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ABSTRACT 

This paper constructs a new generalized multivariate version of the Gumbel copula that, to our 

knowledge, has not appeared in the statistical or mathematical literature.  
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A copula is a device or function that generates a stochastic dependence relationship (i.e., a 

multivariate distribution) among random variables with pre-specified marginal distributions. In 

essence, the copula approach separates the marginal distributions from the dependence structure, so 

that the dependence structure is entirely unaffected by the marginal distributions assumed. This 

provides substantial flexibility in developing dependence among random variables (see Bhat and 

Eluru, 2009; Trivedi and Zimmer, 2007).  

The precise definition of a copula is that it is a multivariate distribution function defined over 

the unit cube linking uniformly distributed marginals. Let C be a K-dimensional copula of uniformly 

distributed random variables U1, U2, U3, …, UK with support contained in [0,1]K. Then,  

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK), (1) 

where θ  is a parameter vector of the copula commonly referred to as the dependence parameter 

vector. A copula, once developed, allows the generation of joint multivariate distribution functions 

with given marginals. Consider K random variables Y1, Y2, Y3, …, YK, each with univariate 

continuous marginal distribution functions Fk(yk) = Pr(Yk < yk), k =1, 2, 3, …, K. Then, by Sklar’s 

(1973) theorem, a joint K-dimensional distribution function of the random variables with the 

continuous marginal distribution functions Fk(yk) can be generated as follows: 

F(y1, y2, …, yK) = Pr(Y1 < y1, Y2 < y2, …, YK < yK) = Pr(U1 < F1(y1),, U2 < F2(y2), …,UK < FK(yK))  

                         = Cθ (u1 = F1(y1), u2 = F2(y2),…, uK = FK(yK)).  (2) 

Conversely, by Sklar’s theorem, for any multivariate distribution function with continuous marginal 

distribution functions, a unique copula can be defined that satisfies the condition in Equation (2). 

Thus, given a known multivariate distribution F(y1, y2, …, yK) with continuous margins Fk(yk), the 

inversion method may be used to obtain a copula using Equation (2) (see Nelsen, 2006): 

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK)  

 = Pr(Y1 < F–1
1(u1), Y2 < F–1

2(u2), ..., Y3 < F–1
3(u3)) (3) 

 = F(y1 = F–1
1(u1), y2 = F–1

2(u2), ..., yK = F–1
k(uk)). 

Once the copula is developed, one can revert to Equation (2) to develop new multivariate 

distributions with arbitrary univariate margins.  
 A rich set of bivariate copula types have been generated using inversion and other methods, 

including the Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and the Archimedean 
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class of copulas (including the Clayton, Gumbel, Frank, and Joe copulas). Of these, the Gaussian 

and FGM copulas can be extended to more than two dimensions in a straightforward manner, 

allowing for differential dependence patterns among pairs of variables. In fact, the multivariate 

normal distribution used in the spatial probit model corresponds to the Gaussian copula with 

univariate normal distributions. Recently, Bhat and Sener (2008) proposed the use of the FGM 

copula with univariate logistic distributions for spatial modeling in a binary choice context, but point 

out that the maximal correlation allowable between pairs of variables is 0.303. In any case, the 

Gaussian and FGM copulas assume the property of asymptotic independence. That is, in these 

copulas, a positive (negative) correlation gets manifested as clustering along the southwest-to-

northeast (northwest-to southeast) plane close to the center point of the joint distribution. However, 

toward extreme tails, there is scattering or dependence reduction (see Bhat and Eluru, 2009 for a 

graphical illustration of this point). Further, the dependence structure is radially symmetric about the 

center point in the Gaussian and FGM copulas. That is, for a given correlation, the level of 

dependence is equal in the upper and lower tails. On the other hand, extreme tail dependence and 

asymmetric tail dependence may be important characteristics in spatial data (even after conditioning 

each marginal variable in terms of observed covariates). For instance, closely located neighborhoods 

may simultaneously experience high crime rates or high trip rates, but not necessarily low crime 

rates or low trip rates. This is the case of strong right tail dependence (strong correlation at high 

values) but weak left tail dependence (weak correlation at low values).  

Clearly, using other copulas to characterize extreme and asymmetric tail dependence would 

be useful. Unfortunately, beyond the Gaussian and FGM copulas, extending other copulas to a 

multivariate setting with differential dependence between pairs of variables is not straightforward. 

The Archimedean copulas can be extended to multiple dimensions, but such extensions, for the most 

part, do not allow differential dependence between pairs of variables (in fact, the straightforward 

way to extend Archimedean copulas restricts the dependence parameter between all pairs of 

variables to be identical, a restriction that is clearly not appropriate for spatial dependence situations; 

see Cherubini, 2004). But one can construct a generalized version of the Gumbel copula that allows 

different dependence parameters between each variable pair using the inversion method. To derive 

such a copula, consider the following cumulative multivariate extreme-value distribution (see Bhat 

and Guo, 2004): 
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where 0 ≤ qkq,α  ≤ 1 for all q and k, 10 ≤< ρ , and 1, =∑ qkq
k

α  for all q ( qqq,α  = 0 for all q by 

convention). The marginal distribution of each element qy  is univariate extreme value as follows: 
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From this, we get:                   
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Inserting this in Equation (3), we get the following copula: 
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10 , ≤≤ qkqα , 1, =∑ qkq
k

α  for all q, 10 ≤< ρ . 

The reader will note that the copula just derived is a generalized version of the Gumbel copula 

(1960). The authors are not aware of any earlier derivation and use of such a copula in the 

statistics/econometrics literature. Note also that the bivariate margin of the GG copula is as follows: 

Cθ (u1,u2) = exp[–{[(–α1,12 ln u1)1/ρ + (–α2,12 ln u2)1/ρ] – (1–α1,12) ln u1 – (1–α2,12) ln u2}]  
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