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ABSTRACT 1 
This paper presents the estimation and validation results of a vehicle fleet composition simulator 2 
that can be integrated with a larger activity-based microsimulation model system. The motivation 3 
behind the development of this fleet composition simulator is two-fold. First, it is desirable to 4 
predict the vehicle fleet mix to accurately quantify the emission profile in a region as vehicle 5 
technologies and fuel types evolve. This will provide planners the ability to evaluate the potential 6 
impacts of a host of emission control strategies. Second, knowledge of household vehicle fleet 7 
mix will enable modeling the ‘type’ of vehicle at the trip/tour level in existing activity based 8 
models (ABMs). This will not only add to the behavioral representation of travel in ABMs but 9 
also facilitate an accurate assessment of emission hotspots, and emissions along specific travel 10 
sheds. A heuristic algorithm is applied together with other model components to accurately 11 
predict the fleet mix of individual households where vehicle types are defined by body type and 12 
age. The model system performs well in replicating the base year fleet mix patterns for the 13 
Greater Phoenix metropolitan region, for which the model was developed.  14 
 15 
Keywords: vehicle fleet composition simulator, vehicle fleet mix, vehicle ownership modeling, 16 
travel demand forecasting, activity-based modeling 17 
 18 
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1. INTRODUCTION 1 
Household vehicle fleet composition and its impact on personal travel has been an area of 2 
significant interest in the field of travel demand modeling. In the recent past, there have been 3 
significant advances in the activity based modeling arena in generating various attributes of a 4 
synthetic population and depicting how these characteristics (at both household/individual levels) 5 
impact activity-travel patterns. Increasing recognition is being paid to the role that household 6 
vehicle fleet composition plays that controls and constrains the travel behavior of a household. 7 
The vehicle fleet composition (mix of vehicle types owned by a household) influences and is 8 
influenced by household activity-travel patterns. In the absence of information about vehicle 9 
fleet composition, it is impossible to predict the ‘type’ of vehicle that an individual will choose 10 
for a particular tour/trip. For this reason, vehicle fleet composition modeling is gaining attention. 11 
Knowledge of the type of vehicle used for personal travel will help in the accurate estimation of 12 
energy consumption and vehicular emissions at the trip/tour level, and in turn at the sub-regional 13 
and regional level. A vehicle fleet composition model system, when integrated with an activity-14 
based model, would provide planning authorities with an effective means to estimate the 15 
potential impacts of emission-reduction and alternative-fuel-promotion strategies. 16 

Considerable progress has been made in the modeling of vehicle fleet composition and 17 
utilization in the recent past. This progress is primarily motivated by the desire to curb emissions 18 
from personal travel. The United States accounts for 16% of all GHG emissions in the world 19 
(World Research Institute, 2014). In the US, transportation accounted for 28% of greenhouse gas 20 
emissions in 2011 (EPA, 2014) and 70% of all petroleum consumption (EIA, 2013). A variety of 21 
policies may be invoked to achieve emission targets. For example, policies that discourage the 22 
use of highly polluting vehicles and promote the use of fuel-efficient/clean-fuel vehicles are in 23 
place in several countries including the United States. The challenge, however, is that it is 24 
difficult to predict the outcomes of such strategies as most travel demand forecasting models do 25 
not incorporate vehicle fleet composition model components sensitive to policy interventions. 26 
This has motivated the development of comprehensive vehicle fleet composition simulators.  27 

Interest in analyzing and modeling household auto ownership patterns is not new in travel 28 
behavior research. Several early studies examined auto ownership in terms of the number of 29 
vehicles owned (Lerman and Ben-Akiva, 1976; Kain and Fauth, 1978; Golob and Burns, 1978). 30 
These and other studies that modeled vehicle ownership used multinomial logit (Manski and 31 
Sherman, 1980; Mannering and Winston, 1985) and nested logit specifications (Hocherman et al, 32 
1983; Berkovec and Rust, 1985) to predict vehicle ownership patterns. These were followed by 33 
studies that modeled vehicle holdings at the household level (Kitamura et al, 2000). Brownstone 34 
et al (2000) studied household’s preferences for alternative fuel vehicles using a mixed logit 35 
specification that utilized both stated preference and revealed preference data from a survey 36 
conducted in California. Choo and Mokhtarian (2004) studied the effect of an individual’s travel 37 
attitudes, lifestyle, and mobility on vehicle type choice. The vehicle fleet owned by a household 38 
is influenced by the travel desires as well as composition of the household. 39 

One of the key issues associated with modeling vehicle fleet mix is that household 40 
vehicle fleet composition is not a single discrete choice phenomenon, but a multiple discrete 41 
choice problem as households may choose and own multiple vehicles - acquiring, replacing, or 42 
discarding vehicles over time. To estimate a single discrete choice model of vehicle fleet mix 43 
with n vehicle alternatives, a total of 2n-1 combinations of alternatives exist in the choice set. The 44 
size of the choice set explodes as number of elemental alternatives increases. Also, traditional 45 
random utility maximization models do not consider the effect of satiation (variety-seeking 46 
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behavior) in the context of vehicle type choice. This is an important factor to be considered in 1 
fleet composition modeling as household often own multiple vehicle types and use them to 2 
varying levels. 3 

Bhat (2005) formulated the Multiple Discrete Continuous Extreme Value (MDCEV) 4 
model to overcome the limitations of single discrete choice models. Bhat and Sen (2006) 5 
proposed an MDCEV-MNL model to model vehicle holdings and usage (annual mileage for 6 
each vehicle type). Bhat, et al (2009) enhanced the joint MDCEV-MNL model framework to 7 
include random coefficients/error components. Paleti, et al (2011) developed a comprehensive 8 
vehicle fleet composition, utilization, and evolution framework for integration in activity-based 9 
microsimulation models of travel demand. The framework consists of a vehicle selection module 10 
in which a joint discrete-continuous copula-based model predicts vehicle fleet composition and 11 
utilization.  12 

Musti and Kockelman (2011) estimated a vehicle choice (MNL) model using data from a 13 
stated preference survey conducted in Austin, Texas. They also developed a microsimulator of 14 
vehicle transactions to simulate change of vehicle fleet composition over time. The base year 15 
fleet characteristics are treated as exogenous or given, and the simulator then evolves the 16 
household’s fleet based on transaction and vehicle choice models. Pendyala, et al (2012) applied 17 
a socio-economic model system for activity-based modeling to the region of Southern California. 18 
A component of the socio-economic model system is CEMSELTS, which includes a fleet 19 
composition module that simulates the vehicle fleet owned by a household and assigns a primary 20 
driver to each of the vehicles owned. Although these simulators constitute promising 21 
developments in the field, the need for an operational comprehensive vehicle fleet composition 22 
simulator remains.   23 

The current research effort intends to add to the existing body of work by developing an 24 
operational prototype of a model system that predicts the vehicle fleet mix of households, where 25 
vehicles are classified by body type and age. The system also predicts the mileage allocated to 26 
each of the vehicles owned by the household. The system comprises several components that 27 
together predict fleet mix for a population of synthetic households generated within an activity-28 
based travel model system. The modeling framework and preliminary results have been 29 
documented in an earlier paper (You et al, 2014). The previous paper focused on the multiple 30 
discrete continuous extreme value (MDCEV) model of vehicle fleet composition and presented a 31 
scenario analysis that portrayed the policy sensitivity of the model in predicting changes in fleet 32 
mix in response to varying zonal accessibility measures. This paper presents a detailed 33 
description of an operational prototype of the vehicle fleet composition model system. In 34 
particular, the paper describes a heuristic mileage reallocation (HMR) algorithm that is 35 
developed as part of the fleet mix model system. The model system is developed and 36 
demonstrated using the Greater Phoenix (Maricopa County) metropolitan region in the United 37 
States as a testbed. 38 

The remainder of this paper is organized as follows. The next section discusses the data 39 
preparation and presents the descriptive statistics of data used for estimating various components 40 
of the model system. This is followed by a detailed account of components in the model system. 41 
The fourth section presents model estimation results and the performance of each of the model 42 
components in a sample replication setting. The final section presents conclusions and proposes 43 
avenues for future research. 44 
 45 
 46 
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2. DATA 1 
The data used in this model development effort is from the 2008-2009 National Household 2 
Travel Survey (NHTS). NHTS collects data on socio-economic, demographic, vehicle 3 
ownership, and travel characteristics of households in the nation. Detailed information pertaining 4 
to the vehicles owned by a household are available in the dataset. The Maricopa Association of 5 
Governments (MAG), the metropolitan planning organization (MPO) for the Greater Phoenix 6 
metropolitan region (essentially comprising of Maricopa County), purchased an add-on sample 7 
for the development and update of travel demand models for the region. The survey data set was 8 
cleaned and processed for the development of the vehicle fleet composition model components.  9 
The characteristics of the survey sample are provided in You, et al (2014) and not included here 10 
in the interest of brevity.  The final estimation dataset consisted of 4,262 households owning a 11 
total of 7,785 vehicles. The vehicle characteristics of the data set are also presented in You, et al 12 
(2014). 13 

Households own, on average, two vehicles, with the ratio of number of vehicles to 14 
number of drivers close to unity. For the current effort, a total of 14 vehicle alternatives are 15 
considered. Four body types: car, van, SUV, and pick-up truck, sub-classified by 3 vintage 16 
categories: 0-5 years, 6-11 years and 12 years or older, are considered. Motorbike is an 17 
additional alternative with no vintage classification. Finally, an alternative called the “non-18 
motorized vehicle” is included; this alternative accounts for all of the walk/bike travel 19 
undertaken by a household and is always assumed to be chosen or consumed (at least to a 20 
minimal degree). The vehicle dataset of the NHTS is reorganized to create a vehicle profile for 21 
each household; the final dataset has information on the body type and age of all vehicles owned 22 
by the household. Household demographics, network accessibility measures, and zonal 23 
characteristics are then appended to this dataset. Accessibility measures such as percent of 24 
regional employment accessible within 10 minutes and 30 minutes by auto or transit are 25 
developed from network travel time data and appended to the dataset. The comprehensive dataset 26 
thus formed was used to estimate all of the model components in the vehicle fleet composition 27 
model system.  28 
 29 
3. FRAMEWORK FOR VEHICLE FLEET COMPOSITION MODELING  30 
The methodological framework of the vehicle fleet composition model system is shown in 31 
Figure 1. The first element in the model system is a household mileage prediction model that 32 
predicts the annual motorized mileage consumption of households. This step is necessary as the 33 
subsequent component in the model system, the MDCEV model of vehicle fleet mix, requires a 34 
mileage budget that must be allocated across vehicle types chosen by a household. Motorized 35 
mileage is estimated using a non-linear regression (power form) model. Once the motorized 36 
mileage for each household is predicted, non-motorized mileage is computed using a preset 37 
formula (0.5 mile/person/day x household size x 365 days/year) as every household will 38 
inevitably undertake some amount of non-zero mileage consumption in this category (say, 39 
walking to and from a parking location). The combined annual mileage is given as input to the 40 
MDCEV model, which will predict the vehicle fleet mix owned by the household and allocate 41 
this mileage budget to all of the vehicle types chosen by the household. Any vehicle type with a 42 
zero mileage allocation is not chosen into the fleet; only those alternatives with non-zero mileage 43 
constitute the vehicle fleet mix.  44 
 45 
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The MDCEV model is estimated and applied in such a fashion that every household (in a 1 
synthetic population) will consume at least some non-motorized mileage. The MDCEV model, 2 
when applied in forecasting mode, gives a different output (prediction) each time a simulation is 3 
run. Which simulation result should be considered final? Will the output of the MDCEV model 4 
accurately depict the body type distribution in the population? To address these questions, a 5 
methodology was proposed previously (You et al, 2014) in which a model that separately 6 
predicts the distribution of the number of vehicle body types in the population is used. The idea 7 
behind the proposed methodology was that the MDCEV model would be run repeatedly until the 8 
output of the MDCEV model matches the frequency distribution of the number of vehicle body 9 
types predicted by the separate multinomial logit (MNL) model.  10 

It was observed that using a single simulation of the MDCEV model was not enough to 11 
accurately predict the distribution of the number of body types predicted by the MNL model 12 
within set tolerance limits. While the MDCEV model predicts vehicle fleet mix quite well, the 13 
implied body type distribution from the MDCEV model result almost always over predicted the 14 
proportion of households owning a single vehicle body type and under predicted all of the other 15 
categories. To overcome this issue, the MDCEV model simulation may be run repeatedly and 16 
mileage consumptions from each simulation stored. After a number (say 100) of simulation 17 
applications of the MDCEV model, the average mileage consumption across all alternatives can 18 
be computed for each household.  As the averaging process yields a non-zero mileage in many 19 
alternatives, a Heuristic Mileage Reallocation algorithm was developed and implemented in the 20 
vehicle fleet composition model system.  21 

Because each simulation run of the MDCEV model gives a slightly different result, the 22 
average mileage consumption result from repeated MDCEV model runs is likely to indicate that 23 
a household owns (consumes) almost all of the vehicle categories. In reality, a household might 24 
own only a subset of the vehicle categories in the choice set. The HMR algorithm reallocates the 25 
mileage budget across alternatives for each household in such a fashion that, in the aggregate, the 26 
model replicates the distribution of the number of body types in the population predicted by the 27 
separate multinomial logit model. This multinomial logit model predicts the number of distinct 28 
body types owned by a household. For example, if a household owns a car 0-5 years old, a car 6-29 
11 years old, and a van 6-11 years old, the number of distinct body types owned by the 30 
household is 2 (car and van). While the vehicle body type distribution for the dataset is known in 31 
the base year (from survey data), this distribution is unknown for any future year (or scenario). 32 
The MNL model of number of body types predicts this distribution for any future year scenario. 33 
The resulting distribution serves as a control that the HMR algorithm strives to match. 34 

The mileage reallocation algorithm needs (as input) information on the number of distinct 35 
categories of vehicle alternatives owned by each household in the synthetic population. For this 36 
purpose, the vehicle fleet composition modeling framework includes an MNL model of the 37 
number of vehicle alternatives. If a household owns a car 0-5 years old, a car 6-11 years old, and 38 
a van 6-11 years old, the number of vehicle alternatives owned by this household is three. Thus, 39 
the HMR algorithm takes the outputs of the MDCEV model and the MNL model of number of 40 
vehicle alternatives as inputs. The logic followed by HMR algorithm is shown in Figure 2. The 41 
output of the MNL model of number of vehicle alternatives provides information on the number 42 
of vehicle types a household owns. Based on the output of the MDCEV model, a cumulative 43 
mileage distribution is computed for each household. Based on a Monte Carlo random draw, a 44 
vehicle alternative is selected from the cumulative distribution as ‘owned’ by the household. The 45 
chosen alternative is removed from the dataset, thereby eliminating the choice of the same 46 
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alternative multiple times. This process is carried out ‘k’ times, where k is the number of vehicle 1 
alternatives predicted by the separate multinomial logit model. Figure 3 presents a schematic 2 
illustrating the application of the Heuristic Mileage Reallocation (HMR) algorithm.  In the 3 
sample illustration, a household is predicted to own three vehicle alternatives.  Therefore, three 4 
random draws (without replacement) are performed to identify the specific alternatives chosen 5 
by a household.  The mileage budget is scaled appropriately to ensure that the final mileage total 6 
matches the original mileage budget predicted for the household.    7 

Once the HMR algorithm reallocates the mileage across alternatives for all households, 8 
the implied aggregate vehicle body type distribution output by this step is compared against the 9 
body type distribution predicted by the MNL model of number of body types. The absolute 10 
percent difference between the distributions is computed and checked against a user defined 11 
tolerance limit (say 3%). If the HMR algorithm passes the tolerance check, the output from this 12 
step is accepted and used as input to a series of ordered probit count models.  If not, the entire 13 
application is repeated after calibrating the model components as necessary. This process is 14 
carried out repeatedly until the percent difference between the two distributions satisfies the 15 
tolerance criterion. 16 

The ordered probit count models determine whether all of the mileage consumed by a 17 
household in a particular vehicle alternative belongs to one or multiple vehicles. The count 18 
models are necessary as the vintage classifications are aggregated into three categories for ease 19 
of estimation and application of the fleet composition model system. For example, suppose the 20 
output of the HMR algorithm indicates that a household uses the car 0-5 years old alternative to 21 
travel 25000 miles annually. The count model determines whether all of this mileage is 22 
consumed using just one car 0-5 years old, or if the household owns multiple cars in the 0-5 year 23 
category. Ideally, a count model should be estimated for each of the 13 different vehicle 24 
categories defined for the MDCEV model, but this will increase the number of individual 25 
components in the model system while also decreasing the data available to estimate each of the 26 
individual count models. So, it was felt prudent to estimate one count model for each of the body 27 
types, with vintage serving as an explanatory variable in the models. If the household has non-28 
zero mileage consumption in any of the vintages of a particular body type, the count model of 29 
that body type is applied to find out the ‘actual’ count of vehicles of that body type-age 30 
combination in that household. 31 

At the end of application of the entire model system, the fleet composition of the 32 
household including body type, age and count of vehicles of each body type-age category is 33 
known along with their respective annual mileage consumption. A software package has been 34 
developed in the open source coding language ‘R’, to both estimate and apply the vehicle fleet 35 
composition model system.  36 
 37 

4. MODEL ESTIMATION AND APPLICATION RESULTS 38 
Each of the model components in the vehicle fleet composition model system was estimated and 39 
then tested in isolation to check prediction accuracy. Each individual component of the model 40 
system performed quite well in isolation. The model system was then applied sequentially on the 41 
entire estimation dataset to see how well it would be able to ‘replicate’ the observed vehicle fleet 42 
mix composition for the survey sample. It should be noted that this is not a strict validation 43 
exercise where a subset of the data is set aside for validation purpose, but rather a replication of 44 
observed patterns in the survey data. A separate holdout sample could not be accommodated due 45 
to the need to utilize the full sample (size) for model estimation.  46 
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 1 
FIGURE 3  Illustration of heuristic mileage reallocation algorithm 2 

 3 

10 



 It is not possible to furnish comprehensive estimation results within the scope of this 1 
paper.  For the sake of brevity, only selected illustrative estimation results are furnished in the 2 
paper.  However, the estimation and test application of each of the model components is briefly 3 
described in this section.   4 
 5 
4.1 Mileage Prediction Model 6 
Several alternative model forms were explored to model the annual motorized mileage consumed 7 
by households. A non-linear (power) regression model fit the data best. The estimation results of 8 
the mileage prediction model are omitted in the interest of brevity. The model included a host of 9 
socio-economic, demographic, and residential location and accessibility variables as explanatory 10 
factors.  From the model estimation results, it was observed that households in the highest 11 
income category show a higher motorized mileage consumption, while households in the lowest 12 
income category are likely to have lower consumptions. Households residing in traffic analysis 13 
zones (TAZs) with greater accessibility are likely to have lower motorized mileage consumption. 14 
Lund (2003) presents a similar result and found that increased accessibility enhances pedestrian 15 
travel in a neighborhood. Results of the replication exercise are shown in Panel A of Figure 4. 16 
The results shown are for a calibrated model, where a slight adjustment was made to the constant 17 
in the mileage prediction equation to match the observed distribution more closely. It can be seen 18 
that the mileage prediction model replicates the observed mileage distribution quite well.  19 
 20 
4.2 MDCEV Model of Fleet Mix 21 
A detailed discussion of estimation/replication results of the MDCEV model along with results 22 
of exercises to test the sensitivity of the model to varying accessibility measures were presented 23 
in an earlier paper (You et al, 2014). The MDCEV model forecasting procedure was 24 
implemented using the code developed by Pinjari and Bhat (2011). The forecasting code was 25 
translated from GAUSS matrix programming language to open source statistical programming 26 
language ‘R’ for ease of integration into the fleet composition model system. The MDCEV 27 
model takes mileage budget as input and predicts the fleet mix of a household. It was observed 28 
that a single instance of the MDCEV model predicts the fleet composition of the dataset quite 29 
well, but it tended to over predict the ownership of a single vehicle body type and under predict 30 
ownership of multiple body types. While extensive calibration of the model would address this 31 
issue to a certain extent, it was felt prudent to search for alternative approaches to address this. 32 
Several alternative approaches were explored and the HMR algorithm presented in this paper 33 
provided the best predictions of fleet composition patterns observed in the dataset. The HMR 34 
algorithm requires three essential inputs: i) average mileage consumption allocation predicted by 35 
the MDCEV model, ii) number of vehicle alternatives owned by a household, and iii) the 36 
aggregate distribution of the number of vehicle body types in the population. 37 
 38 
4.3 MNL Model of Number of Vehicle Alternatives 39 
The MDCEV fleet mix model has a total of 13 motorized alternatives (4 body types x 3 vintage 40 
categories + motorbike). The MNL model of number of vehicle alternatives predicts the number 41 
of distinct vehicle categories owned by a household. Ideally the model should allow for a total of 42 
13 alternatives, but observations from data revealed that the maximum number of distinct 43 
alternatives owned by any household in the dataset is five. Therefore, an MNL model is 44 
estimated with 6 categories (0, 1, 2, 3, 4, and ≥5vehicle alternatives) and the final category (≥5 45 
vehicles) is considered as the base alternative. The purpose of this model is to provide a control 46 
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total to the HMR algorithm in order to reallocate the mileage consumption distribution obtained 1 
by averaging the results from 100 MDCEV model simulations. Model estimation results for this 2 
component are presented in Panel A of Table 1.  3 

Estimation results show that lowest income households are likely to own fewer vehicle 4 
alternatives, while medium and high income households tend to own multiple vehicle 5 
alternatives, as expected. Increasing income and presence of higher number of workers in the 6 
household positively influence ownership of multiple vehicle alternatives. Presence of children is 7 
found to positively influence owning multiple vehicle alternatives. Households with children 8 
may choose to own multiple vehicle types to accommodate disparate travel needs and patterns. 9 
The sample replication results of the MNL model of number of vehicle alternatives is presented 10 
in Panel B of Figure 4. The results presented are for the uncalibrated version of the model and it 11 
can be seen that the predicted distributions match the observed patterns quite well. This suggests 12 
that the predictions from this model constitute an appropriate input to reallocate the average 13 
mileage distribution predicted by the MDCEV model using the HMR algorithm. 14 
 15 
4.4 MNL Model of Number of Body Types 16 
This model predicts the number of distinct body types owned by a household. Including 17 
motorbike, there are a total of five distinct body types (car, van, sport utility vehicle, pickup 18 
truck, and motorbike). Only one household in the data set was observed to own vehicles of all 19 
five body types. As this observation may be treated as an outlier, the MNL model specification 20 
considered a maximum of four vehicle body types. Model estimation results for this component 21 
are presented in Panel B of Table 1. Model estimation results indicate that lowest and low 22 
income households are most likely to own zero or one vehicle body type. This finding is 23 
consistent with the results of the MNL model of number of alternatives. Households in this 24 
income range appeared in the zero and one vehicle alternative category, which automatically 25 
places them in the equivalent category in the vehicle body type model. Households with more 26 
adults and drivers are likely to own multiple vehicle body types. This speaks to the variety 27 
seeking nature of different individuals in such households. The presence of children is found to 28 
negatively influence owning a single vehicle category exclusively. For such households, the need 29 
to chauffeur children is likely to necessitate owning a bigger vehicle (such as a van or SUV) in 30 
addition to owning another smaller vehicle body type for commuting travel. This is further 31 
corroborated by the significance of the same variable in the three vehicle body type category. 32 
Results of the standalone replication of this model are not presented in the interest of brevity. 33 
The uncalibrated model performed exceedingly well in predicting the distribution of the number 34 
of body types in the survey sample. An enhancement of the structure (currently under 35 
development) combines the estimation of number of body types with the number of alternatives 36 
using a nested logit model structure, to reflect the significant correlation that likely exists 37 
between these two dimensions of car ownership. 38 
 39 
4.5 Heuristic Mileage Reallocation (HMR) Algorithm  40 
This component of the model system reallocates average mileage predicted by the MDCEV 41 
algorithm across choice alternatives using a heuristic approach. The logical sequence of HMR 42 
algorithm is depicted in Figure 2 and a sample illustration of the process is depicted in Figure 3. 43 
After the HMR algorithm is applied for a particular household, the model system predicts a 44 
selection of ‘n’ vehicle alternatives.  45 
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 1 
TABLE 1  Estimation Results for Multinomial Logit Models. 2 

Panel A. MNL Model of Number of Vehicle Alternatives 

Category Explanatory Variable Coefficient 
(t-stat)   Category Explanatory Variable Coefficient 

(t-stat) 

Zero 
Alternatives 

Constant 1.73(4.2)  Two 
Alternatives 

Two worker household -0.34(-2.95) 
Lowest income household (< $25,000) 2.37(9.7)  Households in lowest income quintile (Q1) -0.0003(-2.03) 
Low income household ($25,000 - $49,999) 0.82(3.23)  

Three 
Alternatives 

Constant 1.69(3.36) 
Housing unit owned (from variable HOMEOWN) -1.65(-9.95)  Housing unit owned (from variable HOMEOWN) 1(3.01) 
Household size = 1 2.12(10.83)  Count of adult HH members at least 18 years old 0.48(5.4) 
Zero worker household 1.21(6.42)  Three or more worker household 1.02(4.52) 
Population density of household TAZ  0.0001(4.16)  Population density of household TAZ -0.0001(-3.49) 

One 
Alternative 

Constant 4.27(13.72)  Presence of children in the household 0.38(3.25) 
Lowest income household (< $25,000) 1.43(11.59)  Household with 2+ adults, youngest child 16-21 0.5(2.5) 
Low income household ($25,000 - $49,999) 0.96(10.39)  

Four or 
More 

Alternatives 

Constant 1.18(3.19) 
Household size = 1 2.22(18.38)  Highest income household (>= $100,000) 0.72(3) 
Proportion of multi-family housing units in the TAZ 0.4(2.05)  Household with 2+ adults, youngest child 16-21 1.63(5.47) 
Two worker household -0.86(-6.37)  Household size = 4 or more 1.51(6.25) 

Two 
Alternatives 

Constant 5.31(17.14)  Two worker household -0.7(-2.59) 
Household with 2+ adults, youngest child 0-5 0.42(3.76)  Goodness of Fit Statistics   
Medium income household ($50,000 - $74,999) -0.21(-2.29)  Sample Size (Number of Households)  Likelihood Ratio 𝜒𝜒(25,0.001)

2  

   
 4,262 2099.10 52.62 

Panel B. MNL Model of Number of Vehicle Body Types 

Zero Body 
Types 

Constant 0.68(2.09)   

Two Body 
Types 

Constant 2.96(13.01) 
Lowest income household (< $25,000) 2.09(8.42)  Household resides in rural area  0.19(2.01) 
Low income household ($25,000 - $49,999) 0.61(2.38)  High income household ($75,000 - $99,999) 0.35(3.34) 
Housing unit owned  -1.43(-8.58)  Highest income household (≥ $100,000) 0.23(2.37) 
Household size = 1 2.11(10.45)  Household size = 4 or more 0.3(2.73) 
Zero worker household 1.14(6.15)  Housing unit owned 0.98(6.47) 
Population density of the TAZ that the household 
resides 0.0001(4.08)  

Three or 
More Body 

Types 

Housing unit owned  1.42(5.9) 

One Body 
Type 

Constant 3.67(19.69)  Count of adult HH members at least 18 years old 0.55(6.4) 
Lowest income household (< $25,000) 1.02(7.95)  Three or more worker household 0.46(1.96) 
Low income household ($25,000 - $49,999) 0.65(6.86)  Population density of the TAZ that the household resides -0.0001(-2.82) 
Household size = 1 1.99(15.62)  Presence of children in the household 0.36(2.55) 
Proportion of multi-family housing units in the TAZ 0.26(1.39)  Goodness of Fit Statistics   
Presence of children in the household -0.33(-3.2) 

 
Sample Size (Number of Households)  Likelihood Ratio 𝜒𝜒(21,0.001)

2  
        4,262 1658.30 46.80 
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FIGURE 4  Model system replication results - part I: (A) mileage prediction model, (B) MNL model of number of alternatives,  2 
(C) MNL model of number of body types, and (D) MDCEV model of vehicle fleet mix 3 
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Aggregate mileage from these alternatives will only account to a portion of the total 1 
annual motorized mileage consumption of the household. In order to match the total motorized 2 
mileage for the household, mileages of the selected alternatives are scaled up proportionally. 3 
Mileage reallocation is done for every household in the dataset using this algorithm. In the end, 4 
the following distributions from the output of the HMR algorithm are checked against observed 5 
distributions for the base year. 6 

  7 
Body type distribution: The predicted body type distribution is derived from the output of the 8 
HMR algorithm and compared against the distribution predicted by the MNL model of number 9 
of body types. If both of the distributions match within a set tolerance criterion, the HMR 10 
algorithm stops and the output of the algorithm serves as input to subsequent components in the 11 
model system. If the distributions do not match within the tolerance limit, the HMR algorithm is 12 
run again and this process is repeated a number of times (user defined) to see if the HMR 13 
algorithm outputs the expected distribution as predicted by the MNL model of the number of 14 
body types. If it does not, the MDCEV model is re-calibrated and the process is repeated. The 15 
calibration exercise is done with due caution to avoid any unintended consequences that such 16 
changes might bring. In the current empirical context, the body type distribution derived from the 17 
output of the HMR algorithm matches quite well with the distribution of the number of body 18 
types predicted by the corresponding MNL model (shown in Panel C, Figure 4). 19 
 20 
Average annual mileage distribution: Predicted and observed annual mileage distributions are 21 
compared. Only households owning a particular vehicle alternative are considered in the 22 
computation of average annual mileage values for that alternative. The output of the HMR 23 
algorithm is found to match the observed patterns of annual average mileage distribution quite 24 
well. Results presented (bottom axis, Panel D, Figure 4) are for a slightly calibrated version of 25 
the MDCEV model presented in an earlier paper (You et al, 2014).  26 
 27 
Vehicle frequency distribution: The percentage ownership for each vehicle alternative is 28 
predicted and compared against the observed ownership pattern (top axis, Panel D, Figure 4). It 29 
can be seen that the model system predicts the vehicle frequency distribution quite well. 30 

 31 
The output of the HMR algorithm that matches the control distributions on all three measures 32 

discussed above serves as input to the count models. 33 
 34 
4.6 Count Models 35 
Count models are necessary due to the aggregate categorical treatment of vehicle age (0-5 years, 36 
6-12 years, 12 years or more) in the MDCEV model. If a household owns multiple vehicles of 37 
the same body type-vintage combination, the MDCEV model is not able to return the number of 38 
vehicles owned by a household within that alternative.  The MDCEV model is only able to 39 
indicate that the household owns that vehicle type without providing any indication of the count 40 
of vehicles owned within the specific vehicle type chosen. Count models are applied for all 41 
vehicle alternatives that have non-zero mileage consumptions for a household. Ordered probit 42 
count models are estimated for car, van, SUV and pick-up truck body types. The maximum 43 
number of cars that a household may own is set at three in the current model specification due to 44 
data limitations. Similarly, the maximum number of vans, SUVs, and pick-up trucks that a 45 
household may own is set at two (again, due to data limitations). These values are set based on 46 
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distributions of vehicle counts of different types in the estimation dataset. Motorbike category 1 
does not have a corresponding count model as the number of households owing multiple 2 
motorbikes is found to be very low. 3 

Estimation results for the count models are not furnished in the interest of brevity. In 4 
general, various household and zonal level characteristics were used in the count model 5 
specification. Annual mileage consumption for a particular body type was also used as an 6 
explanatory variable in these models. Low income households were found to own fewer vehicles 7 
of any body type, a result consistent with expectations. High income households had a greater 8 
propensity to own multiple cars and SUVs than other vehicle body types. Very small (household 9 
size = 1) and very large households (household size ≥ 4) tended to have fewer number of cars in 10 
their fleet. Both of these findings make intuitive sense in that smaller households might not own 11 
multiple vehicles at all, while larger households might choose to own a mix of vehicles (such as 12 
a car and a van), rather than multiple vehicles of a smaller size (such as cars). Households living 13 
in TAZs with low density (rural/suburban neighborhoods) tended to own multiple vans and pick-14 
up trucks. Higher mileage consumption in a specific vehicle body type category was, as 15 
expected, associated with the ownership of multiple vehicles within that body type category. 16 
This feature of the model ensures that any large mileage allocation to a specific body type will be 17 
distributed appropriately across multiple vehicles.  18 

Appropriate count models are applied whenever a household is simulated to have chosen 19 
a specific vehicle body type (from earlier components of the vehicle fleet composition model 20 
system). Results comparing observed and predicted counts for each vehicle body type are shown 21 
in Figure 5. The results from the count models constitute a test of the efficacy of the entire 22 
vehicle fleet composition model system (as this is a sequential application process). Results from 23 
the count model predictions show that the fleet composition model system as a whole is able to 24 
accurately predict the vehicle fleet mix, annual mileage consumption, as well as count of 25 
multiple vehicles of the same body type-age category.  26 

 27 
5. CONCLUSIONS 28 
Concerns about air quality and energy security, and the desire to promote sustainable 29 
communities and cities motivates the accurate prediction of emissions and energy consumption 30 
resulting from transportation-related activity.  Traditional travel demand modeling systems often 31 
include information about household vehicle ownership and miles of travel, but do not include 32 
information about the types of vehicles owned by households and the extent to which the 33 
different types of vehicles are driven (utilized).  As a result, estimates of energy consumption 34 
and emissions do not necessarily reflect the true distribution of vehicle types in the population 35 
and their utilization patterns.  In addition, the advent of a variety of new vehicle technologies and 36 
fuel types hold considerable promise in reducing the energy and emissions footprint of 37 
household travel.  However, in the absence of a model that forecasts household vehicle holdings 38 
by type under alternative technology, fuel, and policy scenarios, it is virtually impossible to 39 
accurately predict energy and emissions under alternative futures.   40 
 This paper describes the structure and algorithms underlying a comprehensive vehicle 41 
fleet composition model system that can be used to simulate the mix of vehicle types that a 42 
household owns, and estimate the extent to which each vehicle in the fleet would be utilized 43 
(driven).  Such a model system can be effectively integrated in regional travel model systems to 44 
better estimate energy and emissions in specific locations, along specific corridors, and in 45 
subareas of interest.    46 
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 1 
FIGURE 5  VFC model system replication results - part II: (A) car count model, (B) van count model,  2 

(C) SUV count model, and (D) pick-up count model3 

17 



 The model system is estimated and tested for the Greater Phoenix metropolitan region in 
the United States.  The model system includes a multiple discrete continuous extreme value 
(MDCEV) model of vehicle fleet mix that is capable of estimating the alternative vehicle types 
or alternatives that a household would own.  This model is combined with other model 
components, and applied in forecasting mode using a practical heuristic algorithm, to predict the 
complete vehicle fleet composition details of a household.  The components of the model system 
are estimated on a sample of 4,262 households belonging to the Greater Phoenix region in the 
National Household Travel Survey data set. The model efficacy is tested by applying the model 
to the same estimation data set and comparing the model predictions to the observed vehicle fleet 
composition patterns in the data set. Although not a true validation of the model system, the 
quality of the sample replication is very good, suggesting that the vehicle fleet composition 
model system may be suitable for integration in regional travel model systems.  As activity-
based travel models are increasingly deployed in various metropolitan areas around the world, 
vehicle fleet composition models such as that described in this paper can be integrated 
effectively to better estimate household vehicle ownership by vehicle type and assign a specific 
vehicle in the household to different drivers, and various trips and tours.  By tracking individual 
vehicular movements through time and space, it is possible to obtain very accurate estimates of 
energy consumption and emissions.   

Ongoing efforts are focused on adding a fleet evolution module to address vehicle 
ownership dynamics with replacement/addition of vehicles in a household’s vehicle fleet over 
time. This could not be done in the current effort as the data used for model development is cross 
sectional in nature and contains no information about vehicle acquisition/disposal/replacement. 
The current model system does not account for fuel type in the vehicle type classification 
scheme; vehicle types are purely defined by body type and vintage. The inclusion of fuel type 
was not possible due to the very limited number of observations for alternative fuel vehicles in 
the data set. However, the inclusion of fuel type in the vehicle classification scheme would help 
planning agencies test policy scenarios pertaining to hybrid and electric vehicles. The model 
system is also currently undergoing a through validation process using a variety of secondary 
data sources, including Motor Vehicle Division records on vehicle registrations.  
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