
 
 
 
 
 

The Modeling of Household Vehicle Type Choice Accommodating Spatial Dependence 
Effects 

 
 
 
 
 

Rajesh Paleti 
The University of Texas at Austin 

Department of Civil, Architectural and Environmental Engineering 
301 E. Dean Keeton St. Stop C1761, Austin TX 78712-1172 

Phone: 512-471-4535, Fax: 512-475-8744 
E-mail: rajeshp@mail.utexas.edu 

 
Chandra R. Bhat (corresponding author) 

The University of Texas at Austin 
Department of Civil, Architectural and Environmental Engineering 

301 E. Dean Keeton St. Stop C1761, Austin TX 78712-1172 
Phone: 512-471-4535, Fax: 512-475-8744 

E-mail: bhat@mail.utexas.edu 
and 

King Abdulaziz University, Jeddah 21589, Saudi Arabia 
 

Ram M. Pendyala 
Arizona State University 

School of Sustainable Engineering and the Built Environment 
Room ECG252, Tempe, AZ 85287-5306 

Phone: 480-727-9164; Fax: (480) 965-0557 
Email: ram.pendyala@asu.edu 

 
Konstadinos G. Goulias 
University of California 

Department of Geography 
Santa Barbara, CA 93106-4060 

Phone: 805-308-2837, Fax: 805-893-2578 
Email: goulias@geog.ucsb.edu 

 
 
 

 



Paleti, Bhat, Pendyala, and Goulias    

ABSTRACT 
Household vehicle ownership and fleet composition are choice dimensions that have important 
implications for policy making, particularly in the energy and environmental sustainability arena. 
In the context of household vehicle ownership and type choice, it is conceivable that there are 
substantial spatial interaction effects due to both observed and unobserved factors. This paper 
presents a multinomial probit model formulation that incorporates spatial spillover effects arising 
from both observed and unobserved factors. The model is estimated on the California add-on 
data set of the 2009 National Household Travel Survey. Model estimation results show that 
spatial dependency effects are statistically significant. The findings have important implications 
for model development and application in the policy forecasting arena. 
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INTRODUCTION 
The contribution of transportation to energy consumption and greenhouse gas emissions is 
undoubtedly dependent on the nature of vehicular travel undertaken by households. The number 
of vehicles owned, the types of vehicles owned (in terms of size, weight, fuel type, and age), and 
the extent to which different vehicles are used (miles of travel) are all key determinants of energy 
consumption and greenhouse gas emissions. Over the past 25 years, the split between cars and 
light duty trucks in the nation’s vehicle fleet has changed dramatically; whereas light duty trucks 
(including pick-up trucks, minivans, and sport utility vehicles) accounted for just about 20 
percent of the fleet 25 years ago, they now account for about one-half of all vehicles on the 
nation’s roadways (1). This dramatic shift in the vehicular fleet composition and utilization has 
had far reaching energy and environmental consequences. 
 The impact of the composition and utilization of the household vehicular fleet on energy 
consumption and greenhouse gas emissions calls for the incorporation of behavioral models of 
vehicle type choice and utilization in transportation demand forecasting models. Such models 
would provide the ability to forecast energy and environmental impacts of shifting vehicle 
ownership and utilization patterns arising from alternative policy decisions, the advent of new 
alternative fuel vehicle technologies, and changes in household and personal vehicular 
preferences.  In this context, while there have been several earlier efforts in the literature on 
vehicle ownership analysis, much remains to be done in developing behavioral models of 
household vehicle fleet composition and utilization choices – and connecting such choices to 
energy and emissions estimates. 

In particular, an important issue that has not been adequately addressed in the vehicle 
ownership and utilization literature is that there may be spatial interaction effects in household 
vehicle ownership and type choice that are both observed and unobserved. Vehicle choices that 
households make are likely to be influenced by their interactions with neighboring households 
and the choices that neighboring households make. If a household observes that many of its 
neighbors own and drive hybrid electric vehicles, or hears good reviews about such vehicles 
from neighbors who already own and drive them, then the household may be motivated and 
influenced to also own and drive a hybrid electric vehicle. Spatial interaction effects may also 
arise from unobserved attitudinal preferences whereby households with similar lifestyle 
preferences cluster together in neighborhoods that have built environment attributes conducive to 
their lifestyle choices.  

This paper aims to contribute to the vehicle ownership and fleet composition analysis 
literature by presenting a multinomial probit model that explicitly accounts for spatial interaction 
effects in these choice phenomena. Underlying the multinomial probit model with spatial 
interaction effects is a behavioral framework that not only estimates the number of vehicles 
owned by a household, but also the vehicle type choice – thus allowing the construction of the 
entire vehicle fleet for a household, while explicitly considering spatial dependency effects.  

    
SPATIAL DEPENDENCE IN CHOICE MODELING 
The past decade has seen increasing attention being paid to accommodating spatial dependency 
effects in modeling choice-making behaviors of agents in a variety of contexts (2). There have 
been several efforts in the recent past to apply spatial correlation structures that have been 
developed for modeling continuous dependent variables in the context of discrete choice models 
of behavior (see recent reviews of this literature in Anselin (2) and Bhat et al. (3)). However, 
these efforts have been hampered by the need to evaluate multidimensional integrals of the order 
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of the product of the number of decision agents and the number of alternatives minus one for 
unordered multinomial response choice models.  

Several studies (4,5) have side-stepped the high-dimensional problem inherent in global 
and general spatial dependency structures by assuming that the dependency originates only from 
observed exogenous covariates of proximate decision agents. However, this is rather untenable in 
the context of several choice situations where the spatial dependence naturally arises from 
didactic interactions between decision agents. To elucidate, households may be viewed as 
developing utilities (or preferences) for vehicle type choice alternatives based on a set of 
observed factors (such as income and presence of children in neighboring households) as well as 
unobserved tastes, attitudes, and location factors (such as how “green” a household is in its views 
and whether there are continuous sidewalks/bicycle paths in the neighborhood). The utility 
vector of one household is likely to be influenced by the utility vector of other nearby households 
due to didactic interactions and interchanges (where utility signals get bounced around across 
decision agents). In this process, there is a “spatial spillage” effect not only based on the 
observed covariate effects of neighboring households, but also due to unobserved factors. For 
example, a neighboring household’s perception of “greenness” or the quality of sidewalks/bike 
paths may spill over and influence choices of another household. Further, there may be 
residential self-selection effects leading to a sorting of households based on similarity in 
unobserved vehicle type choice preferences.   

In discrete choice models, ignoring these spillage effects due to observed factors and/or 
due to unobserved factors will, in general, lead to inconsistent estimates of the effects of 
observed covariates. As indicated by Anselin (6), it behooves the analyst to include spatial 
“spillover” effects in both the observed covariates as well as the errors unless there are strong a 
priori reasons not to do so. In the current paper, a spatial lag formulation is adopted to 
accommodate global spatial dependence effects (due to both observed covariate and error 
spillage effects) in household vehicle type choice decisions. The specific model structure and 
formulation implemented in this paper allows the modeling of the entire vehicle fleet 
composition of households, as is discussed in the next section. The development of a 
multinomial probit model with continuous spatial dependency effects (due to both observed and 
unobserved factors) that is capable of modeling the entire vehicle fleet composition constitutes 
the novel contribution of this paper.  
 
DATA 
The data set used in this study is derived from the California add-on component of the 2009 
National Household Travel Survey (NHTS).  The National Household Travel Survey (NHTS) is 
a national survey conducted by the United States Department of Transportation to measure the 
amount of personal travel that is undertaken by the nation’s populace. Individual states and 
metropolitan areas are allowed to purchase and commission additional data collection within 
their jurisdictions if they desire larger samples for their own analysis and planning applications.  
Within the California add-on survey sample, the subsample from the Los Angeles city region 
was extracted for the analysis conducted in this paper. As spatial interaction effects are likely to 
be more localized in nature, it was considered prudent to use a data set from a limited geographic 
region. The desire to limit the sample size (and thus avoid inflated t-statistics that might arise 
from the use of large samples) was another consideration in the selection of a subsample from a 
limited geographic region. Finally, the selection of this specific subsample made it possible to 
merge census tract level accessibility measures and land use data that have been compiled in 
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connection with an ongoing parallel effort to develop a comprehensive activity-based 
microsimulation model system for the Southern California Association of Governments (7). The 
accessibility measures are opportunity-based indicators which measure the number of activity 
opportunities by 12 different industry types as well as total roadway length of different roadway 
types that can be reached within 10 minutes using the auto mode from the home census tract 
during the morning peak period (6 AM to 9 AM).   
 The data set includes detailed individual and household level socio-economic and 
demographic data together with information about the vehicle fleet in each household. After 
extensive cleaning and filtering for missing data, a survey sample of 961 households was 
available for analysis. In order to limit the sample size and for reasons of computational 
tractability, a 25 percent random sample of 243 households residing in 200 census tracts was 
chosen for model estimation. For the model estimation exercise in this paper, vehicle type choice 
was represented as a combination of two dimensions – body type and vintage. Two body types 
were considered, namely, car and non-car (encompassing sport utility vehicles, vans/minivans, 
and pick-up trucks). Two age categories were considered – less than or equal to five years old, 
and greater than five years old.  Thus there are four vehicle type alternatives defined in this 
paper.   
 An examination of the descriptive characteristics of the sample of 243 households 
suggests that the data set is suitable for the model estimation effort undertaken in this paper. It is 
found that 8.2 percent of households have no vehicle, another 34.5 percent have one vehicle, and 
40 percent have two vehicles. Among the vehicles in the sample, 40 percent are old cars, 24 
percent are new cars (less than or equal to five years old), another 24 percent are old non-cars, 
and 12 percent are new non-cars. Among other descriptive statistics, 82 percent of the 
households are of non-Hispanic origin, with 68 percent of individuals reporting their race as 
Caucasian. About 70 percent of households own the home in which they reside. With respect to 
the income distribution, it is found that one-fifth of the households report an annual income less 
than $20,000 and an equal proportion report incomes between $20,000 and $45,000. Just about 
38 percent of the households report income greater than $75,000 per year. About 47 percent of 
the households report having one adult and another 46 percent report having two adults. Nearly 
34 percent of households have zero workers, and 44 percent have one worker. About 17 percent 
of households report having one self-employed individual. There is one person with more than 
one job in 11 percent of the households. The employed individuals report a mean distance to 
work of 6.1 miles. Only one percent of the households report having a child 0-5 years of age, but 
12 percent of households report having a child 6-10 years of age. About 12 percent of 
households report having a child 11-15 years of age (households not necessarily mutually 
exclusive). Just over one-third of households report having a senior adult who is 65 years of age 
or older. About 35 percent of households are immigrant households. The mean distance between 
households (based on the census tracts of household residences), which is the distance measure 
used to capture spatial dependence effects due to proximity, is 11.1 miles with a standard 
deviation of 6.6 miles. The corresponding median distance is 11 miles. Additionally, 20.4% of 
household pairings have inter-household distances of less than 5 miles. Thus, there are enough 
households close to one another, as well as enough variation in the inter-household distances 
across household pairings, to estimate spatial dependency effects.   
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MODELING METHODOLOGY 
The behavioral framework adopted in this study assumes that the observed vehicle fleet of a 
household is the result of a series of unobserved (to the analyst) repeated “synthetic” discrete 
choice occasions in which the household chooses not to purchase a vehicle or chooses a vehicle 
of a certain type. The number of synthetic choice occasions in such a “vertical” (over time) 
choice setting is linked to the number of driving age members in the household to exploit the fact 
that the number of vehicles owned by a household is virtually never greater than the number of 
driving age members (say N) plus two (in the data set used in the current analysis, 99.1% of 
households were covered by this condition). Thus, for each household, a set of N+2 synthetic 
choice occasions is created and an appropriate choice is assigned as the dependent variable. For 
estimation, there needs to be a procedure to assign a chosen alternative at each synthetic 
occasion. For this, the temporal sequence of vehicle purchases of the household, as reported in 
the survey, is used. For example, say a household owns an old sedan and a new sports utility 
vehicle (SUV), with the old sedan being purchased first. Then, the old sedan is the chosen 
alternative at the first choice occasion, and the new SUV is the chosen alternative in the second. 
The chosen alternative in the remaining two choice occasions is “no vehicle purchased”. For the 
second choice occasion, information that the household already has an old sedan is used as an 
explanatory variable.1 The procedure above mimics the dynamics of fleet ownership decisions, 
although there is no temporal component of the dynamics involved because only synthetic choice 
occasions are considered; the observed information available is only that of vehicles held at a 
cross-sectional point in time with information on the sequence in which the currently held 
vehicles were purchased.2  
 
Modeling Approach 
Let the instantaneous utility qtiU  of household q (q = 1, 2, …, Q) at synthetic choice occasion t (t 
= 1, 2, …, Tq) for vehicle type choice i (i = 1, 2, …, I; I = 5 in the empirical context of the current 
paper, including the “no vehicle purchase” alternative) be a function of a (K×1)-column vector of 
exogenous attributes qtix  (including household demographics, types of vehicles “chosen” before 
the tth choice occasion, and activity-travel environment characteristics). Let ,2+= qq NT  where 
Tq is the number of synthetic choice occasions for household q, and Nq  is the number of driving 
age members in household q. Note that t does not have a chronological time interpretation. It is 
simply a device to accommodate multiple synthetic choice occasions and mimic the dynamics of 
fleet ownership decisions. That is, t=1 for a household A does not have any chronological time 
bearing to t=1 or t=2 for a neighboring household B. However, the choice occasions of different 
households may be considered to occur over a time period wherein households are interacting 
and exchanging utility signals. Thus, the spatial dependence across households is specified for 
each vehicle type i without any specific association to the choice occasion. That is, the utility 
                                                 
1 It is also possible to assign the old sedan to the first choice occasion, no vehicle in the second, no vehicle in the 
third, and the new SUV in the fourth occasion. However, both of these assignments give the same results, because 
the “dynamics” are based on what the household already owns in total, not what was chosen in the immediately 
previous choice occasion. 
2 To be sure, our approach is not a true vehicle fleet evolution model that analyzes the dynamics of vehicle 
transaction decisions over time. The estimation of such evolution models, while appealing from a behavioral 
standpoint, has been hampered by the paucity of longitudinal data on vehicle transactions.  Moreover, many 
dynamic models have focused primarily on vehicle ownership (i.e., transactions) with inadequate emphasis on the 
vehicle type, usage, and vintage considerations of the household fleet. 
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qtiU  for household q at choice occasion t for alternative i is related to the utility itqU ′′  for 
household q’ and alternative i at each (and all) of the choice occasions t′ ( t′=1, 2 ,…, Tq’) of 
household q’. This is an important distinction from the traditional spatial dependency 
specifications for spatial panel discrete choice models, and leads to a specific form for the model 
in this study that has not appeared previously in the literature.  

Thus, the utility qtiU  incorporating a spatial lag structure is written as follows: 

 ~~
1'

qtiqtiqqi
q

itq

T

t
qqqti U wδU

q

εα +′++= ∑ ∑
′

′′
=

′

′

xβ                                        (1)
 

where qqw ′  is a distance-based spatial weight corresponding to units q and q′  (with 0=qqw  and 

1=′
′
∑ qq

q
w )  for each (and all) q, ( )10 << δδ  is the spatial lag autoregressive parameter, qiα~  

is a normal random-effect term capturing a household-specific stationary preference effect for 
vehicle type i, and qβ  is a household-specific (K×1)-vector of coefficients assumed to be a 

realization from a multivariate normal distribution with mean vector b and covariance 'LLΩ =
~ . 

Let ,qq βbβ
(

+=  where )~,0(~ Ωβ Kq MVN
(

 is a mixing (multivariate) distribution to capture 
unobserved sensitivity variations (to the exogenous variables in the vector qtix ) across 
households ( KMVN  represents the multivariate normal distribution of dimension K). Also, write 

qiia αα (+= ~~
qi , and let the mean and variance-covariance matrix of the vertically stacked (I×1)-

vector of random-effect terms ( ) ⎥⎦
⎤

⎢⎣
⎡ ′= qIqq ααα ~,...,~,~~

21qα  be A~  and ,~Λ  respectively. qtiε~  in 

Equation (1) is a normal error term uncorrelated with qβ
~  and all qiα~  terms (i = 1, 2, …, I), and 

also uncorrelated across observation units q and synthetic choice occasions t. However, at each 
synthetic choice occasion t for household q, the qtiε~  terms may have a covariance (dependency) 
structure across vehicle types i due to choice-occasion unobserved factors that simultaneously 
increase or simultaneously decrease the utility of certain types of vehicles: 

( ) ).~,0(~~,...,~,~~
21 Ψε IqtIqtqt MVN⎥⎦

⎤
⎢⎣
⎡ ′= εεεqt   

 As usual, appropriate scale and level normalization must be imposed on ,~A ΨΛ ~and~  for 
identification purposes. Specifically, only utility differentials matter in discrete choice models. 
At the same time, whenever utility differentials are taken during estimation, they must all 
originate from the same underlying matrices ,~A ΨΛ ~and~ . To achieve this, take the utility 
differentials with respect to the first alternative. Then, only the elements )1(~~

11 ≠−= iqqiqi ααα  
and its covariance matrix 1Λ , and the covariance matrix 1Ψ  of )1(~~

11 ≠−= iqtqtiqti εεξ , are 
estimable. So, a normalization qq ∀= 0~

1α  is applied, implying that 0~
1 =a . Also, develop Λ  

from 1Λ  by adding an additional row on top and an additional column to the left. All elements of 
this additional row and additional column are filled with values of zeros. Similarly, construct Ψ  
from 1Ψ  by adding a row on top and a column to the left. This first row and the first column of 
the matrix Ψ~  are also filled with zero values. An additional normalization needs to be imposed 
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on Ψ~  because the scale is also not identified. For this, normalize the element of Ψ~  in the second 
row and second column to the value of one. Note that all of these normalizations are needed for 
econometric identification purposes.   Next, define the following: 

),...,,( 21 ′= qtIqtqtqt UUUU , )~,...,~,~(~
211 ′= qtIqttqt εεεε   ( 1×I  vectors), 

),...,( 21 ′′′′=
qqTqqq UUUU , )~,...~,~(~

21 ′′′′=
qqTqqq εεεε   ( 1)( ×× ITq vectors), 

),...,( 21 ′′′′= QUUUU , )~,...~,~(~
21 ′′′′= Qεεεε   ( 1×RI vectors), ∑

=

=
Q

q
qTR

1
, 

),...,,( 21 ′= qIqqq ααα ((((α  (I 1× vector), [ ]′′⊗′⊗′⊗= )1,...()1(,)1( 21 21 QTTT Q
ααα ((((α  ( 1×RI vector), 

) ,...,,( 21 ′= qtIqtqtqt xxxx  ( KI × matrix), ) ,...,,( 21 ′′′′=
qqTqqq xxxx  ( KITq ×× )( matrix), 

) ,...,,( 21 ′′′′= Qxxxx  ( KRI ×  matrix), and ( )′′′′= Qββββ
((((

,...,, 21  ( 1×QK  vector). Let EIDEN  be the 
identity matrix of size E, E1 be a column vector of size E with all of its elements taking the value 
of one, and EE1 be a square matrix of size E with all unit elements. Also, define the following 
matrix: 

),(

0000

0000
0000
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~
3

2

1

matrixQKRI

Q

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

x

x
x

x

K
MKMMMM
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Let ∑
−

=

=
1

1

,~ q

j
jq TR with the convention that ,0~

1 =R  and let IRR qq ×= ~(
. Define a matrix C  of size 

RIRI ×  that is filled with sub-matrices of size )()( ITIT qq ××× ′  as follows: 
[ ]{ }{ } ,

11 )1(,)1( ITTqqRRRR qqqqqq
w IDEN1C ⊗⊗=

′+′′+ ′−+−+
(((( where [ ]{ }{ }11 )1(,)1( +′′+ −+−+ qqqq RRRR

((((C refers to the sub-

matrix of C that corresponds to the th
qR )1( +
(

 through th
qR 1+

(
rows and  th

qR )1( +′
(

 through th
qR 1+′

(
 

columns. Let [ ] matrix)(1 RIRIRI ×−= −CIDENS δ  and 

[ ] ).matrix1()~1,...()~1(,)~1(
21

×′′⊗′⊗′⊗= RI
QTTT AAAA

(
Then, Equation (1) may be written in 

matrix notation as: 

[ ] .~~ εβxαxbASU ++++=
(((

                                 (3) 

Let e[.]  indicate the eth element of the column vector [.], and let .)1( iItRd qqti +−+=
(

 Equation 
(3) can be equivalently written as: 

{ }[ ] { }[ ] .~~
  qtiqti ddqtiU εβxαSxbAS ++++=

(((
                                                (4)  

Define { }[ ]
qtidqtiV  xbAS +=

(
 and { }[ ] .~~

 qtidqti εβxαS ++=
((ε

 
Household q chooses the vehicle 

type at synthetic choice occasion t that provides maximum utility. Let the “chosen” vehicle type 
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(assigned as described previously) for household q at occasion t be mqt. In the utility differential 
form, Equation (4) may be written as: 

qtqtmqtiqtimqtmqtiqtimqtimqtimqtmqtiqtim miandVVHHUUy
qtqtqtqtqtqtqtqt

≠−=−=+=−= ;; εεξξ
        

(5) 

Then stack the utility differentials 
qtqtimy ) ,( qtqtmqti miUU

qt
≠−= in the following order: 

,) ..., , ,( 21 ′=
qtqtqt Imqtmqtmqt yyyqty an 1)1( ×−I  vector; ,) ..., , ,( ′′′′=

qqTqqq yyyy 21  an 1])1[( ××− qTI  

vector; and ) ..., ,,( 21 ′′′′= Qyy yy , an 1])1[( ××− RI  vector. Correspondingly, let 

,) ..., , ,( 21 ′=
qtqtqt Imqtmqtmqt HHHqtH an 1)1( ×−I  vector; ,) ..., , ,( ′′′′=

qqTqqq HHHH 21  an 

1])1[( ××− qTI  vector; and ) ...,  ,( ′′′′= QHHHH 21 , an 1])1[( ××− RI  vector. It may be noted that y  
has a mean vector H.  

To determine the covariance matrix of y , several additional matrix definitions are 
needed. Define a matrix Λ  of size RIRI ×  that is block-diagonal, with each block diagonal as 
follows: [ ]{ }{ } Λ1Λ ~

11 )1(,)1( ⊗=
++ −+−+ qqqqqq TTRRRR

((((  (q=1,2,….Q), RIRIQ ×′⊗= (~)~(~ xΩIxΩ matrix), and 

RIRIR ×⊗= (~ΨIDENΨ matrix). Let [ ]SΨΩΛSF ′++=~  and define M as an (q = 1, 2,…, 
Q): ][])1[( RIRI ×××−  block diagonal matrix, with each block diagonal having )1( −I  rows 
and I columns corresponding to the tth synthetic choice occasion of household q. This II ×− )1(  
matrix for household q and choice occasion t corresponds to an )1( −I  identity matrix with an 
extra column of 1− ’s added as the qtm th column. Finally, the multivariate distribution of the 

utility differentials is obtained, ),,(: ΣHyy MVN~ where .~MFMΣ ′=  Next, let θ  be the 

collection of parameters to be estimated: [ ] , ,)~Vech(),~Vech(~ ;)~(Vech ; ′′′= δΨΛAΩbθ ,  where 
Vech(Ω~ ) represents the row vector of upper triangle elements of Ω

~ . Then, the likelihood of the 
observed sample may be written succinctly as Prob[y* < 0].  

),(]0*[Prob)( )1( ΣHyθ −=<= −× IRML FL                          (6) 

where )1( −× IRF  is the multivariate cumulative normal distribution of )1( −× IR  dimensions. 
Despite advances in simulation techniques and computational power, the evaluation of such a 
high dimensional integral is literally infeasible using established estimation techniques.  
 
Model Estimation Procedure 
In view of the computational intractability of the likelihood function presented earlier, the 
current study uses Bhat’s (8) maximum approximate composite marginal likelihood (MACML) 
inference approach in estimation. The MACML approach combines a composite marginal 
likelihood (CML) estimation approach with an approximation method to evaluate the 
multivariate standard normal cumulative distribution (MVNCD) function. The CML approach 
works as follows. Instead of developing the likelihood of the entire sample, consider developing 
a surrogate likelihood function that is the product of the probability of easily computed marginal 
events. For instance, one may compound (multiply) pairwise probabilities of household q 
choosing the actual “chosen” vehicle type mqt at occasion t and choosing the actual “chosen” 
vehicle type mqs at occasion s, of household q choosing vehicle type mqt at occasion t and 
household q’ choosing vehicle type mq’s at time s, and so on. The CML estimator is then the one 
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that maximizes the compounded probability of all pairwise events. The CML function may be 
written as:  

,' when  ' with ),( Prob)( ''
1 1 '

ttqqmCmCL tqtqqtqt

Q

q

Q

qq

T

t

T

tt
CML =≠=== ′′

= =′ = =
∏∏∏∏θ                     (7) 

where qtC  is an index for the vehicle type chosen by household q at occasion t. Each of these 
pairwise probabilities is of 2)1( ×−I dimensions, which may be computed easily using the 
MVNCD approximation method embedded in the MACML method. The pairwise marginal 
likelihood function of Equation (7) comprises 2/)1( −RR  pairs of multivariate pairwise 
probability computations, which can itself become quite time consuming. Fortunately, in a 
spatial-temporal case where spatial dependency drops quickly with inter-observation distance, it 
should suffice to retain pairs within a certain threshold distance. This threshold value is 
estimated by testing different distance bands, starting from a small distance band and increasing 
the band. Then, the asymptotic variance matrix )ˆ(θCMLV  is estimated for each distance band and 

the threshold distance value (say threshd~ ) is chosen as the value beyond which there is either an 
increase or no additional decrease in the total variance across all parameters as given by 

)]ˆ([ θCMLVtr   (i.e., the trace of the matrix )]ˆ([ θCMLV .   
 The CML estimator of θ  is consistent and asymptotically normal distributed with 
asymptotic mean θ  and covariance matrix given by the inverse of Godambe’s sandwich 
information matrix (9). Bhat (8) provides details of how to compute the covariance matrix.  

In the estimations, the positive-definiteness of each of the ΨΛΩ ~ and ,~ ,~  matrices is 
guaranteed by writing the logarithm of the pairwise-likelihood in terms of the Cholesky-
decomposed elements of these matrices, and maximizing with respect to these elements of the 
Cholesky factor. To ensure the constraint 10 << δ , this term is parameterized as 

)]~exp(1/[1 δδ += . Once estimated, the  ~ δ estimate can be translated back to obtain estimates 
of δ . 
 
ESTIMATION RESULTS 
This section presents results of the estimation of the multinomial probit model with spatial 
dependency effects on the California add-on data set of the 2009 National Household Travel 
Survey. Estimation results are presented in Table 1. A number of model specifications were 
estimated prior to arriving at the final model specification. None of the mixing parameters came 
out to be statistically significant in the final model specification. This result indicates that there is 
no significant household-specific heterogeneity in the variable effects on the vehicle type choice 
decisions. It is important to note that, even in the absence of mixing on variables, the model does 
not collapse to a cross-sectional spatial model. This is because the setup of the model is such that 
the utility associated with an alternative for one household at any given synthetic choice occasion 
is influenced by the utility associated with the same alternative across all synthetic choice 
occasions of all other households in the region, thus leading to a pseudo unbalanced panel setup 
due to unequal number of choice occasions across individuals. Another key finding is that there 
were no significant deviations in the error covariance matrix 1Ψ  of )1(~~

11 ≠−= iqtqtiqti εεξ from 
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the corresponding matrix in an independent multinomial probit (MNP) model.3 This finding 
implies that at any given synthetic choice occasion the choice occasion specific unobserved 
factors that influence the utility associated with different vehicle type alternatives are all 
independent and identically distributed. 
 Although the magnitudes of the constants cannot be directly compared across different 
alternatives (because there are continuous variables in the utility formulations), the relative 
values may be loosely interpreted as providing an indication of the baseline preference for 
different vehicle types. It appears that new cars are the least preferred vehicle type while old cars 
are the most preferred; there is little difference in the baseline preference between old and new 
non-cars. It is found that households with higher levels of educational attainment are less 
inclined to acquire new non-cars. It is possible that these households are more environmentally 
conscious and savvy consumers shunning the expense and environmental consequences of 
driving new non-cars (sport utility vehicles, trucks, and vans). Those of Hispanic origin show a 
greater inclination to acquire old non-cars, while African Americans are less likely to acquire old 
cars and new non-cars.  
 Households that own their home have a greater utility for all vehicle alternatives (in 
comparison to households that do not own their home), with a particular preference for new 
vehicles in comparison to older vehicles. As expected households in the highest income category 
have a positive utility for all vehicle alternatives, with a higher preference for new non-cars and 
the lowest preference for old non-cars. However, the difference in magnitudes of coefficients 
across vehicle type alternatives is quite modest. As the number of adults increases, households 
are more likely to acquire old cars, new cars, or old non-cars – presumably these households 
have a greater need for multiple cars and show a greater disinclination to acquiring new non-cars 
in view of budget constraints. However, with the easing of budget constraints that invariably 
comes with greater number of workers in the household, it is found that households show a 
greater preference towards new cars or non-cars and shun older cars.  
 As the mean distance to work increases, households are more likely to acquire new non-
cars presumably because people are looking for larger and more comfortable and reliable 
vehicles for the longer commute. The presence of children is associated with a smaller likelihood 
of acquiring older cars, and a greater likelihood of acquiring older non-cars. Presumably, such 
households prefer larger cars for the space, and newer cars for the reliability factor. Immigrant 
households have a lower utility across all vehicle type alternatives compared to non-immigrant 
households, but have a smaller negative coefficient on the non-car alternatives. Immigrant 
households may be located in more dense neighborhoods and may be more walk and transit 
oriented, thus contributing to the lower utility across all vehicle types. The coefficients on the 
non-car alternatives are less negative, probably because these households are of larger size 
motivating the acquisition of non-cars in preference to cars. Households with senior adults are 
less likely to acquire non-cars. There may be two explanations for this; first, seniors may have 
diminishing driving skills that make the driving and control of larger vehicles cumbersome, and 
second, seniors may be living in smaller households (empty nests) and so do not need larger 
vehicles (non-cars) any more.  
 As the temporal sequence in which vehicles were acquired in the household is known in 
the survey data set, information about the existing vehicle fleet was used as explanatory variables 
in the utility specification of vehicle type alternatives for all choice occasions after the first. This 
                                                 
3 The covariance matrix of the error term differences in an independent MNP model has 1 and 0.5 as the diagonal 
and off-diagonal elements, respectively. 
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specification mimics the underlying dynamics in the purchase decisions with existing vehicles in 
the household influencing the vehicles that households acquire subsequently. As expected, 
parameter estimates for all vehicle types are negative suggesting that households increasingly 
choose to acquire “no vehicle” as they build up their vehicle fleet. The relative magnitudes of the 
coefficients can be used to draw inferences about how households tend to construct their fleets. It 
appears that households are somewhat variety seeking; for example, as the number of old cars 
increases, households are more prone to acquire new non-cars (least negative coefficient); as the 
number of new cars increases, households are more prone to acquire new non-cars (and shun 
older cars); as the number of old non-cars increases, households are more prone to acquire new 
non-cars or new cars; finally, as the number of new non-cars increases, households are more 
prone to acquire new cars.  In all cases, the least negative coefficient is associated with a car type 
different than that representing the explanatory variable for the existing vehicle fleet.   
 With respect to accessibility measures, households with good access to primary and 
minor arterials have a lower preference for older non-cars suggesting that these households may 
be more auto-oriented (and hence located in census tracts with good roadway presence) and 
prefer to drive newer cars. Households in census tracts closer to manufacturing employment are 
less likely to acquire new cars, possibly because these census tracts are in lower income areas 
thus making new car purchases challenging. On the other hand, households in census tracts close 
to “arts” employment are less likely to acquire old cars; it is possible that these census tracts are 
in urban arts districts that are trendier and people who locate there are more likely to acquire 
newer cars.   
  
MODEL ASSESSMENT 
The model estimation effort yielded coefficient values that are largely reasonable and 
behaviorally intuitive. This section offers an assessment of the model from a number of different 
perspectives including the significance of the spatial dependency parameter, the goodness of fit 
of the model relative to a model that does not include spatial dependence, and differences in 
elasticity estimates between the multinomial probit model with spatial dependency and the 
independent multinomial probit model that ignores spatial dependency.  
 Among the different weight matrix specifications that were tested, the inverse distance 
based specification was found to offer the best fit. The spatial autoregressive parameter in the 
spatial lag formulation, ,δ  also turns out to be statistically significant with a value of 0.1872 and 
t-statistic of 3.80. This is evidence of the presence of spatial spillover effects arising either due to 
didactic interactions of individuals in proximally located households or due to residential self-
selection effects that can lead to a clustering of households with similar vehicle type choice 
preferences.   

Although the spatial parameter is statistically significant suggesting superior data fit in 
the spatial model compared to a corresponding non-spatial model, an alternative way to compare 
these nested models is through the adjusted composite likelihood ratio (ADCLRT) test (8). The 
composite log-likelihood value for the non-spatial model is -138971.8 (52 parameters estimated) 
and that for the final spatial model is -138827.6 (53 parameters estimated). The ADCLRT test 
statistic of comparison between the two models is 7.84 which is greater than the critical chi-
squared value of 3.84 associated with one degree of freedom, thus demonstrating presence of 
spatial interactions in vehicle type choice decisions. Ignoring such spatial interaction effects 
results in a model with poorer statistical goodness-of-fit.   
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A question that is often raised in the context of advanced choice models that incorporate 
additional (observed or unobserved) effects is the extent to which policy forecasts might actually 
differ due to ignoring such effects. Although the goodness-of-fit is significantly better and the 
spatial interactions parameter is significant, does that mean that policy forecasts would be 
different as a result of using one model versus the other (that ignores spatial dependence 
effects)?  The parameter estimates in Table 1 do not directly provide the magnitude of the impact 
of variables on the probabilities of acquiring each vehicle type alternative. To shed light on this 
question, it is useful to compute aggregate-level elasticity effects of variables for the different 
model specifications. Specifically, the effects of variables on the expected share of each vehicle 
type alternative are examined in this paper. This is achieved by computing the marginal 
probability of each household choosing a certain vehicle type in a single synthetic choice 
scenario and aggregating these probabilities across households and all choice occasions for each 
vehicle type alternative.  
 The following procedure is used to compute the shares of each vehicle type alternative. 
The utility function of vehicle type i for household q is as follows: 

 ~
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q
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where the notation is similar to that described in the methodology section of this paper. Then, 
using other notations described previously, it is possible to write: 

[ ], ~εxbSU +=  (9) 

The above RI×1-vector U  is simulated 500 times using the estimated values of b , and by 
randomly drawing 500 times from the appropriate normal distributions for ε~ . Next, the chosen 
alternative is determined as the alternative with the highest utility for each of the 500 draws. 
Finally, the predicted share of each alternative across the 500 draws is taken as an estimate of the 
probability of each vehicle type alternative. The aggregate share (across all households and all 
synthetic choice occasions) of each vehicle type alternative is obtained by aggregating the 
synthetic choice occasion level probabilities of each vehicle type alternative across all 
households. 
 The elasticity computed is a measure of the percent change in the aggregate share of each 
vehicle type alternative due to a change in an exogenous variable. For dummy variables, the 
value of the variable is changed to one for the subsample of observations for which the variable 
takes a value of zero, and to zero for the subsample of observations for which the variable takes a 
value of one. The shifts in expected aggregate shares in the two subsamples are then added after 
reversing the sign of the shifts in the second subsample, yielding the effective percent change in 
the expected shares across all households in the sample due to a change in the dummy variable 
from 0 to 1. For continuous variables, the value of the variable is increased by 25 percent for 
each observation and the percent change in the expected shares is computed. For variables which 
only take integer values (such as number of full time workers), the value is increased by unity.  

Elasticity estimates are computed for the non-spatial MNP and the spatial MNP model, 
and are presented in Table 2. The first entry in Table 2 indicates that, according to the MNP 
model with no spatial interaction, households with a highest education attainment of Bachelor’s 
degree are 3.43% more likely to not acquire a vehicle at any given choice occasion compared to 
other households. Other elasticity effects can be interpreted similarly. 
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All of the elasticity effects are consistent with the parameter estimates in Table 1. Also, 
the elasticity effects of the spatial and non-spatial models are in the same direction (sign) for all 
variables. However, the elasticity estimates of the non-spatial MNP model and spatial MNP 
models are quite different in magnitude. In general, the elasticity effects of the spatial model are 
consistently higher in magnitude than those from the non-spatial model. For instance, the 
elasticity effect of the number of full time workers for the new non-car alternative is 312% where 
as the corresponding number according to the non-spatial MNP model is only 80%. Similarly, 
the spatial model implies that Hispanic households are 198% more likely to obtain an old non-
car whereas the non-spatial model implies only 85% higher likelihood for Hispanic households. 
Although the magnitude of the spatial autoregressive parameter is relatively small, the spatial 
spillover effect is compounding the elasticity estimates due to the circular reinforcing mechanism 
whereby a change in the value of a variable for one household changes utilities of vehicle type 
alternatives for other nearby households, which in turn causes ripple effects in the utility values 
of the household for which the variable changed in the first place. 

In summary, it can be seen that elasticity estimates differ substantially between a model 
with and a model without spatial dependency effects. These differences can have dramatic 
implications for policy forecasts which often rely on model parameter estimates to infer the 
magnitude of change in behavior in response to a change in input conditions.  For instance, 
Assembly Bill 32, the Global Warming Solutions Act, requires that the State of California reduce 
its statewide carbon emissions to 1990 levels by the year 2020, using a combination of 
transportation, and land use planning strategies. One of these strategies include smart land use 
development in which proximal housing development is encouraged for developing efficient 
land use patterns (10). The underlying idea is that high density neighborhoods are less conducive 
for auto use and thus reduce green house gas (GHG) emissions. However, according to our 
results, the proximal housing development strategy can be far more effective when coupled with 
transportation strategies that encourage alternate fuel vehicle (AFV) purchases. Thus, consider a 
scenario where the local government provides subsidies to purchase AFVs to households in a 
new dense housing development. Now, due to social interactions among proximal households, 
other households in the region are also likely to get similar vehicle types. This spatial spillover 
effect coupled with the auto-restraining neighborhood built environment characteristics can 
reduce emissions quite substantially. The true potential of such coordinated land-use and 
transportation planning strategies can be evaluated only using models that account for spatial 
dependencies of proximal decision making agents, such as the one developed in this paper. 

 
CONCLUSIONS 
This paper presents a multinomial probit model of vehicle ownership by type (fleet composition) 
that explicitly incorporates spatial interaction effects due to observed and unobserved factors. 
The model is estimated on the Los Angeles region subsample of the California add-on data set of 
the 2009 National Household Travel Survey which includes a host of accessibility and land use 
variables critical to vehicle ownership modeling. Underlying the model is a behavioral 
framework that considers the household vehicle fleet as being constructed over a series of 
purchase choice occasions, thus providing the ability to endogenously determine the vehicle fleet 
size while simultaneously incorporating history dependency in the choice model. In other words, 
the vehicle type that is acquired at any choice occasion is dependent on the existing vehicle fleet 
in the household comprising vehicles that were acquired at earlier choice occasions. The model 
considers five choice alternatives for each occasion – two body types (car and non-car) by two 
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vintage types (less than or equal to five years old, and greater than five years old) plus the choice 
of acquiring no vehicle at all. The maximum approximate composite marginal likelihood 
(MACML) estimation procedure is employed to overcome computational intractability 
associated with traditional simulation and Bayesian model estimation procedures.  
 Model estimation results show that a host of individual and household variables, not to 
mention accessibility and land use variables, significantly impact choice of acquiring different 
vehicle types. More importantly, in the context of this paper, it is found that the spatial 
interaction parameter is statistically significant and the model that incorporates spatial spillover 
effects offers a superior statistical goodness-of-fit compared to a multinomial probit model that 
does not incorporate spatial dependency effects. It is found that a distance based spatial 
interaction function offers the best fit, with interaction between households dropping off as the 
distance between households increases. A comparison of elasticity estimates offered by the 
spatial effects choice model estimated in this paper against those offered by a model with no 
spatial effects shows that elasticity estimates differ substantially when spatial effects are 
incorporated. The elasticity estimates from the spatial effects model are consistently higher in 
magnitude, suggesting that interaction effects amplify the extent to which households change 
behavior in response to changes in input conditions. Incorporating spatial effects in models of 
discrete choice behavior can result in substantially different policy forecasts, with clear 
implications in the transportation planning and policy arena. Future research efforts in this 
domain could further explore the use of alternative spatial interaction functions, examine 
whether the findings hold true in other geographical contexts and data sets, investigate model 
parameter transferability considerations, and attempt to separate unobserved and observed spatial 
interaction effects by jointly modeling residential location choice with vehicle ownership and 
fleet composition choice. 
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TABLE 1  Spatial Vehicle Type Choice Model Estimation Results 

Variables 
Old Car New Car Old Non-car New Non-car 

Coef t-stat Coef t-stat Coef t-stat Coef t-stat 
Constant -0.0351 -0.19 -0.6960 -3.64 -0.5647 -1.92 -0.5432 -1.94 
Demographics 
Highest Education Attainment in Household (Base is College degree or less)                 
    Bachelor Degree --  --  --  --  --  --  -0.5185 -9.12 
    Post Graduate --  --  --  --  --  --  -0.4172 -6.48 
Hispanic Status (Base category is non-Hispanic)                 
   Hispanic Origin --  --  --  --  0.4983 5.81 --  --  
Race (Base category is all other races)                 
   African American -0.3183 -6.35 --  --  --  --  -0.1993 -4.22 
Housing Tenure (Base category is rental home)                 
   Own  0.3690 9.48 0.6321 11.08 0.7265 11.71 1.0050 17.81 
Household Income (Base category is all lower income levels)                 
    Greater than $75K 0.7863 12.91 0.6581 8.89 0.5848 8.29 0.8284 11.80 
Number of adults 0.5195 15.57 0.3884 8.27 0.6625 14.02     
Number of full time workers --  --  0.4139 8.24 --  --  0.4485 9.00 
Number of people with more than one job --  --  -0.3947 -4.12 --  --      
Mean Distance to work (in miles) --  --  --  --  --  --  0.0115 9.97 
Presence of children                 
   6 to 10 years -0.2136 -4.48 --  --  --  --  --  --  
   11 to 15 years --  --  --  --  0.1985 2.07 --  --  
Presence of senior adults --  --  --  --  -0.5534 -7.87 -0.5617 -8.18 
Presence of individual with prolonged medical condition (> 5 yrs) --  --  -0.3844 -9.21 --  --  --  --  
Immigration Status (Base is non-immigrant household)                 
   Immigrant household -0.3733 -6.39 -0.3733 -6.39 -0.1957 -3.62 -0.1957 -3.62 
Existing vehicle fleet characteristics               
 Number of old cars -1.1195 -12.84 -0.9968 -18.36 -1.0363 -14.35 -0.8437 -12.52 
 Number of new cars -2.0845 -32.36 -1.2579 -16.29 -2.3589 -9.24 -0.7159 -10.11 
 Number of old non-cars -0.9627 -9.96 -0.7004 -11.51 -1.3573 -15.60 -0.4919 -10.52 
 Number of new non-cars -1.5708 -34.02 -1.1944 -8.93 -1.9237 -30.98 -1.7878 -22.35 
Accessibility Measures                 
  Primary arterial roads roadway length within 10 min. (in miles/104) --  --  --  --  -1.7816 -12.15 --  --  
  Minor arterial roads roadway length within 10 min. (in miles/104) --  --  --  --  -0.9369 -6.03 --  --  
  Collector roads roadway length within 10 min. (in miles/104) --  --  --  --  0.5306 16.06 --  --  
  Total manufacturing employment that can be reached within 10 min. (/104) --  --  -2.4896 -2.20 --  --  --  --  
  Total amount of arts employment that can be reached within 10 min. (/104) -9.2334 -9.33 --  --  --  --  --  --  
Spatial Interaction parameter (δ) 0.1872 (3.80) 
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TABLE 2  Aggregate-Level Elasticity Effects of the Spatial and Non-Spatial Models 

Variables 
No Vehicle Old Car New Car Old Non-car New Non-car 

Non-
spatial Spatial Non-

spatial Spatial Non-
spatial Spatial Non-

spatial Spatial Non-
spatial Spatial

Demographics                     
Highest Education Attainment in Household (Base is College degree or less) 
    Bachelor Degree 3.43 2.90 5.20 4.05 8.53 7.34 5.58 4.97 -83.27 -69.29
    Post Graduate 2.71 2.41 4.06 3.50 6.97 5.98 4.61 4.08 -66.52 -57.63
Hispanic Status (Base category is non-Hispanic) 
   Hispanic Origin -5.85 -14.51 -17.21 -39.66 -15.65 -36.84 84.69 197.79 -14.18 -31.90
Race (Base category is all other races) 
   African American 8.44 11.67 -45.50 -63.80 22.52 36.01 22.83 35.76 -25.34 -50.94
Housing Tenure (Base category is rental home) 
   Own  -29.85 -35.61 1.94 7.49 45.89 60.13 50.88 59.74 101.92 91.74
Household Income (Base category is all lower income levels) 
    Greater than $75K -39.03 -43.62 56.80 70.00 45.09 40.81 11.23 11.81 88.77 98.06
Number of adults -23.62 -68.07 34.20 80.83 15.90 20.32 69.54 234.10 -45.62 -88.07
Number of full time workers -11.24 -45.83 -19.58 -65.85 66.15 240.55 -20.07 -66.73 79.67 312.38
Number of people with more than one job 4.49 7.65 10.02 18.13 -52.21 -92.91 9.83 17.08 13.23 24.81
Mean Distance to work (in miles) -0.26 -0.59 -0.31 -0.78 -0.71 -1.46 -0.38 -0.77 6.13 13.38
Presence of children 
   6 to 10 years 3.82 6.99 -26.48 -50.18 9.96 20.24 11.09 20.64 7.77 14.70
   11 to 15 years -1.96 -5.62 -5.77 -16.28 -5.36 -13.92 28.55 77.49 -4.87 -11.79
Presence of senior adults 9.07 8.62 22.45 21.88 23.76 25.47 -72.84 -68.95 -78.65 -79.93
Presence of individual with prolonged medical condition (> 5 yrs) 4.55 7.07 10.14 16.62 -52.70 -85.69 9.88 15.62 13.23 23.29
Immigration Status (Base is non-immigrant household) 
   Immigrant household 16.82 17.65 -28.88 -31.14 -33.84 -36.13 2.16 3.25 -5.46 -4.04
Existing vehicle fleet characteristics 
 Number of old cars 45.81 81.34 -60.05 -98.99 -55.64 -97.71 -50.85 -97.31 -46.11 -93.50
 Number of new cars 60.12 81.83 -91.74 -100.00 -57.61 -99.71 -93.96 -100.00 4.57 -85.41
 Number of old non-cars 39.99 75.88 -50.98 -97.64 -32.43 -86.81 -80.39 -99.93 -8.86 -60.21
 Number of new non-cars 61.30 83.14 -75.85 -99.98 -52.10 -99.26 -86.40 -100.00 -89.53 -99.97
Accessibility Measures 
  Primary arterial roads roadway length within 10 min. (in miles) 1.81 4.34 4.89 13.70 4.56 12.41 -25.15 -64.82 4.38 11.60
  Minor arterial roads roadway length within 10 min. (in miles) 1.18 2.90 3.26 8.89 2.90 7.82 -16.35 -42.05 2.70 7.15
  Collector roads roadway length within 10 min. (in miles) -4.51 -16.76 -10.89 -38.14 -10.52 -34.42 58.78 203.70 -9.49 -31.05
  Total amount of manufacturing employment that can be reached within 10 min. 0.23 0.55 0.45 1.08 -2.44 -6.03 0.42 1.02 0.57 1.60
  Total amount of arts employment that can be reached within 10 min. 0.65 1.84 -4.41 -12.69 1.83 4.95 1.51 4.92 1.44 3.91
 


