Code Documentation for approximating the MVNCD function and using the MACML method for MNP model structures

This is an addendum to help understand the multivariate normal cumulative distribution (MVNCD) function code and how it is to be used for the estimation of MNP model structures using the maximum approximate composite marginal likelihood (MACML) method. The MNP structures that may be estimated using the code include (i) Cross-sectional random parameters with and without correlation, (ii) Panel random parameters with and without correlation and (iii) Panel intra- and cross-temporal random parameters with and without correlation. Each of these cases is described in detail later. The input dataset specification for each model is also provided in this documentation. 

In all of the cases, the error terms (after accommodating for the random coefficients) are assumed to be independent and identically distributed (IID) across alternatives and individuals (in the cross-sectional cases) and assumed to be IID across alternatives, individuals, and choice occasions in the panel cases. Extensions to relax these assumptions lead to additional identification considerations and some additional coding needs, which readers can undertake on their own rather easily once they have the code presented here (see Section 5 of Bhat, 2011 for a discussion on relaxing the IID assumption across alternatives and individuals in a cross-sectional setting, and Sidharthan and Bhat, 2011 for a discussion on relaxing the IID assumption across alternatives, individuals, and choice occasions in a panel setting). The reader may also want to refer to Bhat and Sidharthan, 2011a.

Sidharthan, R. and C.R. Bhat (2011) “Incorporating Spatial Dynamics and Temporal Dependency in Land Use Change Models”, Technical paper, Department of Civil, Architectural & Environmental Engineering, The University of Texas at Austin, May 2011, http://www.ce.utexas.edu/prof/bhat/ABSTRACTS/LandUse_unabridged.doc.

Bhat, C.R. and R. Sidharthan (2011a) "A New Approach to Specify and Estimate Non-Normally Mixed Multinomial Probit Models," Technical paper, Department of Civil, Architectural & Environmental Engineering, The University of Texas at Austin, July 2011, http://www.ce.utexas.edu/prof/bhat/ABSTRACTS/Skew_normal_paper_unabridged.doc

Please refer to Bhat, C.R. (2011) before using this code. Several notations and instructions in this documentation will use terminology from Bhat, C.R. (2011). 

If you use any of the Gauss codes (in part or in the whole, and even if you rewrite one or more codes in part or in the whole to some other language and use), please acknowledge so in your work and cite the following two papers:
Bhat, C.R. (2011), "The Maximum Approximate Composite Marginal Likelihood (MACML) Estimation of Multinomial Probit-Based Unordered Response Choice Models," Transportation Research Part B, 45 (7), 923-939.
Bhat, C.R., and R. Sidharthan (2011b), "A Simulation Evaluation of the Maximum Approximate Composite Marginal Likelihood (MACML) Estimator for Mixed Multinomial Probit Models," Transportation Research Part B, 45 (7), 940-953. 


1. Instructions to use the code (cdfmvna.src) for approximating the MVNCD function

1. Download getPermutations.src, cdfmvna.src, cdfmvna.EXT and cdfmvna.DEC. Copy all four files into the “Gauss\src” sub-directory.

2. Add the following lines in your Gauss.lcg file in the “Gauss\lib” sub-directory

getPermutations.src
    getPermutations    : proc

cdfmvna.dec
    _randd   : matrix
    _randper : matrix

cdfmvna.src
    cdfmvna   : proc
    get2comb  : proc
    pdfmvna   : proc


3. After completing the two steps above, the MVNCD function can be used in other gauss programs by invoking the cdfmvna procedure.


2. Brief discussion of the code (cdfmvna.src) for approximating the MVNCD function

The purpose of this code is to approximate the orthant probabilities for the standard multivariate normal distribution using only bivariate and univariate cumulative standard normals, both of which are available in gauss as built-in functions. The function is to be used for trivariate or higher-order multivariate standard normal distributions and not for the univariate or bivariate standard normal distributions. 

Note that the estimation codes for the unordered-response model structures have embedded within them calls to the code for approximating the MVNCD function.  

The format to call the MVNCD function approximation code is as follows

      { w,s1 } = cdfmvna(a,r,s)

 Input:		a - 1 x K vector of abscissae
r - K x K correlation matrix
              	s - seed value to use to generate random permutations; value of s does not matter if _randd=0 and _randper=0 (see more on these globals below).

 Output: w - 1 x 1 vector  Pr(X < a|r). 
              s1 - new seed coming out of cdfmvna.   

Sample 

a = {1 -1.2 2.5};

r = {1.00 0.50 0.25,
       0.50 1.00 0.50,
       0.25 0.50 1.00}; 

 s = 1343984;

_randper = 1;

{ w,s1 } = cdfmvna(a,r,s);

print w;
		0.11291163

Globals _randd and _randper

The analyst should provide values of _randd and _randper before the call to the MVNCD approximation code (if the user does not specify values for these two globals, the default values are _randd=0 and _randper=0). _randd and _randper are global variables that control how many permutations and how the permutations, respectively, are selected for use in approximating the multivariate orthant probability. The code is structured such that _randper must be zero if _randd takes a positive value. However, the value assigned to _randd is immaterial if _randper takes a positive value. 

The global _randd (when combined with the specification _randper=0) determines if all permutations of conditional probabilities will be considered in approximating the multivariate orthant probability (_randd=0) or if only a random sample of permutations of conditional probabilities will be considered (_randd=num).  Essentially, _randd uses all 2-combinations at the beginning, and then for each 2-combination, considers "num" permutations. Thus, assume you are computing a five-variate orthant probability. Then, if _randd=2 and _randper=0, then the code first generates all possible sequences with the first two digits in the sequence being unique (in the example, this will be 5C2 = 10 sequences) . For each of these 10 sequences, it then generates “num” (=2 in the example) random sequences corresponding to the positioning of the remaining three digits. Thus, a total of 20 permutations of the digits for the conditional probability evaluations is used. On the other hand, if _randd=0 (with _randper=0), then all the 60 permutations of the digits will be generated and used in the approximation of the five-variate orthant probability. 

The global _randper determines if all permutations of conditional probabilities will be considered or if only a random sample of permutations will be considered. If _randper=0 and _randd=0, all permutations of digits will be considered (as discussed earlier). However, if _randper=num (and regardless of the value of _rand in this case), the code will generate “num” number of digit permutations for use in evaluating the orthant probability. For example, if you are computing a five-variate orthant probability, and _randper=2, then the code will generate a total of 2 permutations of all five digits for use in the approximation of the five-variate orthant probability. 

In general, _randd=num will provide a more accurate evaluation of the multivariate orthant probability than _randper=num, just because _randd=num uses more permutations. However, _randd=num will also take more time to approximate the multivariate orthant probability than _randper=num. For the estimation of discrete choice models, _randper=1 should suffice. 
















3. Input Dataset Specifications for Mixed MNP Model Estimation
The dataset should be in the form of a gauss data file created using the ATOG utility. The dataset should include the following columns with the required variable names.
1. A column of 1s with a variable label uno
2. A column of 0s with a variable label sero
3. Case ID: A column of observation numbers from 1 to number of choice observations in the data. If the data is cross-sectional and has 1000 observations, Case ID will take consecutive values from 1 to 1000. If the data is a panel and has 250 individuals with 4 choice observations each, Case ID will still take consecutive values from 1 to 1000. The label for this column should be case
4. Dependent variables: As many columns as the number of alternatives, with each column taking a value of 1 if the corresponding alternative is the chosen alternative and zero if it is not the chosen alternative.
5. Explanatory variables: One column for each explanatory variable

3.1 Cross sectional Data
The data should comprise as many rows as the number of observations, one row for each decision-maker.

3.2 Panel Data
In the case of panel data, a few additional variables need to be defined in the dataset. These are

1. Person ID: The individual number in the data set, consecutive from one to the number of individuals in the sample. If an individual has five choice occasions, all of these five choice occasions will take the same value for person id. The label for this column should be perid.
2. The number of choice occasions per individual. If an individual has five choice occasions in the data, this variable will take a value of 5 for each of those five choice occasions. The label for this column is nchoc.

3.3 Sample Data
In this package, six sample gauss datasets are provided. Two of them are cross-sectional datasets (CS_uncorrelated.dat and CS_correlated.dat), and the other four are panel datasets (PN_uncorrelated.dat, PN_correlated.dat, PNCS_uncorrelated.dat and PNCS_correlated.dat). See discussion in Section 4 for further details of each of these six data sets. Some general characteristics of all these data sets are as follows:

1. All the datasets are for a five-alternative, five-variable choice context. 
2. The first five columns correspond to the five variables for the first alternative, the second five columns correspond to the second alternative, and so on until the 25th column. The gauss column names start with x01 for the first column and ends with x25 for the 25th column.
3. The 26th to the 30th (both included) columns are the chosen indicators (dummy variables) for the first alternative to the fifth alternative in that order. The analyst should ensure that the sum of these dummy variables is equal to one for each data row. 
4. The 31st column corresponds to case.
5. The 32nd column is uno and the 33rd column is sero.

For the Panel datasets there are two additional columns

6. The 34th column is the Person ID -  perid.
7. The 35th column is the number of choice occasions for that individual – nchoc.

The cross-sectional datasets contains 5000 observations and the panel datasets contain 2500 observations. In the panel datasets, there are 500 individuals and each individual has five choice occasions. The panel code provided is for the case where each individual has the same number of choice occasions. If the number of choice occasions varies across individuals, the code can be modified in a straightforward manner based on Section 4.2 of Bhat (2011). 

Each of the datasets provided in this package is based on a specific data generating process. Hence, the parameters can be recovered if the appropriate model is used on the right dataset. However, note that the estimation results presented below are based on a single data sample generated from the underlying parameters. Thus, while the estimated and “true” parameters should be reasonably close, there is no reason for them to be exactly the same. See Bhat and Sidharthan (2011) for an extended simulation analysis of the ability of the MACML method to recover parameters. 

The next section discusses the various models and provides an overview of the results. Complete results for each model specification are in the text file entitled “Results”.

4. MACML Applications




Consider a random-coefficients formulation in which an individual q associates a utility value of  to alternative i . This utility is a function of a -column vector of exogenous attributes associated with the individual q and alternative i, and a stochastic idiosyncratic term  that is assumed to independently and identically normal distributed (across alternatives and individuals) with a mean of zero and a variance of one-half. 

4.1 Cross sectional Random Parameters Model








where  is an individual-specific -column vector of corresponding coefficients that varies across individuals based on unobserved individual attributes.  is uncorrelated with the elements of the vector  


	  

4.1.1 Independent Parameters Case


In the independent case,  is a diagonal matrix with elements  The code for estimating this model is available in the file labeled "Cross Sectional Random Parameters.GAU". The input data file is CS_uncorrelated.dat, which is generated based on the underlying “true” parameter values in the second column of the table below:



	Parameter
	True
	Estimated

	b1
	 1.500
	1.460

	b2
	-1.000
	-0.939

	b3
	 2.000
	1.997

	b4
	 1.000
	1.011

	b5
	-2.000
	-1.980

	σ1
	 1.000
	0.959

	σ2
	 1.000
	0.930

	σ3
	 1.000
	1.010

	σ4
	 1.000
	0.995

	σ5
	 1.000
	1.074



The estimation results with the settings in the code should return the estimated values in the third column of the table above.

4.1.2 Covariance Parameters Case

In this case,  is not diagonal. The true underlying covariance matrix used to generate data is:


 

See Section 2.1 of Bhat and Sidharthan (2011). This is a positive-definite matrix. The upper diagonal Cholesky matrix is estimated in the code, with the underlying Cholesky matrix as follows:




The code for estimating this model is available in the file labeled "Cross Sectional Random Parameters with Correlation.GAU". The input data file is CS_correlated.dat. The true and estimated parameter values are provided in the table on the next page.



	Parameter
	True
	Estimated

	b1
	 1.500
	1.315

	b2
	-1.000
	-0.844

	b3
	 2.000
	1.842

	b4
	 1.000
	0.886

	b5
	-2.000
	-1.792

	l11
	 1.000
	0.919

	l12
	-0.500
	-0.486

	l13
	 0.250
	0.240

	l14
	 0.750
	0.652

	l15
	 0.000
	0.037

	l22
	 0.866
	0.588

	l23
	 0.433
	0.508

	l24
	-0.144
	0.057

	l25
	 0.000
	0.080

	l33
	 0.866
	0.691

	l34
	 0.237
	0.140

	l35
	 0.000
	-0.094

	l44
	 0.601
	0.452

	l45
	 0.000
	-0.159

	l55
	 1.000
	0.935





4.2 Panel Random Parameters Model







Here the coefficients  is assumed to be constant over choice situations of a given decision maker. See Section 4.1 in Bhat (2011).   is uncorrelated with the elements of the vector 
  

4.2.1 Independent Parameters Case

In the independent case,  is a diagonal matrix. The code for estimation is in the file labeled "Panel Random Parameters.GAU" file. The input file is PN_uncorrelated.dat. The true and estimated parameter values are provided on the next page.

	Parameter
	True
	Estimated

	b1
	 1.500
	1.540

	b2
	-1.000
	-1.184

	b3
	 2.000
	1.994

	b4
	 1.000
	1.162

	b5
	-2.000
	-2.021

	σ1
	 1.000
	1.049

	σ2
	 1.000
	1.014

	σ3
	 1.000
	1.011

	σ4
	 1.000
	1.176

	σ5
	 1.000
	1.045




4.2.2 Covariance Parameters Case


The covariance matrix  is the same as in the cross-sectional case. The code for estimating this model is available in the file labeled "Panel Random Parameters with correlation.GAU". The input data file is PN_correlated.dat . The true and estimated parameter values are provided below:

	Parameter
	True
	Estimated

	b1
	 1.500
	1.248

	b2
	-1.000
	-0.868

	b3
	 2.000
	1.651

	b4
	 1.000
	0.885

	b5
	-2.000
	-1.625

	l11
	 1.000
	0.851

	l12
	-0.500
	-0.423

	l13
	 0.250
	0.248

	l14
	 0.750
	0.605

	l15
	 0.000
	0.002

	l22
	 0.866
	0.710

	l23
	 0.433
	0.272

	l24
	-0.144
	-0.212

	l25
	 0.000
	-0.093

	l33
	 0.866
	0.751

	l34
	 0.237
	0.190

	l35
	 0.000
	0.154

	l44
	 0.601
	0.561

	l45
	 0.000
	-0.074

	l55
	 1.000
	0.822




4.3 Panel Intra- and Cross-Temporal Random Parameters




,  where , , .
See Section 4.3.1 of Bhat (2011).  
 
4.3.1 Independent Parameters Case


In the independent case,  and  are diagonal. The code for estimation is in the file labeled "Panel Random Intra- and Cross-Temporal Heterogeneity Parameters.GAU". The input file is PNCS_uncorrelated.dat. The true and estimated parameter values are provided below:

	Parameter
	True
	Estimated

	b1
	 1.500
	1.533

	b2
	-1.000
	-1.047

	b3
	 2.000
	2.000

	b4
	 1.000
	1.248

	b5
	-2.000
	-2.220

	σ1
	 1.000
	1.071

	σ2
	 1.000
	0.909

	σ3
	 1.000
	1.160

	σ4
	 1.000
	0.925

	σ5
	 1.000
	1.051

	σ̃1
	 1.000
	0.975

	σ̃2
	 1.000
	0.902

	σ̃3
	 1.000
	1.148

	σ̃4
	 1.000
	0.960

	σ̃5
	 1.000
	1.142




4.3.2 Covariance Parameters Case


In the covariance case,  and are non-diagonal matrices. See Section 2.3 of Sidharthan and Bhat (2011). The code for estimation is in the file labeled "Panel Random Intra- and Cross-Temporal Heterogeneity Parameters with Correlation.GAU" file. The input file is PNCS_correlated.dat. The true and estimated parameter values are provided on the next page.

 
	Parameter
	True
	Estimated
	Parameter
	True
	Estimated

	b1
	 1.500
	1.498
	 
	 
	 

	b2
	-1.000
	-0.967
	 
	 
	 

	b3
	 2.000
	1.888
	 
	 
	 

	b4
	 1.000
	1.069
	 
	 
	 

	b5
	-2.000
	-2.007
	 
	 
	 

	l11
	 1.000
	0.969
	l̃11
	1.000
	0.957

	l12
	-0.500
	-0.384
	l̃12
	0.000
	0.072

	l13
	 0.250
	0.387
	l̃13
	0.000
	0.314

	l14
	 0.750
	0.798
	l̃14
	0.000
	-0.126

	l15
	 0.000
	0.105
	l̃15
	0.000
	0.057

	l22
	 0.866
	0.883
	l̃22
	1.000
	0.881

	l23
	 0.433
	0.358
	l̃23
	0.500
	0.469

	l24
	-0.144
	-0.037
	l̃24
	0.500
	0.426

	l25
	 0.000
	-0.089
	l̃25
	0.500
	0.450

	l33
	 0.866
	0.775
	l̃33
	0.866
	0.790

	l34
	 0.237
	0.072
	l̃34
	0.289
	0.666

	l35
	 0.000
	0.107
	l̃35
	0.289
	0.164

	l44
	 0.601
	0.634
	l̃44
	0.817
	0.612

	l45
	 0.000
	-0.128
	l̃45
	0.204
	0.400

	l55
	 1.000
	0.920
	l̃55
	0.791
	0.735
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