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ABSTRACT
This monograph presents the basics of the composite marginal likelihood (CML) inference approach, discussing the asymptotic properties of the CML estimator and the advantages and limitations of the approach. The composite marginal likelihood (CML) inference approach is a relatively simple approach that can be used when the full likelihood function is practically infeasible to evaluate due to underlying complex dependencies. The history of the approach may be traced back to the pseudo-likelihood approach of Besag (1974) for modeling spatial data, and has found traction in a variety of fields since, including genetics, spatial statistics, longitudinal analyses, and multivariate modeling. However, the CML method has found little coverage in the econometrics field, especially in discrete choice modeling. This monograph fills this gap by identifying the value and potential applications of the method in discrete dependent variable modeling as well as mixed discrete and continuous dependent variable model systems. In particular, it develops a blueprint (complete with matrix notation) to apply the CML estimation technique to a wide variety of discrete and mixed dependent variable models.




1. 

2. INTRODUCTION
2.1.  Background
The need to accommodate underlying complex interdependencies in decision-making for more accurate policy analysis as well as for good forecasting, combined with the explosion in the quantity of data available for the multidimensional modeling of inter-related choices of a single observational unit and/or inter-related decision-making across multiple observational units, has resulted in a situation where the traditional frequentist full likelihood function becomes near impossible or plain infeasible to evaluate. As a consequence, another approach that has seen some (though very limited) use recently is the composite likelihood (CL) approach. While the method has been suggested in the past under various pseudonyms such as quasi-likelihood (Hjort and Omre, 1994; Hjort and Varin, 2008), split likelihood (Vandekerkhove, 2005), and pseudolikelihood or marginal pseudo-likelihood (Molenberghs and Verbeke, 2005), Varin (2008) discusses reasons why the term composite likelihood is less subject to literary confusion. 
	At a basic level, a composite likelihood (CL) refers to the product of a set of lower-dimensional component likelihoods, each of which is a marginal or conditional density function. The maximization of the logarithm of this CL function is achieved by setting the composite score equations to zero, which are themselves linear combinations of valid lower-dimensional likelihood score functions. Then, from the theory of estimating equations, it can be shown that the CL score function (and, therefore, the CL estimator) is unbiased (see Varin et al., 2011). In this monograph, we discuss these theoretical aspects of CL methods, with an emphasis on an overview of developments and applications of the CL inference approach in the context of discrete dependent variable models.  
	The history of the CL method may be traced back to the pseudo-likelihood approach of Besag (1974) for modeling spatial data, and has found traction in a variety of fields since, including genetics, spatial statistics, longitudinal analyses, and multivariate modeling (see Varin et al., 2011 and Larribe and Fearnhead, 2011 for reviews). However, the CL method has found little coverage in the econometrics field, and it is the hope that this monograph will fill this gap by identifying the value and potential applications of the method in econometrics.

2.2.  Types of CL Methods














To present the types of CL methods, assume that the data originate from a parametric underlying model based on a random (× 1) vector Y with density function , where  is an unknown -dimensional parameter vector (technically speaking, the density function refers to the conditional density function  of the random variable Y given a set of explanatory variables X, though we will use the simpler notation  for the conditional density function). Each element of the random variable vector Y may be observed directly, or may be observed in a truncated or censored form. Assume that the actual observation vector corresponding to Y is given by the vector , some of which may take a continuous form and some of which may take a limited-dependent form. Let the likelihood corresponding to this observed vector be  Now consider the situation where computing is very difficult. However, suppose evaluating the likelihood functions of a set of  observed marginal or conditional events determined by marginal or conditional distributions of the sub-vectors of Y is easy and/or computationally expedient. Let these observed marginal events be characterized by (). Let each event  be associated with a likelihood object , which is based on a lower-dimensional marginal or conditional joint density function corresponding to the original high-dimensional joint density of Y. Then, the general form of the composite likelihood function is as follows:

,	(1.1)

where  is a power weight to be chosen based on efficiency considerations. If these power weights are the same across events, they may be dropped. The CL estimator is the one that maximizes the above function (or equivalently, its logarithmic transformation). 

The events  can represent a combination of marginal and conditional events, though composite likelihoods are typically distinguished in one of two classes: the composite conditional likelihood (CCL) or the composite marginal likelihood (CML).  In this monograph, we will focus on the CML method because it has many immediate applications in the econometrics field, and is generally easier to specify and estimate. However, the CCL method may also be of value in specific econometric contexts (see Mardia et al., 2009 and Varin et al., 2011 for additional details). 

2.3.  The Composite Marginal Likelihood (CML) Inference Approach




In the CML method, the events  represent marginal events. The CML class of estimators subsumes the usual ordinary full-information likelihood estimator as a special case. For instance, consider the case of repeated unordered discrete choices from a specific individual. Let the individual’s discrete choice at time t be denoted by the index , and let this individual be observed to choose alternative  at choice occasion t  Then, one may define the observed event for this individual as the sequence of observed choices across all the T choice occasions of the individual. Defined this way, the CML function contribution of this individual becomes equivalent to the full-information maximum likelihood function contribution of the individual:[footnoteRef:1] [1:  In the discussion below, for presentation ease, we will ignore the power weight term ωe. In some cases, such as in a panel case with varying number of observational occasions on each observation unit, the choice of ωe can influence estimator asymptotic efficiency considerations. But it does not affect other asymptotic properties of the estimator.] 


. 	(1.2)
However, one may also define the events as the observed choices at each choice occasion for the individual. Defined this way, the CML function is:

.	(1.3)


This CML, of course, corresponds to the case of independence between each pair of observations from the same individual. As we will indicate later, the above CML estimator is consistent even when there is dependence among the observations of the individual. However, this approach, in general, does not estimate the parameters representing the dependence effects across choices of the same individual (i.e., only a subset of the vector  is estimable). A third approach to estimating the parameter vector  in the repeated unordered choice case is to define the events in the CML as the pairwise observations across all or a subset of the choice occasions of the individual. For presentation ease, assume that all pairs of observations are considered. This leads to a pairwise CML function contribution of individual q as follows:

.	    (1.4)
Almost all earlier research efforts employing the CML technique have used the pairwise approach, including Apanasovich et al. (2008), Varin and Vidoni (2009), Bhat and Sener (2009), Bhat et al. (2010a), Bhat and Sidharthan (2011), Vasdekis et al. (2012), Ferdous and Bhat (2013), and Feddag (2013). Alternatively, the analyst can also consider larger subsets of observations, such as triplets or quadruplets or even higher dimensional subsets (see Engler et al., 2006 and Caragea and Smith, 2007). However, the pairwise approach is a good balance between statistical and computational efficiency (besides, in almost all applications, the parameters characterizing error dependency are completely identified based on the pairwise approach). Importantly, the pairwise approach is able to explicitly recognize dependencies across choice occasions in the repeated choice case through the inter-temporal pairwise probabilities. 

2.4.  Asymptotic Properties of the CML Estimator with many independent replicates













The asymptotic properties of the CML estimator for the case with many independent replicates may be derived from the theory of unbiased estimating functions. For ease, we will first consider the case when we have Q independent observational units (also referred to as individuals) in a sample each  (q=1,2,…,Q) being a × 1 vector. That is,   in this context may refer to multiple observations of the same variable on the same observation unit (as in the previous section) or a single observation of multiple variables for the observation unit (for example, expenditures on groceries, transportation, and leisure activities for an individual). In either case, Q is large relative to  (the case when Q is small is considered in the next section). We consider the case when observation is made directly on each of the continuous variables  though the discussion in this section is easily modified to incorporate the case when observation is made on some truncated or censored form of  (such as in the case of a discrete choice variable). Let the observation on the random variable  be Define Also, we will consider a pairwise likelihood function as the CML estimator, though again the proof is generalizable in a straightforward manner to other types of CML estimators (such as using triplets or quadruplets rather than couplets in the CML).  For the pairwise case, the estimator is obtained by maximizing (with respect to the unknown parameter vector , which is of dimension ) the logarithm of the following function:

	(1.5)
Under usual regularity conditions (these are the usual conditions needed for likelihood objects to ensure that the logarithm of the CML function can be maximized by solving the corresponding score equations; the conditions are too numerous to mention here, but are listed in Molenberghs and Verbeke, 2005, page 191), the maximization of the logarithm of the CML function in the equation above is achieved by solving the composite score equations given by:

 	 (1.6)



where  Since the equations are linear combinations of valid likelihood score functions associated with the event probabilities forming the composite log-likelihood function, they immediately satisfy the requirement of being unbiased. While this is stated in many papers and should be rather obvious, we provide a formal proof of the unbiasedness of the CML score equations (see also Yi et al., 2011). In particular, we need to prove the following:

 ,	(1.7)





where the expectation above is taken with respect to the full distribution of  The above equality will hold if = for all pairwise combinations  for each q. To see that this is the case, we write:

, 	(1.8)




where  represents the subvector of  with the elements  and  excluded. Continuing,

  	(1.9)











Next, consider the asymptotic properties of the CML estimator. To derive these, define the mean composite score function across observation units in the sample as follows:  where . Then,  for all values of . Let  be the true unknown parameter vector value, and consider the score function at this vector value and label it as  Then, when drawing a sample from the population, the analyst is essentially drawing values of from its distribution in the population with zero mean and variance given by , and taking the mean across the sampled values of to obtain Invoking the Central Limit Theorem (CLT), we have 

 	(1.10)







where stands for the multivariate normal distribution of  dimensions. Next, let  be the CML estimator, so that, by design of the CML estimator, Expanding  around  in a first-order Taylor series, we obtain , or equivalently,


.       	 (1.11) 


From the law of large numbers (LLN), we also have that , which is the sample mean of converges to the population mean for the quantity. That is, 


        	(1.12)


Using Equations (1.10) and (1.12) in Equation (1.11), applying Slutsky’s theorem, and assuming non-singularity of and , we finally arrive at the following limiting distribution:

	(1.13)
















where  is the Godambe (1960) information matrix.  Thus, the asymptotic distribution of is centered on the true parameter vector . Further, the variance of  reduces as the number of sample points Q increases. The net result is that  converges in probability to  as  (with  fixed), leading to the consistency of the estimator. In addition,  is normally distributed, with its covariance matrix being   However, both and , and therefore G, are functions of the unknown parameter vector .  But and may be estimated in a straightforward manner at the CML estimate  as follows:


, where  ,	 (1.14)
and

	(1.15)
If computation of the second derivative is time consuming, one can exploit the second Bartlett identity (Ferguson, 1996, page 120), which is valid for each observation unit’s likelihood term in the composite likelihood. That is, using the condition that

 	(1.16)

an alternative estimate for is as below:

	(1.17)

Finally, the covariance matrix of the CML estimator is given by 
	The empirical estimates above can be imprecise when Q is not large enough. An alternative procedure to obtain the covariance matrix of the CML estimator is to use a jackknife approach as follows (see Zhao and Joe, 2005):

	 (1.18)



where  is the CML estimator with the qth observational unit dropped from the data. However, this can get time-consuming, and so an alternative would be to use a first-order approximation for  with a single step of the Newton-Raphson algorithm with  as the starting point. 

2.5.  Asymptotic Properties of the CML Estimator for the Case of Very Few or No Independent Replicates

Even in the case when the data include very few or no independent replicates (as would be the case with global social or spatial interactions across all observational units in a cross-sectional data in which the dimension of is equal to the number of observational units and Q=1), the CML estimator will retain the good properties of being consistent and asymptotically normal as long as the data is formed by pseudo-independent and overlapping subsets of observations (such as would be the case when the social interactions taper off relatively quickly with the social separation distance between observational units, or when spatial interactions rapidly fade with geographic distance based on an autocorrelation function decaying toward zero; see Cox and Reid, 2004 for a technical discussion).[footnoteRef:2] The same situation holds in cases with temporal processes; the CML estimator will retain good properties as long as we are dealing with a stationary time series with short-range dependence (the reader is referred to Davis and Yau, 2011 and Wang et al., 2013 for additional discussions of the asymptotic properties of the CML estimator for the case of time-series and spatial models, respectively). [2:  Otherwise, there may be no real solution to the CML function maximization and the usual asymptotic results will not hold.] 



The covariance matrix of the CML estimator needs estimates of J and H. The “bread” matrix H can be estimated in a straightforward manner using the Hessian of the negative of , evaluated at the CML estimate . This is because the information identity remains valid for each pairwise term forming the composite marginal likelihood. But the estimation of the “vegetable” matrix J is more involved. Further details of the estimation of the CML estimator’s covariance matrix for the case with spatial data are discussed in Section 2.3. 

2.6.  Relative Efficiency of the CML Estimator



The CML estimator loses some asymptotic efficiency from a theoretical perspective relative to a full likelihood estimator, because information embedded in the higher dimension components of the full information estimator are ignored by the CML estimator. This can also be formally shown by starting from the CML unbiased estimating functions , which can be written as follows (we will continue to assume continuous observation on the variable vector of interest, so that is a continuous variable, though the presentation is equally valid for censored and truncated observations on ):

	 (1.19)

Take the derivative of the above function with respect to  to obtain the following:




 	 (1.20)

,

where  is the score function of the full likelihood. From above, we get the following:

, and

	 (1.21)
Then, using the multivariate version of the Cauchy-Schwartz inequality (Lindsay, 1988), we obtain the following:

	 (1.22)



Thus, from a theoretical standpoint, the difference between the regular ML information matrix (i.e.,) and the Godambe information matrix (i.e., ) is positive definite, which implies that the difference between the asymptotic variances of the CML estimator and the ML estimator is positive semi-definite (see also Cox and Reid, 2004). However, many studies have found that the efficiency loss of the CML estimator (relative to the maximum likelihood (ML) estimator) is negligible to small in applications. These studies are either based on precise analytic computations of the information matrix  and the Godambe matrix G to compare the asymptotic efficiencies from the ML and the CML methods, or based on empirical efficiency comparisons between the ML and CML methods for specific contexts by employing a simulation design with finite sample sizes. A brief overview of these studies is presented in the next section.

2.6.1. Comparison of ML and CML Estimator Efficiencies



Examples of studies that have used precise analytic computations to compare the asymptotic efficiency of the ML and CML estimators include Cox and Reid (2004), Hjort and Varin (2008), and Mardia et al. (2009). Cox and Reid (2004) derive  and G for some specific situations, including the case of a sample of independent and identically distributed vectors, each of which is multivariate normally distributed with an equi-correlated structure between elements. In the simple cases they examine, they show that the loss of efficiency between  and G is of the order of 15%. They also indicate that in the specific case of Cox’s (1972) quadratic exponential distribution-based multivariate binary data model, the full likelihood function  and a pairwise likelihood function for binary data generated using a probit link are equivalent, showing that the composite likelihood estimator can achieve the same efficiency as that of a full maximum likelihood estimator. Hjort and Varin (2008) also study the relationship between the  and G matrices, but for Markov chain models, while Mardia et al. (2007) and Mardia et al. (2009) examine efficiency considerations in the context of multivariate vectors with a distribution drawn from closed exponential families. These studies note special cases when the composite likelihood estimator is fully efficient, though all of these are rather simplified model settings. 


Several papers have also analytically studied efficiency considerations in clustered data, especially the case when each cluster is of a different size (such as in the case of spatially clustered data from different spatial regions with different numbers of observational units within each spatial cluster, or longitudinal data on observational units with each observational unit contributing a different number of sample observations).  In such situations, the unweighted CML function will give more weight to clusters that contribute more sample observations than those with fewer observations. To address this situation, a weighted CML function may be used. Thus, Le Cessie and Van Houwelingen (1994) suggest, in their binary data model context, that each cluster should contribute about equally to the CML function. This may be achieved by power-weighting each cluster’s CML contribution by a factor that is the inverse of the number of choice occasions minus one. The net result is that the composite likelihood contribution of each cluster collapses to the likelihood contribution of the cluster under the case of independence within a cluster. In a general correlated panel binary data context, Kuk and Nott (2000) confirmed the above result for efficiently estimating parameters not associated with dependence within clusters for the case when the correlation is close to zero. However, their analysis suggested that the unweighted CML function remains superior for estimating the correlation (within cluster) parameter.  In a relatively more recent paper, Joe and Lee (2009) theoretically studied the issue of efficiency in the context of a simple random effect binary choice model. They indicate that the weights suggested by Le Cessie and Van Houwelingen (1994) and Kuk and Nott (2000) can provide poor efficiency even for non-dependence parameters when the correlation between pairs of the underlying latent variables for the “repeated binary choices over time” case they studied  is moderate to high. Based on analytic and numeric analyses using a longitudinal binary choice model with an autoregressive correlation structure, they suggest that using a weight of  for a cluster appears to do well in terms of efficiency for all parameters and across varying dependency levels ( is the number of observations contributed by unit or individual q). Further, the studies by Joe and Lee (2009) and Varin and Vidoni (2006), also in the context of clustered data, suggest that the inclusion of too distant pairings in the CML function can lead to a loss of efficiency.
A precise analytic computation of the asymptotic efficiencies of the CML and full maximum likelihood approaches, as just discussed, is possible only for relatively simple models with or without clustering. This, in turn, has led to the examination of the empirical efficiency of the CML approach using simulated data sets for more realistic model contexts. Examples include Renard et al. (2004), Fieuws and Verbeke (2006), and Eidsvik et al. (2014). These studies indicate that the CML estimator performs well relative to the ML estimator. For instance, Renard et al. (2004) examined the performance of CML and ML estimators in the context of a random coefficients binary choice model, and found an average loss of efficiency of about 20% in the CML parameter estimates relative to the ML parameter estimates. Fiews and Verbeke (2006) examined the performance of the CML and ML estimators in the context of a multivariate linear model based on mixing, where the mixing along each dimension involves a random coefficient vector followed by a specification of a general covariance structure across the random coefficients of different dimensions. They found that the average efficiency loss across all parameters was less than 1%, and the highest efficiency loss for any single parameter was of the order of only 5%. Similarly, in simulated experiments with a spatial Gaussian process model, Eidsvik et al. (2014) used a spatial blocking strategy to partition a large spatially correlated space of a Gaussian response variable to estimate the model using a CML technique. They too found rather small efficiency losses because of the use of the CML as opposed to the ML estimator. However, this is an area that needs much more attention both empirically and theoretically. Are there situations when the CML estimator’s loss is less or high relative to the ML estimator, and are we able to come up with some generalizable results from a theoretical standpoint that apply not just to simple models but also more realistic models used in the field? In this regard, is there a “file drawer” problem where results are not being reported when the CML estimator in fact loses a lot of efficiency? Or is the current state of reporting among scholars in the field a true reflection of the CML estimator’s loss in efficiency relative to the ML? So far, the CML appears to be remarkable in its ability to pin down parameters, but there needs to be much more exploration in this important area. This opens up an exciting new direction of research and experimentation. 

2.6.2. Comparison of Maximum Simulated Likelihood (MSL) and CML Estimator Efficiencies
The use of the maximum likelihood estimator is feasible for many types of models. But the estimation of many other models that incorporate analytically intractable expressions in the likelihood function in the form of integrals, such as in mixed multinomial logit models or multinomial probit models or count models with certain forms of heterogeneity or large-dimensional multivariate dependency patterns (just to list a few), require an approach to empirically approximate the intractable expression. This is usually done using simulation techniques, leading to the MSL inference approach (see Train, 2009), though quadrature techniques are also sometimes used for cases with 1-3 dimensions of integrals in the likelihood function expression. When simulation methods have to be used to evaluate the likelihood function, there is also a loss in asymptotic efficiency in the maximum simulated likelihood (MSL) estimator relative to a full likelihood estimator. Specifically, McFadden and Train (2000) indicate, in their use of independent number of random draws across observations, that the difference between the asymptotic covariance matrix of the MSL estimator obtained as the inverse of the sandwich information matrix and the asymptotic covariance matrix of the ML estimator obtained as the inverse of the cross-product of first derivatives is theoretically positive semi-definite for finite number of draws per observation.  Consequently, given that we also know that the difference between the asymptotic covariance matrices of the CML and ML estimators is theoretically positive semi-definite, it is difficult to state from a theoretical standpoint whether the CML estimator efficiency will be higher or lower than the MSL estimator efficiency. However, in a simulation comparison of the CML and MSL methods for multivariate ordered response systems, Bhat et al. (2010b) found that the CML estimator’s efficiency was almost as good as that of the MSL estimator, but with the benefits of a very substantial reduction in computational time and much superior convergence properties. As they state “….any reduction in the efficiency of the CML approach relative to the MSL approach is in the range of non-existent to small”. Paleti and Bhat (2013) examined the case of panel ordered-response structures, including the pure random coefficients (RC) model with no autoregressive error component, as well as the more general case of random coefficients combined with an autoregressive error component. The ability of the MSL and CML approaches to recover the true parameters is examined using simulated datasets. The results indicated that the performances of the MSL approach (with 150 scrambled and randomized Halton draws) and the simulation-free CML approach were of about the same order in all panel structures in terms of the absolute percentage bias (APB) of the parameters and empirical efficiency. However, the simulation-free CML approach exhibited no convergence problems of the type that affected the MSL approach. At the same time, the CML approach was about 5-12 times faster than the MSL approach for the simple random coefficients panel structure, and about 100 times faster than the MSL approach when an autoregressive error component was added. Thus, the CML appears to lose relatively little by way of efficiency, while also offering a more stable and much faster estimation approach in the panel ordered-ordered-response context. Similar results of substantial computational efficiency and little to no finite sample efficiency loss (and sometimes even efficiency gains) have been reported by Bhat and Sidharthan (2011) for cross-sectional and panel unordered-response multinomial probit models with random coefficients (though the Bhat and Sidharthan paper actually combines the CML method with a specific analytic approximation method to evaluate the multivariate normal cumulative distribution function).  
Finally, the reader will note that there is always some simulation bias in the MSL method for finite number of simulation draws, and the consistency of the MSL method is guaranteed only when the number of simulation draws rises faster than the square root of the sample size (Bhat, 2001, McFadden and Train, 2000). The CML estimator, on the other hand, is unbiased and consistent under the usual regularity conditions, as discussed earlier in Section 1.4. 

2.7.  Robustness of Consistency of the CML Estimator
As indicated by Varin and Vidoni (2009), it is possible that the “maximum CML estimator can be consistent when the ordinary full likelihood estimator is not”. This is because the CML procedures are typically more robust and can represent the underlying low-dimensional process of interest more accurately than the low dimensional process implied by an assumed (and imperfect) high-dimensional multivariate model. Another way to look at this is that the consistency of the CML approach is predicated only on the correctness of the assumed lower dimensional distribution, and not on the correctness of the entire multivariate distribution. On the other hand, the consistency of the full likelihood estimator is predicated on the correctness of the assumed full multivariate distribution. Thus, for example, Yi et al. (2011) examined the performance of the CML (pairwise) approach in the case of clustered longitudinal binary data with non-randomly missing data, and found that the approach appears quite robust to various alternative specifications for the missing data mechanism. Xu and Reid (2011) provided several specific examples of cases where the CML is consistent, while the full likelihood inference approach is not. 

2.8.  Model Selection in the CML Inference Approach






Procedures similar to those available with the maximum likelihood approach are also available for model selection with the CML approach. The statistical test for a single parameter may be pursued using the usual t-statistic based on the inverse of the Godambe information matrix. When the statistical test involves multiple parameters between two nested models, an appealing statistic, which is also similar to the likelihood ratio test in ordinary maximum likelihood estimation, is the composite likelihood ratio test (CLRT) statistic. Consider the null hypothesis  against , where  is a subvector of  of dimension ; i.e., . The statistic takes the familiar form shown below:

							  (1.23)










where  is the composite marginal likelihood estimator under the null hypothesis . More informally speaking,  is the CML estimator of the unrestricted model, and  is the CML estimator for the restricted model. The CLRT statistic does not have a standard chi-squared asymptotic distribution. This is because the CML function that is maximized does not correspond to the parametric model from which the data originates; rather, the CML may be viewed in this regard as a “mis-specification” of the true likelihood function because of the independence assumption among the likelihood objects forming the CML function (see Kent, 1982, Section 3). To write the asymptotic distribution of the CLRT statistic, first define  and  as the  submatrices of  and , respectively, which correspond to the vector . Then, the CLRT has the following asymptotic distribution:

,									              (1.24)	







where  for i = 1, 2, …,  are independent  variates and  are the eigenvalues of the matrix  evaluated under the null hypothesis (this result may be obtained based on the (profile) likelihood ratio test for a mis-specified model; see Kent, 1982, Theorem 3.1 and the proof therein). Unfortunately, the departure from the familiar asymptotic chi-squared distribution with  degrees of freedom for the traditional maximum likelihood procedure is annoying. Pace et al. (2011) have recently proposed a way out, indicating that the following adjusted CLRT statistic, ADCLRT, may be considered to be asymptotically chi-squared distributed with  degrees of freedom:

	(1.25)








where  is the  submatrix of   corresponding to the vector , and all the matrices above are computed at . The denominator of the above expression is a quadratic approximation to CLRT, while the numerator is a score-type statistic with an asymptotic  null distribution. Thus, ADCLRT is also very close to being an asymptotic  distribution under the null.  
Alternatively, one can resort to parametric bootstrapping to obtain the precise distribution of the CLRT statistic for any null hypothesis situation. Such a bootstrapping procedure is rendered simple in the CML approach, and can be used to compute the p-value of the null hypothesis test. The procedure is as follows:
1. 

Compute the observed CLRT value as in Equation (1.23) from the estimation sample. Let the estimation sample be denoted as , and the observed CLRT value as 
2. 
Generate C sample data sets  using the CML convergent values under the null hypothesis
3. 
Compute the CLRT statistic of Equation (1.23) for each generated data set, and label it as 
4. Calculate the p-value of the test using the following expression:


 where if A is true.	 (1.26)
The above bootstrapping approach has been used for model testing between nested models in Varin and Czado (2010), Bhat et al. (2010b), and Ferdous et al. (2010). 
When the null hypothesis entails model selection between two competing non-nested models, the composite likelihood information criterion (CLIC) introduced by Varin and Vidoni (2005) may be used. The CLIC takes the following form[footnoteRef:3]: [3:  This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information Criterion (AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood inference procedure, the information identity holds (i.e., H(θ) = J(θ)) and the CLIC in this case is exactly the AIC    [(# of model parameters)].] 


	(1.27)
The model that provides a higher value of CLIC is preferred.

1.9. Positive-Definiteness of the Implied Multivariate Covariance Matrix 





In cases where the CML approach is used as a vehicle to estimate the parameters in a higher dimensional multivariate covariance matrix, one has to ensure that the implied multivariate covariance matrix in the higher dimensional context is positive definite.  For example, consider a multivariate ordered-response model context, and let the latent variables underlying the multivariate ordered-response model be multivariate normally distributed. This symmetric covariance (correlation) matrix  has to be positive definite (that is, all the eigenvalues of the matrix should be positive, or, equivalently, the determinant of the entire matrix and every principal submatrix of  should be positive). But the CML approach does not estimate the entire correlation matrix as one single entity. However, there are three ways that one can ensure the positive-definiteness of the  matrix. The first technique is to use Bhat and Srinivasan’s (2005) strategy of reparameterizing the correlation matrix  through the Cholesky matrix, and then using these Cholesky-decomposed parameters as the ones to be estimated. That is, the Cholesky of an initial positive-definite specification of the correlation matrix is taken before starting the optimization routine to maximize the CML function. Then, within the optimization procedure, one can reconstruct the  matrix, and then pick off the appropriate elements of this matrix to construct the CML function at each iteration. This is probably the most straightforward and clean technique. The second technique is to undertake the estimation with a constrained optimization routine by requiring that the implied multivariate correlation matrix for any set of pairwise correlation estimates be positive definite. However, such a constrained routine can be extremely cumbersome. The third technique is to use an unconstrained optimization routine, but check for positive-definiteness of the implied multivariate correlation matrix. The easiest method within this third technique is to allow the estimation to proceed without checking for positive-definiteness at intermediate iterations, but check that the implied multivariate correlation matrix at the final converged pairwise marginal likelihood estimates is positive-definite. This will typically work for the case of a multivariate ordered-response model if one specifies exclusion restrictions (i.e., zero correlations between some error terms) or correlation patterns that involve a lower dimension of effective parameters.  However, if the above simple method of allowing the pairwise marginal estimation approach to proceed without checking for positive definiteness at intermediate iterations does not work, then one can check the implied multivariate correlation matrix for positive definiteness at each and every iteration. If the matrix is not positive-definite during a direction search at a given iteration, one can construct a “nearest” valid correlation matrix (for example, by replacing the negative eigenvalue components in the matrix with a small positive value, or by adding a sufficiently high positive value to the diagonals of a matrix and normalizing to obtain a correlation matrix; see Rebonato and Jaeckel, 1999, Higham, 2002, and Schoettle and Werner, 2004 for detailed discussions of these and other adjusting schemes; a review of these techniques is beyond the scope of this monograph). The values of this “nearest” valid correlation matrix can be translated to the pairwise correlation estimates, and the analyst can allow the iterations to proceed and hope that the final implied convergent correlation matrix is positive-definite.

1.10 . The Maximum Approximate Composite Marginal Likelihood Approach

In many application cases, the probability of observing the lower dimensional event itself in a CML approach may entail multiple dimensions of integration. For instance, in the case of a multinomial probit model with I choice alternatives per individual (assume for ease in presentation that all individuals have all I choice alternatives), and a spatial dependence structure (across individuals) in the utilities of each alternative, the CML approach involves compounding the likelihood of the joint probability of the observed outcomes of pairs of individuals. However, this joint probability itself entails the integration of a multivariate normal cumulative distribution (MVNCD) function of dimension equal to . The evaluation of such an integration function cannot be pursued using quadrature techniques due to the curse of dimensionality when the dimension of integration exceeds two (see Bhat, 2003). In this case, the MVNCD function evaluation for each agent has to be evaluated using simulation or other analytic approximation techniques. Typically, the MVNCD function is approximated using simulation techniques through the use of the Geweke-Hajivassiliou-Keane (GHK) simulator or the Genz-Bretz (GB) simulator, which are among the most effective simulators for evaluating the MVNCD function (see Bhat et al., 2010b for a detailed description of these simulators). Some other sparse grid-based techniques for simulating the multivariate normal probabilities have also been proposed by Heiss and Winschel (2008), Huguenin et al. (2009), and Heiss (2010). In addition, Bayesian simulation using Markov Chain Monte Carlo (MCMC) techniques (instead of MSL techniques) have been used in the literature (see Albert and Chib, 1993, McCulloch and Rossi, 2000, and Train, 2009). However, all these MSL and Bayesian techniques require extensive simulation, are time-consuming, are not very straightforward to implement, and create convergence assessment problems as the number of dimensions of integration increases. Besides, they do not possess the simulation-free appeal of the CML function in the first place. 
	To accommodate the situation when the CML function itself may involve the evaluation of MVNCD functions, Bhat (2011) proposed a combination of an analytic approximation method to evaluate the MVNCD function with the CML function, and labeled this as the Maximum Approximate Composite Marginal Likelihood (MACML) approach. While several analytic approximations have been reported in the literature for MVNCD functions (see, for example, Solow, 1990, Joe, 1995, Gassmann et al., 2002, and Joe, 2008), the one Bhat proposes for his MACML approach is based on decomposition into a product of conditional probabilities. Similar to the CML approach that decomposes a large multidimensional problem into lower level dimensional components, the analytic approximation method also decomposes the MVNCD function to involve only the evaluation of lower dimensional univariate and bivariate normal cumulative distribution functions. Thus, there is a type of conceptual consistency in Bhat’s proposal of combining the CML method with the MVNCD analytic approximation. The net result is that the approximation approach is fast and lends itself nicely to combination with the CML approach. Further, unlike Monte-Carlo simulation approaches, even two to three decimal places of accuracy in the analytic approximation is generally adequate to accurately and precisely recover the parameters and their covariance matrix estimates because of the smooth nature of the first and second derivatives of the approximated analytic log-likelihood function. The MVNCD approximation used by Bhat for discrete choice mode estimation itself appears to have been first proposed by Solow (1990) based on Switzer (1977), and then refined by Joe (1995). However, the focus of the earlier studies was on computing a single MVNCD function accurately rather than Bhat’s use of the approximation for choice model estimation where multiple MVNCD function evaluations are needed.


	To describe the MVNCD approximation, let  be a multivariate normally distributed random vector with zero means, variances of 1, and a correlation matrix .  Then, interest centers on approximating the following orthant probability:

. 	(1.28)
The above joint probability may be written as the product of a bivariate marginal probability and univariate conditional probabilities as follows (I ≥ 3):

 	(1.29)




Next, define the binary indicator  that takes the value 1 if  and zero otherwise. Then , where  is the univariate normal standard cumulative distribution function. Also, we may write the following:

	 (1.30)


where  is the ijth element of the correlation matrix . With the above preliminaries, consider the following conditional probability:

 	(1.31)


The right side of the expression may be approximated by a linear regression model, with  being the “dependent” random variable and  being the independent random variable vector.[footnoteRef:4] In deviation form, the linear regression for approximating Equation (1.31) may be written as: [4:  This first-order approximation can be continually improved by increasing the order of the approximation. For instance, a second-order approximation would approximate the right side of Equation (1.31) by the expectation from a linear regression model that has  as the “dependent” random variable and  as the independent random variable vector, where  Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I >4) as opposed to univariate and bivariate normal CDF evaluations in the first-order approximation, thus increasing computational burden. As discussed in Bhat (2011) and shown in Bhat and Sidharthan (2011), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of MNP models. Thus, in the rest of this monograph, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.  ] 


,	 (1.32)



where  is the least squares coefficient vector and  is a mean zero random term. In this form, the usual least squares estimate of  is given by:

, where 	(1.33)

, and	
	  (1.34)

.




Finally, putting the estimate of  back in Equation (1.32), and predicting the expected value of  conditional on  (i.e., , we get the following approximation for Equation (1.31):

	(1.35)
This conditional probability approximation can be plugged into Equation (1.29) to approximate the multivariate orthant probability in Equation (1.28). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard normal cumulative distribution functions.




	One remaining issue is that the decomposition of Equation (1.28) into conditional probabilities in Equation (1.29) is not unique. Further, different permutations (i.e., orderings of the elements of the random vector ) for the decomposition into the conditional probability expression of Equation (1.29) will lead, in general, to different approximations. One approach to resolve this is to average across the  permutation approximations. However, as indicated by Joe (1995), the average over a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s log-likelihood contribution is a parameterized function of the  and  parameters), even a single permutation of the W vector per choice occasion may suffice, as several papers in the literature have now shown (see later chapters).


2. 	APPLICATION TO TRADITIONAL DISCRETE CHOICE MODELS
In this section, we will develop a blueprint (complete with matrix notation) for the use of the CML inference method to estimate traditional discrete choice models. The focus will be on two specific kinds of discrete choice models: Ordered-response models and unordered-response models. In the case when there are only two alternatives to choose from (the binary choice case), the ordered-response and the unordered-response formulations collapse to the same structure. But these formulations differ when extended to the multinomial (more than two alternatives) choice case. The next section provides a brief overview of ordered-response and unordered-response model systems. Section 2.2 then focuses on aspatial specifications within each type of discrete choice model, while Section 2.3 focuses on spatial specifications. Section 2.4 discusses applications of the CML method to count models. In each of Sections 2.2, 2.3, and 2.4, we provide a list of references of applications after presenting the formulation and CML estimation approach. Doing so allows us to present the model structure and estimation without unnecessary interspersing with references.  The contents of the individual sections do inevitably draw quite substantially from the corresponding references of applications. Also, codes to estimate most of the models presented are available at http://www.caee.utexas.edu/prof/bhat/CODES.htm (these codes are in the GAUSS matrix programming language).

2.1. Ordered and Unordered-Response Model Systems
Ordered-response models are used when analyzing discrete outcome data with a finite number of mutually exclusive categories that may be considered as manifestations of an underlying scale that is endowed with a natural ordering. Examples include ratings data (of consumer products, bonds, credit evaluation, movies, etc.), or likert-scale type attitudinal/opinion data (of air pollution levels, traffic congestion levels, school academic curriculum satisfaction levels, teacher evaluations, etc.), or grouped data (such as bracketed income data in surveys or discretized rainfall data). In all of these situations, the observed outcome data may be considered as censored (or coarse) measurements of an underlying latent continuous random variable. The censoring mechanism is usually characterized as a partitioning or thresholding of the latent continuous variable into mutually exclusive (non-overlapping) intervals. The reader is referred to McKelvey and Zavoina (1975) and Winship and Mare (1984) for some early expositions of the ordered-response model formulation. The reader is also referred to Greene and Hensher (2010) for a comprehensive history and treatment of the ordered-response model structure. These reviews indicate the abundance of applications of the ordered-response model in the sociological, biological, marketing, and transportation sciences, and the list of applications only continues to grow rapidly. 
Unordered-response models are used when analyzing discrete outcome data with a finite number of mutually exclusive categories that do not represent any kind of ordinality. Examples include mode choice data or brand choice data or college choice data. In general, unordered-response models will include valuations (by decision-makers) of attributes that are alternative-specific. Most unordered-response models in economics and other fields are based on the concept of utility-maximizing. That is, the attributes and individual characteristics are assumed to be translated into a latent utility index for each alternative, and the individual chooses the alternative that maximizes utility. The reader is referred to Train (2009) for a good exposition of the unordered-response model formulation. 
In general, the ordered-response formulation may be viewed as originating from a decision-rule that is based on the horizontal partitioning of a single latent variable, while the unordered-response formulation may be viewed as originating from a decision-rule that is based on the vertical comparison of multiple latent variables (one each for each alternative, that represents the composite utility of each alternative) to determine the maximum. A detailed theoretical comparison of the two alternatives is provided in Bhat and Pulugurta (1998). 

2.2. Aspatial Formulations 
2.2.1. Ordered-Response Models
The applications of the ordered response model structure are quite widespread. The aspatial formulations of this structure may take the form of a cross-sectional univariate ordered-response probit (CUOP), a cross-sectional multivariate ordered-response probit (CMOP), or a panel multivariate ordered-response probit (PMOP).  Within each of these formulations, many different versions are possible. In the discussion below, we present each formulation in turn in a relatively general form. 

2.2.1.1 The CUOP Model





Most applications of the ordered-response model structure are confined to the analysis of a single outcome at one point in time (that is, a cross-sectional analysis). Let q be an index for observation units or individuals (q = 1, 2,…, Q, where Q denotes the total number of individuals in the data set), and let k be the index for ordinal outcome category (k =1, 2,…, K). Let the actual observed discrete (ordinal) level for individual q be  (may take one of the K values; i.e., {1, 2,…, K}). In the usual ordered response framework notation, we may write the latent propensity () for the ordered-response variable as a function of relevant covariates and relate this latent propensity to the ordinal outcome categories through threshold bounds:


   if  ,	(2.1)













where  is an (L×1) vector of exogenous variables (not including a constant),  is a corresponding (L×1) vector of individual-specific coefficients to be estimated,  is an idiosyncratic random error term that we will assume in the presentation below is independent of the elements of the vectors  and , and  is the individual-specific upper bound threshold for discrete level k ( and in the usual ordered response fashion). The  terms are assumed independent and identical across individuals. The typical assumption for is that it is either normally or logistically distributed, though non-parametric or mixtures-of-normal distributions may also be considered. In this monograph, we will consider a normal distribution for , because this has substantial benefits in estimation when is also considered to be multivariate normally distributed (or skew normally distributed, or mixtures of normal distributed).  For identification reasons, the variance of  is normalized to one.[footnoteRef:5] [5:  The exclusion of a constant in the vector xq of Equation (2.1) is an innocuous normalization as long as all the intermediate thresholds (ψ1 through ψK–1) are left free for estimation. Similarly, the use of the standard normal distribution rather than a non-standard normal distribution for the error term is also an innocuous normalization (see Zavoina and McKelvey, 1975; Greene and Hensher, 2010). ] 









Next, consider that the individual-specific thresholds are parameterized as a non-linear function of a set of variables  (which does not include a constant), . The non-linear nature of the functional form should ensure that (1) the thresholds satisfy the ordering condition (i.e.,<  and (2) allows identification for any variables that are common in  and . There are several plausible reasons provided in the ordered-response literature to motivate such varying thresholds across observation units, all of which originate in the realization that the set of thresholds represents a dimension to introduce additional heterogeneity over and beyond the heterogeneity already embedded in the latent variable . For instance, the threshold heterogeneity may be due to a different triggering mechanism (across individuals) for the translation (mapping) of the latent underlying  propensity variable to observed ordinal data or different perceptions (across respondents) of response categories in a survey. Such generalized threshold models are referred to by different names based on their motivating origins, but we will refer to them in the current monograph as generalized ordered-response probit (GORP) models. Following Eluru et al. (2008), we parameterize the thresholds as:

	(2.2)









In the above equation,  is a scalar, and  is a vector of coefficients associated with ordinal level . The above parameterization immediately guarantees the ordering condition on the thresholds for each and every individual, while also enabling the identification of parameters on variables that are common to the  and  vectors. For identification reasons, we adopt the normalization that =  for all q (equivalently, all elements of the vector  are normalized to zero, which is innocuous as long as the vector  is included in the risk propensity equation).








  Finally, to allow for unobserved response heterogeneity among observations, the parameter  is defined as a realization from a multivariate normal distribution with mean vector b and covariance matrix where L is the lower-triangular Cholesky factor of [footnoteRef:6] Then, we can write  where  ( represents the multivariate normal distribution of dimension L). If this multivariate distribution becomes degenerate, then , and the Random Coefficients-Generalized Ordered Response Probit (RC-GORP) model collapses to the Generalized Ordered Response Probit (GORP) model. Further, in the GORP model, if all elements of  are zero for all k, the result is the standard ordered-response probit (SORP) model. [6:  For ease of presentation, we will treat all elements of βq as random, but this is not necessary; the researcher can fix some elements of βq and let the remaining elements be random. Also, it should be noted that, while random coefficients on exogenous variables can be estimated with cross-sectional data, it is generally easier to estimate random coefficients with panel or repeated-choice data where the random coefficients on the exogenous variables are specified to be individual-specific and the overall residual error term is specified to be choice-occasion specific. ] 

The CUOP model of Equation (2.1) may be written as:


 if  .	 (2.3)

Then, the latent variable is univariate normally distributed as  where


 and 	 (2.4)






Estimation is straightforward in this case using the maximum likelihood method. The parameter vector to be estimated in the model is  where  is a column vector obtained by vertically stacking the upper triangle elements of the matrix , and . The likelihood function  for the CUOP model takes the following form:

 	(2.5)





where is the univariate cumulative standard normal distribution function. To ensure the positive definiteness of the covariance matrix, the likelihood function is rewritten in terms of the Cholesky-decomposed matrix L of . The maximum simulated likelihood approach then proceeds by optimizing with respect to the elements of L rather than . Once convergence is achieved, the implied covariance matrix  may be reconstructed from the estimated matrix L.
The estimation of the CUOP model presented above is very straightforward, and there have been many applications of the model or its more restrictive variants. In addition, there is a sprinkling of applications associated with two and three correlated ordered-response outcomes. Studies of two correlated ordered-response outcomes include Scotti (2006), Mitchell and Weale (2007), Scott and Axhausen (2006), and LaMondia and Bhat (2011). The study by Scott and Kanaroglou (2002) represents an example of three correlated ordered-response outcomes. But the examination of more than two to three correlated outcomes is rare, mainly because the extension to an arbitrary number of correlated ordered-response outcomes entails, in the usual likelihood function approach, integration of dimensionality equal to the number of outcomes. On the other hand, there are many instances when interest may be centered around analyzing more than three ordered-response outcomes simultaneously, such as in the case of the number of episodes of each of several activity purposes, or satisfaction levels associated with a related set of products/services, or multiple ratings measures regarding the state of health of an individual/organization (we will refer to such outcomes as cross-sectional multivariate ordered-response outcomes). There are also instances when the analyst may want to analyze time-series or panel data of ordered-response outcomes over time, and allow flexible forms of error correlations over these outcomes. For example, the focus of analysis may be to examine rainfall levels (measured in grouped categories) over time in each of several spatial regions, or individual stop-making behavior over multiple days in a week, or individual headache severity levels at different points in time (we will refer to such outcomes as panel multivariate ordered-response outcomes). 
In the analysis of cross-sectional and panel ordered-response systems with more than three outcomes, the norm has been to apply numerical simulation techniques based on a maximum simulated likelihood (MSL) approach (for example, see Bhat and Zhao, 2002, Greene, 2009, and Greene and Hensher, 2010) or a Bayesian inference approach (for example, see Müller and Czado, 2005 and Girard and Parent, 2001). However, such simulation-based approaches become impractical in terms of computational time, or even infeasible, as the number of ordered-response outcomes increases. Even if feasible, the numerical simulation methods do get imprecise as the number of outcomes increase, leading to convergence problems during estimation (see Bhat et al. 2010a and Müller and Czado, 2005). As a consequence, another approach that has seen some (though very limited) use recently is the composite marginal likelihood (CML) approach, as discussed next. 

References for the CUOP Model
There have been many applications of the cross-sectional generalized ordered-response model. The reader is referred to Greene and Hensher (2010) and Eluru et al. (2008).

2.2.1.2. The CMOP Model
In many cases, a whole set of ordinal variables may be inter-related due to unobserved factors. For instance, the injury severity levels sustained by the occupants of a vehicle in a specific crash may be inter-related due to unobserved crash factors (in addition to being related due to observed crash factors),  as may be the injury severity level of all occupants across all vehicles involved in a crash. Similarly, the evaluation ratings of a student of a professor on multiple dimensions (such as “interest in student learning”, “course well communicated”, and “tests returned promptly) may also be correlated. The estimation of such multivariate ordered outcome models are discussed in this section.



As earlier, let q be an index for individuals (q = 1, 2,…, Q, where Q denotes the total number of individuals in the data set), and let i be an index for the ordered-response variable (i = 1, 2,…, I, where I denotes the total number of ordered-response variables for each individual). Let  be the index for ordinal outcome category . Let the actual observed discrete (ordinal) level for individual q and variable i be mqi (mqi may take one of Ki values; i.e., mqi {1, 2,…, Ki} for variable i). In the usual ordered response framework notation, we write:


   if  ,	(2.6)
















where all notations are as earlier except for the addition of the index i. Define   (I×IL matrix;  is an identity matrix of size I),  (IL×1 vector),  vector),  vector,  and let . Also, let , and define  The  terms are assumed independent and identical across individuals (for each and all i). For identification reasons, the variance of each  term is normalized to 1. However, we allow correlation in the  terms across variables i for each individual q. Specifically, we define  and assume that  is multivariate normal distributed with a mean vector of zeros and a correlation matrix as follows:

	 (2.7)	


~







	The off-diagonal terms of Σ, along with the covariance matrix , capture the error covariance across the underlying latent continuous variables; that is, they capture the effects of common unobserved factors influencing the underlying latent propensities. These are the so-called polychoric covariances between pairs of observed ordered-response variables. Then, we can write: , where   and . Let the vector of actual observed ordinal outcomes for individual q be stacked into an (I×1) vector . Also let . The parameter vector to be estimated in the CMOP model is  The likelihood function for individual q takes the following form:

	 (2.8)



where  is the integration domain defined as  , and  is the multivariate normal density function of dimension I . The likelihood function above involves I-dimensional rectangular integrals for each individual q.
As indicated earlier, models that require integration of more than three dimensions (I >3) in a multivariate ordered-response model are typically estimated using maximum simulation likelihood (MSL) approaches. Balia and Jones (2008) adopt such a formulation in their eight-dimensional multivariate probit model of lifestyles, morbidity, and mortality. They estimate their model using a Geweke-Hajivassiliou-Keane (GHK) simulator. Yet another MSL method to approximate the MVNCD function in the likelihood functions of Equation (2.8) is based on the Genz-Bretz (GB) algorithm (see Bhat et al., 2010b for a discussion). Alternatively, Chen and Dey (2000), Herriges et al. (2008), Jeliazkov et al. (2008), and Hasegawa (2010) have considered a Bayesian estimation approach for the multivariate ordered response system through the use of standard Markov Chain Monte Carlo (MCMC) techniques. In particular, the Bayesian approach is based on assuming prior distributions on the non-threshold parameters, reparameterizing the threshold parameters, imposing a standard conjugate prior on the reparameterized version of the error covariance matrix and a flat prior on the transformed threshold, obtaining an augmented posterior density using Baye’s Theorem for the reparameterized model, and fitting the model using a Markov Chain Monte Carlo (MCMC) method. Unfortunately, the method remains cumbersome, requires extensive simulation, and is time-consuming. Further, convergence assessment becomes difficult as the number of dimensions increase (see Müller and Czado, 2005). In this regard, both the MSL and the Bayesian approaches are “brute force” simulation techniques that are not very straightforward to implement and can create numerical stability, convergence, and precision problems as the number of dimensions increase.
The CML estimation of the CMOP model, on the other hand, can be very effective and fast. In particular, the pairwise likelihood function for individual q is formed by the product of likelihood contributions of pairs of ordinal variables as follows:



	 (2.9)










where  is the standard bivariate normal cumulative distribution function with correlation , and the ,  and  terms are obtained by picking off the appropriate sub-matrix of the larger covariance matrix  of . The pairwise marginal likelihood function is .

The asymptotic covariance matrix estimator is  with


 	(2.10)

An alternative estimator for is as below:

 	(2.11)







One final issue. The covariance matrix  has to be positive definite, which will be the case if the matrices and are positive definite. The simplest way to ensure the positive-definiteness of these matrices is to use a Cholesky-decomposition and parameterize the CML function in terms of the Cholesky parameters (rather than the original covariance matrices). Also, the matrix  is a correlation matrix, which can be maintained by writing each diagonal element (say the aath element) of the lower triangular Cholesky matrix of  as , where the  elements are the Cholesky factors that are estimated. 

References for the CML Estimation of the CMOP Model
Archer, M., Paleti, R., Konduri, K.C., Pendyala, R.M., Bhat, C.R., 2013. Modeling the connection between activity-travel patterns and subjective well-being. Transportation Research Record 2382, 102-111.
Bhat, C.R., Varin, C., Ferdous, N., 2010. A comparison of the maximum simulated likelihood and composite marginal likelihood estimation approaches in the context of the multivariate ordered response model. In Advances in Econometrics: Maximum Simulated Likelihood Methods and Applications, Vol. 26, Greene, W.H., Hill, R.C. (eds.), Emerald Group Publishing Limited, 65-106. 
Feddag, M.-L., 2013. Composite likelihood estimation for multivariate probit latent traits models. Communications in Statistics - Theory and Methods 42(14), 2551-2566.
Katsikatsou, M., Moustaki, I, Yang-Wallentin, F., and Jöreskog, K.G., 2012. Pairwise likelihood estimation for factor analysis models with ordinal data. Computational Statistics and Data Analysis 56(12), 4243-4258.
LaMondia, J.J., Bhat, C.R., 2011. A study of visitors’ leisure travel behavior in the northwest territories of Canada, Transportation Letters: The International Journal of Transportation Research 3(1), 1-19. 
Seraj, S., Sidharthan, R., Bhat, C.R., Pendyala, R.M., Goulias, K.G., 2012. Parental attitudes towards children walking and bicycling to school. Transportation Research Record 2323, 46-55.

2.2.1.3. The PMOP Model


As earlier, let q be an index for individuals (q = 1, 2, …, Q), and let t be an index for the tth observation on individual q (t = 1, 2, …, T, where T denotes the total number of observations on individual q).[footnoteRef:7] Let the observed discrete (ordinal) level for individual q at the tth observation be mqt (mqt may take one of K values; i.e., mqt {1, 2,…, K}). In the usual random-coefficients ordered response framework notation, we write the latent variable () as a function of relevant covariates as: [7:  We assume here that the number of panel observations is the same across individuals. Extension to the case of different numbers of panel observations across individuals does not pose any substantial challenges, and will be discussed later. ] 



 if  ,                                                           	(2.12)	

























where  is a (L×1)-vector of exogenous variables (including a constant now),  is an individual-specific (L×1)-vector of coefficients to be estimated that is a function of unobserved individual attributes,  is a standard normal error term uncorrelated across individuals q and across observations of the same individual, and  is the upper bound threshold for ordinal discrete level k (k=1,2,…,K) for individual q at choice occasion t. The thresholds are written as  for k=2,3,…,K-1, with  Assume that the  vector in Equation (2.12) is a time-invariant realization from a multivariate normal distribution with a mean vector b and covariance matrix where L is the lower-triangular Cholesky factor of [footnoteRef:8] Also, assume that the  term, which captures the idiosyncratic effect of all omitted variables for individual q at the tth choice occasion, is independent of the elements of the  and  vectors. Define ,  ,   vector. Also, let the vector of actual observed ordinal outcomes for individual q be stacked into a (T×1) vector . Then, we may write , and the parameter vector to be estimated in the PMOP model is , where  and   The likelihood function for individual q takes the following form: [8:  More general autoregressive structures can also be considered for  and  to accommodate fading and time-varying covariance effects in the latent variables  (see Bhat, 2011 and Paleti and Bhat, 2013). This does not complicate the econometrics of the CML estimation method, but can lead to substantial number of additional parameters and may be asking too much from typical estimation data sets. In this paper, we present the case of independent  across choice occasions and time-invariant random coefficients.] 


	(2.13)



where  is the integration domain defined as  , and  is the multivariate normal density function of dimension T . The likelihood function above involves T-dimensional rectangular integrals for each individual q. The above model is labeled as a mixed autoregressive ordinal probit model by Varin and Czado (2010), who examined the headache pain intensity of patients over several consecutive days. In this study, a full information likelihood estimator would have entailed as many as 815 dimensions of rectangular integration to obtain individual-specific likelihood contributions, an infeasible proposition using the computer-intensive simulation techniques. As importantly, the accuracy of simulation techniques is known to degrade rapidly at medium-to-high dimensions, and the simulation noise increases substantially. On the other hand, the CML approach is easy to apply in such situations, through a pairwise marginal likelihood approach that takes the following form:

    			     

 	(2.14)

where 	 







In the above expression, the , , and   terms are obtained by picking off the appropriate ()-sub-matrix of the larger covariance matrix  of . The pairwise marginal likelihood function is . The covariance matrix of the estimator can be obtained exactly as in the CMOP case. 


The analysis above assumes the presence of a balanced panel; that is, it assumes the same number of choice instances per individual. In the case when the number of choice instances varies across individuals, Joe and Lee (2009) proposed placing a power weight for individual q as  (where the number of observations from individual q is ) and constructing the marginal likelihood contribution of individual q as:

    	(2.15)

References for the CML Estimation of the PMOP Model
Paleti, R., Bhat, C.R., 2013. The composite marginal likelihood (CML) estimation of panel ordered-response models. Journal of Choice Modelling 7, 24-43.
Varin, C., Czado, C., 2010. A mixed autoregressive probit model for ordinal longitudinal data. Biostatistics 11(1), 127-138.
Varin, C. Vidoni, P., 2006. Pairwise likelihood inference for ordinal categorical time series. Computational Statistics and Data Analysis 51(4), 2365-2373.
Vasdekis, V.G.S., Cagnone, S., Moustaki, I., 2012. A composite likelihood inference in latent variable models for ordinal longitudinal responses. Psychometrika 77(3), 425-441.

2.2.2. Unordered-Response Models
In the class of unordered-response models, the “workhorse” multinomial logit model introduced by Luce and Suppes (1965) and McFadden (1974) has been used extensively in practice for econometric discrete choice analysis, and has a very simple and elegant structure. However, it is also saddled with the familiar independence from irrelevant alternatives (IIA) property – that is, the ratio of the choice probabilities of two alternatives is independent of the characteristics of other alternatives in the choice set. This has led to several extensions of the MNL model through the relaxation of the independent and identically distributed (IID) error distribution (across alternatives) assumption. Two common model forms of non-IID error distribution include the generalized extreme-value (GEV) class of models proposed by McFadden (1978) and the multinomial probit (MNP) model that allows relatively flexible error covariance structures (up to certain limits of identifiability; see Train, 2009, Chapter 5). Both of these non-IID kernel structures (or even the IID versions of the GEV and the MNP models, which lead to the MNL and the independent MNP models, respectively) can further be combined with continuous mixing error structures. While many different continuous distributions can be used to accommodate these additional structures, it is most common to adopt a normal distribution. For instance, when introducing random coefficients, it is typical to use the multivariate normal distribution for the mixing coefficients, almost to the point that the terms mixed logit or mixed GEV or mixed probit are oftentimes used synonymously with normal mixing (see Fiebig et al., 2010, Dube et al., 2002).[footnoteRef:9]  [9:  It has been well known that using non-normal distributions can lead to convergence/computational problems, and it is not uncommon to see researchers consider non-normal distributions only to eventually revert to the use of a normal distribution (see, for example, Bartels et al., 2006 and Small et al., 2005). However, one appealing approach is to use a multivariate skew-normal (MSN) distribution for the response surface, as proposed by Bhat and Sidharthan (2012). ] 

In the context of the normal error distributions just discussed, the use of a GEV kernel structure leads to a mixing of the normal distribution with a GEV kernel, while the use of an MNP kernel leads once again to an MNP model. Both structures have been widely used in the past, with the choice between a GEV kernel or an MNP kernel really being a matter of “which is easier to use in a given situation” (Ruud, 2007). In recent years, the mixing of the normal with the GEV kernel has been the model form of choice in the economics and transportation fields, mainly due to the relative ease with which the probability expressions in this structure can be simulated (see Bhat et al., 2008 and Train, 2009 for detailed discussions). On the other hand, the use of an MNP kernel has not seen as much use in recent years, because the simulation estimation is generally more difficult. In any case, while there have been several approaches proposed to simulate these models with a GEV or an MNP kernel, most of these involve pseudo-Monte Carlo or quasi-Monte Carlo simulations in combination with a quasi-Newton optimization routine in a maximum simulated likelihood (MSL) inference approach (see Bhat, 2001, 2003). As has been discussed earlier, in such an inference approach, consistency, efficiency, and asymptotic normality of the estimator is critically predicated on the condition that the number of simulation draws rises faster than the square root of the number of individuals in the estimation sample. Unfortunately, for many practical situations, the computational cost to ensure good asymptotic estimator properties can be prohibitive and literally infeasible (in the context of the computation resources available and the time available for estimation) as the number of dimensions of integration increases. 
The Maximum Approximate Composite Marginal Likelihood (MACML) inference approach proposed by Bhat (2011), on the other hand, allows the estimation of models with both GEV and MNP kernels using simple, computationally very efficient, and simulation-free estimation methods. In the MACML inference approach, models with the MNP kernel, when combined with additional normal random components, are much easier to estimate because of the conjugate addition property of the normal distribution (which puts the structure resulting from the addition of normal components to the MNP kernel back into an MNP form). On the other hand, the MACML estimation of models obtained by superimposing normal error components over a GEV kernel requires a normal scale mixture representation for the extreme value error terms, and adds an additional layer of computational effort (see Bhat, 2011). Given that the use of a GEV kernel or an MNP kernel is simply a matter of convenience, we will henceforth focus in this monograph on the MNP kernel within the unordered-response model structure.
The aspatial formulations of the unordered-response structure may take the form of a cross-sectional multinomial probit (CMNP), or a cross-sectional multivariate multinomial probit (CMMNP), or a panel multinomial probit (PMNP).  

2.2.2.1. The CMNP Model
In the discussion below, we will assume that the number of choice alternatives in the choice set is the same across all individuals. The case of different numbers of choice alternatives per individual poses no complication, since the only change in such a case is that the dimensionality of the multivariate normal cumulative distribution (MVNCD) function changes from one individual to the next. 
Consider the following specification of utility for individual q and alternative i:

, 	(2.16)





















where  is an -column vector of exogenous attributes (including a constant for each alternative, except one of the alternatives), and  is an individual-specific -column vector of corresponding coefficients that varies across individuals based on unobserved individual attributes. Assume that the  vector is a realization from a multivariate normal distribution with a mean vector b and covariance matrix . We also assume that  is independent and identically normally distributed across q, but allow a general covariance structure across alternatives for individual q. Specifically, let  (vector). Then, we assume . As usual, appropriate scale and level normalization must be imposed on  or identifiability. Specifically, only utility differentials matter in discrete choice models. Taking the utility differentials with respect to the first alternative, only the elements of the covariance matrix  of  are estimable. However, the MACML inference approach proposed here, like the traditional GHK simulator, takes the difference in utilities against the chosen alternative during estimation. Thus, if individual q is observed to choose alternative , the covariance matrix  is desired for the individual. However, even though different differenced covariance matrices are used for different individuals, they must originate in the same matrix . To achieve this consistency, is constructed from  by adding an additional row on top and an additional column to the left. All elements of this additional row and additional column are filled with values of zeros. An additional normalization needs to be imposed on  because the scale is also not identified. For this, we normalize the element of  in the second row and second column to the value of one. Note that these normalizations are innocuous and are needed for identification. The  matrix so constructed is fully general. Also, in MNP models, identification is tenuous when only individual-specific covariates are used (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in the form of at least one individual characteristic being excluded from each alternative’s utility in addition to being excluded from a base alternative (but appearing in some other utilities). But these exclusion restrictions are not needed when there are alternative-specific variables. 
















The model above may be written in a more compact form by defining the following vectors and matrices:   vector),   matrix),   vector),  , and  matrix). Then, we may write, in matrix notation,  and  Also, let  be an (I–1)×1 vector, where  is the actual observed choice of individual q, and Then, because alternative  is the chosen alternative by individual q.











To develop the likelihood function, define  as an identity matrix of size I-1 with an extra column of ‘-1’ values added at the  column (thus,  is a matrix of dimension  Then,  is distributed as follows: , where and . The parameter vector to be estimated is  Let  be the diagonal matrix of standard deviations of . Using the usual notations as described earlier, the likelihood contribution of individual q is as below:

 	(2.17)

where 									






The MVNCD approximation discussed earlier is computationally efficient and straightforward to implement when maximizing the likelihood function of Equation (2.17).[footnoteRef:10] As such, the MVNCD approximation can be used for any value of K and any value of I, as long as there is data support for the estimation of parameters. The positive-definiteness of  can be ensured by using a Cholesky-decomposition of the matrices  and , and estimating these Cholesky-decomposed parameters. Note that, to obtain the Cholesky factor for , we first obtain the Cholesky factor for , and then add a column of zeros as the first column and a row of zeros as the first row to the Cholesky factor of .  The covariance matrix in this CMOP case is obtained using the usual Fisher information matrix, since the full (approximate) likelihood is being maximized. [10: As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood estimator as a special case. It is this characteristic of the CML approach that leads us to the label MACML for the estimation approach proposed here. Specifically, even in cross-sectional MNP contexts, when our approach involves only the approximation of the MVNCD function in the maximum likelihood function, the MACML label is appropriate since the maximum likelihood function is a special case of the CML function.] 


Bhat and Sidharthan (2011) apply the MACML estimation approach for estimating the CMNP model with five random coefficients and five alternatives, and compare the performance of the  MSL and MACML approaches (though, in their simulations, they constrain to be an identity matrix multiplied by 0.5). They conclude that the MACML approach recovers parameters much more accurately than the MSL approach, while also being about 50 times faster than the MSL approach. They also note that as the number of random coefficients and/or alternatives in the unordered-response model increases, one can expect even higher computational efficiency factors for the MACML over the MSL approach. 
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2.2.2.2. The CMMNP Model






Let there be G nominal (unordered multinomial response) variables for an individual, and let g be the index for variables (g = 1, 2, 3,…, G). Also, let Ig be the number of alternatives corresponding to the gth nominal variable (Ig3) and let be the corresponding index ( = 1, 2, 3,…, ). Note that may vary across individuals. Also, it is possible that some nominal variables do not apply for some individuals, in which case G itself is a function of the individual q. However, for presentation ease, we assume that all the G nominal variables are relevant for each individual, and that all the alternatives are available for each variable g. 


Consider the gth variable and assume that the individual q chooses the alternative . Also, assume the usual random utility structure for each alternative .

	(2.18)






























where is a (Lg×1)-column vector of exogenous attributes,  is a column vector of corresponding coefficients, and is a normal error term. Assume that the  vector is a realization from a multivariate normal distribution with a mean vector  and covariance matrix , where is the lower-triangular Cholesky factor of . While one can allow covariance among the  vectors across the coefficients of the different unordered-response variables for each individual, this specification will be profligate in the parameters to be estimated. So, we will assume that the vectors are independent across the unordered-response dimensions for each individual. We also assume that  is independent and identically normally distributed across individuals q, but allow a general covariance structure across alternatives for individual q. Specifically, let  (vector). Then, we assume . Let ,  where  is the chosen alternative for the gth unordered-response variable by individual q, and stack the latent utility differentials into a vector  . Let   matrix),   vector) and  . Define  as an identity matrix of size , with an extra column of ‘-1’ values added at the  column.  Also, construct the matrices , , and 







When there are G unordered-response variables, consider the stacked  , each of whose element vectors is formed by differencing utilities of alternatives from the chosen alternative  for the gth variable. Also, form a block diagonal covariance matrix of size  each block diagonal holding the matrix , and the following matrix of the same size as :

	(2.19)









The off-diagonal elements in capture the dependencies across the utility differentials of different variables, the differential being taken with respect to the chosen alternative for each variable. It must be ensured that  across individuals is derived from a common covariance matrix  for the original -error term vector . Appropriate identification considerations will have to be placed on the elements of . The parameter vector to be estimated is  Using the notations as described earlier, and defining  and the likelihood contribution of individual q is as below:

 	(2.20)


where  and 							



The above likelihood function involves the evaluation of a -dimensional integral for each individual, which can be very expensive if there are several variables and/or if each variable can take a large number of values. But, once again the Maximum Approximated Composite Marginal Likelihood (MACML) approach of Bhat (2011) can be used gainfully in this context, in which the MACML function only involves the computation of univariate and bivariate cumulative distributive functions. Specifically, consider the following (pairwise) composite marginal likelihood function formed by taking the products (across the G nominal variables) of the joint pairwise probability of the chosen alternatives  for the gth variable and  for the lth variable for individual q.

, 	(2.21)

where is an index for the individual’s choice for the gth variable. One can also write:

 	(2.22)




















where  ( is the number of alternatives for the gth variable),  and  is a -selection matrix with an identity matrix of size () occupying the first () rows and the through columns (with the convention that ), and another identity matrix of size () occupying the last () rows and the through columns. The net result is that the pairwise likelihood function now only needs the evaluation of a -dimensional cumulative normal distribution function (rather than the -dimensional cumulative distribution function in the maximum likelihood function). This can lead to substantial computation efficiency, and can be evaluated using the MVNCD approximation of the MACML procedure. The MACML estimator , obtained by maximizing the logarithm of the function  (with the MVNCD approximation), is asymptotically normal distributed with mean  and covariance matrix that can be estimated as: 

	 (2.23)


with	(2.24)

An alternative estimator for is as below:

 (2.25)
There are two important issues that need to be dealt with during estimation, each of which is discussed in turn below. 

Identification






The estimated model needs to be theoretically identified. Suppose one considers utility differences with respect to the first alternative for each of the G variables. Then, the analyst can restrict the variance term of the top left diagonal of the covariance matrix (say of error differences  to 1 to account for scale invariance. However, note that the matrix  is different from the matrix , which corresponds to the covariance of utility differences taken with respect to the chosen alternative for the individual.  Next, create a matrix of dimension similar to that of in Equation (2.19), except that the matrix is expressed in terms of utility differences with respect to the first alternative for each nominal variable:

	(2.26)








In the general case, this allows the estimation of  variance terms across all the G variables (originating from  terms embedded in each  matrix; g=1,2,…G), and  covariance terms in the off-diagonal matrices of the  matrix characterizing the dependence between the latent utility differentials (with respect to the first alternative) across the variables (originating from  estimable covariance terms within each off-diagonal matrix  in). 



















	To construct the general covariance matrix  for the original -error term vector , while also ensuring all parameters are identifiable, zero row and column vectors are inserted for the first alternatives of each unordered dependent variable in . To do so, define a matrix  of size  . The first  rows and  columns correspond to the first variable. Insert an identity matrix of size  after supplementing with a first row of zeros into this first  rows and  columns of . The rest of the columns for the first  rows and the rest of the rows for the first  columns take a value of zero. Next, rows throughand columns  through  correspond to the second variable. Again position an identity matrix of size  after supplementing with a first row of zeros into this position. Continue this for all G nominal variables. Thus, for the case with two nominal variables, one nominal variable with 3 alternatives and the second with four alternatives, the matrix D takes the form shown below:

	 (2.27)

















Then, the general covariance matrix may be developed as  All parameters in this matrix are identifiable by virtue of the way this matrix is constructed based on utility differences and, at the same time, it provides a consistent means to obtain the covariance matrix  that is needed for estimation (and is with respect to each individual’s chosen alternative for each variable). Specifically, define a matrix  of size . The first  rows and  columns correspond to the first nominal variable. Insert an identity matrix of size  after supplementing with a column of ‘-1’ values in the column corresponding to the chosen alternative. The rest of the columns for the first  rows and the rest of the rows for the first  columns take a value of zero. Next, rows  through and columns throughcorrespond to the second nominal variable. Again position an identity matrix of size  after supplementing with a column of ‘-1’ values in the column corresponding to the chosen alternative. Continue this procedure for all G nominal variables. With the matrix  as defined, the covariance matrix   for any individual is given by 

Positive Definiteness




















The matrices  and have to be positive definite. The simplest way to guarantee the positive definiteness of  is to ensure that is positive definite. To do so, the Cholesky matrix of  may be used as the matrix of parameters to be estimated. However, note that the top diagonal element of each  is normalized to one for identification, and this restriction should be recognized when using the Cholesky factor of . This can be achieved by appropriately parameterizing the diagonal elements of the Cholesky decomposition matrix. Thus, consider the lower triangular Cholesky matrix  of the same size as . Whenever a diagonal element (say the kkth element) of  is to be normalized to one, the first element in the corresponding row of  is written as , where the  elements are the Cholesky factors that are to be estimated. With this parameterization, obtained as  is positive definite and adheres to the scaling conditions. Using this, one constructs, and subsequently obtains  as discussed earlier. The resulting is positive definite. The positive definiteness of is ensured by writing  . 
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2.2.2.3. The Panel MNP (PMNP) Model
Consider the following model with ‘t’ now being an index for choice occasion:

	 (2.28)


















For ease, we assume that all alternatives are available at each choice instance of each individual, and that we have a balanced panel (that is, we have the same number of choice instances from each individual). The first assumption is innocuous and helps in presentation. The relaxation of the second assumption only requires a different weight per individual, exactly as discussed earlier for the ordered-response case.  is a -column vector of exogenous attributes whose first (I-1) elements correspond to alternative specific constants for (I-1) alternatives (with one of the alternatives being the base alternative) and the remaining variables being the non-constant variables.  is an individual-specific -column vector of corresponding coefficients that varies across individuals based on unobserved individual attributes. Assume that the  vector is a realization from a multivariate normal distribution with a mean vector b and covariance matrix , where L is the lower-triangular Cholesky factor of . Thus, as in the case of the panel ordered-response model, the coefficients  are considered constant over choice situations of a given decision maker. We also assume that  is independent and identically normally distributed across individuals and choice occasions, but allow a general covariance structure across alternatives for each choice instance of each individual. Specifically, let  (vector). Then, we assume . As usual, appropriate scale and level normalization must be imposed on  for identifiability. To do so, we follow the same exact procedure as in the CMNP model. Specifically, only utility differentials matter at each choice occasion. Taking the utility differentials with respect to the first alternative, only the elements of the covariance matrix  of  are estimable, and is constructed from  by adding an additional row on top and an additional column to the left. All elements of this additional row and additional column are filled with values of zeros. We also normalize the element of  in the second row and second column to the value of one.



























Define the following vectors and matrices:   vector),   vector),   vector),  ( matrix),  ( matrix),  vector),  , and matrix). Then, we may write, in matrix notation,  and  Let the individual q choose alternative at the tth choice occasion. To develop the likelihood function, define  as an  block-diagonal matrix, each block diagonal being of size and containing the matrix .  itself is an identity matrix of size (I-1) with an extra column of ‘-1’ values added at the  column. Let and . The parameter vector to be estimated is The likelihood contribution of individual q is as below:

	(2.29)


where  and 						



The simulation approaches for evaluating the panel likelihood function involve integration of dimension . Consider the following (pairwise) composite marginal likelihood function formed by taking the products (across the T choice occasions) of the joint pairwise probability of the chosen alternatives  for the tth choice occasion and  for the gth choice occasion for individual q.

, 	(2.30)

where is an index for the individual’s choice on the tth choice occasion. One can also write:

 	(2.31)

















where ,  and  is a -selection matrix with an identity matrix of size () occupying the first () rows and the through columns, and another identity matrix of size () occupying the last () rows and the through columns. The pairwise likelihood function now only needs the evaluation of a -dimensional cumulative normal distribution function (rather than the -dimensional cumulative distribution function in the maximum likelihood function). The MACML estimator  is obtained by maximizing the logarithm of the function  (with the MVNCD approximation). The covariance matrix is estimated as: 




with  	(2.32)

An alternative estimator for is as below:

	(2.33)
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2.3. Spatial Formulations 
In the past decade, there has been increasing interest and attention on recognizing and explicitly accommodating spatial (and social) dependence among decision-makers (or other observation units) in urban and regional modeling, agricultural and natural resource economics, public economics, geography, marketing, sociology, political science, and epidemiology. The reader is referred to a special issue of Regional Science and Urban Economics entitled “Advances in spatial econometrics” (edited by Arbia and Kelejian, 2010) and another special issue of the Journal of Regional Science entitled “Introduction: Whither spatial econometrics?” (edited by Patridge et al., 2012) for a collection of recent papers on spatial dependence, and to Elhorst (2010), Anselin (2010), Ferdous and Bhat (2013), and Bhat et al. (2014a) for overviews of recent developments in the spatial econometrics field. Within the past few years, there has particularly been an explosion in studies that recognize and accommodate spatial dependency in discrete choice models. The typical way this is achieved is by applying spatial structures developed in the context of continuous dependent variables to the linear (latent) propensity variables underlying discrete choice dependent variables (see reviews of this literature in Fleming, 2004, Franzese and Hays, 2008, LeSage and Pace, 2009, Hays et al. 2010, Brady and Irwin, 2011, and Sidharthan and Bhat, 2012). The two dominant techniques, both based on simulation methods, for the estimation of such spatial discrete models are the frequentist recursive importance sampling (RIS) estimator (which is a generalization of the more familiar Geweke-Hajivassiliou-Keane or GHK simulator; see Beron and Vijverberg, 2004) and the Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see LeSage and Pace, 2009). However, both of these methods are confronted with multi-dimensional normal integration of the order of the number of observational units in ordered-response models, and are cumbersome to implement in typical empirical contexts with even moderate estimation sample sizes (see Bhat, 2011 and Franzese et al., 2010). The RIS and MCMC methods become even more difficult (to almost infeasible) to implement in a spatial unordered multinomial choice context because the likelihood function entails a multidimensional integral of the order of the number of observational units factored up by the number of alternatives minus one (in the case of multi-period data, the integral dimension gets factored up further by the number of time periods of observation). Recently, Bhat and colleagues have suggested a composite marginal likelihood (CML) inference approach for estimating spatial binary/ordered-response probit models, and the maximum approximate composite marginal likelihood (MACML) inference approach for estimating spatial unordered-response multinomial probit (MNP) models. These methods are easy to implement, require no simulation, and involve only univariate and bivariate cumulative normal distribution function evaluations, regardless of the number of alternatives, or the number of choice occasions per observation unit, or the number of observation units, or the nature of social/spatial dependence structures. 
In the spatial analysis literature, the two workhorse specifications to capture spatial dependencies are the spatial lag and the spatial error specifications (Anselin, 1988). The spatial lag specification, in reduced form, allows spatial dependence through both spatial spillover effects (observed exogenous variables at one location having an influence on the dependent variable at that location and neighboring locations) as well as spatial error correlation effects (unobserved exogenous variables at one location having an influence on the dependent variable at that location and neighboring locations). The spatial error specification, on the other hand, assumes that spatial dependence is only due to spatial error correlation effects and not due to spatial spillover effects. The spatial error specification is somewhat simpler in formulation and estimation than the spatial lag model. But, as emphasized by McMillen (2010), the use of a parametric spatial error structure is “troublesome because it requires the researcher to specify the actual structure of the errors”, while it is much easier to justify a parametric spatial lag structure when accommodating spatial dependence. Beck et al. (2006) also find theoretical and conceptual issues with the spatial error model and refer to it as being “odd”, because the formulation rests on the “hard to defend” position that “space matters in the error process but not in the substantive portion of the model”. As they point out, the implication is that if a new independent variable is added to a spatial error model “so that we move it from the error to the substantive portion of the model”, the variable magically ceases to have a spatial impact on neighboring observations. Of course, the spatial lag and spatial error specifications can be combined together in a Kelejian-Prucha specification (see Elhorst, 2010), or the spatial lag could be combined with spatially lagged exogenous variable effects in a Spatial Durbin specification (see Bhat et al., 2014a). In all of these cases, the spatial dependence leads also to spatial heteroscedasticity in the random error terms. 
In this monograph, we will assume the spatial lag structure as the specification of spatial dependency. However, it is very straightforward to extend our approach to other dependency specifications. Indeed, there is no conceptual difficulty in doing so, nor is there much impact on coding or computational burden. The focus on the spatial lag structure is simply for uniformity and notational ease. In addition to the spatial lag-based and resulting heteroscedasticity effect, it is also likely that there is heterogeneity (i.e., differences in relationships between the dependent variable of interest and the independent variables across decision-makers or spatial units (see, Fotheringham and Brunsdon, 1999, Bhat and Zhao, 2002, Bhat and Guo, 2004). When combined with the spatial lag effect, the unobserved heterogeneity effects get correlated over decision agents based on the spatial (or social) proximity of the agents’ locations, which is then referred to as spatial drift (see Bradlow et al., 2005 for a discussion). But such spatial drift effects have been largely ignored thus far in the literature (but see Bhat et al., 2014a). We explicitly incorporate such drift effects in the models discussed below. All notations from previous sections carry over to the sections below. 

2.3.1 Spatial Ordered Response Models
2.3.1.1 The Spatial CUOP Model
The spatial CUOP (SCUOP) is an extension of the aspatial CUOP model from Section 2.2.1.1, and may be written as follows:



,  if ,	 (2.34)



















where the  terms are the elements of an exogenously defined distance-based spatial (or social) weight matrix  corresponding to  individuals q and  (with  and ), and   is the spatial autoregressive parameter. The weights can take the form of a discrete function such as a contiguity specification (=1 if the individuals q and  are adjacent and 0 otherwise) or a specification based on a distance threshold (where  is a dummy variable taking the value 1 if the individual  is within the distance threshold and 0 otherwise). It can also take a continuous form such as those based on the inverse of distance  and its power functions  the inverse of exponential distance, and the shared edge length  between individuals (or observation units)  (where  is a dummy variable taking the value 1 if q and  are adjoining based on some pre-specified spatial criteria, and 0 otherwise). All of these functional forms for the weight matrix may be tested empirically.  
The latent propensity representation of Equation (2.34) can be written equivalently in vector notation as: 

, 	 (2.35)







where  and  are (Q×1) vectors,  is a (Q×L) matrix of exogenous variables for all Q individuals,  is a (Q×QL) block-diagonal matrix with each block-diagonal of size (1×L) being occupied by the vector  (), and  is a (QL×1) vector. Through simple matrix algebra manipulation, Equation (2.35) may be re-written as:

,	 (2.36)



where  is a (Q×Q) matrix. The vector  is multivariate normally distributed as , where


 and .	 (2.37)

The likelihood function  for the SCUOP model takes the following form:

 	(2.38)





where ,  is the corresponding (Q×1) vector of the actual observed ordinal levels,  is the integration domain defined as  , and  is the multivariate normal density function of dimension Q .
The rectangular integral in the likelihood function is of dimension Q, which can become problematic from a computational standpoint. Further, the use of traditional numerical simulation techniques can lead to convergence problems during estimation even for moderately sized Q (Bhat et al., 2010a; Müller and Czado, 2005). The alternative is to use the composite marginal likelihood (CML) approach. Using a pairwise CML method, the function to be maximized is:

	 (2.39)

where .





In the above expression,  represents the  element of the column vector B, while  represents the  element of the matrix . 
















The pairwise marginal likelihood function of Equation (2.39) comprises  pairs of bivariate probability computations, which can itself become quite time consuming. However, previous studies (Varin and Vidoni, 2009, Bhat et al., 2010a, Varin and Czado, 2010) have shown that spatial dependency drops quickly with inter-observation distance. Therefore, there is no need to retain all observation pairs because the pairs formed from the closest observations provide much more information than pairs far from one another. The “optimal” distance for including pairings can be based on minimizing the trace of the asymptotic covariance matrix. Thus, the analyst can start with a low value of the distance threshold (leading to a low number of pairwise terms in the CML function) and then continually increase the distance threshold up to a point where the gains from increasing the distance threshold is very small or even drops. To be specific, for a given threshold, construct a Q×Q matrix  with its  column filled with a Q×1 vector of zeros and ones as follows: if the observational unit  is not within the specified threshold distance of unit q, the  row has a value of zero; otherwise, the  row has a value of one.  By construction, the  row of the  column has a value of one. Let be the element of the matrix , and let  Define a set  of all individuals (observation units) that have a value of ‘1’ in the vector  where  is the qth column of the vector . Then, the CML function is as follows:

 	(2.40)

The covariance matrix of the CML estimator is , where

, or alternatively,	 (2.41)

	 (2.42)




























However, the estimation of the “vegetable” matrix  is more difficult in this case. One cannot empirically estimate  as the sampling variance of the individual contributions to the composite score function (as was possible when there were Q independent contributions) because if the underlying spatial dependence in observation units. But a windows resampling procedure (see Heagerty and Lumley, 2000) may be used to estimate . This procedure entails the construction of suitable overlapping subgroups of the sample that may be viewed as independent replicated observations. Then, may be estimated empirically. While there are several ways to implement this, Bhat (2011) suggests overlaying the spatial region under consideration with a square grid providing a total of  internal and external nodes. Then, select the observational unit closest to each of the  grid nodes to obtain  observational units from the original Q observational units ( Let  be the  matrix representing the  column vector of the matrix , let  be the set of all individuals (observation units) that have a value of ‘1’ in the vector , and let  be the sub-vector of with values of ‘1’ in the rows of . Let  be the sum (across rows) of the vector (that is, is the cardinality of ), so that the dimension of  is  Let  be the index of all elements in the vector, so that  =1,2,… . Next, define  Then, the J matrix maybe empirically estimated as:

 	 (2.43)




To ensure the constraints on the autoregressive term , the analyst can parameterize. Once estimated, the estimate can be translated back to estimates of an estimate of .
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2.3.1.2 The Spatial CMOP Model
We start with Equation (2.6) of the aspatial CMOP model in Section 2.2.1.2, and now add a spatial lag formulation:


   if  .	(2.44)





















Define  (QI×1 vector),  (QI×1 vector),  ,  (QI×1 vector) ,   (I×IL matrix;  is an identity matrix of size I),  (QI×IL matrix),   (the  random coefficients are independent across individuals),   (IL×1 vector),   (QI×1 vector),  (I×1 vector), and  (QI×1 vector;  is a vector of size Q  with all elements equal to 1). Also, define the following matrix:

 	(2.45)



Collect all the weights  into a row-normalized spatial weight matrix . All other notations from Section 2.2.1.2 are carried over to this section, including the multivariate standard normal distribution specification for  with mean zero and correlation matrix Σ (see Equation 2.7). With these definitions, Equation (2.44) may be re-written in matrix form as:

, 	 (2.46)

where the operation  in the equation above is used to refer to the element by element multiplication. After further matrix manipulation, we obtain:


 where 	 (2.47)





The expected value and variance of  may be obtained from the above equation after developing the covariance matrix for the error vector . This may be written as . Then, we obtain , where .





The parameter vector to be estimated in the SCMOP model is Let  vector),  vector,  vector), and  vector). The likelihood function for the SCMOP model is:

 	(2.48)


where , and  is the multivariate normal density function of dimension QI. The dimensionality of the rectangular integral in the likelihood function is QI, which is very difficult to evaluate using existing estimation methods. The alternative is to use the pairwise composite marginal likelihood (CML) approach:


 with  where

,	(2.49)

and

.
The CML estimator is obtained by maximizing the logarithm of the function in Equation (2.49). 


The number of pairings in the CML function above is  But again the number of pairings can be reduced  by determining the “optimal” distance for including pairings across individuals based on minimizing the trace of the asymptotic covariance matrix (as discussed in the previous section).[footnoteRef:11] To do so, define a set  as in the previous section that includes the set of individuals q’ (including q) that are within a specified threshold distance of individual q. Then, the CML function reduces to the following expression: [11:  Technically, one can consider a threshold distance separately for each ordinal variable, so that the individual pairings within each variable are based on this variable-specific threshold distance and the individual-variable pairings across variables are based on different thresholds across variables. But this gets cumbersome, and so we will retain a single threshold distance across all ordinal variables.  ] 



 with 	 (2.50)


Let   be the total number of pairings used in the above CML function (after considering the distance threshold). The covariance matrix of the CML estimator is ,
where 

	 (2.51)
or alternatively, 


  	(2.52)










The sandwich matrix, , may be computed by selecting  observational units from the original Q observational units as discussed in the earlier section. Let  be the set of individuals (observation units) within the specified threshold distance, and let  be the cardinality of . Let  be an index so that =1,2,… . Next, define  Then, the J matrix maybe empirically estimated as:

	(2.53)


There is another way that the analyst can consider cutting down the number of pairings even after using a threshold distance as a cut-off. That is by ignoring the pairings among different individuals (observation units) across the I ordinal variables. This will reduce the number of pairings quite substantially, while also retaining the pairings across individuals for each ordinal variable (that enables the estimation of the parameters of the vector ) and the pairings across ordinal variables within the same individual (that enables the estimation of the parameters in the correlation matrix Σ of ). The CML is:

	(2.54)

The number of pairings  in the CML function above is much smaller than the CML function in Equation (2.50). The elements of the covariance matrix may be estimated as follows:

	 (2.55)
or alternatively, 

	(2.56)





For estimating the  matrix define  and  be defined as earlier and let  and  Then,

	 (2.57)

The positive-definiteness of the matrices  are ensured as discussed in Sections 2.3.1.1 and 2.2.1.2. 

References for the CML Estimation of the Spatial CMOP (or SCMOP) Model
No known applications. But the spatial cross-sectional multivariate count model of Narayanamoorthy et al. (2013) is very similar to the SCMOP model.

2.3.1.3. The Spatial PMOP (SPMOP) Model
All notations from Section 2.2.1.3 are carried over. To include spatial dependency in the PMOP model, rewrite Equation (2.12) as follows:


,    	(2.58)	


















Define , , ,  vector),  vector. Also, let the vector of actual observed ordinal outcomes for individual q be stacked into a (T×1) vector . To write the equation system in (2.58) compactly, we next define several additional vectors and matrices. Let  (QT×1 vector),  (QT×1 vector),  (QT×1 vector),   (QT×L matrix),   (the  random coefficients are independent across individuals),   (QT×1 vector),


  block diagonal matrix),	 (2.59)





Also, collect all the weights  into a spatial weight matrix W. The vector above has a mean vector of zero and a covariance matrix  (of size QT×QT), while the vector  has a mean vector of zero and a covariance matrix 
Using the vector and the matrix notations defined above, Equation (2.58) may be re-written compactly as:

, 	(2.60)
After further matrix manipulation, we obtain:


 where 	(2.61)

Next, we obtain , where


 and 	 (2.62)



The parameter vector to be estimated in the SPMOP model is  Let vector), and  vector). The likelihood function for the SPMOP model is:

	 (2.63)


where , and  is the multivariate normal density function of dimension QT. The much simpler pairwise composite marginal likelihood (CML) function is:


 with  where

,

and 	(2.64)

.
	

To reduce the number of pairings, define a set  as in the previous section that includes the set of individuals q’ (including q) that are within a specified threshold distance of individual q. Then, the CML function reduces to the following expression:


 with 	 (2.65)


Let   be the total number of pairings used in the above CML function (after considering the distance threshold). The covariance matrix of the CML estimator is , where 

 	(2.66)
or alternatively, 


  	(2.67)



Defining , , and  as in the previous section, the J matrix maybe empirically estimated as:

	 (2.68)
One can also ignore the pairings among different individuals (observation units) across the T time periods. The CML then is:

	(2.69)
The elements of the covariance matrix in this case may be estimated as follows:

 	(2.70)
or alternatively, 

 	(2.71)





For estimating the  matrix, define  and  as earlier and let  and  Then,

	(2.72)

References for the CML Estimation of the Spatial PMOP (SPMOP) Model
Castro, M., Paleti, R., Bhat, C.R., 2013. A spatial generalized ordered response model to examine highway crash injury severity. Accident Analysis and Prevention 52, 188-203.  
Ferdous, N., Bhat, C.R., 2013. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns. Journal of Geographical Systems 15(1), 1-29. 
Paleti, R., Bhat, C.R., Pendyala, R.M., Goulias, K.G., 2013. Modeling of household vehicle type choice accommodating spatial dependence effects. Transportation Research Record 2343, 86-94.
	     
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]2.3.2. Unordered-Response Models
2.3.2.1. The Spatial CMNP (SCMNP) Model
The formulation in this case is similar to the aspatial case in Section 2.2.2.1, with the exception that a spatial lag term is included. Of course, this also completely changes the model structure from the aspatial case. 

	 (2.73)
















where all notations are the same as in Section 2.2.2.1.[footnoteRef:12] Let  (vector). Then, we assume . As usual, appropriate scale and level normalization must be imposed on  for identifiability, as discussed in Section 2.2.2.1. The model above may be written in a more compact form by defining the following vectors and matrices:   vector),  (vector),    (vector),   matrix),  ( matrix), and  ( vector). Also, define the following matrix: [12:  One can allow the spatial lag dependence parameter δ to vary across alternatives i. However, due to identification considerations, one of the alternatives should be used as the base (with a zero dependence parameter). But doing so while also allowing the dependence parameters to vary across the remaining alternatives creates exchangeability problems, since the model estimation results will not be independent of the decision of which alternative is considered as the base. Hence, we prefer the specification that restricts the dependence parameter to be the same across alternatives i. ] 


	 (2.74)
Then, we can write Equation (2.73) in matrix form as:

	 (2.75)






















where  and is the  weight matrix with the weights  as its elements. Also, where  and    Let  be an (I–1)×1 vector for individual q, where  is the actual observed choice of individual q and  Stack the  vectors across individuals (observation units): . The distribution of  may be derived from the distribution of by defining a  block diagonal matrix , with each block diagonal having  rows and I columns corresponding to each individual q. This  matrix for individual q corresponds to an  identity matrix with an extra column of ‘’ values added as the th column. For instance, consider the case of I = 4 and Q = 2. Let individual 1 be observed to choose alternative 2 and individual 2 be observed to choose alternative 1. Then  takes the form below.

.	 (2.76)








With the above construction for matrix , it is easy to see that where The likelihood of the observed sample (i.e., individual 1 choosing alternative, individual 2 choosing alternative , …, individual Q choosing alternative ) may then be written succinctly as . The parameter vector to be estimated is Using the usual notations, the likelihood function is:

	 (2.77)

where  This is cumbersome and impractical (if not infeasible) for most realistically-sized sample sizes. However, one can use the MACML technique. To do so, write the pairwise CML function corresponding to the full likelihood of Equation (2.77) as:

	(2.78)

 is an index for the individual’s choice, and

 	(2.79)













where ,  and  is a -selection matrix with an identity matrix of size () occupying the first () rows and the through columns, and another identity matrix of size () occupying the last () rows and the through columns.

The number of pairings in the CML expression of Equation (2.78) can be reduced as explained in Section 2.3.1.1. Specifically, define a set  as in the previous section that includes the set of individuals q’ (including q) that are within a specified threshold distance of individual q. Then, the CML function reduces to the following expression:

 	(2.80)

The expressions to obtain the covariance matrix are exactly the same as in Section 2.3.1.1, with  

References for the CML Estimation of the Spatial CMNP (SCMNP) Model
Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models. Transportation Research Part B 45(7), 923-939.
Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models. Transportation Research Part B 45(7), 940-953.
Sener, I.N., Bhat, C.R., 2012. Flexible spatial dependence structures for unordered multinomial choice models: formulation and application to teenagers’ activity participation. Transportation 39(3), 657-683.
Sidharthan, R., Bhat, C.R, Pendyala, R.M., Goulias, K.G., 2011. Model for children's school travel mode choice: accounting for effects of spatial and social interaction. Transportation Research Record 2213, 78-86.

2.3.2.2. The Spatial CMMNP Model



Rewrite Equation (2.18) from Section 2.2.2.2 to include spatial dependency in the utility that individual q attributes to alternative  (=1,2,..., for the gth variable.

	(2.81)









with all notations as earlier.  is an -column vector of exogenous attributes, and  ( (vector)). As in Section 2.2.2.2, we will assume that the vectors are independent across the unordered-response dimensions for each individual. We also assume that  is independent and identically normally distributed across individuals q. Let  be the actual chosen alternative for the gth unordered-response variable by individual q. Define the following:















  ( vector),   vector   (vector),  (vector), (vector) , (vector) 


 ( matrix), 













 ( matrix), vector), and  ( vector) . Let  where the covariance matrix is to be constructed as discussed in Section 2.2.2.2. Then, . Also, define matrix), and the following matrices:

and


Equation (2.81) may then be written in matrix form as:

	 (2.82)








where   is the  weight matrix with the weights , and “” refers to the element-by-element multiplication of the two matrices involved. Also, where  and  [footnoteRef:13] [13:  One can also obtain as ] 








To develop the likelihood function, construct a matrix  as follows. First, for each unordered variable g and individual q, construct a matrix with  rows and  columns. This matrix corresponds to an  identity matrix with an extra column of ‘’ values added as the column. Then, define the following: 

 and	(2.83)

	 (2.84)

The parameter vector to be estimated is Using the usual notations, the likelihood function is:

	 (2.85)

The likelihood function is of a very high dimensionality. Instead, consider the (pairwise) composite marginal likelihood function. Further, as in Section 2.1.2.2, we can reduce the pairings by testing different distance bands and determining the “optimal” distance for including pairings across individuals based on minimizing the trace of the asymptotic covariance matrix.  Define a set  that includes the set of individuals q’ (including q) that are within a specified threshold distance of individual q. Then, the CML function reduces to the following expression:


 with  where	 (2.86)

	
















and   and  is a -selection matrix with an identity matrix of size () occupying the first () rows and the through columns, and another identity matrix of size () occupying the last () rows and the through columns  (with the convention that  The model can now be estimated using the MACML method. The computation of the covariance matrix is identical to the case in Section 2.2.2.2, with the use of  as in Equation (2.86) above. Once again, the analyst can consider further cutting down the number of pairings by ignoring the pairings among different individuals (observation units) across the G variables. 

References for the CML Estimation of the Spatial Cross-Sectional Multivariate MNP (SCMMNP) Model
No known applications thus far. 

2.2.2.3 The Spatial Panel MNP Model
Consider the following model with ‘t’ now being an index for choice occasion:

 	(2.87)	     















We assume that  is independent and identically normally distributed across individuals and choice occasions, but allow a general covariance structure across alternatives for each choice instance of each individual. Specifically, let  (vector). Then, we assume . As usual, appropriate scale and level normalization must be imposed on  for identifiability. Next, define the following vectors and matrices:   vector),   vector),   vector),  ( matrix),  ( matrix),







,   (vectors),  and  ( matrix). Let ,  , and

 	 (2.88)
Then, we can write Equation (2.87) in matrix notation as:

,	(2.89)

with  









Then,where  and    To develop the likelihood function, define M as an  block diagonal matrix, with each block diagonal having  rows and I columns corresponding to the tth observation time period on individual q. This  matrix for parcel q and observation time period t corresponds to an  identity matrix with an extra column of “” values added as the th column. For instance, consider the case of Q = 2, T = 2, and I = 4. Let individual 1 be observed to choose alternative 2 in time period 1 and alternative 1 in time period 2, and let individual choose alternative 3 in time period 1 and in alternative 4 in time period 2. Then M takes the form below.

	 (2.90)


Let The parameter vector to be estimated is and the likelihood function is:

 	(2.91)

where  



Now, consider the following (pairwise) composite marginal likelihood function formed by taking the products (across the T choice occasions) of the joint pairwise probability of the chosen alternatives  for the tth choice occasion and  for the gth choice occasion for individual q. To reduce the number of pairings, define a set  as in the previous section that includes the set of individuals q’ (including q) that are within a specified threshold distance of individual q. Then, the CML function reduces to the following expression:


 with , where	 (2.92)















where and  is a -selection matrix with an identity matrix of size () occupying the first  rows and the through columns, and another identity matrix of size () occupying the last () rows and the through  columns. The model can now be estimated using the MACML method. The computation of the covariance matrix is identical to the case in Section 2.2.2.2 with the use of  as in Equation (2.92) above. The analyst can consider further cutting down the number of pairings by ignoring the pairings among different individuals (observation units) across the T time periods.
 
References for the CML Estimation of the Spatial Panel MNP (SPMNP) Model
Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models. Transportation Research Part B 45(7), 923-939.
Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models. Transportation Research Part B 45(7), 940-953. 
Sidharthan, R., Bhat, C.R., 2012. Incorporating spatial dynamics and temporal dependency in land use change models. Geographical Analysis 44(4), 321-349.  

2.4. Application to Count Models
Count data models are used in several disciplines to analyze discrete and non-negative outcomes without an explicit upper limit. Applications of such count data models abound in the scholarly literature, both in number (a count in and of itself!) as well as diversity of topics. Applications include the analysis of (a) the number of doctor visits, the number of homes affected by cholera, the number of cancer incidents, and the number of milk formula bottles supplied to infants by breastfeeding mothers in the medicine field, (b) the number of crimes and the number of drug possession convictions in the criminology field, (c) the number of mergers and acquisitions of foreign direct investments, the number of faults in a bolt, the frequency of contract change orders, and the number of jobs by space unit in the economics field, (d) the number of harbor seals hauled out on glacial ice and the count of birds at sanctuaries in the ecology field, and (e) roadway crash frequency, counts of flights from airports, and the number of drinking under intoxication (DUI) infractions in the transportation field.
Count data models assume a discrete probability distribution for the count variables, followed by the parameterization of the mean of the discrete distribution as a function of explanatory variables. The two most commonly used discrete probability distributions are the Poisson and the negative binomial (NB) distributions, though other distributions such as the binomial and logarithmic distributions have also been occasionally considered. Several modifications and generalizations of the Poisson and negative binomial distributions have also been used. For example, in many count data contexts, there are a large number of zero count values. The most commonly used approach to accommodate this issue is the zero-inflated approach. The approach identifies two separate states for the count generating process – one that corresponds to a “zero” state in which the expected value of counts is so close to zero as being indistinguishable from zero, and another “normal” state in which a typical count model (with either a Poisson or NB distribution) operates. Effectively, the zero-inflated approach is a discrete-mixture model involving a discrete error distribution that modifies the probability of the zero outcome. Another similar approach to account for excess zeros is the hurdle-count approach (in which a binary outcome process of the count being below or above a hurdle (zero) is combined with a truncated discrete distribution for the count process being above the hurdle (zero) point. While the modifications and generalizations such as those just described have been effective for use with univariate count models, they are difficult to infeasible to implement in the case when there are inter-related multivariate counts at play (see Castro, Paleti and Bhat, 2012 (or CPB hereafter) and Herriges et al., 2008 for discussions). Also, including spatial dependence within the framework of traditional count formulations is very cumbersome. To address these situations, we can re-formulate the traditional count models as a special case of a generalized ordered-response probit (GORP) formulation (see CPB). Indeed, in this re-formulation, any count model can be formulated as a special case of a GORP formulation. Once this is achieved, all the GORP-related formulations in the earlier sections immediately carry over to count models. In this section, we will consider a single count variable based on a negative binomial distribution and show its aspatial GORP formulation, because extension to include multivariate and spatial contexts exactly mirror the previous GORP discussions. 
Consider the recasting of the count model using a specific functional form for the random-coefficients generalized ordered-response probit (GORP) structure of Section 2.2.1.1 as follows:


 if  ,	(2.93)

















where  is an (L×1) vector of exogenous variables (not including a constant),  is a corresponding (L×1) vector of individual-specific coefficients to be estimated,  is an idiosyncratic random error term that we will assume in the presentation below is independent of the elements of the vectors  and , and  is the individual-specific upper bound threshold for discrete level k . The  terms are assumed independent and identically standard normally distributed across individuals. The typical assumption for is that it is either normally or logistically distributed, though non-parametric or mixtures-of-normal distributions may also be considered. Also,  where .  is an underlying latent continuous variable that maps into the observed count variable   through the vector (which is a vertically stacked column vector of thresholds The thresholds are parameterized as a function of a vector of observable covariates  (including a constant) as follows (see Bhat et al., 2014b):	 



, , and . 	(2.94)



















In the above equation,  is the inverse function of the univariate cumulative standard normal.  is a parameter that provides flexibility to the count formulation, and, as we will see later, serves the same purpose as the dispersion parameter in a traditional negative binomial model (>0).  is the traditional gamma function; . The threshold terms in the  vector satisfy the ordering condition (i.e.,  as long as   The presence of these  terms provides substantial flexibility to accommodate high or low probability masses for specific count outcomes, beyond what can be offered by traditional treatments using zero-inflated or related mechanisms. For identification, we set  and  In addition, we identify a count value  above which is held fixed at ; that is,  if  where the value of  can be based on empirical testing. For later use, let  ( vector).  


The specification of the GORP model in the equation above provides a very flexible mechanism to model count data. It subsumes the traditional count models as very specific and restrictive cases. In particular, if the vector  is degenerate with all its elements taking the fixed value of zero, and all elements of the  vector are zero, the model in Equation (2.93) collapses to a traditional negative binomial model with dispersion parameter θ. To see this, note that the probability expression in the GORP model of Equation (2.93) with the restrictions may be written as:

	(2.95)

which is the probability expression of the negative binomial count model. If, in addition,  the result can be shown to be the Poisson count model. 








In an empirical context of crash counts at intersections, CPB interpret the GORP recasting of the count model as follows. There is a latent “long-term” crash propensity  associated with intersection q that is a linear function of a set of intersection-related attributes  On the other hand, there may be some specific intersection characteristics (embedded in  within the threshold terms) that may dictate the likelihood of a crash occurring at any given instant of time for a given long-term crash propensity .  Thus, two intersections may have the same latent long-term crash propensity , but may show quite different observed number of crashes over a certain time period because of different - to - mappings through the cut points ( is the observed count variable). CPB postulated that factors such as intersection traffic volumes, traffic control type and signal coordination, driveways between intersections, and roadway alignment are likely to affect “long-term” latent crash propensity at intersections and perhaps also the thresholds. On the other hand, they postulate that there may be some specific intersection characteristics such as approach roadway types and curb radii at the intersection that will load more on the thresholds that affect the translation of the crash propensity to crash outcomes. Of course, one can develop similar interpretations of the latent propensity and thresholds in other count contexts (see, for example, the interpretation provided by Bhat et al., 2014a, in a count context characterized by the birth of new firms in Texas counties). 
To summarize, the GORP framework represents a generalization of the traditional count data model, has the ability to retain all the desirable traits of count models and relax constraints imposed by count models, leads to a much simpler modeling structure when flexible spatial and temporal dependencies are to be accommodated, and may also be justified from an intuitive/conceptual standpoint. Indeed, all the spatial, multivariate, and panel-based extensions discussed under ordered-response models immediately apply to count models based on the count reformulation as a GORP model. 

References for the CML Estimation of Count Models
Castro, M., Paleti, R., Bhat, C.R., 2012. A latent variable representation of count data models to accommodate spatial and temporal dependence: application to predicting crash frequency at intersections. Transportation Research Part B 46(1), 253-272. 
Bhat, C.R., Paleti, R., Singh, P., 2014a. A spatial multivariate count model for firm location decisions. Journal of Regional Science 54(3):462-502. 
Bhat, C.R., Born, K., Sidharthan, R., Bhat, P.C., 2014b. A count data model with endogenous covariates: formulation and application to roadway crash frequency at intersections. Analytic Methods in Accident Research 1, 53-71.
Narayanamoorthy, S., Paleti, R., Bhat, C.R., 2013. On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level. Transportation Research Part B 55, 245-264.
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3. 	APPLICATION TO JOINT MIXED MODEL SYSTEMS
The joint modeling of data of mixed types of dependent variables (including ordered-response or ordinal variables, unordered-response or nominal variables, count variables, and continuous variables) is of interest in several fields, including biology, economics, epidemiology, social science, and transportation (see a good synthesis of applications in de Leon and Chough, 2013). For instance, in the transportation field, it is likely that households that are not auto-oriented choose to locate in transit and pedestrian friendly neighborhoods that are characterized by mixed and high land use density, and then the good transit service may also further structurally influence mode choice behaviors. If that is the case, then it is likely that the choices of residential location, vehicle ownership, and commute mode choice are being made jointly as a bundle. That is, residential location may structurally affect vehicle ownership and commute mode choice, but underlying propensities for vehicle ownership and commute mode may themselves affect residential location in the first place to create a bundled choice. This is distinct from a sequential decision process in which residential location choice is chosen first (with no effects whatsoever of underlying propensities for vehicle ownership and commute mode on residential choice), then residential location affects vehicle ownership (which is chosen second, and in which the underlying propensity for commute mode does not matter), and finally vehicle ownership affects commute mode choice (which is chosen third). The sequential model is likely to over-estimate the impacts of residential location (land use) attributes on activity-travel behavior because it ignores self-selection effects wherein people who locate themselves in mixed and high land use density neighborhoods were auto-disoriented to begin with. These lifestyle preferences and attitudes constitute unobserved factors that simultaneously impact long term location choices, medium term vehicle ownership choices, and short term activity-travel choices; the way to accurately reflect their impacts and capture the “bundling” of choices is to model the choice dimensions together in a joint equations modeling framework that accounts for correlated unobserved lifestyle (and other) effects as well as possible structural effects.  
There are many approaches to model joint mixed systems (see Wu et al., 2013 for a review), but the one we will focus on here is based on accommodating jointness through the specification of a distribution for the unobserved components of the latent continuous variables underlying the discrete (ordinal, nominal, or count) variables and the unobserved components of observed continuous variables. Very generally speaking, one can consider a specific marginal distribution for each of the unobserved components of the latent continuous variables (underlying the discrete variables) and the observed continuous variable, and then generate a joint system through a copula-based correlation on these continuous variables. However, here we will assume that the marginal distributions of the latent and observed continuous variables are all normally distributed, and assume a Gaussian Copula to stitch the error components together. This is equivalent to assuming a multivariate normal distribution on the error components. But the procedures can be extended to non-normal marginal distributions and non-Gaussian copulas in a relatively straightforward fashion. 
	From a methodological perspective, the simulation-based likelihood estimation of joint mixed models can become quite cumbersome and time-consuming. However, the use of the MACML estimation technique has once again opened up possibilities because of the dramatic breakthrough in the ease and computational feasibility of estimating joint mixed systems.    

3.1. Joint Mixed Dependent Variable Model Formulation 
In the following presentation, for ease in exposition, we assume fixed coefficients on variables, though extension to the case of random coefficients in conceptually very straightforward (as in earlier sections). We will also suppress the notation for individuals, and assume that all error terms are independent and identically distributed across individuals.  Finally, we will develop the formulation in the context of ordinal, nominal, and continuous variables, though the formulation is immediately applicable to count variables too because count variables may be modeled as a specific case of the GORP-based formulation for ordinal variables. 







Let there be N ordinal variables for an individual, and let n be the index for the ordinal variables . Also, let  be the number of outcome categories for the nth ordinal variable  and let the corresponding index be. Let  be the latent underlying variable whose horizontal partitioning leads to the observed choices for the nth ordinal variable. Assume that the individual under consideration chooses the  ordinal category. Then, in the usual ordered response formulation:

	 (3.1)



where  is a fixed and constant vector of exogenous variables (not including a constant),  is a corresponding vector of coefficients to be estimated, the ψ terms represent thresholds, and  is the standard normal random error for the nth ordinal variable. We parameterize the thresholds as:

	(3.2)



















In the above equation,  is a scalar, and  is a vector of coefficients associated with ordinal level  for the nth ordinal variable. The above parameterization immediately guarantees the ordering condition on the thresholds for each and every crash, while also enabling the identification of parameters on variables that are common to the  and  vectors. For identification reasons, we adopt the normalization that  Stack the N latent variables  into an vector , and let , where  and  is the covariance matrix of . Also, stack the lower thresholds corresponding to the actual observed outcomes for the n ordinal variables into an  vector  and the upper thresholds into another vector  For later use, define  and 

Let there be G nominal (unordered-response) variables for an individual, and let g be the index for the nominal variables (g = 1, 2, 3,…, G). Also, let Ig be the number of alternatives corresponding to the gth nominal variable (Ig3) and let ig be the corresponding index (ig = 1, 2, 3,…, Ig). Consider the gth nominal variable and assume that the individual under consideration chooses the alternative mg. Also, assume the usual random utility structure for each alternative ig.

	(3.3)	













































where is a column vector of exogenous attributes,  is a column vector of corresponding coefficients, and is a normal error term. Let  (vector), . Let   vector),   matrix),   vector). Then  Under the utility maximization paradigm, must be less than zero for all , since the individual chose alternative . Let ,  and stack the latent utility differentials into a vector .  As usual, only the covariance matrix of the error differences is estimable. Taking the difference with respect to the first alternative, only the elements of the covariance matrix  of  where  (), are estimable. However, the condition that  takes the difference against the alternative  that is chosen for the nominal variable g. Thus, during estimation, the covariance matrix  (of the error differences taken with respect to alternative  is desired). Since  will vary across households, will also vary across households. But all the  matrices must originate in the same covariance matrix  for the original error term vector . To achieve this consistency,  is constructed from by adding an additional row on top and an additional column to the left. All elements of this additional row and column are filled with values of zeros. Also, an additional scale normalization needs to be imposed on . For this, we normalize the first element of  to the value of one. The discussion above focuses on a single nominal variable g. When there are G nominal variables, define  and . Further, let  , and  (so  is the vector of utility differences taken with respect to the first alternative for each nominal variable, while  is the vector of utility differences taken with respect to the chosen alternative for each nominal variable).  Now, construct a matrix of dimension  that represents the covariance matrix of :

	(3.4)










In the general case, this allows the estimation of  terms across all the G nominal variables (originating from  terms embedded in each  matrix; g=1,2,…G) and the  covariance terms in the off-diagonal matrices of the  matrix characterizing the dependence between the latent utility differentials (with respect to the first alternative) across the nominal variables (originating from  estimable covariance terms within each off-diagonal matrix in ). For later use, define the stacked vectors  , and  .









	Finally, let there be H continuous variables with an associated index h . Let  in the usual linear regression fashion, and  Stacking the H continuous variables into a -vector y, one may write  where , and  is the covariance matrix of . 

3.2. The Joint Mixed Model System and the Likelihood Formation

The jointness across the different types of dependent variables may be specified by writing the covariance matrix of   as: 

Var,  	(3.5)




























where  is a  matrix capturing covariance effects between the  vector and the  vector, is a  matrix capturing covariance effects between the vector and the  y  vector, and  is an  matrix capturing covariance effects between the  vector and the  y  vector. All elements of the matrix above are identifiable. However, the matrix represents the covariance of latent utility differentials taken with respect to the first alternative for each of the nominal variables. For estimation, the corresponding matrix with respect to the latent utility differentials with respect to the chosen alternative for each nominal variable, say , is needed. For this purpose, first construct the general covariance matrix  for the original   vector  , while also ensuring all parameters are identifiable (note that  is equivalently the covariance matrix of . To do so, define a matrix D of size . The first  rows and  columns correspond to the first nominal variable. Insert an identity matrix of size  after supplementing with a first row of zeros in the first through th columns of the matrix. The rest of the elements in the first  rows and the first  columns take a value of zero. Next, rows throughand columns  through  correspond to the second nominal variable. Again position an identity matrix of size  after supplementing with a first row of zeros into this position. Continue this for all G nominal variables. Put zero values in all cells without any value up to this point. Finally, insert an identity matrix of size N+H into the last N+H rows and N+H columns of the matrix D. Thus, for the case with two nominal variables, one nominal variable with 3 alternatives and the second with four alternatives, one ordinal variable, and one continuous variable, the matrix D takes the form shown below:
[image: ]	(3.6)

















Then, the general covariance matrix of may be developed as  All parameters in this matrix are identifiable by virtue of the way this matrix is constructed based on utility differences and, at the same time, it provides a consistent means to obtain the covariance matrix  that is needed for estimation (and is with respect to each individual’s chosen alternative for each nominal variable). Specifically, to develop the distribution for the vector , define a matrix M of size . The first  rows and  columns correspond to the first nominal variable. Insert an identity matrix of size  after supplementing with a column of ‘-1’ values in the column corresponding to the chosen alternative. The rest of the columns for the first  rows and the rest of the rows for the first  columns take a value of zero. Next, rows  through and columns throughcorrespond to the second nominal variable. Again position an identity matrix of size  after supplementing with a column of ‘-1’ values in the column corresponding to the chosen alternative. Continue this procedure for all G nominal variables. Finally, insert an identity matrix of size N +H into the last N +H rows and N +H columns of the matrix M. With the matrix M as defined, the covariance matrix   is given by 



Next, define and Also, partition  so that

	(3.7)












Let  and , where   matrix. Also, supplement the threshold vectors defined earlier as follows: , and , where   is a -column vector of negative infinities, and  is another -column vector of zeros. The conditional distribution of  given y, is multivariate normal with mean and variance .


Next, let  be the collection of parameters to be estimated:  Then the likelihood function for the household may be written as:

	(3.8)







where the integration domain  is simply the multivariate region of the elements of the  vector determined by the range  for the nominal variables and by the observed outcomes of the ordinal variables, and  is the multivariate normal density function of dimension  The likelihood function for a sample of Q observations is obtained as the product of the observation-level likelihood functions. 

The above likelihood function involves the evaluation of a -dimensional rectangular integral for each household, which can be computationally expensive. So, the Maximum Approximate Composite Marginal Likelihood (MACML) approach of Bhat (2011) may be used. 

3.3. The Joint Mixed Model System and the MACML Estimation Approach
Consider the following (pairwise) composite marginal likelihood function formed by taking the products (across the N ordinal variables and G nominal variables) of the joint pairwise probability of the chosen alternatives for an individual, and computed using the analytic approximation of the multivariate normal cumulative distribution (MVNCD) function.

 	(3.9)










where is an index for the individual’s choice for the gth nominal variable. The net result is that the pairwise likelihood function now only needs the evaluation of dimensional cumulative normal distribution functions (rather than the -dimensional cumulative distribution function in the maximum likelihood function), where . This leads to substantial computational efficiency. However, in cases where there are several alternatives for one or more nominal variables, the dimension  can still be quite high. This is where the use of an analytic approximation of the MVNCD function comes in handy. The resulting maximum approximated composite marginal likelihood (MACML) is solely based on bivariate and univariate cumulative normal computations. Also note that the probabilities in the MACML function in Equation (3.9) can be computed by selecting out the appropriate sub-matrices of the mean vector  and the covariance matrix  of the vector  , and the appropriate sub-vectors of the threshold vectors  The covariance matrix of the parameters   may be estimated as:

	 (3.10)


with	 (3.11)

An alternative estimator for is as below:



3.4. Positive Definiteness
















The matrix   for each household has to be positive definite. The simplest way to guarantee this is to ensure that the matrix  is positive definite. To do so, the Cholesky matrix of  may be used as the matrix of parameters to be estimated. However, note that the top diagonal element of each in  is normalized to one for identification, and this restriction should be recognized when using the Cholesky factor of . Further, the diagonal elements of in  are also normalized to one. These restrictions can be maintained by appropriately parameterizing the diagonal elements of the Cholesky decomposition matrix. Thus, consider the lower triangular Cholesky matrix  of the same size as . Whenever a diagonal element (say the kkth element) of  is to be normalized to one, the corresponding diagonal element of  is written as , where the  elements are the Cholesky factors that are to be estimated. With this parameterization,  obtained as  is positive definite and adheres to the scaling conditions. 
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4.	CONCLUSIONS
This monograph presents the basics of the composite marginal likelihood (CML) inference approach, discussing the asymptotic properties of the CML estimator and possible applications of the approach for a suite of different types of discrete and mixed dependent variable models. The approach can be applied using simple optimization software for likelihood estimation. In the case of models with complex and analytically intractable full likelihoods, the CML also represents a conceptually and pedagogically simpler simulation-free procedure relative to simulation techniques, and has the advantage of reproducibility of the results. For instance, in a panel application, Varin and Czado (2010) examine the headache pain intensity of patients over several consecutive days. In this study, a full information likelihood estimator would have entailed as many as 815 dimensions of integration to obtain individual-specific likelihood contributions, an infeasible proposition using computer-intensive simulation techniques. In another panel spatial application, Sidharthan and Bhat (2012) examine the case of spatial dependence in land-use of spatial grids, and the full information likelihood estimator would have entailed integration of the order of 4800 dimensions. Despite advances in simulation techniques and computational power, the evaluation of such high dimensional integrals is literally infeasible using traditional frequentist and Bayesian simulation techniques. For instance, in frequentist methods, where estimation is typically undertaken using pseudo-Monte Carlo or quasi-Monte Carlo simulation approaches (combined with a quasi-Newton optimization routine in a maximum simulated likelihood (MSL) inference), the computational cost to ensure good asymptotic estimator properties becomes prohibitive for the number of dimensions just discussed. Similar problems arise in Bayesian Markov Chain Monte Carlo (MCMC) simulation approaches, which remain cumbersome, require extensive simulation, are time consuming, and pose convergence assessment problems as the number of dimensions increases (see Ver Hoef and Jansen, 2007, and Franzese et al., 2010 for discussions). 
Even when the full likelihood involves a lower and more practically feasible dimensionality of integration, the accuracy of simulation techniques is known to degrade rapidly as the dimensionality increases, and the simulation noise increases substantially. This leads to convergence problems during estimation, unless a very high number of simulation draws is used. Several studies have demonstrated so in a variety of econometric modeling contexts (see, for example, Bhat and Sidharthan, 2011 and Paleti and Bhat, 2013). Besides, an issue generally ignored in simulation-based approaches is the accuracy (or lack thereof) of the covariance matrix of the estimator, which is critical for good inference even if the asymptotic properties of the estimator are well established. Thus, the CML can present a very attractive alternative to the traditional MSL method in many situations. 
Of course, there are some special cases where the MSL approach may be preferable to the CML approach. For example, consider a panel binary discrete choice case with J choice occasions per individual and K random coefficients on variables. Let the kernel error term be normally distributed and assume that the random coefficients are multivariate normally distributed, so that the overall error is also normally distributed. Here, when K < J, and K ≤ 3, the MSL estimation with the full likelihood function is likely to be preferable to the CML. This is because integrating up to three dimensions is quite fast and accurate using quasi-Monte Carlo simulation techniques. This is particularly so when J is also large, because the number of pairings in the CML is high. For the case when K < J and K > 3, or K ≥ J > 3, the CML is likely to become attractive, because of the MSL-related problems mentioned earlier for moderate dimensions of integration. For example, when K = J =5, the CML is fast since it entails the evaluation of only 10 probability pairings for each individual (each pairing involving bivariate normal cumulative distribution function evaluations) rather than a five-dimensional integration for each individual in the MSL estimation. Note that one may be tempted to think that the CML loses this edge when J becomes large. For instance, when J = 10, there would be 45 probability pairings for each individual in a pairwise likelihood approach. But the surrogate likelihood function in the CML estimation can be formulated in many different ways rather than the full pairings approach presented here. Thus, one could consider only the pairing combinations of the first five (or five randomly selected) choice occasions for each individual, and assume independence between the remaining five choice occasions and between each of these remaining choice occasions and the choice occasions chosen for the pairings. Basically, the CML approach is flexible, and allows customization based on the problem at hand. The issue then becomes one of balancing between speed gain/convergence improvement and efficiency loss. Besides, the CML can also use triplets or quadruplets rather than the couplets considered here. 
If the probabilities of the lower dimensional events in the CML approach themselves have a multivariate normal cumulative distribution (MVNCD) form, then one can use the MACML approach proposed by Bhat to evaluate the MVNCD function using an analytic approximation. 
 	 One potential limitation of the CML approach is the need to compute the Godambe information matrix to compute the asymptotic standard errors of parameters. However, even when an MSL method is used, the Godambe matrix is recommended to accommodate the simulation error that accrues because of the use of a finite number of draws. Another limitation of the CML approach is the need to compute the ADCLRT statistic, which is somewhat more complicated than the traditional likelihood ration test (LRT) statistic. It is hoped that such practical issues will be resolved once standard econometric software packages start accommodating the CML inference approach as an option for high dimensional model systems. 
In summary, the CML inference approach (and the associated MACML approach) can be very effective for the estimation and analysis of high-dimensional heterogeneous data. This has been shown in many recent studies, and there are many more empirical contexts that can gainfully use the CML approach using the formulations discussed in this monograph. In terms of future research on the CML approach itself,  one wide open area pertains to how best to form a CML function in a given modeling and empirical context (especially because a precise theoretical analysis of the properties of the CML estimator is not possible except for the simplest of models). 
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