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3.1 Introduction and Scope

Since the beginning of civilization, the viability and economic success of communities
have been, to a major extent, determined by the efficiency of the transportation
infrastructure. To make informed transportation infrastructure planning decisions,
planners and engineers have to be able to forecast the response of transportation demand
to changes in the attributes of the transportation system and changes in the attributes of
the people using the transportation system. Travel demand models are used for this
purpose; specifically, travel demand models are used to predict travel characteristics and
usage of transport services under alternative socio-economic scenarios, and for
alternative transport service and land-use configurations.

The need for realistic representations of behavior in travel demand modeling is well
acknowledged in the literature. This need is particularly acute today as emphasis shifts
from evaluating long-term investment-based capital improvement strategies to
understanding travel behavior responses to shorter-term congestion management policies
such as alternate work schedules, telecommuting, and congestion-pricing. The result has
been an increasing realization in the field that the traditional statistically-oriented trip-
based modeling approach to travel demand analysis needs to be replaced by a more
behaviorally-oriented activity-based modeling approach. The next two sections discuss
the basic concepts of the trip-based and the activity-based approaches to travel demand
analysis.

The Trip-Based Approach

The trip based approach uses individual trips as the unit of analysis and usually
includes four sequential steps. The first, trip generation, step involves the estimation of
the number of home-based and non-home based person-trips produced from, and
attracted to, each zone in the study area. The second, trip distribution, step determines
the trip-interchanges (i.e., number of trips from each zone to each other zone). The third,
mode choice, step splits the person-trips between each pair of zones by travel mode
obtaining both the number of vehicle trips and number of transit trips between zones.
The fourth, assignment, step assigns the vehicle trips to the roadway network to obtain
link volumes and travel times and the person trips to the transit network. Time-of-day
of trips is either not modeled or is modeled in only a limited way, in the trip-based
approach. Most commonly, time is introduced by applying time-of-day factors to 24-



Handbook of Transportation Science

hour travel volumes at the end of the traffic assignment step or at the end of the trip
generation step.

A fundamental conceptual problem with the trip-based approach is the use of trips
as the unit of analysis. Separate models are developed for home-based trips and non-
home based trips, without consideration of dependence among such trips. Further, the
organization (scheduling) of trips is not considered; that is, there is no distinction
between home-based trips made as part of a single-stop sojourn from home and those
made as part of a multiple-stop sojourn from home. Similarly, there is no distinction
between non-home based trips made during the morning commute, evening commute,
from work, and as part of pursuing multiple stops in a single sojourn from home. Thus,
the organization of trips and the resulting inter-relationship in the attributes of multiple
trips is ignored in all steps of the trip-based method. This is difficult to justify from a
behavioral standpoint. It is unlikely that households will determine the number of home-
based trips and the number of non-home based trips separately. Rather, the needs of the
households are likely to be translated into a certain number of total activity stops by
purpose followed by (or jointly with) decisions regarding how the stops are best
organized. Similarly, the location of a stop in a multistop sojourn (or tour) is likely to
be affected by the location of other stops on the tour. Such multistop tours are becoming
increasingly prevalent (see Gordon et al., 1988; Lockwood and Demetsky, 1994) and
ignoring them in travel analysis means "discarding an element that is doubtless
important in the individual's organization of time and space" (Hanson, 1980). Also, in
a multistop tour from home consisting of, say, a grocery shopping stop and a social visit,
the trip-based approach fails to recognize that the travel mode for all three trips (home
to shop, shop to visit, and visit to home) will be the same. The travel mode chosen will
depend on various characteristics of all three trips (and not any one single trip) and,
consequently, these trips cannot be studied independently.

The behavioral inadequacy of the trip-based approach, and the consequent
limitations of the approach in evaluating demand management policies, has led to the
emergence of the activity-based approach to demand analysis.

The Activity-Based Approach

The activity-based approach to travel demand analysis views travel as a derived demand;
derived from the need to pursue activities distributed in space (see Jones et al., 1990 or
Axhausen and Gérling, 1992). The approach adopts a holistic framework that recognizes
the complex interactions in activity and travel behavior. The conceptual appeal of this
approach originates from the realization that the need and desire to participate in
activities is more basic than the travel that some of these participations may entail. By
placing primary emphasis on activity participation and focusing on sequences or patterns
of activity behavior (using the whole day or longer periods of time as the unit of
analysis), such an approach can address congestion-management issues through an
examination of how people modify their activity participations (for example, will
individuals substitute more out-of-home activities for in-home activities in the evening
if they arrived early from work due to a work-schedule change?).



Activity-Based Modeling of Travel Demand

The shift to an activity-based paradigm has also received an impetus because of the
increased information demands placed on travel models by the 1990 Clean Air Act
Amendments (CAAAs). These amendments require the inclusion of transportation
control measures (TCMs) in transportation improvement programs for MPOs in heavily
polluted non-attainment areas and, by state law, for all non-attainment areas in
California. Some TCMs, such as HOV lanes and transit extensions, can be represented
in the existing modeling framework; however, non-capital improvement measures such
as ridesharing incentives, congestion pricing and employer-based demand management
schemes can not be so readily represented (Deakin, Harvey and Skabardonis, Inc. 1993,
Chapter 2). The ability to model both individual activity behavior and interpersonal
linkages between individuals, a core element of activity modeling, is required for the
analysis of such TCM proposals. The CAAAs also require travel demand models to
provide (for the purpose of forecasting mobile emission levels) link flows at a high level
of resolution along the time dimension (for example, every 30 minutes or an hour as
opposed to peak-period and off-peak period link flows) and also to provide the number
of new vehicle trips (i.e., cold starts) which begin during each time period. Because of
the simplistic, "individual-trip" focus of the trip-based models, they are not well-
equipped to respond to these new requirements (see Cambridge Systematics, Inc., 1994;
Chapter 5). Since the activity-based approach adopts a richer, more holistic approach
with detailed representation of the temporal dimension, it is better suited to respond to
the new requirements.

The activity-based approach requires time-use survey data for analysis and
estimation. A time-use survey entails the collection of data regarding all activities (in-
home and out-of-home) pursued by individuals over the course of a day (or multiple
days). Travel constitutes the medium for transporting oneself between spatially dis-
located activity participations. The examination of both in-home and out-of-home
activities facilitates an understanding of how individuals substitute out-of-home
activities for in-home activities (or vice-versa) in response to changing travel conditions.
This, in turn, translates to an understanding of when trips are generated or suppressed.

It is important to note that administrating time-use surveys is similar to
administrating household travel surveys, except for collection of in-home as well as out-
of-home activities. The information elicited from respondents is a little more extensive
in time-use surveys compared to travel surveys, but experience suggests that the
respondent burden or response rates are not significantly different between time-use and
travel surveys (see Lawton and Pas, 1996 for an extensive discussion).

The activity-based approach does require more careful and extensive preparation
of data to construct entire "sequences"” of activities and travel. On the other hand, such
intensive scrutiny of data helps identify data inconsistencies which might go unchecked
in the trip-based approach (for example, there might be "gaps" in an individual's travel
diary because of non-reporting of several trips; these will be identified during data
preparation for activity analysis, but may not be identified in the trip-based approach
since it highlights individual trips and not the sequence between trips and activities).
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The rest of this chapter focuses on the activity-based approach to travel demand
forecasting. The next section traces the history of research on activity analysis. Section
3.3 presents an overview of the modeling methods being used in activity-travel analysis.
Section 3.4 discusses how activity-based travel research has been influencing travel
demand analysis. Section 3.5 concludes the chapter by identifying important future
research topics in the activity analysis area.

3.2 History of Research on Activity Analysis

The seminal works by Chapin (1971), Hagerstrand (1970) and Cullen and Godson
(1975) form the basis for much of the research on activity analysis. Chapin (1971)
proposed a motivational framework in which societal constraints and inherent individual
motivations interact to shape revealed activity participation patterns. Hagerstrand
(1970), on the other hand, emphasized the constraints imposed by the spatial distribution
of opportunities for activity participation and temporal considerations on individual
activity participation decisions, thus laying the foundation for what is now commonly
referred to as the space-time "prism". Cullen and Godson (1975) argued that the spatial
and temporal constraints identified by Hagerstrand are fundamentally characterized by
varying degrees of rigidity (or flexibility). They undertook extensive empirical analysis
to indicate that temporal constraints are more rigid than spatial constraints and that the
rigidity of temporal constraints is closely related to activity type of participation (with
more temporal rigidity associated with work-related activities compared to leisure
activities).

Activity-based travel research has received much attention and seen considerable
progress since these early studies. In the following review, we will use the term "activity
episode” to refer to a discrete activity participation. The term "activity" refers to a
collection of episodes of the same type or purpose over some time unit (say a day or a
week). The review is undertaken in two categories. The first category focuses on
participation decisions associated with a single activity episode. The second category
examines individual decisions regarding activity episode patterns (that is, multiple
activity episodes and their sequencing).

Single Activity Episode Participation

The studies in this section focus on the participation of individuals in single activity
episodes, along with one or more accompanying characteristics of the episode such as
duration, location, or time window of participation. The effect of household
interdependencies on individual activity choice is represented in these models in the
form of simple measures such as presence of working spouse, number of adults, and
household structure.

Damm (1980) developed a multivariate daily model of participation and duration
in out-of-home non-work activities (no distinction between activity types is made). He
partitions the day into five periods based on the work schedule and introduces
interdependence in activity participation and duration among time periods using
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variables which measure the "time spent in other periods". Temporal constraints are
represented in the model in the form of variables like duration of work, flexibility of
work hours and time spent in other periods. Spatial fixity of work place (an indicator of
whether the individual has a fixed work location or not), accessibility, years lived at
residence and presence of driver's license are defined to represent spatial constraints.
Other socio-economic variables are included to represent the influence of lifecycle (eg.,
number of children), potential allocation process (eg., work status of spouse), and other
familial responsibilities on individual activity participation.

Van der Hoorn (1983) developed an activity episode model for the choice of
activity type and location of the episode. The three available locations in his analysis are
"at home", "in town" and "outside town" (the term "town" representing the area of
residence). Separate logit models are proposed for each previous location, each of five
person groups, and for the workweek and weekend. Activity episode choice is regarded
as being conditional on the location of the previous activity episode, but not on the
activity type performed at the previous location. Location choice is dependent on the
previous location and on the next activity episode. The restrictions imposed by external
constraints and mandatory activities are taken into account while defining the choice set
of available activities and locations.

Hirsh et al. (1986) developed a dynamic theory of weekly activity behavior and
modified it suitably to model shopping activity in Israel. They recognized the benefit of
studying activities on the basis of a weekly cycle rather than on a daily period. The
attributes used in the model are similar to the ones used by Damm and van der Hoorn.

Mannering and his colleagues (Mannering et al., 1994, Kim et al., 1993) analyzed
home-stay duration between successive participations in out-of-home activity episodes.
Bhat (1996a) and Neimeier and Morita (1996), on the other hand, formulated and
estimated models for the duration of out-of-home activity episodes. The results from
these studies suggest that the socio-demographics of the individual's household and the
individual (such as household size, income earnings, age, sex, etc.), and the work
schedule characteristics of the individual, have a substantial effect on the duration of
home-stay and out-of-home activity episodes. All the duration studies listed above use
a hazard-based duration structure in their analyses.

Activity Episode Pattern Analysis

In this section, we review studies which examine activity episode patterns (i.e., multiple
activity episodes and their sequence). Some of these studies focus only on activity
episode scheduling and consider the generation of activity episodes and their attributes
as exogenous inputs. Such studies are reviewed in the next section. Other studies analyze
both activity episode generation and scheduling, and these are reviewed in the
subsequent section.

Activity Episode Scheduling A fundamental tenet of the activity episode scheduling
approach to the analysis of activity/travel patterns is that travel decisions are driven by
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the collection of activities that form an agenda for individual participation. Travel
patterns are viewed as arising from a more fundamental activity scheduling process.
Activity scheduling is affected by spatial/temporal constraints of travel, specifications
of precedence among activities, requirements to be with other family members at
particular times and places (coupling constraints), and available individual transportation
supply environment (the allocation of activities between household members that shapes
the activity agenda of each individual and the allocation of household transportation
supply between members is presumed to be exogenous in these studies).

Activity episode scheduling models generally take the structure of a computerized
production system which comprises a set of rules in the form of condition-action pairs
(see Newell and Simon, 1972). Studies in the psychology field suggest that a production
system is consistent with the way in which humans perceive, appraise, and respond to
spatial and aspatial information within the context of limited-information processing
ability (Garling et al., 1994).

One of the earliest scheduling models was CARLA, developed by the Oxford
University Transport Studies Unit (Clarke 1986). This model uses the list of activities
to be scheduled and their durations to produce all feasible activity patterns in response
to a change in the travel environment (for example, transit service improvements or
cuts). It does so through the use of a branch-and-bound based combinatorial algorithm
which reorganizes a given activity program and selects only those patterns which are
feasible in terms of spatio-temporal and inter-personal constraints.

Recker et al. (1986a, 1986b) developed another scheduling model called
STARCHILD. Their model partitions the daily scheduling process into two stages. In
the first stage (also referred to as the pre-travel stage), the individual decides on a
planned activity episode schedule based on a pre-determined directory of activities and
their duration, location and time window for participation. STARCHILD models the
selection of a planned activity program by generating distinct non-inferior patterns using
combinatorics and then applying a logit choice model to establish the pattern choice with
highest utility. The assignment of a utility value to each pattern is a function of the
amount of time in the pattern associated with activity participation, wait time and travel
time. The planned activity episode schedule is continuously revised and updated in the
second dynamic scheduling stage circumstances or new activity demands. More recently,
Recker (1995a) has extended the STARCHILD approach to include a mathematical
programming formulation for the choice of an activity-travel pattern from several
possible patterns.

Gérling et al. (1989) proposed yet another activity scheduling model labeled
SCHEDULER. This computational model assumes the presence of a long term calendar
(an agenda of activity episodes with duration, appointment details and preference) at the
start of any time period. A small set of episodes with high priority are selected from this
long term "calendar" and stored in a short term calendar as the subset of episodes to be
executed in the short-run. This activity subset is sequenced, and activity locations
determined based on a "distance-minimizing" heuristic procedure (see Axhausen and
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Garling for a detailed review). SMASH (Ettema et al., 1993) is a development of the
SCHEDULER framework in which heuristic scheduling rules are specified and tested.

A more recent scheduling model is the adaptation simulation system labeled AMOS
(for Activity-MObility Simulator) developed by Kitamura et al. (1996) to examine the
short-term responses to Transportation Control Measures (TCMs). The model takes an
observed daily activity-travel pattern of an individual (baseline pattern) and determines
an adaption choice (for example, do nothing, change mode, change departure time, etc.)
to a TCM using a response option generator.

Activity Episode Generation and Scheduling The studies reviewed in this section
attempt to capture individual activity/travel patterns by focusing on the mechanism by
which individual activities are generated and sequenced.

Kitamura (1983) studied episode sequencing and the tendencies or preferences in
the formation of the set of activities to be pursued. A sequential history dependent
approach is taken (sequential in that the probability of a given set of activities being
chosen and pursued in a particular order is represented by a set of sequential and
conditional probabilities). He found a consistent hierarchical order in sequencing
episodes (with the less-flexible activities being pursued earlier). Kitamura and
Kermanshah (1983) adopted the same sequential view in their extension of the above
study to include the time dimension of activity choice. Adler and Ben Akiva (1979)
examined inter-trip linkages from a simultaneous decision perspective, i.e, on the
premise that the individual plans and pre-determines her/his daily travel schedule. The
choice alternatives in this approach are entire daily patterns. However, the daily patterns
are described by rather simple aggregate measures such as the mode used in travel and
number of tours in the pattern. Golob (1986) also used a simultaneous decision
approach, though his focus was on trip-chains or tours rather than daily patterns. The
spatial and temporal dimensions are suppressed in this analysis. A set of different types
of trip-chains are identified and modeled as dependent variables. A multivariate
statistical technique (non-linear canonical correlation analysis) is employed for the
analysis. Other studies of inter-trip linkage are Kitamura (1984), Nishii et al (1988) and
O'Kelly & Miller (1984).

More recently, Ben-Akiva and Bowman (1994) have estimated a utility-based
choice model of daily activity schedule of individuals that comprises a nested logit
model of activity pattern choices (i.e., purposes, priorities and structure of the day's
activities and travel) and tour choices (mode choice, destination choice of stops in tours,
and departure time from home and from the "primary" activity in tour). Similar efforts
by Wen and Koppelman (1997, 1999) include generation and allocation of maintenance
stops and automobiles to household members but excludes mode and destination choice.
In contrast to the utility-maximizing discrete choice formulations of Ben-Akiva and
Bowman and Wen and Koppelman, Vause (1997) proposes the use of a rule-based
mechanism to restrict the number of activity-related choices available to an individual
as well as for choice selection from the restricted choice set. Vause emphasizes the need
to avoid the use of a single choice strategy in modeling and advances the use of the rule-
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based mechanism as a method to simulate different choice strategies (such as
satisfaction, dominance, lexicographic and utility) within the same operational
framework.

Vaughn, Speckman and Pas (Vaughn et al, 1997, and Speckman et al, 1997)
developed a statistical approach to generate a set of baseline household activity patterns
including the number and type of each activity episode and its duration, the number of
home-based and work/school-based tours and start and end times for tours for a synthetic
population represented by a continuous path through space and time. The statistical (as
opposed to behavioral) basis of this approach raises questions about its use in prediction.
However, it could provide initial travel-activity patterns for input to adaptive modeling
systems such as SMASH and AMOS.

The studies of episode patterns discussed thus far either do not model the temporal
dimension of episodes or assume broad time periods in the analysis. More recently, two
approaches have been proposed to model activity episode generation and scheduling
within the context of a continuous time domain. The first is the Prism-Constrained
Activity-Travel Simulator proposed by Kitamura and Fujii, 1998 and the other is the
Comprehensive Activity-Travel Generation for Workers (CATGW) model system
proposed by Bhat and Singh (1999). These two studies are discussed in section 4.2
under the heading of "Emergence of Comprehensive Activity-based Travel Demand
Models".

3.3 Modeling Methods in Activity-Travel Analysis

The methods used in activity-based travel analysis include discrete choice models as
well as other methods that accommodate non-discrete variables in activity modeling. The
latter methods have emerged more recently because of the need to model travel as part
of a larger (and holistic) activity-travel pattern and involve relatively non-traditional (in
the travel analysis field) methodologies such as duration analysis and limited-dependent
variable models. In this section, we discuss these various methods. The material here is
drawn liberally from Bhat (1997a), though in a substantially condensed form.

Discrete Choice Models

The multinomial logit (MNL) model has been the most widely used structure for
modeling discrete choices in travel behavior analysis. The random components of the
utilities of the different alternatives in the MNL model are assumed to be independent
and identically distributed (11D) with a type | extreme-value (or Gumbel) distribution
(McFadden, 1973). The MNL model also maintains an assumption of homogeneity in
responsiveness to attributes of alternatives across individuals (i.e., an assumption of
response homogeneity). Finally, the MNL model also maintains an assumption that the
error variance-covariance structure of the alternatives is identical across individuals (i.e.,
an assumption of error variance-covariance homogeneity). The three assumptions
together lead to the simple and elegant closed-form mathematical structure of the MNL.
However, these assumptions also leave the MNL model saddled with the "independence
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of irrelevant alternatives” (11A) property at the individual level (Ben-Akiva and Lerman,
1985). In the next three sections, we will discuss generalizations of the MNL structure
along each of the three dimensions mentioned above: a) Relaxation of the 11D (across
alternatives) error structure, b) Relaxation of response homogeneity, and c) Relaxation
of the error variance-covariance structure homogeneity. While we discuss each of the
dimensions separately, one can combine extensions across different dimensions to
formulate several more generalized and richer structures.

Relaxation of the IID (Across Alternatives) Error Structure Therigid inter-alternative
substitution pattern of the multinomial logit model can be relaxed by removing, fully or
partially, the 11D assumption on the random components of the utilities of the different
alternatives. The 11D assumption can be relaxed in one of three ways: a) allowing the
random components to be correlated while maintaining the assumption that they are
identically distributed (identical, but non-independent random components), b) allowing
the random components to be non-identically distributed (different variances), but
maintaining the independence assumption (non-identical, but independent random
components), and c¢) allowing the random components to be non-identical and non-
independent (non-identical, non-independent random components). Each of these
alternatives is discussed below.

Identical, Non-Independent Random Components The distribution of the random
components in models which use identical, non-independent random components can
be specified to be either normal or type | extreme value. Discrete choice literature has
mostly used the type | extreme value distribution since it nests the multinomial logit and
results in closed-form expressions for the choice probabilities.

The models with the type | extreme value error distribution belong to the
Generalized Extreme Value (GEV) class of random utility-maximizing models. Five
model structures have been formulated and applied within the GEV class. These are: the
Nested Logit (NL) model, the Paired Combinatorial Logit (PCL) model, the cross-nested
logit (CNL) model, the Ordered GEV (OGEV) model, and the Multinomial Logit-
Ordered GEV (MNL-OGEV) model.

The nested logit (NL) model permits covariance in random components among
subsets (or nests) of alternatives (each alternative can be assigned to one and only one
nest). Alternatives in a nest exhibit an identical degree of increased sensitivity relative
to alternatives not in the nest (Williams, 1977, Daly and Zachary, 1978, Daganzo and
Kusnic, 1993).

The paired combinatorial logit (PCL) model initially proposed by Chu (1989) and
recently examined in detail by Koppelman and Wen (1996) generalizes, in concept, the
nested logit model by allowing differential correlation between each pair of alternatives.
While the nested logit model is not nested within the PCL structure, an appropriate
constrained PCL closely approximates the nested logit model.
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Another generalization of the nested logit model is the cross-nested logit (CNL)
model of Vovsha (1996). In this model, an alternative need not be exclusively assigned
to one nest as in the nested logit structure. Instead, each alternative can be
probabilistically assigned to multiple nests. Vovsha proposes a heuristic procedure for
estimation of the CNL model.

The ordered GEV model was developed by Small (1987) to accommodate
correlation among the unobserved random utility components of alternatives close
together along a natural ordering implied by the choice variable (examples of such
ordered choice variables might include car ownership, departure time of trips, etc.).

The MNL-OGEV model formulated by Bhat (1998b) generalizes the nested logit
model by allowing adjacent alternatives within a nest to be correlated in their
unobserved components.

The advantage of all the GEV models discussed above is that they allow partial
relaxations of the independence assumption among alternative error terms while
maintaining closed-form expressions for the choice probabilities. The problem with
these models is that they are consistent with utility maximization only under rather strict
(and often empirically violated) restrictions on the dissimilarity parameters. The origin
of these restrictions can be traced back to the requirement that the variance of the joint
alternatives be identical.

Non-Identical, Independently Distributed Random Components The concept that
heteroscedasticity in alternative error terms (i.e., independent, but not identically
distributed error terms) relaxes the I1A assumption is not new (see Daganzo, 1979), but
has received little (if any) attention in travel demand modeling and other fields. Four
models have been proposed which allow non-identical random components. The first is
the negative exponential model of Daganzo (1979), the second is the heteroscedastic
multinomial logit (HMNL) model of Swait and Stacey (1996), the third is the oddball
alternative model of Recker (1995b) and the fourth is the heteroscedastic extreme-value
(HEV) model of Bhat (1995).

Daganzo (1979) used independent negative exponential distributions with different
variances for the random error components to develop a closed-form discrete choice
model which does not have the 11A property. His model has not seen much application
since it requires that the perceived utility of any alternative not exceed an upper bound.

Swait and Stacey (1996) allowed heteroscedasticity by specifying the variance of
the alternative error terms to be functions of observed alternative characteristics. The
error terms themselves are assumed to be type | extreme-value. The scale parameter 0,
characterizing the variance of each alternative i is written as 8, = exp(B 'z,), where z, is
a vector of attributes associated with alternative i and B is a corresponding vector of
parameters to be estimated. The resulting model has a closed-form structure.

Recker (1995b) proposed the oddball alternative model which permits the random
utility variance of one "oddball" alternative to be larger than the random utility variances
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of other alternatives. This situation might occur because of attributes which define the
utility of the oddball alternative, but are undefined for other alternatives. Then, random
variation in the attributes that are defined only for the oddball alternative will generate
increased variance in the overall random component of the oddball alternative relative
to others.

Bhat (1995) formulated the heteroscedastic extreme-value (HEV) model which
assumes that the alternative error terms are distributed with a type | extreme value
distribution. The variance of the alternative error terms are allowed to be different across
all alternatives (with the normalization that the error terms of one of the alternatives has
a scale parameter of one for identification). Bhat develops an efficient Gauss-Laguerre
quadrature technique to approximate the one-dimensional integral in the choice
probabilities of the HEV model. The reader is referred to Hensher (1998a; 1998b) and
Hensher et al. (1999) for applications of the HEV model to estimation from revealed and
stated preference data.

The advantage of the heteroscedastic class of models discussed above is that they
allow a flexible cross-elasticity structure among alternatives than many of the GEV
models discussed earlier. Specifically, the models (except the oddball model) permit
differential cross-elasticities among all pairs of alternatives. The limitation (relative to
the GEV models) is that the choice probabilities do not have a closed-form analytical
expression in the HEV model.

Non-ldentical, Non-Independent Random Components Models with non-identical, non-
independent random components use one of two general structures: the first is an error-
components structure and the second is the general multinomial probit (MNP) structure.

The error-components structure partitions the overall error into two components:
one component which allows the random components to be non-identical and non-
independent, and the other component which is specified to be independent and
identically distributed across alternatives. In particular, consider the following utility
function for alternative i:

U

i

X
v, + p,'zl_ + €, (1)

where 7, and (, are the systematic and random components of utility, and ¢, is further
partitioned into two components, p,'z,. and €,. z, isavector of observed data associated
with alternative i, p is a random vector with zero mean and density g(p | ), Z is the
variance-covariance matrix of the vector p, and €, is independently and identically
standard distributed across alternatives with density function f(.). The component p,'z,.
induces heteroscedasticity and correlation across unobserved utility components of the
alternatives (see Train, 1995). While different distributional assumptions might be made
regarding f(.) and g(.), it is typical to assume a standard type | extreme value for f(.), and
a normal distribution for g(.). This results in a error-components model with a logit
kernel. On the other hand, if a standard normal distribution is used for f(.), the result is
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a error-components probit model. Both these structures will involve integrals in the
choice probability expressions which do not have a closed-form solution. The estimation
of these models is achieved using logit simulators (in the first case) or probit simulators
(in the second case). Different and very general patterns of heteroscedasticity and
correlation in unobserved components among alternatives can be generated by
appropriate specification of the u and z, vectors (see Bhat, 1998c, Ben-Akiva and
Bolduc, 1996 and Brownstone and Train, 1999).

The general multinomial probit (MNP) structure does not partition the error terms,
and estimates (subject to certain identification considerations) the variance-covariance
matrix of the overall random components among the different alternatives (see Bunch
and Kitamura, 1990; Lam, 1991; and Lam and Mahmassani, 1991). However,
McFadden and Train (1996) have shown that the error-components formulation can
approximate a multinomial probit formulation as closely as one needs it to. Further, the
error-components models can be estimated using simulators which are conceptually
simple, easy to program and inherently faster than simulators for the MNP model (see
Brownstone and Train, 1999).

Relaxation of Response Homogeneity The standard multinomial logit, and other
models which relax the 11D assumption across alternatives, typically assume that the
response parameters determining the sensitivity to attributes of the alternatives are the
same across individuals in the population. However, if such an assumption is imposed
when there is response heterogeneity, the result is biased and inconsistent parameter and
choice probability estimates (see Chamberlain, 1980).

Response heterogeneity may be accommodated in one of two ways. In the first
approach, the varying coefficients approach, the coefficients on alternative attributes are
allowed to vary across individuals while maintaining a single utility function. In the
second approach, the segmentation approach, individuals are assigned to segments based
on their personal/trip characteristics, and a separate utility function is estimated for each
segment. Each of these approaches is discussed next.

Varying Coefficients Approach Consider the utility qu that an individual g associates
with alternative i and write it as:

U,=@a +08z +¢€,+nx, @)
where o, is an individual-invariant bias constant, z, is a vector of observed individual
characteristics, 8,is a vector of parameters to be estimated, € is a random term
representing idiosyncracies in preferences, and n q is a vector representing the
responsiveness of individual g to a corresponding vector of alternative-associated
variables x " .The € o [rms may be specified to have any of the structures discussed in
Section 3.2. Conditional on n, and the assumption regarding the €, terms, the form of
the conditional choice probabilities can be developed. The unconditional choice
probabilities corresponding to the conditional choice probabilities will depend on the
response heterogeneity specification adopted for the n 4 Vector. A general heterogeneity
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specification involves allowing each element Nyt of the vector n, to vary across
individuals based on observed as well as unobserved individual characteristics:
Mg = Texp(y,+ [i;cququ), where w,_, is a vector of relevant observed individual
characteristics and Vo is a term representing random taste variation across individuals
with the same observed characteristics w pe The exponential form is used to ensure the
appropriate sign on the response coefficients: a '+' sign is applied for a non-negative
response coefficientand the '-' sign is applied for a non-positive response coefficient. Yk
is typically assumed to be normally distributed. The random response specification does
not exhibit the restrictive independence from irrelevant alternatives (11A) property even
if the 11D error assumption across alternatives of the MNL is maintained (see Bhat,
1998d).

Segmentation Approaches Two segmentation approaches may be identified depending
on whether the assignment of individuals to segments is exogenous (deterministic) or
endogenous (probabilistic).

The exogenous segmentation approach to capturing heterogeneity assumes the
existence of a fixed, finite number of mutually-exclusive market segments (each
individual can belong to one and only one segment). The segmentation is based on one
or two key socio-demographic variables (sex, income, etc.). Within each segment, all
individuals are assumed to have identical preferences and identical sensitivities to level-
of-service variables (i.e., the same utility function). Typically, very few (one or two)
demographic variables are used for segmentation. The advantage of the exogenous
segmentation approach is that it is easy to implement. The disadvantage is that its
practicality comes at the expense of suppressing potentially higher-order interaction
effects of the segmentation variables on response to alternative attributes.

The endogenous market segmentation approach attempts to accommodate
heterogeneity in a practical manner not by suppressing higher-order interaction effects
of segmentation variables (on response to alternative attributes), but by reducing the
dimensionality of the segment-space. Each segment, however, is allowed to be
characterized by a large number of segmentation variables. Individuals are assigned to
segments in a probabilistic fashion based on the segmentation variables. Since this
approach identifies segments without requiring a multi-way partition of data as in the
exogenous market segmentation method, it allows the use of many segmentation
variables in practice and, therefore, facilitates incorporation of the full order of
interaction effects of the segmentation variables on preference and sensitivity to
alternative attributes (see Bhat, 1997b and Gopinath and Ben-Akiva, 1995).

Relaxation of Error Variance-Covariance Structure Homogeneity The assumption
of error variance-covariance structure homogeneity across individuals can be relaxed
either by a) allowing the variance components to vary across individuals (variance
relaxation), b) allowing the covariance components to vary across individuals
(covariance relaxation), or ¢) allowing both variance and covariance components to vary
across individuals (variance-covariance relaxation).
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Variance Relaxation Swait and Adamowicz (1996) formulate a heteroscedastic
multinomial logit (HMNL) model that allows the variance of alternatives to vary across
individuals based on attributes characterizing the individual and her/his environment (the
variance, however, does not vary across alternatives). The motivation for such a model
is that individuals with the same deterministic utility for an alternative may have
different abilities to accurately perceive the overall utility offered by the alternative. The
HMNL model has exactly the same structure as the heteroscedastic model described
earlier in this section, though the motivations for their development are different.
McMuillen (1995) also proposes a heteroscedastic model in the context of spatial choice
and Gliebe et al (1998) incorporated heteroscedastic scaling into the PCL model for
stochastic route choice.

Covariance Relaxation Bhat (1997c) develops a nested logit model that allows
heterogeneity across individuals in the magnitude of covariance among alternatives in
a nest. The heterogeneity is incorporated by specifying the logsum (dissimilarity)
parameter(s) in the nested logit model to be a deterministic function of individual-related
characteristics. The model is applied to intercity mode choice analysis, where such
heterogeneity may be likely to occur.

The author is not aware of any study that allows both variance and covariance
components to vary across individuals (variance-covariance relaxation), though in
concept the extension involves combining the variance and covariance relaxations
discussed earlier.

Hazard Duration Models

Hazard-based duration models are ideally suited to modeling duration data. Such models
focus on an end-of-duration occurrence (such as end of shopping activity participation)
given that the duration has lasted to some specified time (Hensher and Mannering,
1994). This concept of conditional probability of "failure™ or termination of activity
duration recognizes the dynamics of duration; that is, it recognizes that the likelihood
of ending a shopping activity participation depends on the length of elapsed time since
start of the activity.

Hazard-based duration models are being increasingly used to model duration time
in activity analysis. To include an examination of covariates which affect duration time,
most studies use a proportional hazard model which operates on the assumption that
covariates act multiplicatively on some underlying or baseline hazard.

Two important methodological issues in the proportional hazard model are a) the
distributional assumptions regarding duration (equivalently, the distributional
assumptions regarding the baseline hazard) and b) the assumptions about unobserved
heterogeneity (i.e., unobserved differences in duration across people). We discuss each
of these issues in next two sections. A comprehensive review of the extension of the
simple univariate duration model to include multiple duration processes, multiple spells
from the same individual, and related issues may be found in Bhat (1997a).
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Baseline Hazard Distribution The distribution of the hazard may be assumed to be one
of many parametric forms or may be assumed to be nonparametric. Common parametric
forms include the exponential, Weibull, log-logistic, gamma, and log-normal
distributions. Different parametric forms imply different assumptions regarding duration
dependence. For example, the exponential distribution implies no duration dependence;
that is, the time to "failure” is not related to the time elapsed. The Weibull distribution
generalizes the exponential distribution and allows for monotonically increasing or
decreasing duration dependence. The form of the duration dependence is based on a
parameter that indicates whether there is positive duration dependence (implying that the
longer the time has elapsed since start of the duration, the more likely it is to exit the
duration soon), negative duration dependence (implying that the longer the time has
elapsed since start of the duration, the less likely it is to exit the duration soon), or no
duration dependence (which isthe exponential case). The log-logistic distribution allows
a non-monotonic hazard function.

The choice of the distributional form for the hazard function may be made on
theoretical grounds. However, a serious problem with the parametric approach is that it
inconsistently estimates the baseline hazard and the covariate effects when the assumed
parametric form is incorrect (Meyer, 1990). The advantage of using a nonparametric
form is that even when a particular parametric form is appropriate, the resulting
estimates are consistent and the loss of efficiency (resulting from disregarding
information about the hazard's distribution) may not be substantial.

Most studies of duration to date have made an a priori assumption of a parametric
hazard. The most relevant duration studies for activity-travel modeling include a) the
homestay duration models for commuters (i.e., the time between coming home from
work and leaving home for another out-of-home activity participation) of Mannering et
al. (1992) and Hamed and Mannering (1993), b) the sex-differentiated shopping
duration models of Niemeier and Morita (1996), ¢) the shopping activity duration during
the evening work-to-home commute of Bhat (1996a), and d) the delay duration model
for border crossings by Paselk and Mannering (1993). These studies have been reviewed
in greater detail by Pas (1997).

Unobserved Heterogeneity Unobserved heterogeneity arises when unobserved factors
(i.e., those not captured by the covariate effects) influence durations. It is well-
established now that failure to control for unobserved heterogeneity can produce severe
bias in the nature of duration dependence and the estimates of the covariate effects
(Heckman and Singer, 1984).

The standard procedure used to control for unobserved heterogeneity is the random
effects estimator. This involves specification of a distribution for the unobserved
heterogeneity (across individuals) in the population. Two general approaches may be
used to specify the distribution of unobserved heterogeneity. One approach is to use a
parametric distribution such as a gamma distribution or a normal distribution (most
earlier research has used a gamma distribution). The problem with the parametric
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approach is that there is seldom any justification for choosing a particular distribution;
further, the consequence of a choice of an incorrect distribution on the consistency of
the model estimates can be severe (see Heckman and Singer, 1984). A second approach
to specifying the distribution of unobserved heterogeneity is to use a nonparametric
representation for the distribution and to estimate the distribution empirically from the
data. This is achieved by approximating the underlying unknown heterogeneity
distribution by a finite number of support points and estimating the location and
associated probability masses of these support points. The nonparametric approach
enables consistent estimation since it does not impose a prior probability distribution.

Application of duration models in the transportation field have, for the most part,
ignored unobserved heterogeneity (but see Bhat, 1996a and Hensher, 1994).

Limited-Dependent Variable Models

Limited-dependent variable models encompass a wide variety of structures. In this
section, we will focus on inter-related discrete and non-discrete variable systems. The
non-discrete variable can take several forms. However, the three most interesting cases
in the context of travel and activity modeling are the continuous, ordinal, and grouped
forms. Further, the structure for the discrete/ordinal and discrete/grouped variable
systems are very similar; so we will examine limited-dependent variable systems under
two headings: discrete/continuous and discrete/ordinal models.

Discrete/Continuous Models Hamed and Mannering (1993) use the
discrete/continuous model framework to model activity type choice, travel time duration
to the activity, and activity duration. Barnard and Hensher (1992) estimate a
discrete/continuous model of shopping destination choice and retail expenditure. They
use Lee's (1983) transformation method for polychotomous choice situations with non-
normal error distributions in the choice model. Bhat (1998e) has also used Lee's method
for discrete/continuous models, but extends the method to jointly estimate a
polychotomous discrete choice and two continuous choices.

Discrete/Ordinal Models Bhat and Koppelman (1993) estimate a discrete/grouped
system of employment status (represented by a binary flag indicating whether or not an
individual is employed) and annual income earnings. Observed income earnings in their
data is in grouped form (i.e., observed only in grouped categories such as < 20,000,
20,000-39,999, 40,000-59,999, etc.). Since it is likely that people who are employed are
also likely to be the people who can earn higher incomes, the two variables are modeled
jointly.

Bhat (1997d) has recently developed a joint model of polychotomous work mode
choice and number of non-work activity stops during the work commute (i.e., the total
number of non-work stops made during the morning home-to-work commute and
evening work-to-home commute). The joint model provides an improved basis to
evaluate the effect on peak-period traffic congestion of conventional policy measures
such as ridesharing improvements and solo-auto use dis-incentives.
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3.4 Results of Activity-Travel Analysis

The substantial literature on activity-travel studies precludes a discussion of the results
of individual studies. Instead, in this section, we discuss how activity-based travel
research has and is influencing travel demand modeling.

Better Specification of Travel Demand Models

The insights obtained from activity-based research has enabled the incorporation of
measures of complex behavior in a simple, albeit valuable way in travel choice models.
Beggan (1988) used simple descriptors of travel-activity behavior such as the number
of stops made during the work tour and the number of tours made during the work day
as independent variables and found that even these simplified descriptors had a
significant influence on mode-choice to work. Damm (1980) used various descriptors
of lifecycle, temporal constraints, spatial constraints, interaction between time periods
and interaction between household members in a nested logit model to estimate the
participation and duration in discretionary activities. Goulias et al. (1989), Bhat et al.
(1999) and Felendorf et al. (1997) recognize the inter-relationships among home-based
and non-home based trips in a sojourn from home or from work and develop methods
that can be used not only to generate trips but also to determine their placement within
the larger daily activity-travel pattern of individuals. Purvis and his colleagues (Purvis
et al.,, 1996) at the Metropolitan Transportation Commission (MTC) of the San
Francisco Bay area introduced the notion of time constraints by using work travel time
as an explanatory variable in their traditional non-work trip generation model.

Clearly, one way that activity-based research is influencing (and has influenced)
travel demand modeling is through incremental improvements to trip-based planning
methods.

Emergence of comprehensive Activity-Based Travel Forecasting Models

As indicated earlier in the section on activity episode generation and scheduling, two
approaches have been recently proposed to model the entire diary activity-travel pattern
of individuals within the context of a continuous time domain. The first is the Prism-
Constrained Activity-Travel Simulator proposed by Kitamura and Fujii, 1998 and the
other is the Comprehensive Activity-Travel Generation for Workers (CATGW) model
system proposed by Bhat and Singh (1999).

PCATS divides the day (or any other unit of time) into two types of periods: "open"
periods and "blocked" periods. "Open" periods represent times of day when an
individual has the option of traveling and engaging in "flexible" activities. "Blocked"
periods represent times when an individual is committed to performing "fixed" activities.
PCATS then attempts to "fill" the open periods based on a space-time prism of activities
contained within the open period. PCATS uses a sequential structure for generation of
the activity episodes and associated attributes (activity type, activity duration, activity
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location, and mode choice) within the "open™ period (thus, the unit of analysisin PCATS
is the individual activity).

The CATGW framework is based on the fixity of two temporal points in a worker's
continuous daily time domain. The two fixed points correspond to the arrival time of an
individual at work and the departure time of an individual from work. The day is divided
into four different patterns: before morning commute pattern, work commute pattern,
midday pattern, and post home-arrival pattern. Within each of the before work, midday
and post home-arrival patterns, several tours may be present. A tour is a circuit that
begins at home and ends at home for the before work and post home-arrival patterns and
is a circuit that begins at work and ends at work for the midday pattern. Further, each
tour within the before work, midday and post home-arrival patterns may comprise
several activity episodes. Similarly, the morning commute and evening commute
components of the work commute pattern may also comprise several activity episodes.
The modeling representation for the entire daily activity-travel pattern is based on a
descriptive analysis of actual survey data from two metropolitan areas in the U.S. The
suite of models in the modeling representation can be used for generation of synthetic
baseline patterns as well as to evaluate the effect of Transportation Control Measures
(TCMs). The models have been applied to evaluate the potential effect of TCMs on
stop-making and cold starts in the Boston Metropolitan area.

Study of Important Policy Issues

The study of policy issues is improved and/or made possible by the activity-based
approach. Demand management strategies that attempt to suppress or spread traffic
peaks need to be designed based on the effect of these measures on re-scheduling of
activities and household interactions. For example, achange in work schedule to an early
departure from work may lead to increased trip-making at the evening because of the
additional time available to participate in out-of-home activities. If some of this travel
is undertaken during the same time as the PM peak-period travel, the extent of
congestion alleviation projected by traditional models will not be realized (see Jones et
al., 1990). In fact, from an air quality standpoint, Bhat (1998a) illustrates that an early
departure from work would lead to more cold starts because of the increased activity
durations of evening commute stops resulting from more time availability. Similarly,
improvements in high-occupancy vehicle modes or peak period pricing measures are
likely to have a rather small impact on the mode choice of individuals who make stops
during the commute. The activity-based approach would recognize this association,
while traditional mode choice models will overestimate the shift to high-occupancy
modes, as clearly demonstrated by Bhat (1997d) using actual empirical data. Another
example of the advantage of activity-based analysis relative to traditional methods is in
the evaluation of the travel impacts of telecommuting. Specifically, displacements of
travel (and its associated consequences) to other times of day due to a change in activity
patterns caused by adoption of work telecommuting strategies cannot be examined by
the narrow trip-based models, but can be examined using activity-based models (see
Mokhtarian, 1993).
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Improvements in Data Collection Procedures

Activity research has and continues to provide insights into cost-effective methods of
collecting data and improving the accuracy of data collection procedures. It also
facilitates the development of new data collection techniques that are responsive to
current needs. Improvements in the accuracy of conventional data collection procedures
due to activity-based research include the employment of a verbal activity recall
framework, stated preference techniques, multi-day surveys, longitudinal data collection,
pattern reconstruction techniques, and interactive measurement and gaming simulation
techniques (see Lawton and Pas, 1996, for a comprehensive resource paper on survey
methods associated with activity analysis).

Contributions to Regional and Community Planning

Models with a sound behavioral casual linkage between individual activity patterns and
the travel environment will be critical to good regional and community planning. The
activity perspective of travel provides a clear picture of the functioning of urban areas
(for example, the spatial characteristics of intra-urban labor markets) and has the
potential to identify the differential quality of life associated with different segments of
the population. For example, some researchers (see Johnston-Anumonwo, 1995; Hanson
and Pratt, 1988, 1992; Preston et al., 1993; and MacDonald and Peter, 1994) have used
the activity analysis framework to study the social and spatial context of information
exchange with regard to employment-related decisions. Ferguson and Jones (1990), on
the other hand, used the activity-based perspective to identify the special needs of the
elderly and disabled in Adelaide and were able to make specific recommendations to
improve the mobility of these population groups by identifying the rhythms and timing
under which such individuals live.

3.5 Future directions in Activity-Based Travel Research

The review of activity-based studies in section 3.2 indicates the substantial progress that
has been made in recent years. There is no question that there is an increasing realization
and awareness of the need to model travel as part of a holistic (and temporally
continuous) activity-travel pattern. However, there is still a long way to go in
understanding how households and individuals make choices that drive their activity and
travel patterns. The objective of this section is to highlight some of the directions that
we consider important in activity-based travel analysis.

Inter-Individual Interactions in Activity Behavior

An area that has received limited attention thus far in the activity analysis literature is
the interactions among individuals in a household and the effect of such interactions on
individual activity episode patterns. Interactions among individuals might take the form
of joint participation in certain activities (such as shopping together or engaging in
recreational/social activities together), “serve-passenger” and “escort” activities where
one individual facilitates and oversees the participation of another in activities (for
example, the "soccer mom" phenomenon), and allocation of autos and activities among
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individuals (especially in multi-adult, one-car households). Such interactions can lead
to constraints that may be very important in individual activity/travel responses to
changes in the transportation or land-use environment. However, the comprehensive
activity analysis frameworks today that model individual activity patterns within a
continuous time domain (such as those discussed in section 3.2) do not consider inter-
individual interactions. On the other hand, some recent efforts (for example, see Wen
and Koppelman, 1999) have focused on inter-individual interactions in activity decisions
but have not examined individual activity-travel patterns at a fine level of temporal
resolution. Integration of efforts which accommodate inter-individual interactions in
activity patterns with efforts that use a continuous time domain is, therefore, likely to be
a very fruitful area for further research.

Time-Space Interactions in Activity Behavior

Another area that needs substantial attention in the future is the explicit accommodation
of time and space interactions. Most early research in the activity analysis area
emphasized the dependence in spatial choices among activities using either semi-Markov
processes or discrete-choice models (Horowitz, 1980; Kitamura, 1984; O'Kelly and
Miller, 1984; Lerman, 1979). These studies ignored the temporal aspects of activity
participation. More recently, some studies have focused on the timing and duration of
activities (Ettema et al., 1995; Hamed and Mannering, 1993; Bhat, 1996a). But these
studies have not examined spatial issues. Thus, though one of the key concepts of the
activity-based approach is the time-space interaction, little work has been done toward
developing such an integrated modeling approach. Thill and Thomas, 1987, indicated
the following in their review of travel behavior research: "In spite of various devices to
account for links between decisions, no study has thus far appropriately restored the
simultaneity of intended choices....It is necessary to conceive a framework that
combines both temporal and spatial aspects of travel choice and that considers
multipurpose multistop behavior as a multidimensional whole". This statement remains
valid even today. Recent work by Thill and Horowitz (1997a,b), Dijst and Vidakovic
(1997), and Bhat (1998a) starts to address this concern, but there is still much work to
be done in this area.

In-Home and Out-of-Home Activity Substitution

In-home and out-of-home activities have quite different implications for travel; an in-
home episode does not involve travel (for a person already at home), while an out-of-
home episode requires travel. Thus, the in-home/out-of-home participation decision has
an impact on the generation of trips (see Jones et al., 1993). Understanding this
substitution is important, particularly at a time when opportunities for entertainment at
home are increasing because of the increasing accessibility of households to computers,
theater quality audio and video systems, and an almost unlimited choices of movies to
view from home. Despite the importance of understanding in-home and out-of-home
substitution effects, very few studies have examined this issue (see Kitamura et al, 1996,
Kraan, 1996 and Bhat, 1998e). And even these studies have examined substitution only
in the context of broad activity types (such as discretionary activities, maintenance
activities, etc.) rather than the more relevant substitution in specific activity types.
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One of the impediments to a detailed analysis of in-home and out-of-home
substitution has been (until recently) the unavailability of data on in-home activities.
From a data collection standpoint, a related complication is the participation of
individuals in multiple activities at the same time at home (for example, eating and
watching television at the same time). Thus, research is required into how we might
collect detailed data on activity type of participation at home and how we might be able
to elicit information on multi-activity participation.

Unit of Analysis

The unit of analysis typically used in the activity-based travel models is the weekday.
The implicit assumption is that there is little variation in activity-travel patterns across
different days of the week. Research focusing even on simple aggregate measures of
activity-travel behavior (such as trip frequency, and number and type of stops made
during the morning/evening commutes) has indicated quite substantial intrapersonal
variability across weekdays (see Pas and Koppelman, 1986; Jou and Mahmassani,
1997). One can therefore expect substantial day-to-day variations when considering
entire activity-travel patterns. In addition, the focus on a single weekday does not allow
the examination of the interaction in activity participation between weekends and
weekdays. Of course, the use of an entire week as the unit of analysis will require the
collection of time-use diary data over at least one week. This offers research
opportunities for the development of data techniques that can collect time-use data over
a week without being prohibitively expensive or appearing excessively intrusive.

The Decision Mechanism

As described earlier in the paper, there have been several previous modeling efforts to
generate activity episode patterns. However, we still lack a good understanding of the
decision mechanism underlying revealed activity episode patterns. For example, how do
households and individuals acquire and assimilate information about their activity/travel
environment, is activity-travel behavior pre-planned or is it subject to dynamic
adjustment or is there a mixture of these processes, are attributes of activity episodes
determined jointly or sequentially, and what objective do individuals follow while
determining their scheduling decisions? The main challenge to studying these issues is
that the generation and scheduling process that determines the revealed episode patterns
can only be understood if additional data on the internal mechanism leading up to
revealed episode patterns is collected. Such data are not currently available and again
this offers another research opportunity in the area of data collection.

Clearly, there are important theoretical and methodological advances still to be
made in the activity-based travel research field. As progress is made on these fronts, we
are bound to see more applications of the activity paradigm in travel demand modeling.
Some metropolitan planning organizations (MPOs) are already embracing this new
paradigm and pursuing efforts to develop comprehensive activity model systems to
replace the traditional four-step trip-based methods. Many other MPOs realize the need
to switch to an activity-based modeling system in the near future. To conclude, the
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activity-based approach to travel demand modeling is slowly, but steadily, finding its
way into actual practice.
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