0.25 0.252 0.002 0.789 0.0497 0.0455  8.45  1.21 

2  0.25 0.251 0.001 0.403 0.0035 0.0036  2.85 42.86 

3  0.25 0.246 0.004 1.753 0.0187 0.0163 12.84 39.57 

Overall mean value across 
parameters 

0.009 1.377 0.0778 0.0774  9.39 10.95 

a  The mean composite log-likelihood value for the low spatial dependency and low spatial drift  model at 
converged parameter is -19710.55 
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Table 2b: Simulation results for the four-alternative case with 20 datasets for low spatial 
dependency and high spatial drift (based on a total of 20×10 runs/dataset=200 runs) 

Parameter 
True 
Value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage 

Bias 
(APB) 

Finite 
Sample 
St. Dev 
(FSSD) 

Asymptotic 
St. Err. 
(ASE) 

Abs.Bias of 
the asymt. 

St. Err. 
(APBASE) 

Approx.  
error as a 

% of FSSD 
(APERR 

1b  0.50 0.495 0.005 1.038 0.0494 0.0397 19.64  3.64 

2b  0.80 0.791 0.009 1.131 0.2736 0.3075 12.39  1.24 

3b  1.00 0.965 0.035 3.478 0.3749 0.3523  6.03  1.04 

1
~
Ω

l  0.90 0.817 0.083 9.203 0.1477 0.1709 15.71  4.20 

2
~
Ω

l  0.60 0.645 0.045 7.526 0.1545 0.1590  2.91  3.75 

3
~
Ω

l  0.80 0.753 0.047 5.852 0.1332 0.1261  5.33  5.25 

δ  0.25 0.261 0.011 4.223 0.0329 0.0300  8.88  3.95 

2  0.75 0.679 0.071 9.453 0.1556 0.1626  4.31 11.44 

3  0.75 0.679 0.071 9.504 0.1465 0.1509  3.00  8.46 

Overall mean value across 
parameters 

0.042 5.712 0.1631 0.1665  8.69  4.77 

a  The mean composite log-likelihood value for the low spatial dependency and low spatial drift  model at 
converged parameter is -19769.08 
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Table 2c: Simulation results for the four-alternative case with 20 datasets for high spatial 
dependency and low spatial drift (based on a total of 20×10 runs/dataset=200 runs) 

Parameter 
True 
Value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage 

Bias 
(APB) 

Finite 
Sample 
St. Dev 
(FSSD) 

Asymptotic 
St. Err. 
(ASE) 

Abs.Bias of 
the asymt. 

St. Err. 
(APBASE) 

Approx.  
error as a 

% of FSSD 
(APERR 

1b  0.50 0.502 0.002 0.378 0.1077 0.1174  9.00  3.06 

2b  0.80 0.806 0.006 0.796 0.1173 0.1367 16.54  3.84 

3b  1.00 0.980 0.020 2.024 0.1304 0.1323  1.46  5.52 

1
~
Ω

l  0.90 0.898 0.002 0.183 0.2234 0.2442  9.31  3.36 

2
~
Ω

l  0.60 0.592 0.008 1.401 0.1388 0.1236 10.95  4.90 

3
~
Ω

l  0.80 0.790 0.010 1.299 0.1851 0.1705  7.88  4.75 

δ  0.75 0.746 0.004 0.562 0.0229 0.0274 19.65  3.49 

2  0.25 0.248 0.002 0.729 0.0182 0.0201 10.44 10.44 

3  0.25 0.249 0.001 0.394 0.0133 0.0173 30.07  6.01 

Overall mean value across 
parameters 

0.006 0.863 0.1063 0.1099 12.81 5.04 

a  The mean composite log-likelihood value for the low spatial dependency and low spatial drift  model at 
converged parameter is -11532.19 
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Table 2d: Simulation results for the four-alternative case with 20 datasets for high spatial 
dependency and high spatial drift (based on a total of 20×10 runs/dataset=200 runs) 

Parameter 
True 
Value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage 

Bias 
(APB) 

Finite 
Sample 
St. Dev 
(FSSD) 

Asymptotic 
St. Err. 
(ASE) 

Abs.Bias of 
the asymt. 

St. Err. 
(APBASE) 

Approx.  
error as a 

% of FSSD 
(APERR 

1b  0.50 0.514 0.014 2.732 0.1155 0.1122  2.86 1.47 

2b  0.80 0.843 0.043 5.370 0.2605 0.2396  8.02 1.27 

3b  1.00 1.014 0.014 1.391 0.2627 0.2924 11.31 1.37 

1
~
Ω

l  0.90 0.925 0.025 2.824 0.2341 0.2506  7.05 1.75 

2
~
Ω

l  0.60 0.628 0.028 4.705 0.1649 0.1637  0.73 2.00 

3
~
Ω

l  0.80 0.769 0.031 3.887 0.1870 0.2294  14.77 2.46 

δ  0.75 0.754 0.004 0.540 0.0210 0.0148  29.52 0.95 

2  0.75 0.680 0.070 9.333 0.1721 0.1748  1.57 3.37 

3  0.75 0.696 0.054 7.165 0.1470 0.1317 10.41 0.88 

Overall mean value across 
parameters 

0.031 4.216 0.1739 0.1788 9.58 1.72 

a  The mean composite log-likelihood value for the low spatial dependency and low spatial drift  model at 
converged parameter is -11693.61 
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Table 3: Effects of ignoring spatial effects when present  
 

Evaluation 
Metric 

25.0,25.0 21    

Low spatial lag- Low spatial drift 

75.0,25.0 21    

Low spatial lag-High spatial drift 

25.0,75.0 21    

High spatial lag- Low spatial drift 

75.0,75.0 21    

High spatial lag- High spatial drift 

GS 
Model 

NSL 
Model 

NSD 
 Model 

GS 
Model

NSL 
Model 

NSD 
Model 

GS 
Model 

NSL 
Model 

NSD 
Model 

GS 
Model 

NSL 
Model 

NSD 
Model 

Mean APB             

 

For comparison 
of GS model 
with the no-
spatial lag 
(NSL) model 

1.23 2.88 - 5.50 7.89 - 0.80 41.93 - 6.24 44.21 - 

 

For comparison 
of GS model 
with the no-
spatial drift 
(NSD) model 

1.50 - 3.03 4.58 - 6.66 0.99 - 2.36 3.05 - 3.72  

Mean composite 
log-likelihood 
value at 
convergence 

-19,711 -20,047 -19,946 -19,768 -19,997 -19,914 -11,535 -21,590 -11,735 -11,694 -21,915 -11,929 

Number of times 
the adjusted 
composite 
likelihood ratio 
test (ADCLRT) 
statistic favors 
the ORSH 
model 

- 

All twenty 
times when 
compared 

with 

64.62
1    

value (mean 
ADCLRT 
statistic is 
166.49) 

All  twenty 
times when 
compared 

with 

21.92
2   

value (mean 
ADCLRT 
statistic is 
135.63) 

- 

 All twenty 
times when 

compared with 

64.62
1    

value (mean 
ADCLRT 
statistic is 
127.03) 

 All  twenty 
times when 
compared 

with 

21.92
2   

value (mean 
ADCLRT 
statistic is 
109.96) 

- 

 All twenty 
times when 
compared 

with 

64.62
1   

value (mean 
ADCLRT 
statistic is 
267.76) 

 All twenty 
times when 
compared 

with 

21.92
2   

value (mean 
ADCLRT 
statistic is 
118.10) 

- 

 All twenty 
times when 
compared 

with 

64.62
1   

value (mean 
ADCLRT 
statistic is 
287.62) 

 All  twenty 
times when 
compared 

with 

21.92
2   

value (mean 
ADCLRT 
statistic is 
166.80) 

 


