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ABSTRACT 

In this paper, we propose a general copula approach to accommodate non-normal continuous 

mixing distributions in multinomial probit (MNP) models. In particular, we specify a multivariate 

mixing distribution that allows different marginal continuous parametric distributions for different 

coefficients. A new hybrid estimation technique is proposed to estimate the model, which 

combines the advantageous features of each of the maximum simulated likelihood inference 

technique and Bhat’s maximum approximate composite marginal likelihood (MACML) inference 

approach. The effectiveness of our formulation and inference approach is demonstrated through 

simulation exercises and an empirical application.  
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1. INTRODUCTION 

Econometric discrete choice analysis constitutes the underlying framework for analyzing demand 

for a variety of consumer commodities and services. For many decades, the discrete choice model 

employed was the multinomial logit (MNL) model (Luce and Suppes, 1965 and McFadden, 1974), 

which assumes a single composite independently and identically distributed or IID (across 

alternatives) random utility error term with a Gumbel (or Type I extreme-value) distribution. 

However, over the past two decades, it has become much more common place to acknowledge the 

presence of unobserved taste sensitivity in response to variables, as well as accommodate non-IID 

kernel error terms across alternatives. A general approach to do so is to use a multivariate normal 

kernel mixed with an appropriately distributed random coefficients vector, which we will label as 

the mixed multinomial probit (or mixed MNP)  model.1   

An important consideration in the random multivariate mixing (random coefficients) 

distribution is to explicitly specify it in a way that is consistent with theoretical notions. In fact, 

the ability to do so is critical to the observation made by McFadden and Train (2000) that the 

mixed model (whether with an extreme value kernel or an MNP kernel) is capable of 

approximating any random utility maximization model.2 For example, it is possible that an analyst 

may want to specify a naturally bounded distribution (such as a log-normal distribution or a 

Rayleigh distribution) for cost and time coefficients in a travel choice model, so that the 

coefficients are strictly negative. Indeed, several studies (see, for example, Amador et al., 2005, 

Train and Sonnier, 2005, Hensher et al., 2005, Balcombe et al., 2009, and Torres et al., 2011) have 

underscored the potentially serious misspecification consequences (in terms of theoretical 

considerations, data fit, as well as trade-off evaluations) of using an unbounded distribution 

(specifically the normal distribution). Besides, another issue with using an unbounded distribution 

                                                 
1An analogous structure may be obtained by essentially adding an IID Gumbel error term across alternatives to the 
multivariate normal coefficients, leading to a mixed multinomial logit model; see Bhat, 1997 and Revelt and Train, 
1998 for the first multivariate applications of this type of a model. Alternatively, one can add a multivariate extreme 
value (MEV) error vector kernel to the utility of the alternatives, combined with additional non-identical kernel error 
terms, to the random coefficients vector (see, for example, Bhat and Guo, 2007). But, as discussed in detail in Bhat 
(2011), all these structures essentially achieve the same purpose, and the choice is simply a matter of convenience. 
Besides, the use of an MNP kernel has substantial advantages when combined with recently proposed analytic methods 
of evaluating a multivariate cumulative normal distribution (MVNCD) function that have been shown to be much 
more computationally efficient than traditional simulation approaches. Also, when extensions to accommodate 
correlation across decision makers due to spatial and/or social interactions are considered, the MNP kernel is much 
easier and more efficient. We will henceforth focus in this paper on the MNP kernel. 
2 Just to clarify a myth. The mixed multinomial logit model is no more general than the mixed MNP model, as long 
as we allow the mixing distribution with the MNP kernel to be non-normal, as we do so in the current paper.  
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that straddles the zero value for the cost coefficient is that it leads to a breakdown of the willingness 

to pay (WTP) calculations (see Cedilnik et al., 2006, Daly et al., 2011).   

Bhat and Sidharthan (2012) developed a mixed MNP model using a multivariate skew-

normal (MVSN) mixing distribution (see also Bhat et al., 2015). This model is very effective 

because the mixing of the MVSN random coefficients distribution with an independent MVN 

kernel distribution puts the composite error term back to an MVSN form. The MVSN distribution 

retains several attractive properties of the multivariate normal distribution. It is tractable, 

parsimonious in parameters that regulate the distribution and its skewness, and includes the 

multivariate normal distribution as a special interior point case. It also is a very flexible unimodal 

density structure that can replicate a variety of smooth unimodal density shapes with tails to the 

left or right as well as with a high modal value (sharp peaking) or low modal value (flat plateau). 

The skewness to the right or left is generated by moving probability mass to the left or right of the 

mean of the normal distribution but keeping the tails thin as in the normal density function, which 

helps substantially in estimation. In particular, a left-skew is generated by keeping the left tail 

similar to that of the normal density function, but very sharply reducing the tail on the right side 

of the mode (see Capitanio, 2010 for a discussion of the rate of decrease in the tail distributions of 

the skew-normal density function). Thus, to employ a cost coefficient that is strictly constrained 

to the negative domain, all that the analyst needs to do is to pre-impose a very high skew parameter 

with a location parameter that is negative (essentially, with a very high skew parameter imposed, 

the probability density function drops to zero at the location parameter without any overlap on 

zero; that is, a skew-normal collapses to the so-called half-normal density function with no density 

to the right of the negative location parameter; see Azzalini, 2013). Additionally, the MVSN-

mixed MNP lends itself nicely to estimation using Bhat’s (2011) maximum approximate 

composite marginal likelihood (MACML) approach.  

In this paper, we propose an even more general copula-based approach to accommodate 

non-normal continuous mixing distributions than that proposed in Bhat and Sidharthan (2012).3 

                                                 
3 Discrete distributions may also be used for the mixing. If the mixing vector is assumed to take M possible value 
states with state-specific probabilities, this leads to the familiar latent class model used in marketing (see Kamakura 
and Russell, 1989) and transportation (see Bhat, 1997). On the other hand, if a discrete distribution is considered 
separately for each individual random coefficient, this is essentially a non-parametric random coefficients model (see 
Bastin et al., 2010, Berry and Haile, 2014, il Kim, 2014). The non-parametric specification allows consistent estimates 
of the observed variable effects under broad model contexts by making regularity (for instance, differentiability) 
assumptions on an otherwise distribution-free density form. But the flexibility of these methods comes at a high 
inferential cost since consistency is achieved only in very large samples, parameter estimates have high variance, and 
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Specifically, the copula-based mixed random coefficients MNP model proposed in this paper 

allows a multivariate mixing distribution that can combine any continuous distributional shape for 

each coefficient, including (but not limited to) the skew-normal distribution. This extends the type 

of continuous multivariate distributions one may want to test, with the only restriction being that 

the individual coefficient distributions should be continuous. The procedure is based on generating 

a multivariate continuous distribution through the use of specified parametric univariate 

continuous coefficient distributions (that can be different for different coefficients) combined with 

a Gaussian Copula, and is based on Sklar’s theorem (Sklar, 1959; see also Bhat and Eluru, 2009 

and Joe, 2015). While one may use other copulas to join the different univariate distributions to 

generate a multivariate distribution, the Gaussian copula used here has many advantages. For 

instance, the Gaussian copula includes the case of independence across specific coefficients, 

allows a very flexible and wide range of dependence across coefficients, and is relatively easy to 

simulate relative to other copula types. It allows dependence across the random coefficients, even 

if the random coefficients take different marginal distributions. Most importantly, it is the best 

copula to work with in situations where the analyst is prepared to accept a normal density function 

for many coefficients, with relatively fewer coefficients specified to have non-normal parametric 

univariate density functions. This is because, as we will note later, the Gaussian copula requires 

an integral transformation of each marginal variate into a normal marginal variate. When there are 

many normal marginal variates, this transformation is not needed for these variates, so that these 

variates enter directly in the copula (see Equation (7) later), which simplifies the copula 

construction (with associated optimization convergence and computational speed benefits during 

model estimation).  

The estimation of the copula model is achieved using a combination of the maximum 

simulated likelihood (MSL) technique (to accommodate the non-normal random coefficients) and 

Bhat’s MACML inference approach (to accommodate all the normal random coefficients as well 

as the kernel normal error structure; see Bhat, 2011 and Bhat, 2014). This is the first time that a 

hybrid of these two inference approaches has been proposed in the literature. The combination 

harnesses the advantages of each of these approaches. The MSL approach is very general and can 

                                                 
the computational complexity/effort can be substantial (Mittelhammer and Judge, 2011). Overall, the continuous 
distribution specification dominates the literature, at least in part because it offers efficiency in the number of mixing 
distribution parameters to be estimated. 
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be used to estimate models with any distribution for the random coefficients, including the copula-

based model proposed in this paper. However, the approach can be computationally very expensive 

to ensure good asymptotic estimator properties, and can be prohibitive and literally infeasible (in 

the context of the computation resources available and the time available for estimation) as the 

number of random coefficients increases. This is because of the rapid increase in simulation noise 

and degradation in the accuracy of simulation techniques at medium-to-high dimensions, leading 

also to convergence problems during estimation and difficulty in estimating the covariance matrix 

of the MSL estimator (see Bhat, 2011). On the other hand, the MACML approach is simple, 

computationally very efficient, and simulation-free. It easily and accurately is able to 

accommodate even a high number of multivariate normally distributed random coefficients, 

providing both more accuracy (smaller bias in parameters) and orders of magnitude of 

computational efficiency relative to the MSL inference approach (see Bhat et al., 2010, Bhat and 

Sidharthan, 2012, and Paleti and Bhat, 2013). The other advantage is that the smooth analytically-

approximated likelihood function all but ensures convergence during maximization, and also lends 

itself nicely to relatively smooth second derivative functions to compute the covariance matrix of 

the estimator. However, the MACML estimator is restricted to normally distributed coefficients or 

skew-normally distributed coefficients, and does not allow more general parametric random 

distributions as in the proposed copula MNP model. The combination of the MSL and MACML, 

however, is especially well suited for the case when there are relatively few non-normally 

distributed coefficients (so that the simulation does not involve very high dimensions) and many 

normally distributed coefficients (so that the MACML computational accuracy and efficiency can 

be realized). However, even in the case when many or even all coefficients are non-normally 

distributed (with potentially different univariate non-normal distributions for each coefficient), our 

proposed copula approach provides a systematic parametric framework to engender dependencies 

(due to unobserved factors) across the non-normal coefficients (rather than pre-imposing 

independence assumptions on these non-normally distributed coefficients). Of course, if all the 

coefficients are assumed non-normal and independent, our copula-based hybrid approach collapses 

exactly to an MSL estimation approach where the univariate integral transforms essentially 

become vehicles for generating realizations from each of the non-normal univariate distributions. 

On the other hand, if all the coefficients are assumed to follow a multivariate normal distribution, 

our copula-based hybrid approach collapses exactly to the MACML estimation approach.   
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To summarize, in this paper, we develop a general copula-based mixed random coefficients 

MNP model and propose a hybrid MSL-MACML inference approach for estimation. We 

demonstrate the effectiveness of our inference approach through simulation exercises as well as 

an empirical application. The rest of this paper is structured as follows. The next section presents 

the basics of copula-based multivariate distributions, with an emphasis on the Gaussian copula. 

The third section presents the proposed model formulation and estimation procedure. Section 4 

undertakes simulation exercises to assess the ability of the proposed estimation procedure to 

recover underlying parameters. Section 5 presents an empirical application of the model on 

repeated choices data. Finally, Section 6 summarizes the paper and identifies future extensions. 

 

2. COPULA BASICS 

In this section, we provide an overview of copula functions, with an emphasis on the Gaussian 

copula. We also use this section as preparation for the model formulation in the subsequent section. 

Readers interested in learning more about copula functions are referred to Trivedi and Zimmer 

(2007), Bhat and Eluru (2009), and Joe (2015).  

The word copula, as originally coined by Sklar, 1959, originates from the Latin word 

“copulare”, which means to tie, bond, or connect. The basic idea here is that a joint distribution 

can always be factored into marginal distributions tied together by a dependence function called 

the copula. Alternatively, a joint multivariate stochastic dependence relationship (i.e., a 

multivariate distribution) can be generated by wrapping pre-specified marginal distributions 

together using an appropriately specified dependence structure called the copula. In essence, the 

copula approach separates the marginal distributions from the dependence structure, so that the 

dependence structure is unaffected by the marginal distributions assumed. This provides 

substantial flexibility in correlating random variables, which may not even have the same marginal 

distributions. The copulas themselves are multivariate distribution functions defined over the unit 

cube linking uniformly distributed marginal distributions, the point being that any prespecified 

marginal distribution can be translated into an equivalent uniform distribution using the integral 

transform result. So, let C be a K-dimensional copula of uniformly distributed random variables 

U1, U2, U3, …, UK with support contained in [0,1]K. Then,  

)...,,,Pr(),...,,( 221121 KKK uUuUuUuuuC θ , (1) 
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where θ  is a parameter vector of the copula commonly referred to as the dependence parameter 

vector. Now, consider K random variables Y1, Y2, Y3, …, YK, each with univariate continuous 

marginal distribution functions )Pr()( kkkk yYyF  , k =1, 2, 3, …, K. Then, by the integral 

transform result, and using the notation (.)1
kF  for the inverse univariate cumulative distribution 

function, we can write the following expression for each k (k = 1, 2, 3, …, K): 

)).(Pr())(Pr()Pr()( 1
kkkkkkkkkk yFUyUFyYyF    (2) 

A joint K-dimensional distribution function of the random variables with the continuous marginal 

distribution functions )( kk yF  can then be generated, using Sklar’s (1973) theorem, as follows: 

).( where),,...,,(  

))(),...,(),(Pr(                          

),...,,Pr(),...,,(

21

222111

221121

kkkK

KKK

KKK

yFuuuuC

yFUyFUyFU

yYyYyYyyyH






θ

          (3) 

To better understand the generated dependence structures between the original random 

variables KYYY ,...,, 21  (that is, between the elements of the Y vector, where ),...,,( 21  KYYYY ), 

concordance measures are used. Basically, two random variables are labeled as being concordant 

(discordant) if large values of one variable are associated with large (small) values of the other, 

and small values of one variable are associated with small (large) values of the other. One of the 

most popular concordance measures of dependence in the copula literature is the Spearman’s ,S

which measures the dependence between any two random variables ),( kj YY  as follows. Let 

)
~

,
~

( kj YY  and ),( kj YY


be independent copies of ),( kj YY . That is, ),( kj YY , )
~

,
~

( kj YY , and ),( kj YY


 

are all independent vector pairings, each with a common bivariate distribution function (.,.)ijF  and 

univariate margins iF  and jF . Then, Spearman’s S  is three times the probability of concordance 

minus the probability of discordance for the two vectors ),( kj YY  and ),
~

( kj YY


: 

    0))(
~

(0))(
~

(3),(  kkjjkkjjkjS YYYYPYYYYPYY


 .  (4) 

The coefficient “3” is a normalization constant, since the expression in parenthesis is bounded in 

the region [–1/3, 1/3] (see Nelsen, 2006, pg. 161). It can be shown (see Bhat and Eluru, 2009; Joe, 

2015) that the Spearman S  dependence measure for a pair of continuous variables ),( kj YY  is 
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equivalent to the familiar Pearson’s correlation coefficient   for the grades of 1Y  and 2Y , where 

the grade of jY  is )( jj YF  and the grade of 2Y  is )( kk YF . 

 

2.1. The Gaussian Copula 

The Copula functions for use to create multivariate distributions with given marginals are 

themselves generated in one of several ways, including the method of inversion, geometric 

methods, and algebraic methods (see Nelsen, 2006; Ch. 3). The most common of these is the 

inversion method that starts with a known multivariate distribution, and derives a copula function 

from that. To generate the Gaussian copula, consider the multivariate standard normal distribution 

function with continuous marginal univariate standard normal distribution functions 

)
~

Pr()
~

( kkk dDd   and a correlation matrix Γ. Then, the Gaussian copula may be obtained as:  

).);(),...,(),((

))(),...,(),(Pr(                          

)...,,,Pr(),...,,(

1
2

1
1

1

1
2

1
21

1
1

221121

ΓKK

KK

KKK

uuu

uDuDuD

uUuUuUuuuC













  (5) 

  Once a copula is developed, one can revert to Equation (3) to develop new multivariate 

distributions with arbitrary univariate margins. Thus, the multivariate distribution in Equation (3) 

with arbitrary marginal distribution functions and a Gaussian copula takes the following form: 

).(where),);(),...,(),((),...,,( 1
2

1
1

1
21 kkkKKK yFuuuuyyyH   Γ                             (6) 

The Spearman’s S  measures for the Gaussian copula above can be written in terms of the 

dependence (correlation) parameters embedded in the matrix Γ. Specifically, the jkS )(  measure 

for the random variable pair ),( kj YY  can be shown to be )2/(sin)/6()( 1
jkjkS   . Thus, jkS )(  

takes on values on [–1, 1]. The reader will note that the Gaussian copula is particularly appealing 

because it is comprehensive in the dependence structure in that the copula parameterizes the full 

range of dependence from perfect negative dependence to zero dependence to perfect positive 

dependence. Also, the Spearman’s S  values tracks the correlation parameters jk  closely for the 

Gaussian copula.  

Now partition the K-variate random variable vector Y into two sub-vectors Z (of size E×1) 

and W )1( L , so that .),(  WZY  Let the elements of the Z vector each have a pre-specified 
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but non-normal continuous parametric distribution so that )Pr()( eeee zZzF   (note that the 

cumulative distribution functions can vary across the elements of  Z). Let each element of the W 

vector be normally distributed with mean lr  and standard deviation l , so that 

),()Pr()( *
llll wwWwF  where 







 


l

ll
l

rw
w


* . Then, defining )( eee zFu  , we may write 

the multivariate distribution in Equation (6) as: 

 
  . )(where,;,...,,,,...,, 

,;,...,,),(),...,(),(),...,,,,...,,(
1**

2
*
121

**
2

*
1

1
2

1
1

1
2121

eeLELE

LELELE

ugwwwggg

wwwuuuwwwzzzH











Γ

Γ
         (7) 

The important point to note is that we now have the multivariate distribution of ),(  WZY  

translated to the multivariate normal distribution of ,),(
~  WGY where )]([1

eee ZFG   and 

.),...,,( 21  EGGGG  Next, partition the correlation matrix Γ as follows: 








 


WGW

GWG

ΓΓ

ΓΓ
Γ . Immediately then, using the conditional distribution properties of the 

multivariate normal distribution, and defining ),...,( 21  Lrrrr , ,),...,( 21  Egggg and a diagonal 

L×L matrix Ψ  with the lth diagonal element being l , we are able to write the conditional 

distribution of the vector W conditional on Z as follows: 

. )(and     

),,(~)()(

ΨΓΓΓΓΨΩΓΨΓ

Ω
11

GWGGWWGGW

LMVN




 rgd

dgG|WzZ|W
  (8) 

This conditional distribution for W given Z, while accommodating the dependence between the 

two random vectors, plays a central role in the estimation of the proposed Gaussian copula model, 

as discussed in the next section.  

 

3. THE MODEL  

Consider a repeated choice situation (or a panel situation), with the index q for the individual, 

) ..., ,2 ,1( Qq  , index i for the alternative ) ..., ,2 ,1( Ii  , and index t for the choice occasion. For 

ease in presentation, we will use the same number of choice occasions T for every individual. 

Extension to the case of varying number of choice occasions per individual is straightforward. 

Also note that the cross-sectional case corresponds to the case of T=1. 
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Consider the random-coefficients formulation in which the utility that an individual q 

associates at time period t with alternative i is written as: 

,~~
qtiqtiqqtiqqtiU εsγxβ     (t=1, 2, 3,…,T)  (9) 

where qtix  is a )1( E -column vector of exogenous attributes (without including constants), qtis  

is another )1( L -column vector of exogenous attributes (including dummy variables for constants, 

except in one of the I alternative utilities, say the first alternative), qβ  is an individual-specific 

)1( E -column vector of coefficients that varies across individuals based on unobserved 

individual attributes and with each element having a non-normal univariate distribution function 

).()Pr( eeeqe zFz   qγ  is another individual-specific )1( L -column vector of MVN-

distributed coefficients that varies across individuals based on unobserved individual attributes, 

with each of its elements having a normal univariate distribution function 

.),()Pr( **

l

ll
lllql

rw
www


 

  Define ),(  qqq γβα . The correspondence of our notations 

with the previous section should now be clear, with qβ  taking the place of Z, qγ  taking the place 

of W, and ),(  qqq γβα  corresponding to ),(  WZY . Then, following the previous section, we 

may write the joint cumulative multivariate distribution of ),(  qqq γβα  exactly as in Equation 

(7) after translating it into an equivalent joint cumulative multivariate standard normal distribution 

of ),
~

(~  qqq γβα , with )]([
~ 1

qeeqe F    and .)
~

,...,
~

,
~

(
~

21  qEqqq β  The correlation matrix Γ  

(of dimension ))()( LELE   in Equation (7) is partitioned as 










 


γγβ

γββ

ΓΓ

ΓΓ
Γ

~

~~

. Following 

Equation (8) and the definitions just preceding that equation, we write: 

. and     

),,(~)
~

(|)(|

~~~~~ Ψ)ΓΓΓ(ΓΨΩΓΓΨ

Ωβγβγ
11

γββγβγqβγβq

qLqqqqqq MVN




 rgd

dgz
    (10) 

The (I×1)-vector of kernel error terms, )~,,~,~,~(~
321  qtIqtqtqtqt εεεε ε , at each choice occasion is 

assumed to have a general covariance structure subject to identifiability considerations so that  

).,(MVN~~ Θ0εqt  (note that the qtε~  error terms are considered independent across individuals and 

choice occasions, and qtε~  is assumed independent of ),(  qqq γβα ; the random vector qα  is also 
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independent across individuals). Since only utility differences matter in discrete choice models, 

appropriate identification conditions need to be maintained. While there are many ways to ensure 

identification, a common approach is to take the differences of the error terms with respect to the 

first error term. Let ),~~( 11 qqiqi εεε   and let ),,,( 131211 qIqqq ε...εεε . Then, up to a scaling factor, the 

covariance matrix of 1qε  )
~

say( 1Θ  is identifiable. Next, scale the top left diagonal element of this 

error-differenced covariance matrix to 1. Thus, there are 1)]2/()1[(  II  free covariance terms 

in the )1()1(  II  matrix 1

~
Θ . Θ  is constructed from 1

~
Θ  by adding a top row of zeros and a 

first column of zeros.  

 In addition to the identification condition just discussed, in the case of cross-sectional data, 

the elements of qγ  corresponding to the dummy variables for alternative-specific constants will 

need to be fixed, and will not have a random distribution. This is because the kernel error terms 

already absorb the randomness in the constants. 

 

3.1. Model Estimation Using the Hybrid MSL-MACML Approach 

With the results and identification considerations from above, we may write Equation (9) as 

follows: 

 
  ).,(~~,~~)(

),,...,(,~)
~

(|)
~

(|
~

)(|
~

1

21

Ω0γεsγsx

εsβγxββ

Lqtiqtiqtiqqtiqqeeqe

qEqqqqtiqtiqqqqtiqqqqtiqqqti

MVNgFz

zzzUU




 dz

zgzgz
  (11) 

We now set out some additional notation. Define )
~

,...,
~

,
~

(
~

21  qtIqtqtqt UUUU  ( 1I vector), 

)
~

,...,
~

,
~

(
~

21  qTqqq UUUU  ( 1TI vector), )~,...,~,~(~
21  qtIqtqtqt ε  ( 1I vector), 

)~,...,~,~(~
21  qTqqq εεεε  ( 1TI vector), ),...,,( 21  qtIqtqtqt xxxx  ( EI  matrix), 

),...,,( 21  qTqqq xxxx  ( ETI  matrix), ),...,,( 21  qtIqtqtqt ssss  ( LI  matrix), 

),...,,( 21  qTqqq ssss  ( LTI   matrix). Let T1 be a column vector of ones of dimension T, and let 

TT1  be a matrix of ones of dimension T×T.  Then, we can write Equation (11) in matrix form as: 

    . ~~)
~

(|)()
~

(|
~

)(|
~

qqqqqqqqqqqqqq εγsβsxβUβU  gdzgz       (12) 
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From above, it is clear that )
~

(|
~

qqq gβU  is multivariate normally distributed: 

)ΞβVβU qqqqTIqqq MVN
~

),
~

(|(~)
~

(|
~

gg  , where  )~
(|)()

~
(| qqqqqqqqq gdzg  βsxβV  and 

)(
~

ΘIDENsΩsΞ  Tqqq .  

Let the individual q choose alternative qtm at the tth choice occasion. Define qM  as an 

][)]1([ TIIT   block-diagonal matrix, each block diagonal being of size )()1-( II   and 

containing the matrix qtM . qtM  itself is an identity matrix of size ( 1I ) with an extra column of 

‘-1’ values added at the th
qtm  column. Let  )~

(|)
~

(| qqqqqqq gg  βVMβB  and .
~

qqqq MΞMΞ   

The parameter vector to be estimated is ))Vech( ),Vech( ),Vech(,,(  ΘΓΨrλ δ , where δ 

represents a column vector that collects all the parameters characterizing the non-normal 

coefficients qβ , Vech(Γ) is a column vector obtained by vertically stacking the upper triangle 

elements of the matrix Γ, Vech(Ψ) is another column vector obtained by vertically stacking the 

upper triangle elements of the matrix Ψ, and Vech(Θ) is a third column vector obtained by 

vertically stacking the estimable upper triangular elements of the matrix Θ. The likelihood 

contribution of individual q conditional on qq zβ  (that is, qq gβ
~

) is as below: 

         , ,)
~

(|)
~

(|)()(|)( ~
** ΞβBβλβλ qqqqJqqqqqq LL ggz   (13) 

where ),1(
~  ITJ  ),

~
(|)

~
(| 1

Ξ qqqqqq q
gg   βBωβB*  ,1

Ξ
1
Ξ


qq qq ωΞωΞ *

 and 
qΞ

ω  is the 

diagonal matrix of standard deviations of qΞ . Finally, the unconditional likelihood contribution of 

individual q is: 

        , );( ,)
~

(|)( , )
~

(|)( ~~~ dg ggdzg
βEqqqqJ

g

g

EqqqqJ

z

z

q fL ΓΞβBzΞβBλ ****  








   (14) 
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where );( ~
βE Γ g is the E-variate multivariate standard normal density function with correlation 

matrix β
~Γ , and evaluated at the vector g.4 The reader will note that the vector δ  of the moment 

parameters characterizing the non-normal coefficients qβ  appears in the above function through

)
~

(| qqq gβB* , which itself is a function of  )~
(|)()

~
(| q qqqqqqqq gdzg  βsxβV . In the latter 

expression, each element of the vector qz  is computed as  )(1
qeeqe gFz    during the integration 

over the vector qg  in Equation (14), and the parameters comprising δ feature in the inverse 

function 1
eF (.). Thus, the proposed copula model allows consideration of a whole variety of non-

normal multivariate random coefficient distributions, though using distributions that have a closed-

form inverse function make the computation easier than when there is no closed-form. Importantly, 

the elements of the vector βq can have different non-normal distributions. The support of each non-

normal element can range from the entire real line to only the positive (or negative) half-line. 

While there are many distributions that have support on the entire real line, Table 1 provides a 

sample list of univariate marginal distributions that may be considered for elements that are strictly 

restricted to the positive half-line, have at least the first and second inverse moments that exist 

(important for willingness to pay computations where an element appears in the denominator of a 

ratio), and have closed-form inverse (or quantile) functions. Of these, we would particularly like 

to bring attention to the last of these distributions – the power log-normal distribution that has 

received little attention in the statistical literature and no attention at all in the context of coefficient 

distributions in discrete choice models. The advantage we see in this distribution relative to other 

distributions (including the log-normal) is that it can both allow for substantial heterogeneity (large 

variance parameter) while also ensuring that the skewed tail is relatively thin. This helps because 

convergence during estimation is much easier.5  Figure 1 shows a comparison of the log-normal 

                                                 
4 Note that, by construction, the marginal multivariate distribution function of βq is the multivariate standard normal 

distribution function of 
qβ

~ ; that is ),;()( ~
βqEqqEF Γzβ  g  from which ,);( 

)(
)( ~

q

q

βqE
q

qqE
qE

dF
f

dz

dg
 g

d
Γ

z

zβ
z 


  

or qβqEqqEf dg gdz );()( ~Γz  , and Equation (14) is the result.  
5 On the other hand, the problem with the log-normal distribution to represent a coefficient such as a cost coefficient 
is that the tails of the distribution are directly determined by the variance term. If there is high heterogeneity in the 
sensitivity to cost, this immediately implies a peaking (mode) close to zero as well as a long and fat left tail (note that 
the cost coefficient is introduced as the negative of the log-normal distribution). The result is that, as the variance 
parameter of the log-normal distribution increases (for the same mean parameter), a larger fraction of individuals will 
have a small cost coefficient. At the same time, a small fraction of individuals will have very high cost sensitivity 
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and the power log-normal for identical values of μ and σ, but with different values of p in the power 

log-normal (when p=1 in the power log-normal, it collapses to the log-normal). Figure 1 plots the 

power log-normal only for p>1, which leads to thinner tails than the log-normal. The constraint 

p>1 can be maintained by reparametrizing p as ).~exp(1 pp   In this sense, the power log-normal 

with p>1 is like the skew-normal in that it creates skew while keeping the tails thin.  

The simulation approaches for evaluating the full likelihood function in Equation (14) 

involve integration of dimension ,)1( EIT   which can explode quickly as the number of 

choice occasions of the same individual increases (in the case of a cross-sectional model with only 

one observation per individual, T=1, and the integral dimensionality is only ).)1( EI   

However, one can consider the following (pairwise) composite marginal likelihood function 

formed by taking the products (across the T choice occasions) of the joint pairwise probability of 

the chosen alternatives qtm  for the tth choice occasion and tqm   for the tth choice occasion for 

individual q. 

)()(
1

1 1
,, λλ 



 


T

t

T

tt
tqtCMLqCML LL ,  (15) 

where    

     ,);( 
~

, )
~

(|
~

)( ~, qβqEtqtqqtqtJ

g

g

tqtCML

q

q

L dg gg * ΓΞβBλ * 




      (16) 

where )1(2  IJ


,   ,
~

,)
~

(|)
~

(|
~ * '** ΔΞΔΞβBΔβB tqtqtqttqtqqqtqtqqtqt   *gg  and tqt Δ  is a JJ

~
*


-

selection matrix with an identity matrix of size ( 1I ) occupying the first ( 1I ) rows and the 

 thIt 1)1()1(  through  thIt )1(  columns, and another identity matrix of size ( 1I ) 

occupying the last ( 1I ) rows and the  thIt 1)1()1(  through  thIt )1(  columns. All 

other elements of  take the value of zero. The pairwise likelihood function now only needs the 

evaluation of a  EI  )1(2 -dimensional integral. Note also that, in a cross-sectional model 

(T=1), the CML likelihood function of Equation (15) has no pairings to consider and effectively 

collapses to the full likelihood function of Equation (14), involving the evaluation of an 

                                                 
because of the long and fat tail. The result can cause unusually large and small willingness to pay estimates. Further, 
the long and fat tail on the unbounded side of the distribution is known to cause convergence problems during 
estimation (Bartels et al., 2006).   

tqt Δ
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 EI  )1( -dimensional integral. Finally, it is important to note that the same draws have to be 

used for the integration over qg  across all pairings corresponding to the same individual q. 

The properties of the general CML estimator may be derived using the theory of estimating 

equations (see Bhat, 2014). Under usual regularity conditions, the maximization of the logarithm 

of the CML function, where the CML function across all the Q individuals is 





Q

q
qCMLCML LL

1
, )()( λλ , is achieved by solving the composite score equations that are themselves 

linear combinations of valid likelihood score functions associated with the event probabilities 

forming the composite log-likelihood function. Thus, the score equations immediately satisfy the 

requirement of being unbiased. Further, with q independent observations with panel data or 

repeated choice data, in the asymptotic scenario that Q , a central limit theorem and a first-

order Taylor series expansion can be applied in the usual way (see, for example, Godambe, 1960) 

to the resulting mean composite score function to obtain consistency and asymptotic normality of 

the CML estimator (see Section 1.4 of Bhat, 2014).  

 The covariance matrix is estimated as:  

   
,

ˆˆˆˆ

QQ




1-1-1-
HJHG
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An alternative estimator for Ĥ is as below: 

   





 



































Q

q

T

t

T

t

tqtCMLtqtCML

CML

LL

Q 1

1

1 1 λ̂

,, )log)log1ˆ
λ

(λ

λ

(λ
H  

In the special case of a cross-sectional model, there are no pairings to consider and the 

covariance matrix collapses to the traditional inverse of the sandwich information matrix.  
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There are two final issues. The first is that the covariance matrices Γ and 1

~
Θ  have to be 

positive definite. The simplest way to ensure the positive-definiteness of these matrices is to use a 

Cholesky-decomposition and parameterize the CML function in terms of the Cholesky parameters 

(rather than the original covariance matrices). Also, the matrix Γ is a correlation matrix, which can 

be maintained by writing each diagonal element (say the aath element) of the lower triangular 

Cholesky matrix of Γ as 





1

1

21
a

j
ajl , where the ajl  elements are the Cholesky factors that are 

estimated. Using these Cholesky-parameterization, the parameters to be estimated in the model 

may be written as:  ,))Vech(),Vech(),Vech(,,(  ΘΓ LLΨrλ δ where ΓL  is the parameterized 

(as above) lower Cholesky matrix of the matrix Γ and ΘL  represents the lower Cholesky matrix 

of the estimable parameters of 1

~
Θ (as indicated earlier, Θ is constructed from 1

~
Θ ).  

 The second issue relates to the starting parameters. In our experimentation of alternative 

procedures to arrive at good starting values, the following procedure worked well: (a) Assume a 

kernel error term covariance matrix that corresponds to an IID error structure across the 

alternatives with a variance of one-half for each alternative error term), (b) Estimate the parameters 

characterizing the marginal non-normal and normal coefficients, fixing the parameters of the 

copula correlation matrix and the kernel covariance matrix to their starting values discussed above, 

and (c) Use the coefficient vector from the estimation results in step (b) to begin the iterations for 

the overall estimation of the model system. 

 

3.2. Alternative Estimation Procedure 

An alternative estimation procedure is to develop the likelihood function for each individual 

conditional on both the qq γβ and  vectors, and then integrate both out at the end (as opposed to 

the procedure in the previous section of first writing the conditional likelihood given qβ and then 

integrating out qβ ) . In this alternative procedure, using the earlier definitions, we first write 

   qtqtqtqqqtqqqt εsxγβUγβU ~ )~,
~

(|
~

),(|
~  wzwgwz * . Next, defining 

 wz qtqtqt sxA ~
, ,

~
qtqtqt AMA  qtqt MΘMΘ 


, ,1

Ξ qtqt q
AωA*  ,11 

ΘΘ



ωΘωΘ*  the likelihood 

function at choice occasion t conditional on )~,
~

,isthat(and *wgwz  qqqq γβγβ is 
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        ,,)~ ,
~

(|))~,
~

(|)(),(|)( )1(
** ΘγβAγβλγβλ


** wgwgwz   qqqtIqqqtqqqt LL

and the individual-level likelihood function is: 

         .);,( ,)~,
~

(|)(

*

* 1
)1(

*** dgdw wgw g ΓΘγβAλ **
E
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w
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T

t
qqqtIqL   







 
 


                 (18) 

The above function involves the evaluation of an E+L-dimensional outer integral followed by 

evaluations of ( 1I )-dimensional orthant inner integrals.  

In the cross-sectional case, the estimation procedure from Section 3.1 is much more 

computationally efficient. This is because the estimation procedure from earlier exploits the fact 

that the conditional distribution of a subset of multivariate normally distributed coefficients 

involved in a copula-generated larger multivariate distribution, given the subset of non-normally 

distributed coefficients, is also multivariate normally distributed. To our knowledge, this is the 

first time this specific property of the multivariate Gaussian copula has been exploited in the way 

we do. Then, the conditional multivariate normal distribution of coefficients is combined with the 

kernel error multivariate normal distribution, so that the resulting multivariate normal distribution 

of the utilities (conditional on the non-normally distributed coefficients) has the same 

dimensionality as the kernel distribution of the utility error terms (that is, 1I ). This leads to a 

reduction by L (the number of normally distributed coefficients) in the dimensionality of 

integration in the earlier estimation procedure than the one in the current section. As importantly, 

as indicated earlier in this paper, as the number of dimensions for integration increases, 

convergence problems arise in the MSL approach and the time for convergence increases 

substantially. On the other hand, by using the MSL approach only for the non-normal coefficients 

(which tend to be very few in number in most applications), and using a smooth analytic evaluation 

approach for the ( 1I )-dimensional orthant multivariate distribution function (as we propose and 

implement in this paper using Bhat’s MACML approach), convergence problems get reduced as 

does the computational time. 

In the panel case, the full information likelihood of Equation (14) in Section 3.1 becomes 

difficult to impractical as the number of choice occasions per individual (i.e., T) increases. 

However, the CML of Equation (16) in the previous section still retains substantial advantages 

compared to the MSL estimation technique of this section in Equation (18). This is because of 

three reasons. First, the 2)1( I  orthant multivariate probability in Equation (16) is conveniently 
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computed using the MACML procedure, which breaks this multivariate probability into solely 

bivariate and univariate cumulative normal distribution function computations (Bhat, 2011). 

Second, having a well behaved and smooth analytic expression as the integrand over which only 

a few non-normally distributed coefficients need to be integrated will generally lead to much 

superior convergence and computational properties rather than the alternative of simulating over 

all normal and non-normally distributed coefficients. Third, when the number of choice occasions 

increases, the result is that the integrand in Equation (18) becomes smaller and smaller (because it 

is the product of probabilities over all choice occasions), leading to potential problems in 

convergence (artificial scaling approaches may be devised to keep the integrand from getting too 

small, but this has limited use as the number of choice occasions increases). On the other hand, the 

CML of Equation (16) does not have this problem, because the logarithm of this equation leads to 

summations outside the 2)1( I -dimensional integral. But the CML of Equation (16) also 

involves more and more pairings as the number of choice occasions increases. Fortunately, one 

can use a different CML function than that in Equation (16) in such cases. Specifically, instead of 

taking all pairings, one can develop a CML function that only includes a specified number of 

randomly chosen choice occasions (say T  ) to form the pairings, while leaving the others 

independent. For ease in presentation, assume that the choice occasions are ordered so that the 

randomly chosen T   pairings appear first for each individual. Then, the individual-level 

contribution to the CML is: 

)()()(
~

1
,

1

1 1
,, λλλ 












T

Tt
qtCML

T

t

T

tt
tqtCMLqCML LLL  (19) 

where )(, λtqtCMLL   is defined as earlier, and 

    dg gg * );( ,)
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(|)(
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~)1(, ΓΞβBλ *

EqtqqtI
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qtCMLL 


 




 ,          (20) 

with   ,,)
~

(|)
~

(| * '** ΔΞΔΞβBΔβB qtqqtqtqqqtqtqt




*gg  and qtΔ


 is a JI
~

*)1(  -selection matrix 

with an identity matrix of size ( 1I ) occupying the first ( 1I ) rows and the  thIt 1)1()1( 

through  thIt )1(  columns. All other elements of qtΔ


 take the value of zero. The covariance 

matrix is estimated as in Equation (17), with the following substitutions:  
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An alternative estimator for Ĥ is as below: 
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4. SIMULATION EVALUATION 

Simulations were performed for two different distributional configurations of random parameters. 

In both set-ups, we consider a cross-sectional mixed MNP model with four alternatives and three 

independent variables (a panel mixed MNP is considered in the empirical analysis). The values of 

each of the three independent variables for the alternatives are drawn from a standard univariate 

normal distribution. Once drawn, the exogenous variables are held fixed for the data set. We 

generate a sample of 3000 realizations of the three independent variables corresponding to a 

situation of 3000 choice occasions.  

We allow random coefficients on all the three independent variables. In the first set of 

simulations, two of the three coefficients are assumed to be realizations from power log-normal 

distributions with identical location parameters ( 1  and 2 =0.5), identical scale parameters ( 1  

and 2 =1.0), and identical power terms ( 1p  and 2p = 5, considered fixed).6 The last coefficient is 

assumed to be a realization from a normal distribution with mean r = 0.5 and standard deviation η 

= 1.5. In the second set of simulations, the three coefficients are assumed to be realizations of 

                                                 
6 As discussed earlier, the log-normal distribution a priori fixes the power term to 1. Here, while we can estimate the 
power term, our experience suggested that the optimization algorithms took longer with much more convergence 
difficulty than if the power term was fixed. That is, the best way to estimate a model with a power log-normal term 
appears to be to estimate the model at different fixed values of the power term, and then compare the data fits across 
the different optimization function values (corresponding to different fixed values of the power term) to determine the 
best value for the power term. That is the reason we fix the power term at the value of three in the simulation 
estimations here, while estimating the means (μ1 and μ2) and the scale parameters (σ1 and σ2).  
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different distributions: power log-normal ( 1 =0.5, 1 =1.0 and 5p ), exponential ( 2 =1.0 and 

2 =0.8) and normal ( r = 0.5 and  =1.5) respectively. In both cases all the parameters except for 

p are freely estimated. The reason for testing two settings of simulations with different 

distributional configurations is to evaluate the performance of the model in recovering parameters 

vis-à-vis different distribution shapes (tail length).  

   To ensure the positivity of the scale parameters 1  and 2 , we parameterize them as 

2,1),~exp(  jjj   in estimation. The first two random coefficients in the above setup constitute 

the βq vector in the notation of Section 3, with ),,,,( 22111  pδ . The normal distribution scale 

parameter for the third coefficient is also parameterized as )~exp(   in estimation (technically, 

because of the symmetric nature of the normal distribution, one can let the standard deviation to 

be free, and simply change the sign if it is estimated to be negative; but we prefer the 

parametrization from the beginning to help the optimization process along a single line search 

direction). In the notation of Section 2.1, )(rr  and ).()Vech( Ψ  All of these coefficients are 

tied together through the dependency (correlation) matrix of the Gaussian copula. The correlation 

structure used in the first and in the second sets of simulations is as follows: 
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200.0800.00000.0

400.0600.00000.1
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000.0800.0600.0
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0.14.04.0

4.00.16.0
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   1) ΓΓLLΓ  



















































697.00000.00000.0

393.0917.00000.0

600.0400.00000.1

697.0393.0600.0

000.0917.0400.0

000.0000.0000.1

0.16.06.0

6.00.14.0

6.04.00.1

   2) ΓΓLLΓ  

Again, as indicated earlier, to maintain positive definiteness, we work with the Cholesky 

decomposition elements of the correlation matrix of the Gaussian copula. Thus, there are three 

Cholesky matrix elements to be estimated in ΓL  corresponding to the non-diagonal elements in 

the matrices above (note that the diagonal elements are simply a function of the non-diagonal 

elements and are not estimated directly, because Γ  is a correlation matrix with unit diagonals). 

Collectively, then, )2.0,4.0,6.0(),,()Vech( 321  ΓΓΓΓ lllL  for the first set and )393.0,6.0,4.0(   

for the second set. The important point to note is that the specification above generates dependence 

across the different distributions.  
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With the preliminaries above, the vector ),(  qqq γβα  is generated as follows for the first 

case in which two of the coefficients follow a power lognormal distribution and the third follows 

a normal distribution: (a) First draw a three-variate realization of )~,
~

( qq γβ  from the multivariate 

standard normal distribution of three dimensions with a mean vector of all zero elements and 

correlation matrix Γ, (b) Obtain the realization of qj  as 

      2,1,)
~

(1exp)
~

(
/111

1   jF j

p

qjjqj  , (c) Obtain the realization of the one-

dimensional vector qγ  as rγΨγ  qq
~ ,where Ψ  is the one-dimensional (in this simulation case) 

diagonal matrix with the element η as the scale parameter, and r is the one-dimensional mean 

location parameter. For the second case where the first coefficient follows a power lognormal 

distribution and the second coefficient follows an exponential distribution, the same procedure as 

above is followed to generate the first coefficient (the power lognormal) and the third coefficient 

(the normal). But the second coefficient 2q is developed from the normal draw 2

~
q  as follows: 

    .)
~

(1ln)
~

( 2222
1

2  
qqF  

In both simulation settings, we allow a general covariance matrix for the kernel error term 

vector qε
~ with a covariance specification for Θ as follows: 



























































0998000.0000.0000.0

404.0866.0000.0000.0

500.0500.0000.1000.0

000.0000.0000.0000.0

998.0404.0500.0000.0

000.0866.0500.0000.0

000.0000.0000.1000.0

000.0000.0000.0000.0

     

413.1600.0500.0000.0

600.0000.1500.0000.0

500.0500.0000.1000.0

000.0000.0000.0000.0

ΘΘLL

Θ

 

Note that, as discussed in Section 3, the first row and first column are all normalized to zero, and 

the second diagonal element is normalized to 1 for identification. To maintain positive 

definiteness, we work with the Cholesky decomposition elements of Θ, with two Cholesky matrix 

elements to be estimated in ΘL = ).998.0and404.0( 65  ΘΘ ll 7 Collectively, 

                                                 
7 The specification for the differenced covariance matrix above may be viewed as being derived from a specification 
where the error terms for the first three alternatives are independent and distributed with a variance of 0.5, while the 
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.),()Vech( 65  ΘΘΘ llL  A multivariate draw of qε
~  is obtained by drawing I multivariate normally 

distributed random numbers in the usual way, given that ),0(MVN~~
1 ΘIDENε q  for the cross-

sectional case.  

 To generate the dependent variable values in the simulation for given independent variable 

values for each individual (that is, for given qq sx and values), we track back to the matrix form 

of Equation (9) and write: 

. ~~
qqqqqq εγsβxU   

Once the multivariate realizations of ),(  qqq γβα  and qε
~  are drawn, the utility of each alternative 

at each choice occasion is computed, and the alternative with the highest utility at each choice 

occasion is then identified as the chosen alternative.  

The above data generation process is undertaken, for each simulation setting, 200 times 

with different realizations of the qα  and qε
~  vectors to generate 200 different data sets, each with 

3000 choice occasions as mentioned earlier. The hybrid MSL-MACML inference approach of 

Equation (14) is applied to each of the 200 data sets to estimate data specific values of λ. In this 

approach, MSL is used to integrate out the non-normal coefficients and for this procedure we use 

50 draws per individual from the Halton sequence. The MACML approach is employed to evaluate 

the MVNCD function that is the integrand in Equation (14). In the MACML procedure, a single 

random permutation is generated for each individual (the random permutation varies across 

individuals, but is the same across iterations for a given individual), and the multivariate normal 

cumulative distribution (MVNCD) function is approximated using the resulting conditional 

probability sequence. 

 

4.1. Performance Evaluation 

For both simulation settings, the performance of the hybrid MSL-MACML approach in recovering 

parameters of the model is evaluated as follow. 

(1) Estimate the parameters for the 200 datasets. Estimate the standard errors. 

                                                 
last error term has a variance of 0.913 and is correlated with the error term of the third alternative with a covariance 
of 0.1. In the simulation experiment estimations, to focus on the random coefficients, we fix the variances of the first 
three alternatives to 0.5 and impose independence among the first three alternatives, but estimate the variance of the 
fourth error term and the covariance between the third and fourth alternatives, which translates to the two Cholesky 
parameters .998.0and404.0 65  ΘΘ ll  
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(2) Compute the mean estimate for each model parameter across the 200 data sets. Compute 

the absolute percentage bias (APB) as: 100
 valuetrue

 valuetrue-estimatemean 
APB . 

(3) Compute the standard deviation of each parameter estimate across the 200 datasets, and 

label this as the finite sample standard deviation or FSSD (essentially, this is the 

empirical standard error). Compute the FSSD as a percentage of the true value of each 

parameter. 

(4) Compute the mean standard error for each model parameter across the 200 datasets, and 

label this as the asymptotic standard error or ASE (essentially this is the standard error 

of the distribution of the estimator as the sample size gets large, and is a theoretical 

approximation to the FSSD).  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula for the finite sample 

size used, compute the absolute percentage bias of the asymptotic standard error 

(APBASE) for each parameter relative to the corresponding finite sample standard 

deviation. 

100
FSSD

FSSD-ASE
APBASE   

 

4.2. Simulation Results 

Summaries of the performance measures for the first and the second simulation settings are 

presented in Table 2 and Table 3, respectively. The tables provide the true value of the parameters, 

followed by the parameter estimates and the standard error estimates. Overall, the results show 

that the proposed method recovers parameters very well with the average of the absolute 

percentage bias (APB) in both cases being lower than 5% (see the last row under the APB column). 

Further, the asymptotic standard error from the method also quite closely reflects the finite sample 

standard deviation, as evident from the APBASE estimates, whose average (across all parameters) 

is less than 9% (see last row under the APBASE column). 

Several other observations may be made from the results. In the first setting (the case in 

which two coefficients are assumed to be realizations from power log-normal distributions and 

one coefficient is assumed to be a realization from a normal distribution; see Table 2), the third 

copula correlation parameter )( 3Γl  presents a high APB value of 18.19%. However, this result is 
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rather deceiving because the true estimate for this parameter is 0.20 and the finite sample bias is 

only 0.036; that is the APB value is being inflated in percentage simply because of the small 

magnitude of the true value of the parameter. Interestingly, this parameter estimate also presents 

the highest APBASE value of the table (19.72%). In fact, the APBASE is relatively high for all 

the copula correlation parameters relative to other parameters, suggesting that the copula 

correlations are the most difficult to precisely estimate. This is not surprising, because the copula 

correlation parameters are the ones that occur most non-linearly in the CML function of Equation 

(20).    

In the second simulation setting (corresponding to the three different distributions of power 

log-normal, exponential and normal for the coefficients; see Table 3), the copula correlation 

coefficient 1Γl  presents the highest APB (10.22%). This represents the correlation between the 

power log-normal and exponential distributions. This is to be expected, given the relatively non-

linear and complicated manner in which the copula correlation enters into the optimization 

function for retrieving the parameters. This is also reflected in the high APBASE value (19.65%) 

for this copula correlation, reinforcing the notion that not only is it difficult to accurately retrieve 

this parameter, but so is the precision of recovery of the parameter. But it is to be noted that even 

these are not egregiously high biases. The other parameter showing a very high APBASE (34.48%) 

is that corresponding to the standard deviation of the exponential distribution ( 2 ).  It is indeed 

interesting that the two parameters ( 1Γl  and 2 ) that are most difficult to recover (from an 

accuracy and/or precision standpoint) involve the exponential distribution. These results are a 

consequence of the long tail of the exponential distribution, a reason that also typically makes 

estimation using a traditional log-normal distribution (that also has a long tail) rather unstable and 

imprecise. As in the first simulation setting, we again find that the copula parameters are the ones 

that are the most difficult to precisely pin down.  

Finally, the copula correlation parameter 2Γl  in Table 3, which represents the correlation 

between the power log-normal and the normal univariate marginals in the second setting, has a 

much smaller APB (0.20%) than 3Γl  in the first setting (Table 2), which also represents the 

correlation between power log-normal and normal. This result confirms that the high APB of this 

parameter in the first setting was due to its small magnitude and not poor recovery. 
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5. AN EMPIRICAL APPLICATION 

In this section, we illustrate the use of the proposed model for an empirical application on a 

commuter mode choice dataset containing repeated choices from the same individuals. The dataset 

is drawn from a web-based stated preference survey from Austin. The purpose of the survey was 

to examine the demographic, employment, and overall travel characteristics of Austin area 

commuters, and to identify the possible effects on commute mode share of adding a commuter rail 

as a new transportation option. Four alternative modes are presented to the respondent as 

commuting options: drive alone, shared ride, bus and the commuter rail. Each respondent provides 

the mode she or he would choose to use on four repeated choice occasions, with different attribute 

values for each of several attributes, including travel time and travel cost. Additional details about 

the survey and the stated preference design can be found in Bhat (2004) and Bhat and Sardesai 

(2006). There are 322 individuals in the sample and a total of 1288 choice occasions. The mode 

share across all choice occasions is: 45.34% drive alone, 13.43% shared ride, 5.67% bus and 

35.56% commuter rail. While the commuter rail share is very high, the reader will note that this is 

purely a stated preference survey in which commuter rail, and the shared ride and bus modes, were 

included by design as available options for all individuals, to maximize the information we were 

able to extract about the relative tradeoffs between travel time and travel cost. Besides, for the 

same reason, the SP choice scenarios involved an increase over the current scenario for the 

respondent in drive alone travel times and costs. The obvious overstatement in non-drive alone 

mode choice because of the SP design may be controlled for if one wants to make predictions of 

future modal shares, as undertaken by Bhat and Sardesai (2006). But the emphasis in this paper is 

on the distributions of the travel time and cost coefficients (and the resulting value of time), not 

on the predictions of modal shares. 

 

5.1. Valuation of Travel Time Savings 

The valuation of travel time savings (VTTS) is a central element in transportation planning and 

analysis. As indicated by Small (2012), “its theoretical meaning and its empirical measurement are 

fundamental to travel demand modeling, social cost analysis, pricing decisions, project evaluation, 

and the evaluation of many public policies”. Small proceeds to discuss in detail the many uses of 

VTTS, which we will not elaborate on here for presentation conciseness. But the important point 

is that, while there is general agreement that no one would be interested in wasting money on daily 
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travel (such as commuting), there is some (at least small) possibility that individuals would want 

to extend their travel time on at least some travel occasions. Cirillo and Axhausen (2006) provide 

a conceptual justification for this in the short term, because, while pure travel time is valued 

negatively by individuals, there is a comingling of this (dis-) utility of travel with the potentially 

positive utility from secondary activities that may be undertaken during daily travel (such as being 

able to listen to relaxing music in the privacy of one’s vehicle, or the joy of being in movement 

per se).  

For our analysis, it suffices to note that theoretical considerations require that the cost 

coefficient (the denominator in the VTTS computation) should be always negative (and cannot 

even take the value of zero in its domain, because this causes a singularity problem in the 

computation of VTTS). That is, we need a bounded distribution for the cost coefficient that does 

not straddle the zero value. However, we do not impose this as an absolute requirement for the 

travel time coefficient (the numerator in the VTTS computation), especially in the short-term 

context of daily travel. That is, we allow for the possibility of the travel time coefficient to be 

unbounded, leading to potentially negative or zero VTTS values, though our expectation is that 

there will be a relatively small fraction of individuals for whom VTTS will not be positive.  

In our estimation specifications, we considered several bounded distributions for travel 

cost, as well as an unbounded normal distribution and several bounded distributions for travel time. 

However, the power log normal distribution (with p=5) consistently came out to be the best 

bounded distribution in our empirical context, for both the cost and time coefficients. For 

completeness, in the next section, we present the results for all possible combinations of fixed, 

log-normal (the distribution that has been typically used in the literature for bounded distributions), 

and power log-normal coefficients (with p=5) for cost and time, supplemented by a possible 

normal distribution for travel time (but not for cost). This leads to the presentation of twelve 

models with different distributional combinations for the cost and time coefficients.  In each of 

these models, the cost variable is used as cost over personal income. That is, the cost coefficient 

is actually a coefficient with the stipulated distribution divided by personal income. We use such 

a specification because it is intuitive and also because it came out to be consistently superior to the 

simple cost specification. In addition, we tested for a random covariance structure for the baseline 

constants (except for one alternative, which is the base alternative) to capture heterogeneity across 

individuals in modal preferences (as well as individual-level dependence in the unobserved modal 
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preferences). The repeated nature of our data allows such an individual-level covariance structure 

in modal preferences in addition to the choice occasion-level heterogeneity captured by the 

covariance of the choice-occasion-level kernel-error terms. But we have only four choice 

occasions per individual, which can be inadequate to tease out a full covariance matrix capturing 

inter-individual intrinsic preference differences. In any case, in our analysis, this generic 

individual-level covariance terms consistently turned out to be statistically insignificant whether 

or not the time and cost coefficient heterogeneities were introduced. And the fit of the model with 

only the generic individual-level covariance structure was worse than the model with only 

heterogeneity in the cost or time coefficients. Effectively, the time and cost variables show a good 

amount of variation (both across individuals as well as within the choice occasions of the same 

individual) because of the SP design, thus allowing individual-level heterogeneity to be captured 

on these variables. This is also an efficient way of capturing individual-level heterogeneity, given 

the relatively small number of individuals in the sample. But there is simply not sufficient 

information it appears to pin down the many covariance terms characterizing the intrinsic 

individual-level heterogeneity effects.  

Also to be noted here is that, as soon as we introduced any random coefficient (for the cost 

and/or the time coefficient), the estimated covariance matrix of the differenced error terms 

)~~( q1qiqi1 εεε   could not be distinguished from a matrix of ones on the diagonal and 0.5 values 

on the off-diagonals. That is, we could not rule out an IID covariance matrix for the original kernel 

error terms, and so all the models presented in the next section use an IID kernel formulation. The 

implication is that, in the current empirical context, any utility covariances at the individual-level 

or at the choice occasion-level may be structurally traced to individual-level random coefficients 

in the cost and/or time coefficients. 

 

5.2. Empirical Results 

In this section, we first discuss data fit and VTTS considerations, and then present the full model 

results for the preferred model specification.   

 

5.2.1. Data Fit and VTTS Estimates 

The third main column of Table 4 shows the composite marginal likelihood (CML) values at 

convergence for the twelve model specifications discussed earlier. The same variable specification 
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was retained for all the twelve models, with the only difference being in the distributional 

assumptions for the cost and time coefficients (indeed, the same set of variables came out to be 

appropriate from a statistical significance perspective for all twelve models). The many models 

may be compared with each other based either on a nested test (when one model is a restricted 

version of the other) or a non-nested test. In Table 4, all the models with a fixed cost and/or fixed 

time coefficient are restricted versions of appropriate other models (for example, a model with a 

fixed cost coefficient and a normally distributed travel time coefficient is a restricted version of all 

models with a specified random distribution on the cost coefficient and a normally distributed 

travel time coefficient). In these cases, the restrictive models can be compared with the 

corresponding unrestricted models using the adjusted composite marginal likelihood ratio test 

(ADCLRT; see Bhat, 2014). However, for all cases of comparisons between two models with one 

or both random coefficients with different distributional assumptions, one needs to use a non-

nested statistical test.  This can be done using the composite likelihood information criterion 

(CLIC) introduced by Varin and Vidoni (2005) may be used. The CLIC takes the following form8: 

 1* )ˆ(ˆ)ˆ(ˆ)ˆ(log)ˆ(log  θHθJθθ trLL CMLCML  (22) 

The model that provides a higher value of CLIC is preferred. Technically, the CLIC statistic can 

also be used to compare nested models, though it has less power than the ADCLRT statistic. So, 

for presentation ease, in Table 4, we only show the CLIC statistic for each of the estimated models 

(however, each restricted model was rejected in favor of its unrestricted versions based on the 

ADCLRT test).  

 Several important observations may be made from Table 4. First, the model with fixed cost 

and time coefficients (Model 1) is rejected soundly relative to random coefficients on one or both 

of travel cost and travel time. This clearly suggests the presence of random individual-level 

heterogeneity in taste to cost/time. Second, models with a fixed coefficient on one of the travel 

time or travel cost variables (Models 2, 3, 4, 5, and 9) fare much more poorly than models with 

both coefficients randomly distributed (Models 6, 7, 8, 10, 11, 12). This finding supports the notion 

that it is not advisable to a priori fix a coefficient simply to make WTP computations easier (see 

                                                 
8 This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information Criterion 
(AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood inference 
procedure, the information identity holds (i.e., H(θ)=J(θ)) and the CLIC in this case is exactly the AIC 

 )ˆ(log[ θMLL (# of model parameters)]. 
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Train and Weeks, 2005, for related reasons for not fixing the cost coefficient). Third, the results 

show that the models with a fixed coefficient on travel time and a bounded distribution on travel 

cost (models 5 and 9) are superior from a data fit standpoint relative to those that specify a fixed 

coefficient on cost and a random coefficient on travel time (models 2, 3, and 4; note that the CLIC 

statistic ranges from -4320 to -4315 for the first set of models compared to the range from -4388 

to -4374 for the second set of models). The implication is that there is much more individual-level 

heterogeneity related to cost sensitivity rather than associated with time sensitivity. Fourth, 

between any pair of models with the same distributional assumption for the travel time coefficient, 

a power-lognormal distribution for the cost coefficient does better than the traditional log-normal 

distribution (compare models 5 versus 9, 6 versus 10, 7 versus 11, and 8 versus 12). As indicated 

earlier, the proposed model allows a flexible parametric distributional form for the random 

coefficients. Our results suggest that researchers may want to try the power-lognormal as an 

alternative to the log-normal, especially given potential convergence problems originating from 

the long tail of the log-normal. Fifth, the model with a power log-normal cost coefficient 

distribution and a normal time coefficient distribution (model 10) provides the best data fit, but 

also implies that, for some individuals, there is a positive valuation of travel time, leading to a 

negative VTTS value (please see additional discussion later). Based on the mean and standard 

deviation of the normal travel time coefficient, 29% of individuals are predicted to have a negative 

VTTS (this is, interestingly, in the same range as that obtained by Cirillo and Axhausen, 2006).   

 Table 4, in addition to providing data fit measures, also provides median VTTS estimates 

for three annual personal income categories: low income (US $15,000, the minimum value in the 

sample), medium income (US $50,000, the median value), and high income (US $150,000, a high 

income value). In the table, we provide the median VTTS estimates because it is a better central 

measure to compare across the models.  The VTTS median estimate is computed by drawing 

20,000 realizations from the bivariate copula distribution of the time and cost coefficients, 

computing the implied VTTS for each bivariate realization by taking the ratio of the time to cost 

draws, and then computing the median value across the 20,000 realizations (for presentation 

efficiency, we will refer to the median estimate as the VTTS estimate from hereon), Again, many 

observations stand out from the VTTS estimates. First, and as expected, for every model, the VTTS 

increases proportionally with income, which is a result of the “cost over income” specification in 

the models. Second, for each of the three income values, the VTTS estimate from the model in 
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which both the cost and time coefficients are fixed (model 1) and the model in which the cost 

coefficient is fixed and the time coefficient is normally distributed (model 2) produce the highest 

estimates. These VTTS estimates are higher than the implied wage rate for each income category 

(based on full-time work with 52 weeks and 40 hours per week, the wage rates for the low, 

medium, and high income categories are $7.2 per hour, $24 per hour and $72 per hour). These 

certainly seem out of the realm of reasonableness. On the other hand, the lowest VTTS values are 

obtained in the models that involve a lognormally or power-lognormally distributed cost 

coefficient and a random time coefficient (models 6, 7, 8, 10, 11, and 12). In these models, the 

VTTS values are about one-third of the wage rate. These models also have a superior data fit 

relative to other models. The VTTS estimates for the models with one fixed coefficient and the 

other being randomly distributed (models 3, 4, 5, and 9) lie somewhere in-between, with an implied 

value of about 63% of the wage rate. Third, a further exploration of the VTTS distributions (rather 

than simply the median VTTS estimates) reveals that there are differences in the distributions even 

between models providing similar median VTTS estimates. Thus, among models 6, 7, 8, 10, 11, 

and 12, which all use a log-normally or power-lognormally distributed cost coefficient with a 

randomly distributed time coefficient, those that use a log-normal distribution for one coefficient 

and a power-lognormal distribution for the other (models 7, 8 and 11) belong to one group (labeled 

Group 1) with a sharp spike in the VTTS distribution. This is shown in Figure 2, where, to avoid 

clutter, we show the VTTS distribution only for model 11 as the representative model for this 

group (model 11 has the best data fit in Group 1). The sharp spike for this group is, of course, a 

manifestation of the log-normal distribution used for one of the two coefficients. Also, because of 

the strictly bounded nature of the distribution for both the cost and time coefficients, we get only 

positive VTTS values. On the other hand, models 6 and 10, which use a normal travel time 

coefficient and a log-normal or power log-normal cost coefficient, also have similar VTTS 

profiles, but that are very different from Group 1. In Figure 2, we show the VTTS profile for model 

10 as the representative model for Group 2 comprising models 6 and 10. As should be obvious, 

this group allows negative VTTS values (as discussed earlier, of the order of 29% of the 

distribution) and also has the lowest spike. Similarly, there are also VTTS distribution differences 

among the four models with one fixed coefficient and the other being randomly distributed (models 

3, 4, 5, and 9). Specifically, the VTTS profiles for models 3, 5, and 9 are similar, with that of model 

9 shown in Figure 1 as the representative of this Group 3 set of models. Group 3 is identified by a 
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spike between that of Groups 1 and 2, and the longest right tail of all groups. Finally, models 4 

and 12 also have similar profiles, but are also sufficiently different to be shown separately in Figure 

2. While model 12 uses a power lognormal distribution for both the cost and the time coefficients, 

model 4 uses a power lognormal only for the time coefficient with a fixed coefficient on cost 

(rendering the VTTS to be power lognormal). The VTTS profiles of both models 4 and 12 start off 

similarly on the left edge with a spike of the same order of magnitude, but then the profile for 

model 4 moves more toward that of Group 3 with the long tail. This leads to the much higher 

median VTTS value from Model 4 compared to model 12. Overall, while different reasonable 

analysts can come to different conclusions, we believe that Model 12 represents the best 

combination of data fit, median VTTS value as a percentage of wage rate, and the shape of the 

VTTS profile. While models 6 and 10 provide a better data fit, the percentage predicted to have a 

negative VTTS is just too high in our opinion, as is the implied very high variance across 

individuals in their VTTSs. 9 

 Overall, the results indicate that there needs to be much more emphasis in the literature on 

VTTS profiles, rather than simply statistics of the VTTS values such as means, medians, and 

standard deviations. The profiles, which play a critical role in consumer welfare analyses, can be 

very different even when the imputed VTTS mean or median values are similar. Of course, the 

only way that different profiles can be considered is by allowing flexible marginal non-normal 

distributions on specific individual coefficients, which is precisely what our proposed copula 

model enables the analyst to estimate using a convenient and practically feasible hybrid MACML-

MSL inference technique.  

  

                                                 
9There has been a healthy discussion and debate in the literature (see, for example, Ory and Mokhtarian, 2005; Cirillo 
and Axhausen, 2006) on the issue of whether or not some individuals associate a positive valuation to travel time as 
opposed to the predominantly held view that people are averse to higher travel times. Of course, there is also the issue 
that this may be very context dependent, including, for example, the length of the travel time being considered (see, 
for example, Pinjari and Bhat (2006), who suggest that the sensitivity to travel time is non-linear over travel time). In 
this paper, we do not engage in this line of debate. The purpose here is to present, and demonstrate an application of, 
a flexible copula model and its estimation that can be gainfully employed to estimate different combinations of 
multivariate random coefficient distributions to then guide the final model structure and specification, based on 
theoretical considerations (for example, which coefficients should have bounded distributions and which can have 
unbounded distributions), intuitive considerations (the reasonableness of trade-off values obtained and their profiles 
over the population), and statistical data fit considerations.  
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5.2.2. Estimation Results for the Preferred Model (Model 12) 

For completeness, Table 5 presents the estimation results for the preferred model, which are 

generally consistent with the vast literature now on commute travel mode choice (see, for example, 

Bhat and Sardesai, 2006; Paleti et al., 2013; Ho and Mulley, 2015; Wang, 2015). The alternative-

specific constants in the first row panel do not have any substantive interpretations; they simply 

control for the sample values of the exogenous variables and the sample shares, though the overall 

negative signs on all the non-drive alone modes are consistent with the high mode share of the 

drive alone alternative in the sample. Individuals who earn a higher share of total household 

income are less likely to use the currently available non-solo auto modes (share-ride and bus) 

relative to those who earn a lower share of total household income, suggesting that those who 

wield more market power in the household have “first choice rights” over modes that are viewed 

as flexible, fast, and comfortable. Also, non-work activity stops made during the mid-day and/or 

during the commute encourage the use of the car mode (either drive alone or shared-ride). Women 

are less likely to commute by bus relative to men, though this variable is statistically significant at 

only the 83% confidence level. Finally, the table provides the parameters for the travel cost and 

travel time distributions, which formed the basis for much of the discussion in the earlier section. 

A point that should be noted here is that the copula parameter came out to be statistically 

insignificant in the current empirical analysis. But the situation could be different in other 

empirical contexts. In any case, the only way to test the presence and intensity of the copula 

parameter is to estimate the multivariate Gaussian copula model introduced in this paper 

 

6. SUMMARY AND CONCLUSIONS 

In this paper, we propose a mixed multinomial probit model that is able to accommodate a general 

covariance structure for the kernel error terms as well as a very flexible continuous parametric 

multivariate structure for unobserved individual heterogeneity. The latter is introduced using a 

Gaussian copula approach that ties different continuous univariate mixing distributions into a joint 

multivariate distribution. The individual univariate mixing distributions can be bounded or 

unbounded, allowing the incorporation of theoretical considerations that require specific 

coefficients to span only the half-line. In addition, our proposed approach includes the case of 

independence across specific coefficients, allows a flexible and wide range of dependence across 

coefficients, and is easy to work with. The estimation of the model is achieved using a combination 
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of the maximum simulated likelihood (MSL) technique (to accommodate the non-normal random 

coefficients) and Bhat’s MACML inference approach (to accommodate all the normal random 

coefficients as well as the kernel normal error structure; see Bhat, 2011 and Bhat, 2014). To our 

knowledge, this is the first time that a copula-based mixed MNP model has been proposed in the 

literature, along with an associated hybrid MSL-MACML inference approach that is ideally suited 

for the case when there are few non-randomly distributed coefficients (so that the MSL simulation 

does not involve very high dimensions) and many normally distributed coefficients (so that the 

MACML computational accuracy and efficiency can be realized). For the non-normal coefficients, 

the use of univariate distributions that have a closed-form inverse function facilitates quick 

estimation. Of these, we would particularly like to highlight our consideration of the power log-

normal distribution that has not been considered earlier in discrete choice models. The advantage 

of this distribution relative to other distributions on the half-line (including the log-normal) is that 

it can both allow for substantial heterogeneity (large variance parameter) and also ensure that the 

skewed tail is relatively thin, which helps convergence.  

We demonstrate the effectiveness of our inference approach through simulation exercises 

as well as an empirical application. The simulations involve cross-sectional choice data with a 

sample size of 3000, and two configurations of three random coefficients. The first includes two 

power log-normal coefficients and one normal coefficient, while the second considers one each of 

power log-normal, exponential and normal coefficients. Overall, the simulation results indicate 

that the proposed method allows for accurate parameter recovery. Further, the asymptotic standard 

errors from the method also quite closely reflect the finite sample standard deviations.  One 

finding, however, is that it appears to be more difficult to recover the copula parameters 

characterizing the dependence between pairs of univariate margins, especially between pairs of 

non-normal univariate margins. Also, the simulation results suggest that distributions with very 

long tails (such as the exponential and lognormal) make it particularly difficult to recover variance 

parameters and corresponding copula parameters of dependence with other margins.  However, 

even in these cases, the method performs quite well. Future simulation studies should study the 

performance of the proposed method in more detail, in relation to varying sample sizes, both cross-

sectional and repeated choice data, different degrees of copula dependence, an array of different 

bounded and unbounded univariate margins, and varying numbers of random coefficients.  
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 The empirical application focuses on a repeated choice commute travel mode stated 

preference data collected in Austin, Texas. The results reiterate the importance of the power 

lognormal distribution as a strong contender (and alternative) to the traditional lognormal 

distribution and other bounded distributions for the travel cost coefficient. Additionally, the 

preferred model with a power lognormal distribution for the cost coefficient (with p=5) and a 

power lognormal distribution for the time coefficient yields a median value of travel time savings 

that is about a third of the wage rate. Further our results do suggest there is much more individual-

level heterogeneity related to cost sensitivity rather than associated with time sensitivity.  

 Of course, the emphasis of this paper has been on presenting a new copula-based discrete 

choice model structure and an associated inference approach. Much still needs to be done in terms 

of investigating ways to obtain good starting parameters for the copula model with different 

marginal distributions, and develop structured optimization algorithms for the quick estimation of 

models with power lognormal and other margins (for example, is there a better way to optimize 

rather than fix p values and estimate different specifications repeatedly, which can become 

cumbersome when there are many random coefficients). Besides, additional research needs to 

compare the performance and effectiveness of the proposed copula-based model with other non-

parametric ways to introduce taste heterogeneity. There is also room for testing different 

distributional assumptions that were not included in this study. For example, future research should 

test the use of log-uniform and log-triangle distributions that, similar to the power log-normal, are 

bounded above zero and have thin tails that allow for heterogeneity while facilitating convergence. 

We hope that this new flexible parametric approach will offer researchers and practitioners another 

way of accommodating heterogeneity in a general and efficient manner in choice models, and open 

up a new stream of empirical applications with bounded and non-normal distributions. 
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Figure 1: Comparison of the log-normal (p=1) and the power log-normal distributions for identical 
values of µ and σ (µ=0 and σ=1) 
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* Includes  Model 7-  Log-normal cost coefficient, Log-normal time coefficient 
  Model 8-  Log-normal cost coefficient, Power log-normal time coefficient 

 Model 11- Power log-normal cost coefficient, Log-normal time coefficient 
** Includes Model 6- Log-normal time coefficient, Normal time coefficient 
 Model 10- Power log-normal cost coefficient, Normal time coefficient. 
*** Includes  Model 3- Fixed cost coefficient, Log-normal time coefficient 
 Model 5- Log-normal cost coefficient, Fixed time coefficient 
 Model 9- Power log-normal cost coefficient, Fixed time coefficient 
+ Includes  Model 4- Fixed cost coefficient, Power log-normal time coefficient 
++ Includes Model 12-  Power log-normal cost coefficient, Power log-normal time coefficient 

 

Figure 2: Resulting VTTS distributions for different groups of models that have random coefficents 
for cost or time, or both.  
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Table 1: Sample distributions with closed-form inverse cumulative distribution functions and that are bounded on the half-line 

 
Distribution 

Name 

Density Function 
ఉ݂ሺܼሻ ൌ Probሾߚ ൌ 	ܼሿ 

Cumulative Distribution 
Function 

ఉሺܼሻܨ ൌ Probሾߚ
൏ ܼሿ 

Inverse CDF 
ఉܨ
ିଵ ሺ݃ሻ 

General Notes 

Exponential 
1
ߪ ݁

ିቀି	ఓఙ ቁ 1 െ ݁ିቀ
ି	ఓ
ఙ ቁ െߪ lnሺ1 െ ݃ሻ   ߤ	

ݖ  0, ߪ  0, ߤ  0 
Mean ൌ ߪ   ,ߤ
Median ൌ ሺ2ሻ	lnߪ	   ,ߤ	
Mode ൌ  ,ߤ	
Range:	ߤ	to	∞, 
Std. Dev ൌ  ,ߪ	
All inverse moments exist if ߤ  0 
No inverse moments exist if ߤ ൌ 0 

Rayleigh ൬
ܼ െ ߤ	
ଶߪ ൰ ݁

ିቈଵଶቀ
ି	ఓ
ఙ ቁ

మ

 1 െ ݁

ିቈଵଶቀ
ି	ఓ
ఙ ቁ

మ

ሺ1	ඥെ2lnߪ  െ ݃ሻ   ߤ	

ݖ  0, ߪ  0, ߤ  0 

Mean ൌ ටߪ
ߨ
2   ,ߤ

Median ൌ ሺ2ሻ	ඥ2lnߪ	   ,ߤ	
Mode ൌ ߪ	   ,ߤ
Range:	ߤ	to	∞, 

Std. Dev ൌ ඨߪ	
4 െ ߨ
2 , 

All inverse moments exist if ߤ  0 
No inverse moments exist if ߤ ൌ 0 

Weibull ቀ
ߛ
ቁߙ ൬

ܼ െ ߤ
ߙ ൰

ఊିଵ

݁ିቀ
ି	ఓ
ఈ ቁ

ം
൨
 1 െ ݁ିቀ

ି	ఓ
ఈ ቁ

ം
൨
 

ሺ1	ሾെlnߙ െ ݃ሻሿ
ଵ ఊൗ

  ߤ	

ݖ  0, ߪ  0, ߛ  0, ߤ  0 
Mean ൌ ଵିߛΓሺߪ  1ሻ   ,ߤ
Median ൌ ሺ2ሻሿଵ	ሾlnߪ	 ఊൗ   ,ߤ	

Mode ൌ 	ቊ
ൌ 0	݂݅																																ߤ ൏ ߛ  1
ൌ ሾሺ1ߙ െ ଵሻሿଵିߛ ఊൗ  ߛ	݂݅					ߤ	  1

, 

Range:	ߤ	to	∞, 
Std. Dev ൌ ሾΓሺ1ߪ	  ଵሻିߛ2 െ ሼΓሺ1   ,ଵሻሽଶሿିߛ

Γሺܽሻ ൌ 	න ݐିଵ݁ି௧݀ݐ
∝

௧ୀ
 

All	inverse	moments	exist	if	ߤ  0 
Inverse	݇௧	inverse	moments	exist	if	ߤ ൌ 0	and	ߛ  ݇ 
If ߛ ൌ 1,Weibull collapses to exponential 
If ߛ ൌ 2,Weibull collapses to Rayleigh with ߙ ൌ  ߪ2√



40 

Distribution 
Name 

Density Function 
ఉ݂ሺܼሻ ൌ Probሾߚ ൌ 	ܼሿ 

Cumulative Distribution 
Function 

ఉሺܼሻܨ ൌ Probሾߚ
൏ ܼሿ 

Inverse CDF 
ఉܨ
ିଵ ሺ݃ሻ 

General Notes 

Log-
Normal 

1
ܼߪ

	߶ ൬
lnܼ െ ߤ	

ߪ ൰ Φ൬
lnܼ െ ߤ	

ߪ ൰ ݁ሾఙథషభሺሻାఓሿ 

ݖ  0, ߪ  0 

Mean ൌ ݁ቀఓା
ଵ
ଶఙ

మቁ, 
Median ൌ 	 ݁ఓ 
Mode ൌ 	݁ఓିఙమ, 
Range:	Strictly	positive	Real	line, 

Std. Dev ൌ 	 ݁ఓට݁ఙమ൫݁ఙమ െ 1൯, 

All inverse moments exist 

Power Log-
Normal 

൬

ܼߪ

൰߶ ൬
lnܼ െ ߤ	

ߪ ൰ 

൜Φ െ൬
lnܼ െ ߤ	

ߪ ൰൨ൠ
ିଵ

 
1 െ ൜Φ െ൬

lnܼ െ ߤ	
ߪ ൰൨ൠ



 ݁ሾିఙ
షభሺଵିሻ

భ ൗ ൨ାఓሿ
 

ݖ  0, ߪ  0,   0 

Mean ൌ න ݁ିఙ
షభ൬௬

భ ൗ ൰ା	ఓ൨݀ݕ
ଵ


, 

Median ൌ 	 ݁ሾିఙషభሼ.ହ
భ ൗ ሽାఓሿ 

Mode	is	solution	to: 1  ൬
lnܼ െ ߤ	

ଶߪ ൰

 ൬
 െ 1
ߪ ൰ϕ൬

lnܼ െ ߤ	
ߪ ൰ Φ ൜െ൬

lnܼ െ ߤ	
ߪ ൰ൠ൨

ିଵ

ൌ 0 

Range:	Strictly	positive	Real	line, 

Std. Dev ൌ 	ඨቈቊන ݁ିଶఙ
షభ൬௬

భ ൗ ൰ା	ఓ൨
ଵ


ቋݕ݀ െ Meanଶ, 

If  ൌ 1, power lognormal collapses to lognormal 
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Table 2: Simulation results for 200 samples of 3000 observations: Two power log-
normal and one normal random parameter 

Parameter True value
Parameter Estimates Standard Error 

Mean 
Estimate 

APB ASE FSSD APBASE

Power log-normal 

1  0.500 0.475 5.09% 0.163 0.164   0.92% 

2  0.500 0.467 6.53% 0.165 0.164   1.02% 

1  1.000 0.986 1.38% 0.178 0.171   4.51% 

2  1.000 0.972 2.82% 0.184 0.169   8.54% 

Normal 
r 0.500 0.491 1.75% 0.070 0.065   7.29% 
  1.500 1.495 0.37% 0.139 0.128   8.63% 

Copula Correlation 

1Γl  0.600 0.592 1.34% 0.184 0.160 15.44% 

2Γl  0.400 0.381 4.63% 0.111 0.129 14.07% 

3Γl  0.200 0.236 18.19% 0.158 0.132 19.72% 

Kernel Covariance 
5Θl  0.404 0.413 2.29% 0.149 0.168 11.27% 

6Θl  0.998 0.980 1.80% 0.101 0.094   7.42% 

Overall Average - - 4.20% 0.146 0.140   8.98% 
 
 

Table 3: Simulation results for 200 samples of 3000 observations: One power log-
normal, one exponential and one normal random parameter 

Parameter True value
Parameter Estimates Standard Error 

Mean 
Estimate 

APB ASE FSSD APBASE

Power log-normal 
1  0.500 0.502 0.45% 0.156 0.152   2.82% 

1  1.000 1.000 0.00% 0.167 0.162   3.29% 

Exponential 
2  1.000 1.013 1.28% 0.119 0.126   6.09% 

2  0.800 0.792 1.05% 0.281 0.209 34.48% 

Normal 
r 0.500 0.498 0.47% 0.074 0.070   5.95% 
  1.500 1.504 0.26% 0.138 0.139   0.25% 

Copula 
Correlation 

1Γl  0.400 0.441 10.22% 0.213 0.178 19.65% 

2Γl  0.600 0.604 0.60% 0.095 0.101   6.18% 

3Γl  0.393 0.394 0.20% 0.155 0.141   9.99% 

Kernel Covariance 
5Θl  0.404 0.393 2.66% 0.164 0.165   0.64% 

6Θl  0.998 0.973 2.54% 0.106 0.100   5.99% 

Overall Average - - 1.80% 0.152 0.140   8.67% 
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Table 4: Data fit and Value of Travel Time Savings (VTTS) for different models 

 
 

Model 
Number 

Coefficient distribution Composite 
marginal log-

likelihood 
(CML) value at 

convergence 

CLIC 
statistic 

 
Median VTTS Value (computed by simulation 
using 20,000 bivariate simulation realizations) 

Cost1 Time 
Low annual 

income  
(US $15,000) 

Medium 
annual income 
(US $50,000) 

High annual 
income  

(US $150,000) 

1 Fixed Fixed -4390.02 -4420.11   8.72 29.08   87.24 

2 Fixed Normal -4355.96 -4387.57 10.47 34.89 104.67 

3 Fixed Log-normal -4365.14 -4376.27   4.68 15.59   46.78 

4 Fixed Power log-normal2 -4364.73 -4375.73   4.56 15.19   45.59 

5 Log-normal Fixed -4319.15 -4330.32   4.47 14.89   44.68 

6 Log-normal Normal -4281.47 -4294.56   2.91   9.79   29.14 

7 Log-normal Log-normal -4300.15 -4313.22   2.44   8.15   24.45 

8 Log-normal Power log-normal -4299.58 -4312.79   2.32   7.73   23.18 

9 Power log-normal Fixed -4315.64 -4326.65   4.59 15.31   45.92 

10 Power log-normal Normal -4277.88 -4290.96   2.47   8.23   24.69 

11 Power log-normal Log-normal -4296.69 -4309.71   2.48   8.28   24.85 

12 Power log-normal Power log-normal -4296.08 -4309.09   2.30   7.68   23.04 

1 The cost variable is introduced in all specifications as cost/personal income.  
2 For all Power log-normal distributions p=5. 
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Table 5: Empirical results of model with power lognormal cost coefficient  
and power lognormal time coefficient 

(coefficients provide the impact of variables on the utility of alternatives) 
 

Variable name 
Parameter Estimates 

Coef. t-stat 

Alternative specific constants   

Shared ride -0.595 -9.67 

Bus -1.160 -10.35 

Commuter rail -0.174 -4.16 

Personal income divided by household income   

Shared ride/Bus -0.263 -3.24 

Individual makes non-work mid-day stops    

Drive alone 0.072 2.51 

Individual makes commute stops   

Bus -0.431 -3.83 

Commuter rail -0.119 -2.70 

Female   

Bus -0.130 -1.38 

Level of service variables   

Trip cost (dollars) divided by personal annual income 
(dollars divided by 105) 

  

Mean 1.941 8.16 

Standard deviation 2.802 26.98 

Travel time (hours)   

Mean 2.096 6.29 

Standard deviation 2.570 13.16 

Copula Correlation 0.120 0.48 

 


