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ABSTRACT 

This paper evaluates the ability of the maximum approximate composite marginal likelihood 

(MACML) estimation approach to recover parameters from finite samples in mixed cross-

sectional and panel multinomial probit models. Comparisons with the maximum simulated 

likelihood (MSL) estimation approach are also undertaken. The results indicate that the MACML 

approach recovers parameters much more accurately than the MSL approach in all model 

structures and covariance specifications. The MACML inference approach also estimates the 

parameters efficiently, with the asymptotic standard errors being, in general, only a small 

proportion of the true values. As importantly, the MACML inference approach takes only a very 

small fraction of the time needed for MSL estimation.  In particular, the results suggest that, for 

the case of five random coefficients, the MACML approach is about 50 times faster than the 

MSL for the cross-sectional random coefficients case, about 15 times faster than the MSL for the 

panel inter-individual random coefficients case, and about 350 times or more faster than the 

MSL for the panel intra- and inter-individual random coefficients case. As the number of 

alternatives in the unordered-response model increases, one can expect even higher 

computational efficiency factors for the MACML over the MSL approach. Further, as should be 

evident in the panel intra- and inter-individual random coefficients case, the MSL is all but 

practically infeasible when the mixing structure leads to an explosion in the dimensionality of 

integration in the likelihood function, but these situations are handled with ease in the MACML 

approach. It is hoped that the MACML procedure will spawn empirical research into rich model 

specifications within the context of unordered multinomial choice modeling, including 

autoregressive random coefficients, dynamics in coefficients, space-time effects, and 

spatial/social interactions.  

 
Keywords: mixed multinomial probit, composite marginal likelihood, maximum simulated 

likelihood, discrete choice models, unordered-response models, panel data. 
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1. INTRODUCTION 

Consider the following random-coefficients formulation in which the utility that an individual q 

associates with alternative i is given by: 

qiqiU ε+′= qiq xβ                   (1) 

where qix  is a (K×1)-column vector of exogenous attributes, and qβ  is an individual-specific 

(K×1)-column vector of corresponding coefficients that is a realization from a multivariate 

normal density function with mean vector b and covariance matrix Ω. qiε  is assumed to be an 

independently and identically distributed (across alternatives and across individuals) error term, 

which is also independent of the covariate vector qix . If qiε  is normally distributed with a mean 

zero and variance of one-half, then the likelihood contribution of individual q who chooses 

alternative m is: 
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where qmqiqim xxz −= , (.)Φ  is the univariate cumulative distribution function and (.)φ  is the 

univariate normal density function. In the case of panel data, the utility structure may be 

written with the inclusion of choice occasion t as: 

. qitqitU ε+′= qitq xβ                  (3) 

In this case, the individual likelihood contribution of individual q choosing alternative tm  at 

choice occasion t when qitε  is normally distributed, is: 
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where qmtqittqim xxz
t

−= .  

Finally, in the case of panel data, and when the random coefficients have both an intra-individual 

and inter-individual random component (see Bhat and Castelar, 2002; Bhat and Sardesai, 2006, 

Hess and Rose, 2009), the utility structure may be written as: 
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, qitqitU ε+′= qitqt xβ                   (5) 

where qtqqt βββ ~
+= , Ω),(~ bβq N , )Ω~,0(~~ Nqtβ . 

In this case, when qitε  is normally distributed, 
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The likelihood contribution of individual q in Equations (2), (4), and (6) entails the evaluation of 

an analytically intractable function with multidimensional integrals. This has led to the 

development of various simulation techniques in high dimensions as part of a maximum 

simulated likelihood (MSL) estimation approach. Unfortunately, for many practical situations, 

the computational cost to ensure good asymptotic MSL estimator properties can be prohibitive 

and literally infeasible (in the context of the computation resources available and the time 

available for estimation) as the number of dimensions of integration increases.  

 In a companion paper, Bhat (2011a) proposed the use of an alternative maximum 

approximate composite marginal likelihood (MACML) estimator within the class of frequentist 

estimators for the estimation of multinomial probit (MNP) models. Bhat’s MACML estimator is 

based solely on univariate and bivariate cumulative normal distribution evaluations, regardless of 

the dimensionality of integration. This should substantially reduce computation time compared to 

more cumbersome simulation techniques to evaluate multidimensional integrals. At the same 

time, the MACML estimator retains the properties of being consistent and asymptotically 

normally distributed. 

 The specific objectives of this study are motivated by the discussion above. The first 

objective is to examine the ability of the MACML estimator to recover parameters from finite 

samples in mixed cross-sectional and panel multinomial probit models. We use simulated data 

sets with known underlying model parameters to evaluate the MACML approach. The second, 

related, objective is to compare the performance of the MACML approach with the MSL 

approach in mixed MNP simulations when the MSL approach is feasible. In doing so, we 

examine the relative ability of the two approaches to recover parameters and the computation 

time of the two approaches.  
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 The rest of the paper is structured as follows. Section 2 presents the experimental design 

for the simulation experiments and Section 3 presents the results. Section 4 concludes the paper 

by highlighting important findings. 

 

2. EXPERIMENTAL DESIGN 

In the simulation set-up to examine the performance of the MSL and MACML inference 

approaches, we consider the case of five alternatives with five independent variables. For all the 

datasets generated in the experimental design, the values of each of the five independent 

variables for the alternatives are drawn from a standard univariate normal distribution. For the 

cross-sectional data set, we generate a sample of 5000 realizations of the five independent 

variables corresponding to 5000 individuals, while, for the panel data set, we generate a sample 

of 2500 realizations of the five independent variables corresponding to a situation where 500 

individuals each have five choice occasions for a total of 2500 choice occasions. We allow 

random coefficients on all the five independent variables. This leads to a five-dimensional 

integral in the mixed model. In the subsequent three sections, we discuss the set-up for each of 

the following three cases in more detail: (1) cross-sectional random coefficients, (2) panel inter-

individual coefficients and (3) panel intra-individual and inter-individual random coefficients.  

 

2.1. Cross-Sectional Random Coefficients Model Structure 

In the cross-sectional case, the coefficient vector qβ  for individual q is assumed to be a 

realization from a multivariate normal distribution with a mean vector b = (1.5, –1, 2, 1, –2) and 

covariance matrix Ω . Two specifications for Ω  are considered. The first specification, which 

we label as the diagonal covariance specification, assumes independence among the random 

coefficients; that is, the matrix Ω  is assumed to be diagonal. This specification has been 

frequently used in the literature. The entries along the diagonal are set to the value of 1 in our 

experimental design. This first specification entails the estimation of five parameters in the 

covariance matrix. The second specification, which we label as the non-diagonal covariance 

specification, allows the random coefficients to be correlated. In this specification, we specify 

the matrix Ω  to be as follows:  
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Ω  

This positive definite non-diagonal specification involves the estimation of 10 covariance matrix 

parameters.  Finally, values for the error terms qiε  (q = 1, 2, …, Q; i = 1, 2, …, I) in Equation (1) 

are generated from a univariate normal distribution with a variance of 0.5, leading to the mixed 

MNP model structure. The alternative with the highest utility for each observation is then 

identified as the chosen alternative. The above data generation process is undertaken 20 times 

with different realizations of the qβ  vector and the error term qiε  to generate 20 different data 

sets each for the diagonal specification and the non-diagonal specification of the Ω  matrix. 

The MSL and MACML estimators are applied to each data set to estimate data specific 

values of b and L ( ,LL ′=Ω where L is the lower Cholesky decomposition of Ω ; note that it is 

the Cholesky parameters that are estimated to ensure the positive definiteness of the variance-

covariance matrix Ω ). In the case of the diagonal covariance specification, L is also a diagonal 

matrix with entries of ‘1’ along the diagonal. The MSL estimator is applied to each dataset 10 

times with different (independent) draws for the random coefficients for each individual. This 

allows us to estimate the simulation error in the MSL case by computing the standard deviation 

of estimated parameters among the 10 different estimates on the same data set. Similarly, for the 

MACML approach, the approximation error is obtained by computing the standard deviation of 

estimated parameters among the 10 different estimates on the same data set by using different 

permutations to decompose the multivariate normal cumulative distribution (MVNCD) function 

into a product sequence of marginal and conditional  probabilities (see Section 2.1 of Bhat, 

2011a).  

For the MSL estimation, we use draws from the Halton sequence for the random 

coefficients vector qβ , because it is the most commonly used QMC sequence in the literature. 

While some other QMC systems have been shown to provide better results for a given number of 

draws, the Halton has the advantage of very easy generation. Thus, as indicated by Sandor and 

Train (2004), one can generate many more draws per individual of the Halton sequence than 
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other QMC sequences for the same amount of time. Within the context of Halton draws, we 

experimented with different kinds of scramblings and randomizations of the Halton sequence 

(see Bhat, 2003 and Sivakumar et al., 2005 for a review of these scrambling and randomization 

techniques). The experiments indicated that the best performance was obtained using a procedure 

that combined Bratten-Weller scrambling with the Tuffin randomization, further enhanced by the 

random assignment of Halton dimensions to coefficients. Also, while a higher number of draws 

per individual (based on the combination scrambling/randomization discussed above) generally 

provided improved results, we used 250 draws per individual, which is more than what is 

typically used in most applications of the MSL procedure. Further, with a total of 400 total 

estimations for the cross-sectional random coefficients case (20 simulation runs for each of 10 

different data samples for each of the diagonal and non-diagonal covariance case), an important 

factor was to keep the computation cost per estimation to a reasonable amount of time (even with 

250 draws per individual, the total computer time for the 400 estimations was over 800 hours, as 

we discuss in more detail later). Finally, note that one has to integrate out the inner one-

dimensional integral over the scalar λ  that is distributed standard normal (see Equation (2)). 

While this integration can also be performed using QMC draws, we undertake this inner one-

dimensional integration using the more efficient hermite quadrature technique with 10 

quadrature points.  

 For the MACML method, a single random permutation is generated for each individual 

(the random permutation varies across individuals, but is the same across iterations for a given 

individual), and the multivariate normal cumulative distribution (MVNCD) function is 

approximated using the resulting conditional probability sequence. We used different numbers of 

random permutations per individual to approximate the MVNCD function corresponding to the 

individual likelihood contribution. However, there was hardly any difference between using a 

single permutation and higher numbers of permutations, and hence we used a single permutation 

per individual (in one of the 400 estimations undertaken in the cross-sectional case, using two 

permutations per individual instead of a single permutation provided stability to the iterations). 

 

2.2. Panel Inter-Individual Random Coefficients 

As in the cross-sectional case, for the panel case too, we consider both a diagonal specification as 

well as a non-diagonal specification for the qβ  random coefficient vector, with the mean vector 
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and the covariance matrix of qβ  identical to the cross-sectional case. The difference is that we 

generate only 500 vectors of coefficients, one vector for each of the 500 individuals. The same 

individual-specific coefficient vector is applied to all 5 choice occasions of the individual. The 

values for the error terms qitε  are generated from a univariate normal distribution with a variance 

of 0.5, and the alternative with the highest utility is designated as the chosen alternative at each 

choice occasion for each individual. 

 The data generation process is undertaken 10 times with different sets of 500 realizations 

of the qβ  vector and 2500 realizations of the error term qitε  to obtain 10 different data sets (we 

used fewer data samples and fewer total observations for the panel case compared to the cross-

sectional case because of the increased computational costs for panel data relative to cross-

sectional data). The MSL and MACML estimation procedures are applied to each data set. For 

the MSL approach, we decided to ignore simulation error and estimated only a single set of 

parameters for each data set using 250 Halton draws because of the computation time involved. 

Also, we observed during the MSL runs that the analytic gradient function was not returning 

accurate values consistent with the likelihood function for 10 quadrature points when integrating 

out λ  in Equation (4). This is not surprising, since the product across choice occasions of the 

same individual is now within the integration for λ . The net result was that the convergence 

process would get stuck because of the inaccuracy. So, we had to increase the accuracy of the 

gradient procedure by increasing the number of hermite quadrature points to 40 in the panel case. 

For the MACML case, we estimated the approximation error by estimating the model 10 times 

for each data set with different sets of permutations (as in the cross-sectional case). We tested the 

performance of the MACML method by using both a single permutation per individual as well as 

two permutations per individual, and found (as in the cross-sectional case) that the performance 

improvement was rather marginal.  

 

2.3. Panel Intra-Individual and Inter-Individual Random Coefficients 

This estimation involves the generation of the 500 vector realizations of coefficients for qβ  as 

earlier from the multivariate normal distribution with a mean vector b and covariance Ω . In 

addition, 2,500 vectors of coefficients for qtβ~  (see Equation (5)) are generated from the 

multivariate normal distribution with a mean vector of 0 and covariance Ω~ . As in the earlier 
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cases, we considered both a diagonal specification for Ω  and Ω~ , as well as non-diagonal 

specifications for both covariance matrices. The diagonal specification involved draws for qβ  

and qtβ~  from standard and independently normally distributions, while the non-diagonal 

covariance specification for qβ  was the same as in Section 2.2 and the non-diagonal covariance 

specification for qtβ~  was as below: 
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The sum of qβ  and qtβ  realizations are then applied to the independent variable vector for each 

individual’s choice occasion to identify the alternative with highest utility. Everything else 

remains identical to Section 2.2. 

 

3. PERFORMANCE COMPARISON BETWEEN THE MSL AND MACML 

APPROACHES 

In this section, we first identify a number of performance measures and discuss how these are 

computed for the MSL approach and the MACML approach. The subsequent sections present the 

simulation and computational results. 

 

3.1. Performance Measures 

The steps discussed below for computing performance measures are for a specific correlation 

matrix pattern. We discuss the approach first for the cross-sectional random coefficients case, 

and then indicate the minor modifications for the two panel random coefficients cases.  

 

MSL Approach 

(1) Estimate the MSL parameter estimates for each data set s (s = 1, 2, …, 20) and for each of 

the 10 independent scrambled and randomized Halton draws, and obtain the time to obtain 

the convergent values and the standard errors. Obtain the mean time for convergence 
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(TMSL) and standard deviation of convergence time across the 200 runs for each 

correlation pattern The 200 runs correspond to 10 runs for each of 20 data sets. The time to 

convergence includes the time to compute the covariance matrix of parameters and the 

corresponding parameter standard errors. All estimations are started with the true parameter 

values as the starting values. While multiple computers had to be used for the many 

different runs undertaken in this paper, all the run times were carefully scaled to the 

equivalent time on a desktop computer with 3GHz Quad core processor and 8GB of RAM. 

The scaling was based on extensive experimentation on different computers. 

(2) For each data set s and draw combination, estimate the standard errors (s.e.) of parameters 

(using the sandwich estimator; see McFadden and Train, 2000).  

(3) For each data set s, compute the mean estimate for each model parameter across the draws. 

Label this as MED, and then take the mean of the MED values across the data sets to obtain 

a mean estimate. Compute the absolute percentage bias (APB) as: 

100
 valuetrue

 valuetrue-estimatemean 
×=APB .1  

(4) For each data set s, compute the median s.e. for each model parameter across the 10 draws. 

Call this MSED, and then take the mean of the MSED values across the 20 data sets and 

label this as the asymptotic standard error (essentially this is the standard error of the 

distribution of the estimator as the sample size gets large). Note that we compute the 

median s.e. for each model parameter across the draws and label it as MSED rather than 

computing the mean s.e. for each model parameter across the draws. This is because, for 

some draws, the estimated standard errors turned out to be rather large relative to other 

independent standard error estimates for the same dataset. Note that the mean asymptotic 

standard error is a theoretical approximation to the finite sample standard error. 

(5) Next, for each data set s, compute the simulation standard deviation for each parameter as 

the standard deviation in the estimated values across the independent draws (about the 

MED value). Call this standard deviation as SIMMED. For each parameter, take the mean 

of SIMMED across the different data sets. Label this as the simulation standard error for 

each parameter.  

                                                 
1 In case a true parameter value is zero, the APB is computed by taking the difference of the mean estimate from the 
true value (= 0), dividing this difference by the value of 1 in the denominator, and multiplying by 100.  
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(6) For each parameter, compute a simulation adjusted asymptotic standard error as 

follows: 22 )error standard simulation()error standard asymptotic( +   

 

MACML Approach 

(1) Estimate the MACML parameters for each data set s and for each of 10 independent sets of 

permutations for computing the approximation for the likelihood function contribution of 

each individual. Obtain the time to get the convergent values (including the time to obtain 

the covariance matrix based on the inverse of the Godambe information matrix and the 

corresponding standard errors). Determine the mean time for convergence (TMACML) 

across the 200 estimation runs for each correlation pattern. As in the MSL runs, estimations 

were begun with the true values as the starting values, and the run times on different 

computers were scaled to an equivalent time on the baseline computer.  

(2) For each data set s, estimate the standard errors (s.e.) (using the Godambe estimator; see 

Bhat, 2011a).  

(3) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED values 

across the data sets to obtain a mean estimate. Compute the absolute percentage bias 

(APB) as in the MSL case.  

(4) For each data set s, compute the median s.e. for each model parameter across the 10 draws. 

Call this MSED, and then take the mean of the MSED values across the 20 data sets and 

label this as the asymptotic standard error. 

(5) Next, for each data set s, compute the approximation standard deviation for each parameter 

as the standard deviation in the estimated values across the independent permutations 

(about the MED value). Call this standard deviation as APPMED. For each parameter, take 

the mean of APPMED across the different data sets. Label this as the approximation 

standard error for each parameter.  

(6) For each parameter, compute an approximation adjusted asymptotic standard error as 

follows: 22 )error standard ionapproximat()error standard c(asymptoti + . 
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The procedure above is applied for the cross-sectional random-coefficients case. For the panel 

inter-individual random coefficients case, and the panel inter-individual and intra-individual 

random coefficients case, the same approach as above is used, except that we generate only 10 

datasets instead of 20 datasets. Also, only one MSL run is undertaken for each dataset, and so no 

simulation standard errors are computed for the MSL. This is because of the computational cost 

involved for each MSL run in the panel cases. However, we do compute the approximation 

standard errors for the MACML estimations by running 10 independent sets of permutations for 

each of the 10 datasets.  

 

3.2. Results 

3.2.1. The Cross-Sectional Random Coefficients (CSRC) Model 

Table 1a presents the results for the CSRC model with a diagonal covariance matrix, and Table 

1b presents the corresponding results for the CSRC model with a non-diagonal covariance 

matrix. 

  

The Diagonal Case 

The results in Table 1a for the diagonal case indicate that both the MSL and the MACML 

method do reasonably well in recovering the parameters, as can be observed by comparing the 

mean estimate of the parameters with the true values (see the column titled “parameter 

estimates). The absolute percentage bias (APB) ranges from 7.3% to 13.3% (overall mean value 

of 9.8% across parameters - see the row of the table labeled “Overall mean value across 

parameters” and the column titled “absolute percentage bias”) for the MSL approach, and from 

0.2% to 5.9% (overall mean value of 2.5% across parameters) for the MACML approach. 

Clearly, the MACML is able to recover parameters much more accurately than the MSL 

approach. For both the MSL and MACML methods, the APB values are generally somewhat 

smaller for the mean values of the distributions of the β  parameter vector (i.e., the b values in 

the table) than for the standard deviations of the distribution of the β  parameter vector (i.e., the 

σ  parameters in the table). Also, there is more variation in the APB values among the σ  

parameters than among the b values, suggesting that the log-likelihood function is relatively flat 

for different values of standard deviations, leading to somewhat more difficulty in accurately 

recovering the standard deviation parameters.  The sampling standard error values of the 



11 

parameters indicate good efficiency of both the MSL and MACML estimators, with the 

asymptotic standard error being only about a tenth of the mean values of the estimator. The 

asymptotic standard error values may appear to suggest that the MSL estimator is marginally 

more efficient than the MACML estimator, given that the asymptotic standard errors from the 

MSL are slightly lower than from the MACML approach (the mean asymptotic standard error 

from the MSL method is 0.121, while the mean asymptotic standard error from the MACML 

method is 0.151). However, note that the lower standard errors from the MSL method are simply 

an artifact of the underestimation in recovering the true values of the parameters, which 

translates to consistently lower values of the mean parameter estimates from the MSL approach 

relative to the MACML method. In fact, in the MSL runs where the estimated parameters were 

of the order of the mean estimates from the MACML method, the corresponding MSL 

asymptotic standard errors were of the same order of magnitude as from the MACML method. 

Finally, the reader will note that the simulation standard error estimates are smaller than the 

sampling standard errors in the MSL approach, and similarly the approximation standard error 

estimates are smaller than the sampling standard errors in the MACML approach. On average, 

the simulation standard error is about 37% of the sampling standard error in the MSL case, while 

the approximation standard error is only about 13% of the sampling standard error in the 

MACML case. It is indeed quite remarkable that the approximation standard error with just a 

single permutation for approximating the likelihood function contribution of each individual in 

the MACML approach should be lower than the simulation standard error with 250 Halton draws 

per individual in the MSL approach. The final column provides the simulation-adjusted 

asymptotic standard error for the MSL case and the approximation-adjusted asymptotic standard 

error for the MACML case. These values are very close to the unadjusted asymptotic standard 

error in the MSL case and the unadjusted asymptotic standard error in the MACML case, once 

again indicating that the simulation and approximation errors are small relative to the sampling 

errors.  

The time to convergence for the MSL estimation has a mean value of 66.1 minutes with a 

standard deviation of about 11 minutes. On the other hand, the time to convergence for the 

MACML estimation has a mean value of 1.96 minutes with a standard deviation of about 0.5 

minutes. This indicates that the MACML method is about 33 times faster than the MSL 

estimation. Further, note that the MACML method is actually much more effective than 
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suggested by this factor of 33, because it produces more accurate estimates than the MSL 

estimates. Some further explorations indicated that, even if the analyst increased the number of 

Halton draws to 450 per individual, the resulting APB (computed from 10 runs on 10 datasets of 

the 20 datasets) is in the order of 6.8% (relative to 2.5% for the MACML method), and the mean 

amount of time for convergence with 450 Halton draws is about 107 minutes, suggesting a time 

efficiency factor of well over 50 for the MACML method relative to the MSL method. This is 

indeed a phenomenal computational efficiency jump. As the number of random coefficients 

increase beyond five, one can only expect a further increase in the computational time advantage 

of the MACML over the MSL estimation approach.2  

 

The Non-Diagonal Case 

The results in Table 1b provide information on the true mean values of the distribution of the β  

parameter vector (i.e., the b values in the table) and the Cholesky-decomposed parameters 

characterizing the covariance matrix of the β  parameter vector (i.e., the l values in the table). 

The table also provides information on the mean estimates and the standard error estimates of the 

above parameters from the MSL and MACML approaches.  

As in the diagonal case, the MSL and MACML methods perform well in terms of 

recovering the true parameter values. In fact, the MSL does marginally better than in the 

diagonal case, with the absolute percentage bias (APB) ranging from 0.5% to 22.9%, with an 

overall mean APB value of 7.6%. However, the MACML model still outperforms the MSL 

method, with an APB ranging from 0.6% to 17.8% and a mean APB value of 5.5%. As in the 

diagonal case, there is more stability in the APB values across the mean values of the distribution 

of the β  parameter vector (i.e., the b values in the table) than for the Cholesky parameters 

characterizing the covariance matrix of the distribution of the β  parameter vector (i.e., the l 

parameters in the table). The asymptotic standard error estimates again indicate good efficiency 

of both the MSL and MACML estimators, with the asymptotic standard error being only about a 
                                                 
2 The mean asymptotic standard error with 450 draws turned out to be 0.136 compared to the corresponding value of 
0.121 with 250 draws, reinforcing the observation earlier that the seemingly smaller asymptotic standard error from 
the MSL runs with 250 draws (compared to the MACML standard errors) is because of the underestimation in 
recovering the true values of the parameters, and the consistently lower values of the mean parameter estimates from 
the MSL approach relative to the MACML method. In the MSL estimation with 450 draws, the mean parameter 
estimates were closer to the true values (than with 250 draws), though still consistently lower than the mean 
parameter estimates from the MACML method. 
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tenth of the mean values of the estimator for the b values. Of course, the asymptotic standard 

errors for the l parameters are a higher fraction of the mean estimates for these parameters, which 

is to be expected since many more parameters are being estimated in the covariance matrix. 

Between the MSL and the MACML estimators, the asymptotic standard errors are very similar in 

this non-diagonal case, with the mean standard error being 0.116 in the MSL case and 0.120 in 

the MACML case. This is because the MSL provides estimates that are closer to the true values, 

and to the values from the MACML estimation, unlike in the diagonal case. In terms of the 

simulation standard error in the MSL case and the approximation standard error in the MACML 

case, these are once again only a fraction of the sampling errors. However, as in the diagonal 

case, the simulation standard errors for the MSL case are much higher than the approximation 

standard errors from the MACML case. In particular, the simulation standard error is, on 

average, 49% of the sampling standard error in the MSL case, while the approximation error is, 

on average, only 12.5% of the sampling standard error in the MACML case.  

The time to convergence for the MSL estimation has a mean value of 174.3 minutes 

(almost three hours) with a standard deviation of 28 minutes. In contrast, the time to convergence 

for the MACML estimation has a mean value of 5.20 minutes with a standard deviation of about 

0.9 minutes. These results indicate that the MACML method is, once again and coincidentally, 

about 33 times faster than the MSL estimation with 250 Halton draws. However, for an apples-

to-apples comparison, one needs to improve the estimation with MSL, which we attempted to do 

by increasing the number of Halton draws. When using 450 draws per individual to estimate 

parameters using 10 runs on 10 datasets of the 20 datasets, the mean APB value turned out to be 

9.6% with a mean time of convergence of about 380 minutes. This mean APB is higher 

compared to the 250 draws per individual case, and raises a yet unexplored issue with the Halton 

and related QMC draws. That is, the effectiveness of the standard and/or scrambled QMC draws 

may not be stable as the number of draws is increased, because the cycling of the QMC 

sequences may lead to poor coverage of the multivariate space for any given individual for 

specific numbers of draws. 

 

3.2.2. Panel Inter-Individual Random Coefficients (PIRC) model  

The panel estimations are undertaken with about half the number of total observations as the 

cross-sectional estimations, so that the computation time can be kept to a reasonable time with 
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the MSL approach. Further, the covariance matrix for the PIRC model is estimated based on 

individual-level random heterogeneity, based on 500 distinct draws (one for each of the 500 

individuals). Also, to keep the computation time reasonable, we use only 10 datasets in the panel 

case. As a result, one may expect the level of performance of the MACML and the MSL to be, in 

general, somewhat lower than the cross-sectional case. In the next two sections, we discuss the 

results for the diagonal and non-diagonal cases. 

 

The Diagonal Case 

The results in Table 2a for the diagonal case indicate that, for the MSL estimation approach, the 

absolute percentage bias (APB) ranges from 16.0% to 19.9%, with an overall mean APB of 

17.1%. The corresponding APB values for the MACML approach range from 5.8% to 12.4%, 

with an overall mean value of 8.0%. As in the cross-sectional case, the MSL estimation is 

undertaken with 250 scrambled and randomized Halton draws, while the MACML estimation is 

undertaken with a single randomized permutation (except in 6 of the 100 cases, where two 

randomized permutations provided stability).3 Clearly, the MACML is able to recover 

parameters more accurately than the MSL approach. The seemingly lower asymptotic standard 

errors of the MSL approach is again an artifact of the substantial underestimation of parameter 

values in the MSL approach. The approximation standard error estimates are smaller than the 

sampling standard errors in the MACML approach. On average, the approximation standard 

error is only about 28% of the sampling standard error in the MACML case.4  

The time to convergence for the MSL estimation has a mean value of 96.3 minutes with a 

standard deviation of about 11 minutes. On the other hand, the time to convergence for the 

MACML estimation has a mean value of 12.4 minutes with a standard deviation of about 3 

minutes. Compared to the cross-section case, the computational efficiency of the MACML over 

the MSL is not as substantial in the panel diagonal case. This is because of two reasons. The first 

is that the number of multivariate integrations per likelihood function or gradient iteration is only 

500 in the panel case (corresponding to the 500 individuals), and this benefits the MSL approach. 
                                                 
3 All time computations discussed later for the one-permutation case include the times for these 6 cases that used 
two permutations per individual. 
4 When we estimated the panel diagonal case with two permutations per individual (rather than one permutation per 
individual), the mean APB improved marginally to 7.0%. The approximation standard error, on average, turned out 
to be 15% of the asymptotic sampling standard error in this case. Overall, the results show the ability to recover 
parameters with small approximation error with just one permutation per individual.   



15 

Second, in the MACML estimation of the panel case, we consider all the ten pairings of the 5 

choice occasions per individual, which increases the number of multi-dimensional integrals to be 

evaluated using the approximation method to 5000 (500 individuals times 10 pairings per 

individual). However, the MACML approach still retains a significant computation edge, being 

about 8 times faster than the MSL approach with 250 randomized and scrambled Halton draws. 

At the same time, the MACML approach is able to recover parameters much more accurately 

than the MSL approach. In fact, even when the number of Halton draws was increased to 450 per 

individual, the MSL had a mean APB of 14.3%, and the corresponding mean time of 

convergence was 185.6 minutes. This indicates that the actual computation edge of the MACML 

over the MSL is more than 15-fold. Note also that as soon as slightly more complicated (and 

more realistic) structures such as autoregressive random coefficients over choice occasions, or 

both choice occasion-specific and individual-specific random coefficients, or both individual-

specific and across-individual random coefficients get introduced in the model, the MSL 

becomes extremely time consuming and close to being infeasible to estimate (as we will show in 

Section 3.2.3). One other problem we found even in this simple panel MSL estimation was that 

one of the ten runs experienced non-convergence problems. On the other hand, no convergence 

issues were encountered with the MACML estimation.  

 

The Non-Diagonal Case 

The results for the panel non-diagonal random coefficients case are provided in Table 2b. As can 

be observed, the average APB is somewhat higher in this case relative to the diagonal case, 

mainly due to the APBs associated with the Cholesky parameters that determine the full 

covariance matrix. However, the high APB is somewhat deceiving, because the estimated values 

of the Cholesky parameters are not too far away from the true values. But the small values of the 

true Cholesky parameter values tend to inflate the APB values. Also, as indicated earlier, with a 

limited sample size and several parameters to estimate, this is not an unexpected result. The main 

point to note is that the MACML continues to do a much better job in recovering parameters than 

the MSL, and with at least an 8-fold or so reduction in computational cost. The actual 

computational efficiency is much higher, but we did not go beyond 250 Halton draws in the 

MSL case as in the earlier cases because of the very high computation costs involved. As 

importantly, we did notice an increase in convergence problems with the MSL approach in the 
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non-diagonal case, with 5 of the 10 runs getting bogged down and not going anywhere.  There 

were no convergence issues whatsoever with the MACML approach.  

 

3.2.3. Panel Intra-Individual and Inter-Individual Random Coefficients 

The MSL estimation of the situation when there are both intra-individual and inter-individual 

random coefficients is extremely expensive from a computational standpoint, since there are two 

levels of random coefficients to be integrated out (see Equations (5) and (6)).  This implies that if 

Q draws of a QMC sequence were to be used for each level of integration, then for each of the Q 

draws of the outer integral, the inner integral itself will need to be evaluated using Q draws. 

Thus, the number of total draws becomes .2Q If we are to use 250 draws as we have done in the 

cross-sectional and panel cases earlier, the total number of draws would be 62,500. Effectively, it 

is practically infeasible to estimate such a model accurately using the MSL technique within a 

reasonable amount of time. However, the model does not pose any problems for estimation using 

the MACML approach; the computational cost is about the same order as for the simple panel 

case or the simple cross-sectional case. In this section, we provide only the results for the 

MACML estimation. The MSL estimation with 250 draws for each integration level was taking 

about 3 hours per iteration. Assuming convergence in 55 iterations (which was about the average 

for the case for the pure panel diagonal random coefficients case), the time for the MSL 

estimation would be about 165 hours or about 7 days for the diagonal covariance specification. 

This is in contrast to about 25 minutes for the MACML estimation of the diagonal case, and 50 

minutes for the MACML estimation of the non-diagonal case.  

 

The Diagonal Case 

The results for the diagonal case are presented in Table 3a. The mean APB in this case is 12.6%, 

with the individual parameter APBs varying from 8.1% to 18.5%. The APB is affected here by 

the number of covariance-related parameters to be estimated, as also reflected in the higher 

asymptotic standard errors of the parameters compared to the previous cases. But it is indeed 

remarkable that the MACML method does about as well as for the panel inter-individual 

diagonal case of Section 3.2.2, both in terms of recovering parameters as well as computation 

time. Specifically, in terms of computation time, the model takes, on average over the 100 runs 

(10 different runs on 10 different data samples), only about 23 minutes for convergence, which is 
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about twice the amount of time as for the panel inter-individual case. The standard deviation of 

the times for convergence over the 100 runs is about 4.5 minutes. At the same time, the 

approximation error remains very small, at an average of about 18% of the asymptotic standard 

error. Of course, the ability to recover parameters may be improved by increasing the number of 

permutations per individual used in the MACML estimation. In our experiments, the APB 

reduced from 12.6% to 10.8%, when the number of permutations was increased to 2, and further 

reduced to 7.7% when the number of permutations was increased to 5. However, the mean time 

to convergence increased from 23 minutes (for one permutation per individual) to 44 minutes 

(for two permutations per individual) to 117 minutes (for five permutations per individual).  

 

The Non-Diagonal Case 

This estimation involves the most number of parameters, including five mean parameters on the 

five independent variables, 16 covariance elements from the individual-specific covariance 

matrix, and another 16 covariance elements from the choice occasion-specific covariance matrix 

(see Table 3b). The mean APB here is about 15.3%, though the APB values for the mean 

parameters are recovered very accurately (the APB values for the mean parameters range from 

3.7% to 6.8%, which is even better than the corresponding APB values for the diagonal case). 

The relatively high APB values for the Cholesky parameters are a result of the high number of 

such parameters estimated from a sample size of 500 individuals and 2500 choice occasions, as 

well as the small magnitudes of the true values of the Cholesky parameters. When the number of 

permutations per individual was increased to two, the mean APB reduced to 14.1%. The mean 

APB further reduced marginally to 13.1% with five permutations per individual. The time to 

convergence with one permutation per individual is about twice the time needed for the diagonal 

case with one permutation per individual, but is still only of the order of 46 minutes on average.  

The times to convergence for two and five permutations per individual are also about twice the 

corresponding times in the diagonal case.   

 

4. SUMMARY AND CONCLUSIONS  

Random coefficients discrete choice models are increasingly being used for unordered response 

multinomial choice modeling in the transportation and other fields, as a means to accommodate 

varying tastes across decision makers due to unobserved (to the analyst) factors. In such random 
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coefficients models, the overall error term vector is effectively decomposed into an independent 

and identically distributed (IID) component vector and another non-IID (across alternatives) 

vector of jointly distributed random coefficients. While various different distributions may be 

used for the non-IID component, it is common practice to employ a multivariate normal 

distribution. If the analyst uses a normal distribution for the IID portion, the result is the “mixed” 

multinomial probit (MMNP) model.  

The MMNP model structure may be applied to both cross-sectional and panel contexts. In 

either case, both the model structures do not have an analytically tractable form for the choice 

probabilities and for the likelihood function. The approach used to estimate such models is 

typically based on pseudo-Monte Carlo or quasi-Monte Carlo simulation techniques to evaluate 

the multidimensional integrals in these models. In such an MSL estimation approach, 

consistency, efficiency, and asymptotic normality of the estimator is critically predicated on the 

condition that the number of simulation draws per individual rises faster than the square root of 

the number of individuals in the estimation sample. This effectively implies that the desirable 

asymptotic properties of the MSL estimator are obtained at the expense of computational cost. 

Also, the simulation noise when dealing with high dimensionalities of integration can cause 

convergence problems.  

Bhat (2011a) recently proposed a maximum approximated composite marginal likelihood 

(MACML) method for the estimation of MNP-based models. In this current paper, the focus is 

on evaluating the ability of the MACML method to recover parameters of MMNP models from 

finite samples, and to compare the performance of the MACML estimator with the MSL 

estimator in terms of finite sample bias in parameters and the computational time for estimation. 

Within the class of MMNP models, we examine three different model structures: the cross-

sectional random coefficients structure, the panel inter-individual random coefficients structure, 

and the panel intra- and inter-individual random coefficients structure. Within each of these 

structures, both the cases of independent random coefficients (i.e., the diagonal covariance 

specification) and dependent random coefficients (i.e., the non-diagonal covariance 

specification) are considered.  

The results of the analysis indicate that the MACML recovers parameters much more 

accurately than the MSL approach in all model structures and covariance specifications. The 

MACML inference approach also estimates the parameters efficiently, with the asymptotic 
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standard errors being, in general, only a small proportion of the true values. It is remarkable that 

the approximation error involved in the use of even only a single permutation to evaluate the 

MVNCD function is very small, being only about 26-42% of the simulation error associated with 

250 randomized and scrambled Halton draws in the cross-sectional model estimations (the 

simulation errors were not estimated in the MSL approach for the panel cases because of the 

computational costs involved in running multiple runs on the same data set). As importantly, the 

MACML inference approach takes only a small fraction of the time needed for MSL estimation.  

In particular, the results suggest that the MACML approach is about 50 times faster than the 

MSL for the cross-sectional random coefficients case, at least 15 times faster than the MSL for 

the panel inter-individual random coefficients case, and about 350 times or more faster than the 

MSL for the panel intra- and inter-individual random coefficients case. As the number of 

alternatives in the unordered-response model increases, one can expect even higher 

computational efficiency factors for the MACML over the MSL approach. Further, as evident in 

the panel intra- and inter-individual random coefficients case, the MSL is all but practically 

infeasible when the mixing structure leads to an explosion in the dimensionality of integration in 

the likelihood function, but these situations are handled with ease in the MACML approach.  

Of course, the results above are specific to the mixed multinomial probit (MMNP) 

structure. If one insists on using the mixed multinomial logit structure (MMNL) structure, the 

MACML method needs to be supplemented with a normal scale mixture technique to 

approximate the IID extreme value error distribution. Bhat (2011b) provides the procedure. 

Comparisons of the MACML and MSL estimations for the MMNL model structure would be of 

interest for the cross-sectional and inter-individual panel cases, though the MACML procedure 

should continue to provide substantial computational benefits in the more involved panel intra- 

and inter-individual case. In any case, the movement between the use of the MMNL and the 

MMNP structures has been dictated primarily by ease of estimation. In the past several years, the 

scale has been tilted more toward the use of the MMNL structure, primarily because of the ease 

of conceptualization and coding of the simulation procedure for the MMNL structure (see Bhat 

et al., 2008 and Train, 2009). However, in the MACML estimation technique, the MMNP model 

is easier to estimate because of the conjugate property of addition of the normal distribution. 

Thus, we may expect to see the scale tilting back toward the MMNP structure for the specific 

case when the mixing distribution is continuous and normal. When the mixing distribution is not 
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normal, one can still use the MACML approach by approximating the continuous multivariate 

distribution using a multivariate normal scale mixture, but this will increase computational cost 

in proportion to the number of dimensions in the mixing distribution. In such cases, the MSL 

inference approach may continue to be the choice method for estimation of the simple models, 

though the MACML supplemented by the scale mixture technique would perhaps still be a 

promising way to proceed for more complicated models (such as the case with panel intra- and 

inter-individual random coefficients). 

The current paper also generates several research issues for the future. First, it would be 

useful to undertake a similar analysis as the one here for varying numbers of random coefficients 

(say, 10 and 20 random coefficients) to examine the effectiveness of the MACML approach with 

different numbers of random coefficients. 5 Conceptually, this should not have much of an effect 

on the MACML procedure, but the empirical evidence needs to be generated. Second, the 

MACML likelihood procedure and the gradient procedure have been coded in the GAUSS 

matrix programming language. Currently, a scalar version of the MVNCD approximation 

procedure has been coded, which implies that the MACML code calls the MVNCD code each 

time a MVNCD function is to be approximated. This MACML approach can be speeded up by 

vectorizing the MVNCD approximation procedure, so that the procedure returns the 

approximated values for multiple MVNCD evaluations at once. Third, the MVNCD procedure is 

written to cycle through until a permutation is used that provides a non-negative value for the 

MVNCD function evaluation. That is, it is possible that the first permutation leads to a value for 

the MVNCD function approximation that is non-negative, in which case the code automatically 

attempts a different permutation for the decomposition of the MVNCD function into marginal 

and conditional probabilities. This situation is relatively rare, but can happen as the gradient 

procedure searches for an update direction. In such situations, one may seek a different 

permutation (as we have done) or just increase the number of permutations to make the 

approximation. These, and potentially other automated techniques, can be compared in future 

research.  Finally, it is hoped that the MACML procedure will spawn empirical research into 

behaviorally rich model specifications within the context of unordered multinomial choice 

                                                 
5 Of course, one has to be careful when increasing the number of correlated random coefficients, since this can lead 
to identification fragility.  
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modeling, including autoregressive random coefficients, dynamics in coefficients, space-time 

effects, and spatial/social interactions.  

In closing, the MACML inference approach has the potential to dramatically influence 

the use of the mixed multinomial probit model in practice, and should facilitate the practical 

application of rich model structures for unordered-response discrete choice modeling. 
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Table 1a: Evaluation of the ability to recover true parameters for the cross-sectional diagonal case 

 

Parameter True 
Value 

MSL Method MACML Method 

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Simulation 
Standard 

Error 

Simulation 
Adjusted 

Asymptotic 
Standard 

Error 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Approximation 
Standard 

Error 

Approximation 
Adjusted 

Asymptotic 
Standard 

Error 
Mean values of the β vector 

b1 1.500 1.366 9.0% 0.129 0.050 0.139 1.472 1.9% 0.167 0.022 0.169 
b2 -1.000 -0.906 9.4% 0.089 0.033 0.095 -0.976 2.4% 0.113 0.014 0.114 
b3 2.000 1.801 10.0% 0.167 0.066 0.180 1.940 3.0% 0.218 0.028 0.219 
b4 1.000 0.906 9.4% 0.089 0.034 0.095 0.977 2.3% 0.114 0.014 0.114 
b5 -2.000 -1.820 9.0% 0.170 0.067 0.182 -1.960 2.0% 0.220 0.028 0.222 

Standard deviations of the β vector 
1σ  1.000 0.885 11.5% 0.111 0.038 0.117 0.958 4.2% 0.135 0.017 0.137 
2σ  1.000 0.906 9.4% 0.111 0.040 0.118 0.984 1.6% 0.136 0.016 0.137 
3σ  1.000 0.867 13.3% 0.112 0.041 0.119 0.941 5.9% 0.135 0.017 0.136 
4σ  1.000 0.904 9.6% 0.111 0.040 0.118 0.982 1.8% 0.136 0.017 0.137 
5σ  1.000 0.927 7.3% 0.117 0.041 0.124 1.002 0.2% 0.140 0.016 0.141 

Overall Mean Value 
Across Parameters - 9.8% 0.121 0.045 0.129 - 2.5% 0.151 0.019 0.153 

Mean Time 66.09 1.96 

Std. dev of Time 10.87 0.42 

% of Runs Converged 100% 100% 
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Table 1b: Evaluation of the ability to recover true parameters for the cross-sectional non-diagonal case 
 

Parameter True 
Value 

MSL Method MACML Method 
Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Simulation 
Standard 

Error 

Simulation 
Adjusted 

Asymptotic 
Standard 

Error 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Approximation 
Standard 

Error 

Approximation 
Adjusted 

Asymptotic 
Standard 

Error 
Mean values of the β vector 

b1 1.500 1.374 8.4% 0.133 0.049 0.142 1.443 3.8% 0.147 0.022 0.148 
b2 -1.000 -0.912 8.8% 0.093 0.037 0.100 -0.959 4.1% 0.102 0.014 0.103 
b3 2.000 1.830 8.5% 0.174 0.068 0.187 1.923 3.8% 0.191 0.029 0.193 
b4 1.000 0.914 8.6% 0.092 0.032 0.097 0.958 4.2% 0.101 0.014 0.102 
b5 -2.000 -1.849 7.6% 0.176 0.068 0.189 -1.941 3.0% 0.194 0.028 0.196 

Cholesky parameters characterizing the covariance matrix of the β vector 
l11 1.000 0.909 9.1% 0.112 0.040 0.119 0.959 4.1% 0.119 0.017 0.120 
l12 -0.500 -0.463 7.3% 0.085 0.029 0.090 -0.472 5.6% 0.085 0.010 0.085 
l13 0.250 0.231 7.5% 0.089 0.036 0.096 0.233 6.7% 0.087 0.009 0.088 
l14 0.750 0.689 8.2% 0.092 0.028 0.097 0.707 5.7% 0.095 0.013 0.096 
l15 0.000 0.006 0.6% 0.086 0.040 0.095 0.015 1.5% 0.088 0.008 0.089 
l22 0.866 0.756 12.7% 0.109 0.043 0.117 0.809 6.5% 0.116 0.017 0.117 
l23 0.433 0.431 0.5% 0.105 0.050 0.117 0.436 0.6% 0.100 0.012 0.101 
l24 -0.144 -0.149 3.6% 0.101 0.041 0.109 -0.170 17.8% 0.093 0.010 0.094 
l25 0.000 -0.021 2.1% 0.101 0.055 0.115 -0.019 1.9% 0.098 0.010 0.099 
l33 0.866 0.750 13.4% 0.130 0.073 0.149 0.812 6.3% 0.131 0.019 0.132 
l34 0.237 0.242 2.0% 0.112 0.055 0.125 0.259 9.3% 0.106 0.011 0.106 
l35 0.000 -0.031 3.1% 0.120 0.081 0.145 -0.029 2.9% 0.116 0.011 0.117 
l44 0.601 0.464 22.9% 0.126 0.085 0.152 0.531 11.6% 0.125 0.015 0.126 
l45 0.000 -0.053 5.3% 0.168 0.134 0.214 -0.053 5.3% 0.171 0.017 0.172 
l55 1.000 0.885 11.5% 0.125 0.089 0.153 0.956 4.4% 0.136 0.018 0.137 

Overall Mean Value 
Across Parameters - 7.6% 0.116 0.057 0.130 - 5.5% 0.120 0.015 0.121 

Mean Time 174.32 5.19 
Std. dev of Time 28.13 0.84 
% of Runs Converged 100% 100% 
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Table 2a: Evaluation of the ability to recover true parameters for the panel inter-individual random coefficients diagonal case 

 

Parameter True 
Value 

MSL Method MACML Method 

Parameter Estimates Standard Error 
Estimates Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard Error

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Approximation 
Standard 

Error 

Approximation 
Adjusted 

Asymptotic 
Standard Error 

Mean values of the β vector 

b1 1.500 1.247 16.9% 0.094 1.400 6.6% 0.143 0.043 0.149 
b2 -1.000 -0.818 18.2% 0.070 -0.914 8.6% 0.102 0.028 0.106 
b3 2.000 1.660 17.0% 0.111 1.869 6.6% 0.185 0.056 0.194 
b4 1.000 0.840 16.0% 0.075 0.935 6.5% 0.106 0.029 0.110 
b5 -2.000 -1.670 16.5% 0.111 -1.870 6.5% 0.184 0.056 0.193 

Standard deviations of the β vector 
1σ  1.000 0.834 16.6% 0.086 0.942 5.8% 0.120 0.034 0.124 
2σ  1.000 0.801 19.9% 0.077 0.876 12.4% 0.111 0.031 0.116 
3σ  1.000 0.844 15.6% 0.093 0.910 9.0% 0.121 0.032 0.125 
4σ  1.000 0.821 17.9% 0.084 0.921 7.9% 0.119 0.031 0.123 
5σ  1.000 0.836 16.4% 0.083 0.900 10.0% 0.119 0.033 0.124 

Overall Mean Value 
Across Parameters - 17.1% 0.088 -  8.0% 0.131 0.037 0.136 

Mean Time 96.26 12.35 

Std. dev of Time 11.13 3.01 

% of Runs Converged 90% 100% 
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Table 2b: Evaluation of the ability to recover true parameters for the panel inter-individual random coefficients non-diagonal case 
 

Parameter True 
Value 

MSL Method MACML Method 

Parameter Estimates Standard Error 
Estimates Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard Error 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Approximation 
Standard 

Error 

Approximation 
Adjusted 

Asymptotic 
Standard Error 

Mean values of the β vector 
b1 1.500 1.296 13.6% 0.103 1.394 7.1% 0.133 0.034 0.138 
b2 -1.000 -0.866 13.4% 0.076 -0.943 5.7% 0.099 0.025 0.102 
b3 2.000 1.747 12.7% 0.133 1.879 6.1% 0.171 0.046 0.177 
b4 1.000 0.850 15.0% 0.078 0.920 8.0% 0.098 0.023 0.100 
b5 -2.000 -1.748 12.6% 0.131 -1.879 6.0% 0.170 0.047 0.176 

Cholesky parameters characterizing the covariance matrix of the β vector 
l11 1.000 0.837 16.3% 0.078 0.914 8.6% 0.105 0.026 0.109 
l12 -0.500 -0.398 20.4% 0.068 -0.440 12.1% 0.089 0.014 0.090 
l13 0.250 0.275 9.9% 0.090 0.269 7.5% 0.101 0.012 0.102 
l14 0.750 0.657 12.5% 0.073 0.690 8.0% 0.094 0.017 0.095 
l15 0.000 0.011 1.1% 0.073 -0.009 0.9% 0.103 0.017 0.104 
l22 0.866 0.704 18.7% 0.080 0.745 14.0% 0.095 0.023 0.098 
l23 0.433 0.314 27.4% 0.095 0.366 15.6% 0.106 0.014 0.107 
l24 -0.144 -0.075 47.8% 0.065 -0.098 32.2% 0.086 0.014 0.088 
l25 0.000 0.011 1.1% 0.080 0.023 2.3% 0.103 0.018 0.104 
l33 0.866 0.764 11.8% 0.106 0.775 10.5% 0.120 0.028 0.124 
l34 0.237 0.163 31.1% 0.076 0.164 30.7% 0.097 0.017 0.098 
l35 0.000 -0.015 1.5% 0.093 -0.047 4.7% 0.133 0.021 0.135 
l44 0.601 0.286 52.4% 0.095 0.498 17.1% 0.110 0.027 0.113 
l45 0.000 0.184 18.4% 0.104 0.026 2.6% 0.176 0.043 0.182 
l55 1.000 0.824 17.6% 0.091 0.871 12.9% 0.139 0.042 0.145 

Overall Mean Value 
Across Parameters - 17.8% 0.090 - 10.6% 0.116 0.025 0.119 

Mean Time 192.65 24.41 
Std. dev of Time 52.31 7.81 
% of Runs Converged 50% 100% 
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Table 3a: Evaluation of the ability to recover true parameters for the panel intra-individual and inter-individual random 
coefficients diagonal case 

 

Parameter True 
Value 

MACML Method 

Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Approximation 
Standard Error 

Approximation 
Adjusted Asymptotic 

Standard Error 

Mean values of the β vector 

b1 1.500 1.341 10.6% 0.272 0.045 0.276 
b2 -1.000 -0.851 14.9% 0.176 0.027 0.178 
b3 2.000 1.753 12.3% 0.350 0.057 0.355 
b4 1.000 0.913 8.7% 0.191 0.031 0.193 
b5 -2.000 -1.780 11.0% 0.357 0.059 0.362 

Standard deviations of the β vector 

1σ  1.000 0.842 15.8% 0.191 0.038 0.195 
2σ  1.000 0.815 18.5% 0.179 0.028 0.181 
3σ  1.000 0.865 13.5% 0.195 0.035 0.198 
4σ  1.000 0.864 13.6% 0.188 0.032 0.190 
5σ  1.000 0.877 12.3% 0.197 0.038 0.200 
1~σ  1.000 0.919 8.1% 0.243 0.037 0.245 
2~σ  1.000 0.917 8.3% 0.239 0.044 0.243 
3~σ  1.000 0.819 18.1% 0.235 0.072 0.246 
4~σ  1.000 0.856 14.4% 0.230 0.036 0.233 
5~σ  1.000 0.909 9.1% 0.248 0.038 0.251 

Overall Mean Value 
Across Parameters  12.6% 0.233 0.041 0.236 

Mean Time 22.82 

Std. dev of Time 4.53 

% of Runs Converged 100% 
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Table 3b: Evaluation of the ability to recover true parameters for the panel intra-individual and inter-individual random 
coefficients non-diagonal case 

 

Parameter True 
Value 

MACML Method 

Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Approximation 
Standard Error 

Approximation 
Adjusted Asymptotic 

Standard Error 

Mean values of the β vector 
b1 1.500 1.430 4.6% 0.288 0.028 0.289 
b2 -1.000 -0.936 6.4% 0.200 0.019 0.201 
b3 2.000 1.925 3.7% 0.383 0.037 0.385 
b4 1.000 0.932 6.8% 0.195 0.018 0.196 
b5 -2.000 -1.903 4.8% 0.386 0.036 0.388 

Cholesky parameters characterizing the covariance matrix of the β vector 

l11 1.000 0.940 6.0% 0.214 0.023 0.215 
l12 -0.500 -0.548 9.7% 0.164 0.022 0.165 
l13 0.250 0.188 24.6% 0.143 0.026 0.145 
l14 0.750 0.771 2.8% 0.204 0.026 0.205 
l15 0.000 0.103 10.3% 0.142 0.026 0.145 
l22 0.866 0.694 19.9% 0.181 0.026 0.183 
l23 0.433 0.332 23.4% 0.195 0.039 0.199 
l24 -0.144 -0.030 79.2% 0.170 0.031 0.172 
l25 0.000 0.078 7.8% 0.183 0.037 0.187 
l33 0.866 0.810 6.5% 0.209 0.034 0.212 
l34 0.237 0.167 29.5% 0.178 0.033 0.182 
l35 0.000 0.003 0.3% 0.193 0.042 0.197 
l44 0.601 0.392 34.8% 0.223 0.035 0.226 
l45 0.000 -0.168 16.8% 0.555 0.074 0.560 
l55 1.000 0.773 22.7% 0.408 0.060 0.413 
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Table 3b: (Continued) Evaluation of the ability to recover true parameters for the panel intra-individual and inter-individual 
random coefficients non-diagonal case 

 

Parameter True 
Value 

MACML Method 

Parameter Estimates Standard Error Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
Standard 

Error 

Approximation 
Standard Error 

Approximation 
Adjusted Asymptotic 

Standard Error 

Cholesky parameters characterizing the covariance matrix of the β~  vector 

11~l  1.000 1.033 3.3% 0.254 0.027 0.255 
12~l  0.000 -0.007 0.7% 0.170 0.023 0.172 
13~l  0.000 0.043 4.3% 0.188 0.030 0.190 
14~l  0.000 0.030 3.0% 0.177 0.023 0.178 
15~l  0.000 -0.008 0.8% 0.183 0.027 0.185 
22~l  1.000 0.973 2.7% 0.249 0.028 0.251 
23~l  0.500 0.527 5.3% 0.213 0.031 0.215 
24~l  0.500 0.415 17.0% 0.197 0.026 0.199 
25~l  0.500 0.422 15.7% 0.198 0.029 0.200 
33~l  0.866 0.798 7.9% 0.272 0.036 0.275 
34~l  0.289 0.361 25.0% 0.265 0.039 0.268 
35~l  0.289 0.390 35.2% 0.271 0.045 0.274 
44~l  0.817 0.720 11.8% 0.305 0.033 0.306 
45~l  0.204 0.285 39.4% 0.300 0.045 0.303 
55~l  0.791 0.460 41.8% 0.307 0.077 0.316 

Overall Mean Value 
Across Parameters  15.3% 0.239 0.034 0.241 

Mean Time 46.50 

Std. dev of Time 8.83 

% of Runs Converged 100% 
 


