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ABSTRACT 

 

The existing literature on departure time choice has primarily focused on work trips.  This 

thesis examines departure time choice for non-work trips, which constitute an increasingly large 

proportion of urban trips.  Discrete choice models are estimated for four categories of home-

based non-work trips using the 1996 activity survey data collected in the Dallas-Fort Worth 

metropolitan area.  The effects of individual and household socio-demographics, employment 

attributes, and trip characteristics on departure time choice are presented and discussed.  The 

results indicate that departure times for non-work trips are determined for the most part by 

individual/household socio-demographics and employment characteristics, and to a lesser extent 

by trip level-of-service characteristics.  This suggests that departure times for non-work trips are 

not as flexible as one might expect and are confined to certain times of day because of overall 

scheduling constraints.  The paper concludes by identifying future methodological and empirical 

extensions of the current research. 
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EXECUTIVE SUMMARY 

 

There are many aspects of choice associated with individual trip-making.  These choices 

include frequency, destination, mode, and route, and all of these components are explicitly 

modeled in the four-step Urban Transportation Model System (UTMS) procedure used by 

Metropolitan Planning Organizations (MPOs) in most cities.  However, time-of-day choice is a fifth 

and equally important dimension of choice that has received relatively little attention in the trip-

based modeling approaches adopted by MPOs.  However, in the past decade there has become 

an increasing need to understand travel behavior responses to shorter term, time-of-day specific, 

congestion management policies such as peak period pricing and peak period high occupancy 

vehicle use incentives.  In addition, air quality modeling requires temporal resolution in the 

number of vehicle trips.   

The recognition of the need for temporal resolution in trip-making has led MPOs of some 

large metropolitan areas to apply fixed, aggregate-level, factors to apportion the predicted total 

daily travel to different times of the day.  The use of such fixed factors in travel modeling 

represents an improvement over disregarding the time-of-day dimension entirely, however, it is 

still very simplistic.  The importance of obtaining an accurate picture of the departure time 

decisions of individuals motivates the research in this thesis.  Specifically, this thesis examines 

the effect of individual and household socio-demographic characteristics, employment-related 

attributes, and trip characteristics on departure time choices of individuals.  The departure time 

alternatives are represented by six temporally contiguous discrete time periods that collectively 

span the entire day.  The choice among these alternatives is modeled using a discrete choice 

model. 

Within the context of departure time choice, the focus of this study is on non-work trips.  

This thesis concentrates on four types of trips within the broad category of non-work trips: home-

based social/recreational, shopping, personal business, and community activity trips.  The 

selected trip purposes comprise the largest proportion of non-work trips in most metropolitan 

areas.  

Two model structures are explored for modeling departure time choice among the six 

discrete periods: the multinomial logit (MNL) and the ordered generalized extreme value (OGEV) 

structures.  The latter is a generalization of the former and allows an increased degree of 

sensitivity (due to excluded factors) between temporally adjacent departure periods compared to 



temporally non-adjacent periods.  For all trip purposes, the analysis indicates that the MNL model 

is adequate to model departure time choice. 

The empirical analysis in the paper uses the 1996 activity survey data collected by the 

North Central Texas Council of Governments (NCTCOG) in the Dallas-Fort Worth area, along 

with a level-of-service (LOS) data file obtained from NCTCOG that provided information on the 

Dallas-Fort Worth network.  Several sets of variables were considered in the model 

specifications, including individual and household socio-demographics, employment-related 

attributes and trip-related characteristics.  Important overall results from the empirical analysis are 

as follows:  

• gender does not have an important role in departure time choice, 

• older individuals are most likely to participate in non-work activities during the mid-day, 

• high-income-earning individuals avoid the mid-day periods for shopping and personal 

business, 

• individuals with very young children (under 5 years of age) in their households are 

unlikely to pursue most activities during the p.m. peak and evening, presumably because 

of the increased biological needs of young children during these late times of the day, 

• individuals with children below 5 years of age are unlikely to participate in shopping 

activities during the mid-day, 

• individuals with children above 5 years of age in their households, on the other hand, are 

most likely to pursue recreational activities during the p.m. peak period since this is the 

most convenient time to jointly participate in recreational activities, 

• individuals with children above 5 years of age are unlikely to pursue recreational, 

personal, and community activities during the mid-day, 

• employed individuals and students are most likely to participate in non-work activities 

during the latter parts of the day, 

• self-employed individuals are more likely than externally employed individuals to 

“sandwich” a recreational, shopping, or personal activity between the a.m. and p.m. work 

periods, 

• trips to a non-work activity from home tend to be made before the evening period, 

• trips pursued together with others or by walk are likely to be undertaken during the p.m. 

peak and evening periods, and 

• in the current empirical context, the only level-of-service variable that has a significant 

impact is trip travel time and even this applies only for recreational trips.  

 



The empirical results indicate the strong impact of socio-demographic and employment-

related characteristics on departure time choice for non-work trips.  These results have 

substantial implications for transportation planning analysis.  Specifically, the analysis suggests 

that ignoring the effects of these variables can lead to misinformed transportation planning and air 

quality decisions because of changing demographic and employment-related trends over the next 

few decades.  The need to include socio-demographic and employment attributes is also 

important because of spatial differences in these variables within a metropolitan region.  Applying 

fixed factors to apportion total daily travel to different times of the day assumes away the 

existence of spatial demographic variations and will, in general, lead to incorrect network 

assignment volumes by time of day.  This, in turn, can lead to inaccurate VMT and speed 

estimates by time of day and, consequently, inaccurate transportation-air quality analysis. 

An interesting finding from the research in this thesis is that level-of-service 

characteristics do not appear to substantially impact departure time for non-work trips.  This has 

significant implications for time-of-day specific transportation control measures (such as peak-

period pricing or converting a general-purpose lane to a high occupancy vehicle use lane).  

Specifically, the results imply that there will be little to no temporal displacements of non-work 

trips because of such policies.  This suggests that non-work trips may not be as temporally 

flexible as one might think.   
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CHAPTER 1:  INTRODUCTION 

 

TRAVEL DEMAND MODELING 

Travel demand modeling is an essential component of the transportation planning 

process.  It enables transportation planners to forecast future travel needs, to quantify the effects 

of changes in the transportation system, and to compare alternatives when making 

transportation-related decisions.  Transportation systems comprise a complex set of interactions 

among travelers, infrastructure, and transport policy actions, and the mathematical modeling of 

these interactions constitutes an important component of overall efforts to analyze transportation 

systems.    

Travel demand modeling is also necessary because of the dynamic nature of the factors 

that affect travel.  Socio-demographics and land use patterns are constantly changing, and these 

shifts have substantial impacts on travel patterns.  By forecasting these shifts in land-use and 

socio-demographic patterns, and using them as inputs to travel demand models, the resulting 

changes in travel patterns can be predicted.   

Finally, travel demand models are important in assessing the effect that changes in 

infrastructure and transportation policy will have on travel patterns.  Such changes have 

significant and far-reaching impacts, so it is imperative that they are supported by research and 

planning.  Funding and urban space are scarce resources, so the decision on how to use them 

cannot be taken lightly (Ortuzar and Willumsen 1990).  Furthermore, changes to the 

transportation system cannot be made instantaneously; rather, they are undertaken over a period 

of time.  Therefore, it is necessary to plan changes far in advance of their actual need. 

 

THE URBAN TRANSPORTATION MODEL SYSTEM 

The set of models developed for travel demand modeling and used by most Metropolitan 

Planning Organizations (MPOs) today is the Urban Transportation Model System (UTMS).  The 

basic structure of the UTMS was developed during the 1950s in Chicago and Detroit (Pas 1995).  

The UTMS takes as inputs the transportation system characteristics, socio-demographic 

attributes, and land-use patterns in a region and provides as outputs the volume and level of 

service of network links. 

Several preliminary steps must be undertaken before applying the UTMS.  The first of 

these is to identify the study area.  Next, the area is partitioned into a set of Travel Analysis 
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Zones (TAZs).  The size of the TAZs often varies considerably, but is, in general, inversely 

proportional to the activity density within the zone.  Then, the transportation network, including the 

major roads, collectors, and transit routes, but usually not the local roads, is superimposed onto 

the study area.  Centroids are assigned to the zones, under the assumption that all activity in the 

zone is produced from/attracted to that centroid.  Finally, “dummy links” are created for each 

zone.  These links represent the average amount of time that it takes for an individual within the 

zone to get to the main network. 

The UTMS may be employed once the preparatory steps have been completed.  The 

UTMS structure, shown in Figure 1, comprises four steps: trip generation, trip distribution, modal 

split, and traffic assignment.  Each of these steps is briefly discussed below.   
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Figure 1: Four-step Urban Transportation Model System                                              
(source: Ortuzar and Willumsen 1990) 

The first step of the UTMS, trip generation, is primarily concerned with predicting the 

number of trips produced by and attracted to each zone in the study area.  The number of trips 
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produced at each zone is predicted by estimating a regression model, usually at the household 

level.  In such a model, the number of trips per household is estimated as a function of household 

characteristics, and the household-level regression is aggregated over the entire zone to produce 

the total number of trips produced at the zone.  The number of trips attracted to a zone is 

estimated as a function of the current or projected land use characteristics of the zone.   

The second step of the UTMS, trip distribution, links the productions and attractions of 

the trips predicted by the trip generation model to develop a trip matrix describing inter-zonal 

production-attraction flows in the study area.  The most common method used to assign trips 

between productions and attractions is the gravity model.  The gravity model apportions the trips 

produced at a given zone to each attraction zone based on the attractiveness of the attraction 

zone and the cost of travel to the zone.  The “cost” may be a combination of monetary cost and 

travel time cost.  Higher cost for travel from a production zone to an attraction zone implies fewer 

trips to that attraction zone. 

The third step of the UTMS, modal split, apportions the total number of trips between 

each zonal pair among the available travel modes.  Prior to this step, the production-attraction 

interchanges between zones are converted to equivalent origin-destination interchanges.  The 

proportion of trips assigned to each mode is then determined according to the utility for travel 

between the origin-destination pair for that given mode relative to the utilities of other available 

modes.  At the end of the modal split step, the number of person-trips is converted to vehicle-

trips, according to the occupancies of the various types of vehicles. 

The final step in the UTMS is traffic assignment.  The purpose of this step is to assign 

each vehicle trip to a specific route within the transportation system.  The general goal is to 

maintain equal travel times for all routes between a given origin and destination.  This method 

approximates how actual system users will choose routes.  People will generally travel on the 

route they perceive to be the fastest; therefore, if all individuals travel on the fastest route, over 

time the travel times on all routes will tend to equalize over time.   

The model parameters are estimated using base-year data gathered from household 

travel surveys.  Projections of socio-demographic and land use data are then used to apply the 

calibrated models to possible future scenarios. This enables transportation planners to evaluate 

the scenarios and predict future demands on the transportation system.   

 

TIME-OF-DAY CHOICE 

As the preceding discussion indicates, there are many aspects of choice associated with 

individual trip-making.  These choices include frequency, destination, mode, and route, and all of 
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these components are explicitly modeled in the four-step UTMS procedure used by most planning 

organizations.  However, time-of-day choice is a fifth and equally important dimension of choice 

that has received relatively little attention in the trip-based modeling approaches adopted by 

MPOs.  The reason for this lack of attention to time-of-day may be traced back to the context in 

which the trip-based modeling framework was developed in the 1950s.  The primary objective then 

was to evaluate alternative major capital improvements, so the focus was on predicting how 

alternative projects would affect overall daily travel demand levels and not on predicting shifts in 

travel within a day (Cambridge Systematics, Inc. 1994). 

While evaluating capital improvements continues to remain an important objective of 

travel demand models, there has been a shift in emphasis in the past decade from evaluating 

long-term investment-based strategies to understanding travel behavior responses to shorter 

term, time-of-day specific, congestion management policies such as peak period pricing and peak 

period high occupancy vehicle use incentives.  In addition, air quality modeling requires temporal 

resolution in the number of vehicle trips because a) the emissions factors (in grams per mile) to 

be applied to vehicle miles of travel (VMT) are sensitive to meteorological conditions (temperature 

and humidity) and vary considerably by time-of-day, b) the operating mode of trips are quite 

different across times of day (for example, a large proportion of trips in the morning and afternoon 

peak periods begin in the cold-start mode relative to other periods of the day), and c) 

photochemical dispersion models to determine ozone formation require mobile source emission 

levels of ozone precursor pollutants (i.e., Oxides of Nitrogen and Volatile Organic Compound) by 

time of day (see Chatterjee et al. 1997).  

The recognition of the need for temporal resolution in trip-making has led MPOs of some 

large metropolitan areas to apply fixed, aggregate-level, factors to apportion the predicted total 

daily travel to different times of the day.  The use of such fixed factors in travel modeling 

represents an improvement over disregarding the time-of-day dimension entirely.  However, it is 

still very simplistic and inadequate for a number of reasons.  First, fixed factors implicitly assume 

that trip departure times are unaffected by employment-related and socio-demographic 

characteristics.  This is a rather untenable assumption since it is very likely that employment and 

socio-demographic attributes are associated with constraints/preferences regarding time-of-day 

of participation in activities.  It is particularly critical to accommodate these effects at a time when 

there are substantial changes in employment and socio-demographic attributes of the population 

which can lead to trip timing patterns in the future that are very different from those existing today.  

Assuming that trip timing will remain the same in the future, therefore, can lead to inappropriate 

policy evaluations of congestion alleviation strategies and misinformed air quality plans (see 

Deakin, Harvey, Skabardonis, Inc. 1993).  In addition, socio-demographics vary spatially within an 
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urban area, resulting in spatial variations in temporal travel patterns.  Fixed factors are applied 

uniformly over the entire area, not accommodating these spatial differences.  Second, applying 

aggregate-level factors to apportion trips to different times of the day does not accommodate 

departure time switching that might occur due to non-uniform (across time-of-day) variations in 

roadway conditions between the estimation and forecast years.  Third, if time-of-day specific 

transportation control measures (such as congestion pricing or peak-period pricing) are 

implemented, the resulting temporal displacements of trips can be evaluated only by modeling 

level-of-service sensitivities in departure time decisions (Bhat 1998a). 

 

OBJECTIVE AND THESIS ORGANIZATION 

The preceding discussion of the importance of modeling departure time decisions of 

individuals motivates the research in this thesis.  Specifically, this thesis examines the effect of 

individual and household socio-demographic characteristics, employment-related attributes, and 

trip characteristics on departure time choices of individuals.  The departure time alternatives are 

represented by several temporally contiguous discrete time periods such as early morning, a.m. 

peak, a.m. off-peak, p.m. off-peak, p.m. peak, and evening.  The choice among these alternatives 

is modeled using a discrete choice model. 

Within the context of departure time choice, the focus of this study is on non-work trips.  

The reason for the emphasis on non-work trips is three-fold.  First, non-work trips constitute an 

increasingly large proportion of urban trips and, therefore, have a significant impact on traffic 

congestion and air quality (see Gordon et al. 1988).  Second, individuals may have more 

temporal flexibility for pursuing non-work activities than they do for commuting to work.  The 

implication of this greater flexibility for non-work trips is that socio-demographic changes and/or 

transportation control measures may have a more significant impact on such trips than on the 

less flexible work trips.  Third, the existing literature on departure time choice has focused 

primarily on work trips.  The lack of previous research points to a need for more study of 

departure time choice for non-work trips.   

This thesis concentrates on four types of trips within the broad category of non-work trips: 

home-based social/recreational, shopping, personal business, and community activity trips (a 

home-based trip of any purpose refers to all trips which have that purpose at one trip end and 

home at the other trip end).  The selected trip purposes comprise the largest proportion of non-

work trips in most metropolitan areas.  

The remainder of this thesis is organized as follows.  Chapter 2 provides a review of the 

existing departure time choice literature.  Chapter 3 presents an overview of the model structure 
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used in the analysis.  Chapter 4 describes the data source and sample formation process as well 

as the variables considered in the model specification.  Chapter 5 provides empirical results of 

departure time choice for each trip purpose and compares these results across trip purposes.  

Finally, Chapter 6 highlights the important findings from the study and their implications, and 

identifies future research directions. 
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CHAPTER 2:  LITERATURE REVIEW 

 

The existing literature on departure time choice has primarily focused on work trips.  This 

thesis, in contrast, focuses on departure time choice for non-work trips.  Table 1 provides a 

summary of both work and non-work departure time research.  The next two sections review 

these various studies. 

 

WORK DEPARTURE TIME STUDIES 

Departure time for work trips is fairly well-represented in the literature.  The first study 

listed in Table 1, by Small (1982), makes use of a multinomial logit formulation to model desired 

arrival time at work in the morning.  The choice is modeled among 12 five-minute periods, ranging 

from 42.5 minutes before the individual’s official work start time to 17.5 minutes after the work 

start time.  Small found that travelers were willing to shift their schedules by one to two minutes 

toward the early side, or one-third to one minute toward the late side, in order to save a minute of 

travel time.  He also concluded that many commuters prefer to travel to work during the peak 

period from schedule considerations, but avoid doing so because of traffic congestion problems; 

therefore, he suggests that congestion alleviation would encourage commuters to shift to the 

peak periods.   
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TABLE 1: SUMMARY OF DEPARTURE TIME CHOICE LITERATURE 

Study (year) Work/ 
Non-work 

Time 
Period 

Methodology Variables 

Small (1982) W a.m. 
commute 

MNL (5-min. 
intervals) 

travel time, schedule delay, 
household structure, 
carpool, arrival flexibility, 
occupation type 

Abkowitz 
(1981) 

W a.m. 
commute 

MNL (5-min. 
intervals) 

arrival flexibility, mode, 
occupation, location, 
income, age, travel time 

Chin (1990) W a.m. 
commute 

MNL, NL (15-min 
.intervals) 

schedule delay, occupation, 
income, travel cost, travel 
time, gender 

McCafferty & 
Hall (1982) 

W p.m. 
commute 

MNL (pre-peak, 
peak, post-peak) 

travel time, income 

Mannering 
(1989) 

W a.m. 
commute 

Poisson regression 
(# departure time 
changes/month) 

travel time, work time 
flexibility, age, marital status 

Hendrickson & 
Plank (1984) 

W a.m. 
commute 

MNL – joint mode & 
departure time (10-
min. intervals) 

free flow travel time, 
congestion time, 
cost/income, time early, time 
late, access time, wait time 

Mannering & 
Hamed (1990) 

W p.m. 
commute 

MNL, continuous 
Weibull survival 
function 

peak/free-flow travel time, 
mode, route, distance, 
gender, income 

Kumar & 
Levinson 
(1995) 

N full day descriptive trip type, employment status 

Hunt & 
Patterson 
(1996) 

N (rec) hypo-
thetical 

Exploded logit (ranks 
alternatives) 

travel time, time early, 
probability of lateness, 
parking cost, film newness 

Bhat  (1998a) N 
(shopping) 

full day MNL-OGEV – mode 
& departure time 

employment status, race, 
age, gender, location, cost, 
travel time, ovtt/distance 

Bhat (1998b) N 
(soc/rec) 

full day Mixed MNL – mode 
& departure time 

age, gender, presence of 
children, income,  
#vehicles/#adults, CBD, 
employment status  

Levinson & 
Kumar (1993) 

Both p.m. 
peak 

Binomial logit (peak 
& shoulder) 

congested & free-flow travel 
time, distance 

Hamed & 
Mannering 
(1993) 

N post-work continuous Weibull 
survival function 

age, income, # children, # 
workers, home arrival time 

Bhat (1998c) N post-work least-squares 
regression 

age, gender, employment, 
presence of children, home 
arrival time 
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Abkowitz (1981) used the same data and travel time choices as Small, including 

additional socio-demographic variables and transit mode use as determinants of commute 

departure time choice behavior.  His analysis indicates significant effects of income, age, 

occupation, and travel mode on preferred work arrival time.  

Chin (1990) modeled morning commute departure time for workers in Singapore using 

multinomial logit and nested logit models.  Instead of structuring the departure time choices 

around the individual’s work start time (as done by Small and Abkowitz), the choice was modeled 

among eleven 15-minute clock-time periods (which, for the nested logit, were grouped into three 

nests).  He found that journey time had an effect on travel time choice, and also that occupation 

and income affected propensity for switching departure times. 

In contrast to the previous studies, which all focused on departure time to work in the 

morning, McCafferty and Hall (1982) modeled the time that individuals chose to leave work in the 

evening.  McCafferty and Hall also used a multinomial logit, testing several different temporal 

partitioning schemes to represent discrete periods of departure time choice.  Their preferred 

model used three alternatives: the p.m. peak period, pre-peak period, and post-peak period.  

However, they found that neither travel time nor the socio-economic variables considered had a 

significant effect on departure time.   

Mannering (1989) adopted a different approach to studying the factors that affect an 

individual’s propensity to switch departure times.  He used a Poisson regression formulation to 

model the number of times individuals changed their departure time to work (morning commute) 

during a one-month period. The travel time on the individual’s most frequently-used route, work 

time flexibility, age, and marital status were found to influence the frequency of departure time 

changes. 

A joint model of mode and departure time choice for the morning commute was proposed 

by Hendrickson and Plank (1984).  They used a multinomial logit with four mode choices and 

seven 10-minute intervals for departure time choice, resulting in 28 overall alternatives.  

Considerable effort was directed toward obtaining accurate time-varying level-of-service data in 

the study.  The study found that travelers showed more flexibility in changing departure time than 

in changing mode. 

The studies mentioned thus far have used discrete methods to model departure time 

choice.  More recently, there has been some exploration into using continuous methods for the 

same purpose.  Mannering and Hamed (1990) used a joint discrete/continuous method to model 

the decision to delay departure to home from work in order to avoid congestion.  A discrete model 

was used for the decision of whether or not to delay departure, and then the duration of the delay 

was modeled using a continuous Weibull survival function.  The duration of the delay was based 

 9 



on the utility derived from the activity undertaken during the delay (which could be either work, or 

some non-work activity near the job site).  It was found that the overall congestion level 

dominated the delay decision. 

 

NON-WORK DEPARTURE TIME STUDIES 

There are only a handful of studies that focus on non-work departure time.  One of these 

is by Kumar and Levinson (1995), who analyze the distribution and type of non-work trips during 

different times of the day.  Their results suggest considerable variation in the temporal pattern of 

non-work trips between workers and non-workers, and between shopping and other non-work 

activities.  The study is insightful, but is conducted at an aggregate descriptive level rather than at 

an individual choice level.  

Hunt and Patterson (1996) analyze recreational trip departure time choice at the 

individual choice level.  Their study is conducted in the context of a hypothetical recreational trip 

to the movies.  The choice of the movie start time is pre-determined, and the emphasis is on 

understanding departure time choice (from home) based on factors such as automobile travel 

time, desired “cushion” time at the theatre before the movie begins, the probability of being late, 

parking cost, and whether the movie is a new or old release.  Since the movie start time is 

considered fixed in the study, there is limited temporal flexibility in departure time (as in the case 

of the work departure time studies reviewed earlier).  

More recently, in two separate papers, Bhat (1998a, 1998b) demonstrates the application 

of new discrete choice formulations for joint travel mode and departure time choice modeling for 

non-work trips in the Bay Area.  The first paper (1998a) estimates a joint model of mode and 

departure time choice for shopping trips, while the second paper (1998b) formulates a joint mode-

departure time choice model for social/recreational trips.  The emphasis in these papers is on the 

formulation of new discrete choice model structures rather than on empirical specification 

analysis.  

In an effort to update the commonly-used four-step Urban Transportation Model System, 

Levinson and Kumar (1993) propose a new six-step model for non-work trips as well as work 

trips.  One of the new steps in the system is a model of departure time choice.  The time choice 

model assumes a binomial logit structure where the decision modeled is between traveling during 

the middle hour of a three-hour peak period, or during one of the two one-hour “shoulders”. 

Hamed and Mannering (1993) applied a continuous formulation to estimate the duration 

of individuals’ post-work home-stay prior to participating in non-work activities.  Given the time of 

arrival back home from work, the home-stay duration determines departure time choice for the 
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non-work trip.  The study found that the major factors influencing the home-stay duration included 

socio-economic characteristics of the individual and household, and the time of arrival home from 

work. 

Similarly, Bhat (1998c) used a discrete/continuous methodology to model individuals’ 

choice of activity type, home-stay duration, and activity duration following a return home from 

work.  Home-stay duration was influenced by socio-economic characteristics and by the arrival 

time at home after work. 

 

SUMMARY OF LITERATURE REVIEW 

The literature review indicates that departure time choice for work trips is a fairly well-

researched topic, whereas non-work trips have received relatively little attention.  However, for 

both trip types, the emphasis of the studies has generally been on narrow time periods during the 

day.  While the results of these studies are useful, they are unable to represent time-of-day 

choice over the period of an entire day.  Only two studies (Bhat 1998a, Bhat 1998b) model travel 

over the entire day; however, the emphasis in these papers is on model formulation rather than 

extensive empirical testing of the determinants of departure time choice.  This research will focus 

on empirical specification of models to forecast time-of-day choice for a number of different non-

work trip purposes.  
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CHAPTER 3:  MODEL STRUCTURE 

 

DISCRETE VERSUS CONTINUOUS MODEL STRUCTURES 

An important issue in modeling departure time choice is the representation of the 

dependent variable.  Time is intrinsically a continuous variable, and a decision must be made 

whether to retain the continuous structure, or to discretize the variable for modeling purposes.  

There are advantages and limitations to both a continuous model structure and a discrete model 

structure, as is discussed next. 

Time has an underlying continuous structure, and retaining this continuous-time 

representation is appealing for at least two reasons.  First, it does not require the rather ad hoc 

partitioning of the day into time intervals, as a discrete method would.  Second, it provides 

departure time of trips at a fine temporal resolution rather than in aggregate intervals.  However, 

there are several limitations to the use of continuous-time models.  They have yet to find their 

way into practice, whereas discrete models are commonly used by MPOs.  In addition, while 

researchers have used continuous-time models in the past for modeling departure time of trips, 

most of these studies have been confined to narrow time periods of the day, as noted in Chapter 

2.  Within such narrow time periods, it may be reasonable to assume that the effect of socio-

demographic and employment characteristics do not change over time so that the familiar 

proportional hazard continuous-time model (which assumes that the covariates change the 

baseline hazard by a constant factor that is independent of duration; see Hensher and Mannering 

1994) may be applied.  However, assuming fixed effects of socio-demographics and employment 

characteristics is untenable when the time domain for consideration is the entire day, as is the 

case in the current research.  For example, the effect of children on the termination of the activity 

duration preceding participation in recreational activity may be much more "accelerated" during 

the evening than in earlier times of the day because the evening is most convenient (from 

schedule considerations) for joint activity participation with children.  Such sudden non-monotonic 

accelerations (or decelerations) in the effect of variables over the course of the day cannot be 

captured by the traditional proportional hazard or accelerated lifetime models (the accelerated 

lifetime model allows time-varying effects, but specifies the time-varying effects to be monotonic 

and smooth in the time domain).  Further, level-of-service variables change during the course of 

the day and one must accommodate these time-varying covariates within the duration model 

framework.  Incorporating such time-varying coefficients and time-varying covariates in duration 
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models poses an econometric challenge (specialized econometric software needs to be 

developed) and also presents specification and interpretational challenges (see Bhat 1999a). 

Discrete choice models, on the other hand, have the advantage of being able to easily 

accommodate time-varying coefficients and covariates, even using commercially available 

software.  In addition, discrete choice models are now commonly used in practice and a discrete 

departure time model can be relatively easily incorporated within the travel demand frameworks 

of MPOs, while continuous-time duration models are still used primarily for research purposes. 

For the above reasons, and because of the widespread familiarity and use of discrete 

choice structures, a discrete choice representation of departure time choice is retained in this 

thesis.  Within the context of a discrete choice formulation, two alternative structures are 

considered.  The first is the multinomial logit (MNL) structure and the second is an ordered 

generalized extreme value (OGEV) structure.  

 

THE MULTINOMIAL LOGIT (MNL) AND ORDERED GENERALIZED EXTREME 
VALUE (OGEV) STRUCTURES 

Both the MNL and the OGEV model structures are based on utility maximization theory.  

Each of the available alternatives (in this case, each of the departure time periods) has an 

associated utility that is a function of characteristics of the decision-making individual and 

attributes of the alternative.  Utility theory states that an individual will tend to choose the 

alternative that maximizes his utility. 

For a given observation, the utility of alternative i from the perspective of the decision-

maker is given by the equation: 

iii VU ε+=  (3.1) 

where  is the utility of alternative i to the decision-maker,  is the deterministic, or observed, 

component of the utility, and 

iU iV

iε  is the error, or unobserved, component of utility.  The error 

component is assumed to be a random variable  (Koppelman et al. 1999). 

The MNL and the OGEV both belong to the class of random utility choice models, which 

recognize that the analyst does not have information on all the factors that affect the choice 

decision under consideration.  Thus, instead of attempting to predict with certainty each 

individual’s choice, these models provide probabilities that the individual will choose each 

alternative. 
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MULTINOMIAL LOGIT MODEL 

The MNL structure relies on three basic assumptions.  First, the error components of the 

utility function are extreme-value (Gumbel) distributed.  The extreme-value distribution is one of 

several possible distributions that may be used.  But it is the most commonly used distribution 

because it leads to a closed-form model for the choice probabilities.  The second assumption of 

the MNL is that the error components are identically and independently distributed (IID) across 

alternatives.  Finally, the MNL assumes that the error components are IID across observations.  

These last two assumptions imply that the variances of the error terms are the same for all 

individuals and all alternatives, and that there is no correlation between the error terms of various 

alternatives or between the error terms of various individuals (Koppelman et al. 1999).   

The MNL structure is appealing because it has a simple formulation.  It provides the 

probability that the individual will choose a given alternative based on the observable portion of 

the utility of the alternatives.  Using the MNL, the probability that a given individual chooses 

alternative i from a set of J alternatives is 

( )
( )∑

=

= J

j
j

i

V

V
iP

1
exp

exp
)(  (3.2) 

 

The main drawback of the MNL is that it is saddled with the Independence from Irrelevant 

Alternatives (IIA) property, which implies that, for any given individual, the ratio of the choice 

probabilities of two alternatives is independent of all other alternatives.  One of the assumptions 

of the MNL leading to the IIA property is that the error terms are not correlated across 

alternatives.  In the context of departure time modeling, this property implies that there is no 

increased degree of sensitivity (due to excluded exogenous factors) between adjacent departure 

time alternatives compared to non-adjacent departure time alternatives.  Thus, for example, 

implementation of congestion pricing during the p.m. peak period will result in an equal 

proportionate increase in the probability of choice of the a.m. off-peak period and in the 

probability of choice of the p.m. off-peak period.  However, individuals may be more likely to shift 

to the p.m. off-peak period than the a.m. off-peak period due to such a p.m. peak period 

congestion pricing policy.  In an attempt to remedy this problem of the MNL, the OGEV structure 

is examined. 
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ORDERED GENERALIZED EXTREME VALUE (OGEV) MODEL 

The OGEV structure generalizes the MNL structure by allowing an increased degree of 

sensitivity (due to excluded exogenous factors) between adjacent departure time alternatives 

compared to between non-adjacent departure time alternatives.  Thus, it is not limited by the IIA 

restriction.  The OGEV is similar conceptually to the nested logit (NL) model, which allows for 

correlation between the error terms of alternatives that are in the same subset, or “nest”, within 

the tree structure of the model.  The NL, however, is restrictive in that each alternative can belong 

to only one nest, and so each alternative’s error term can only be correlated with the error terms 

of other alternatives within the same nest (Small 1987).   

The main difference between the OGEV and the NL is that with the OGEV structure, the 

subsets are allowed to overlap, so that an alternative can belong to more than one subset.  With 

the NL, the subsets are mutually exclusive.  The OGEV is designed for discrete choice decisions 

where the alternatives have a natural ordering, which may be the case with departure time.  By 

including an alternative in nests with the alternatives that are before it and after it in the natural 

ordering, the OGEV allows for what Small (1987) terms “proximate covariance”, where 

alternatives that are close to each other in the ordering have error terms that are correlated. 

This research uses the standard OGEV, a specific form of the general OGEV in which the 

degree of correlation is assumed to be equal across subsets of alternatives.  The choice 

probability given by the standard OGEV for an alternative i from a selection of J alternatives is: 

( ) ( r

Mi

ir
r BQBiqiP ∑
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10 ≤< ρ  (3.9) 

 

rB  represents the subsets of alternatives J such that there are (J+M) subsets, each 

containing anywhere from 1 to (M+1) elements.  ρ  is called the dissimilarity parameter, and 

indicates the degree of correlation between the alternatives in the same subset.  1=ρ  indicates 

perfect correlation between the alternatives within a subset (i.e. the choice between alternatives 

in the same subset is deterministic), while 0=ρ  indicates no correlation between the 

alternatives in the same subset (in which case the model collapses to the MNL). 

 

CHOICE BETWEEN THE MNL AND OGEV MODEL STRUCTURES 

For all trip categories, a preferred model specification was developed based on the MNL 

structure and then the OGEV structure was tested using this preferred specification.  The OGEV 

structure used had 1=M , resulting in up to two alternatives in each subset.  Therefore, the error 

term of each departure time alternative is correlated only with the error terms of the immediately 

adjacent departure time alternatives.  With this structure, implementation of congestion pricing in 

the p.m. peak, for example, will result in a larger proportionate increase in the p.m. off-peak 

choice probability relative to the a.m. off-peak choice probability.  A determination of the preferred 

model type was made after examination of both the MNL and OGEV structures.   
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CHAPTER 4:  SAMPLE FORMATION AND VARIABLE SPECIFICATION 

 

DATA SOURCE 

The primary data source used for this analysis was the 1996 activity survey conducted in 

the Dallas-Fort Worth metropolitan area by the North Central Texas Council of Governments 

(NCTCOG).  This survey included an activity diary to be filled out by all members of the 

household.  The activity diary collected information on all activities undertaken during the diary 

day.  For non-travel activities, information on the activity type, start and end times of participation, 

and location was collected.  For travel activities, information on the mode of travel used, costs 

incurred, and trip duration was collected.  In addition, the survey elicited individual and household 

socio-demographic information.  

The secondary data source for this analysis was a level-of-service (LOS) data file 

obtained from NCTCOG which provided information on times, costs and distances for travel 

between each pair of the 919 Transportation Analysis Process (TAP) zones in the Dallas-Fort 

Worth metropolitan planning area.  The LOS data varied by travel mode (drive alone, shared-ride 

and transit) and by time of day (peak and off-peak).  

 

SAMPLE FORMATION 

The process of developing the sample for analysis involved several steps.  First, the raw 

composite (travel and non-travel) activity file was converted into a corresponding trip file.  In doing 

so, information was retained on the type of activity pursued at, and the TAP zone identifier for, the 

origin and destination ends of each trip.  The start and end times of each trip were also retained 

from the activity file.  

Second, the 36-category typology used in defining activity types in the original survey 

was collapsed into a broader eight-category classification.  These eight broad activity categories 

were home, work, school, personal business, community activities, social/recreational, shopping, 

and other (for ease in presentation, the social/recreational category will henceforth be referred to 

simply as the recreational category, the personal business category as the personal category, 

and the community activities category as the community category).  Table 2 provides the 

disaggregate activity types that were combined into the broader activity categories used in this 

analysis. 

 

 17 



TABLE 2: NON-WORK ACTIVITY TYPE CLASSIFICATIONS 

Activity Category Activity Types 
Social/Recreational Dining out 
 Gym/health club 
 Exercise and recreation 
 Entertainment 
 Visiting friends/relatives 
Shopping Grocery (including housewares, medicine) 
 Non-Grocery (furniture, clothes, appliances) 
Personal Business Medical visits 
 Buying gas 
 Banking, post office, utilities 
Community Community meetings 
 Political and civic events 
 Volunteer work 
 Religious services and meetings 

 

Third, those trips that were home-based recreational, shopping, personal business, or 

community activity trips were identified and selected using the activity type designations at each 

end of the trip.  Home-based trips include all trips from home to an activity, as well as trips from 

an activity to home.  As indicated earlier, the analysis in this paper is confined to trips of these 

four purposes because they constitute a major fraction of total home-based non-work trips (in the 

Dallas-Fort Worth data these four trip purposes together represent about three-fourths of all 

home-based non-work trips). 

Fourth, the departure time of each trip was associated with one of the following six time 

periods of the day: early morning (midnight-6:30 a.m.), a.m. peak (6:30 a.m.-9:00 a.m.), a.m. off-

peak (9:00 a.m.-noon), p.m. off-peak (noon-4:00 p.m.), p.m. peak (4:00 p.m.-6:30 p.m.), and 

evening (6:30 p.m.-midnight).  The time periods for the a.m. and p.m. peaks were based on the 

peak periods definitions employed by NCTCOG in the Dallas-Fort Worth area.  The times for the 

off-peak periods were determined by splitting the remaining blocks of time at noon and midnight.  

The dependent variable in the analysis was the choice of departure time among these six time 

periods. 

Fifth, the trip data was matched with the appropriate socio-demographic characteristics of 

the individual pursuing the trip, and his household.  

Sixth, the appropriate LOS data was appended to each trip record based on the 

origin/destination TAP zones and the mode used for the trip (almost all trips for shopping, 
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recreational, personal, and community activity were pursued using the drive alone, shared-ride or 

walk modes, and the analysis is restricted to trips using one of these modes; interestingly, there 

was not a single home-based shopping, recreational, personal, or community trip in the sample 

that used public transportation).  The drive alone and shared-ride LOS information was obtained 

from the TAP zone-level LOS data file provided by NCTCOG.  The walk LOS information was 

computed from the distance between TAP zones and an assumed walk speed of 3 miles per 

hour. 

Finally, several screening and consistency checks were conducted on the resulting data 

set from the previous steps.  Figure 2 shows a flowchart of this screening process and the 

resulting number of sample observations for each trip purpose.  As part of the screening process, 

observations that had missing data on departure times and/or on the location of the 

origin/destination ends of the trip were eliminated (the latter information is needed to obtain the 

level-of-service information for the trip).  Several observations had missing income information 

and income for such observations was imputed based on a relationship between income and 

relevant socio-demographic attributes estimated from the sample of individuals who provided 

income information.  Socio-demographic attributes that were significant predictors of income in 

the regression model included race, age, gender, educational level, status as a student, status as 

a homemaker, disability, and number of work hours per week. 
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travel activities
44,414

2056 1848
 

Figure 2: Flowchart of data screening process 

The final samples for analysis included 3178 observations for the home-based 

recreational trip category, 2056 observations for the home-based shopping trip category, 1848 

observations for the home-based personal trip category, and 740 observations for the home-

based community activity category.  These final samples represent approximately two-thirds of 

the total number of trips in the corresponding trip categories in the original raw data.  The primary 

reason for the substantial reduction was the lack of origin/destination TAP zone data for many 

trips (because of which LOS information for these trips could not be determined).  However, the 
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observed split of trips among the six time periods was approximately the same in the final sample 

as in the original raw data.  

SAMPLE DESCRIPTION 

The distribution of departure times for the four trip categories in the final samples is 

presented in Figure 3.  For both the recreational and shopping categories, the number of trips 

increases as the day progresses, while personal and shopping trips show a non-monotonic trend 

during the day.  The temporal differences in trip-making among the categories highlight the need 

to separate non-work trips into more specific categories for analysis.   
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Figure 3: Temporal distribution of home-based recreational,                                      

shopping, personal, and community trips 

The increase in trip-making as the day progresses is very noticeable for recreational trips, 

which have by far the greatest number taking place in the evening.  For shopping trips, there is 

little variation in the percentage of trips among the later periods of the day (i.e., the p.m. peak, 

p.m. off-peak and evening periods).  Personal trips experience their maximum in the p.m. off-

peak, and subsequently decrease; this is quite reasonable since most businesses attracting trips 

classified as personal would be closed during the p.m. peak period and after.  Community trips 

experience a minor crest in the a.m. off-peak and an overwhelming maximum in the evening.  As 
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might be expected, very few trips of any type occur in the early morning or morning peak hours.  

Overall, the temporal distributions of recreational and community trips are quite similar, as are the 

temporal distributions of shopping and personal trips.  Table 3 shows the distribution of trips 

among the drive alone, shared-ride and walk modes.  The dominant mode for recreational and 

community trips is shared-ride, indicating joint activity participation by several family members.  

The dominant mode for shopping and personal trips is drive alone.  This suggests less joint 

activity participation for shopping and personal trips than for recreation and community trips.  

Finally, recreational trips are more likely to be pursued using the walk mode compared to 

shopping or personal trips.  Community trips using the walk mode were excluded from the 

sample, as there were not enough trips in the sample to justify the inclusion of the walk mode as 

an independent variable in the model. 

 

TABLE 3: DISTRIBUTION OF MODES USED FOR RECREATIONAL, SHOPPING, 
PERSONAL, AND COMMUNITY TRIPS 

 Mode Used 
Trip Category Drive Alone Shared Ride Walk 

Recreational 33.7% 59.9% 6.4% 
Shopping 55.3% 42.2% 2.5% 
Personal 63.8% 34.0% 2.2% 
Community 43.6% 56.4% N/A 

 

An important note must be made here about travel mode choice.  For this analysis, mode 

choice was considered as being exogenous to departure time choice.  This decision is based on 

the observation that almost all non-work trips are pursued using a personal automobile (see 

Table 3).  The distinction between drive alone and shared-ride modes is likely to be a reflection of 

how many individuals choose to participate jointly in the activity, not a conscious decision of 

which travel mode to use for the trip.  It was assumed that the decision to engage in an activity 

with other individuals is made prior to the decision of what time to travel, and therefore it is 

assumed that travel mode choice between the drive alone and shared-ride modes is pre-

determined.  Also, there is little variation in walk mode characteristics across different times of the 

day and hence it is quite reasonable to consider the choice of the walk mode to be exogenous to 

departure time choice.  That is, individuals are likely to first make a decision to walk or not for a 

recreational/shopping activity, and then determine the time of day to pursue the activity. 
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VARIABLE SPECIFICATION 

Several types of variables were considered in the four models of departure time choice.  

These include individual socio-demographics, household socio-demographics, individual 

employment-related attributes, and trip-related characteristics.   

Individual socio-demographic characteristics explored in the specifications included 

dummy variables for sex, ethnicity and education level, and continuous representations (both 

linear and spline) of income and age.  Household socio-demographic characteristics considered 

in the model included household size, the number and age distribution of children, the number 

and employment status of household adults, and the continuous value of household income.  

Individual employment-related attributes included dummy variables for employed individuals, self-

employed individuals, students, homemakers and retired persons, as well as a continuous 

variable indicating the number of hours worked per week.  The final category of variables was the 

trip-related characteristics, including whether the trip was to or from the given activity, the mode 

used for the trip, the trip travel time and trip travel cost.  

For many of the variables discussed above, there were strong a priori expectations 

regarding the direction of their impact on departure time choice.  For example, employed 

individuals are unlikely to undertake non-work trips during the mid-day periods.  Similarly, it was 

anticipated that individuals whose households have very young children would be likely to avoid 

the evening periods because of the biological needs of young children toward the end of the day.  

However, for some of the variables we considered in the specification, there were no strong a 

priori expectations about the directionality of their effect.  These variables were included to 

explore their effects on temporal trip-making patterns using empirical data. 

The final model specifications were determined by adopting a systematic process of 

introducing new variables to the market shares model (i.e., the constants only model), eliminating 

statistically insignificant variables, and combining variables when their effects were not 

significantly different.  This systematic statistical process was informed by intuitive considerations 

and parsimony in the representation of variable effects.  
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CHAPTER 5:  EMPIRICAL RESULTS 

 

This chapter presents the empirical results of departure time choice for four non-work trip 

purposes: home-based recreation, home-based shopping, home-based personal business, and 

home-based community activities.   

The chapter is organized in six sections.  The next section presents the results of 

statistical tests comparing the performance of the two alternative model structures considered for 

departure time choice modeling: the MNL model and the OGEV model.  Section 5.2 evaluates the 

performance of the departure time models proposed in this thesis with the commonly used 

practice of applying fixed factors to apportion daily travel to different time periods of the day.  

Sections 5.3 through 5.6 discuss the effect of each category of variables on departure time choice 

for the different trip purposes. 

 

MNL STRUCTURE VERSUS OGEV STRUCTURE 

For all trip categories, the empirical results indicated that the MNL structure is adequate 

in representing departure time choice in terms of data fit.  For the recreational, shopping, and 

personal business trip purposes, the dissimilarity parameter in the OGEV model was greater than 

1, implying inconsistency with utility-maximizing theory (for the recreational purpose, the 

dissimilarity parameter was 1.489 with a t-statistic of 1.18 for testing the parameter against the 

null of 1.0; for the shopping purpose, the corresponding parameter value and t-statistic were 

1.451 and 0.91, respectively; finally, for the personal business purpose, the parameter value and 

t-statistic were 2.148 and 1.75, respectively).  For community trips, the dissimilarity parameter 

was less than 1, but not significantly different from 1.0 (the parameter value and t-statistic were 

0.671 and 1.57, respectively).  Hence, we chose the MNL structure in the current analysis. 

 

PROPOSED MODELS VERSUS FIXED FACTOR APPROACH 

The current practice in many MPOs of applying fixed factors to apportion daily travel to 

various time periods is equivalent, in this analysis framework, to a model specification with only 

constants.  For each trip purpose, this restrictive model can be statistically tested against the 

model proposed in this paper using a standard likelihood ratio test. 
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Table 4 presents the log-likelihood value at market shares (corresponding to the 

application of fixed factors) and the log-likelihood value at convergence for the best MNL 

specification.  For each trip purpose category, the table also computes the likelihood ratio test 

value for testing the restrictive “fixed factor” model with the more general model proposed in this 

thesis.  As can be clearly observed, the likelihood ratio test values far exceed the appropriate chi-

squared values at any reasonable level of significance.  Thus, the tests strongly reject the fixed 

factor models in favor of the models proposed in this thesis. 

 

TABLE 4: SUMMARY OF MODELS 

  Recreational Shopping Personal  Community
Number of Observations 3178 2056 1848 740
Log Likelihoods  
 Market Shares -4576.52 -3082.98 -2988.56 -905.69
 Convergence -4056.22 -2767.12 -2671.45 -715.45
Likelihood ratio test value 1040.60 631.72 634.23 370.48
Degrees of freedom 19 17 18 19
χ2 value at 99% confidence 36.19 33.41 34.81 36.19

 

The next four sections present and discuss the effects of each category of variables on 

the different trip purposes.  For all alternative-specific variables (i.e., for all variables except the 

total time variable), the evening time period is the base.  In instances where only a few time 

periods appear for a variable, all of the excluded time periods, including the evening period, form 

the base.  One additional point must be made about the model specification for community trips; 

because there were so few trips observed in the early morning time period, no alternative-specific 

variables were estimated for that period (it is included in the base for all variables).   

The alternative-specific constants for all four models are presented in Table 5 and will not 

be discussed in this analysis because they have no intrinsic meaning.  Rather, they adjust for the 

range of variable values in the sample and capture overall intrinsic preferences for departing 

during each time period.               

 



Recreational       Shopping Personal Community

Variables Parameter t-statistic Parameter t-statistic Parameter t-statistic Parameter t-statistic

Constant  
 Morning  
   
   
   
  

-3.673 -22.18 -5.216 -13.79 -3.338 -11.38 -4.700 -9.36
a.m. peak -4.295 -15.41 -2.757 -8.75 -3.096 -10.36 -3.995 -7.85
a.m. off-peak -3.002 -14.59 -0.991 -4.08 -0.863 -3.89 -2.391 -7.50
p.m. off-peak

 
-2.227 -11.66 -0.260 -1.11 -0.252 -1.18 -4.393 -8.04

p.m. peak -1.051 -10.57 -0.402 -2.57 0.201 0.74 -2.923 -9.32

TABLE 5: ALTERNATIVE-SPECIFIC CONSTANTS 

 

 

26 



27 

INDIVIDUAL SOCIO-DEMOGRAPHIC VARIABLES 

Table 6 presents the parameter estimates for the individual socio-demographic variables 

in the final model specification.  The first individual socio-demographic variable in the table is a 

female dummy variable.  The results indicate that gender does not appear to play a very 

important role in departure time choice.  Only in the personal business category is it a significant 

variable, and even then, only for the early morning period, in which women are less likely than 

men to make personal trips.  This may reflect the family-associated responsibilities of women in 

the morning. 

The age variables, in general, indicate a preference of older individuals (independent of 

work status) to pursue non-work trips during the middle of the day, and especially during the off-

peak periods.  This may be a reflection of their physiological need for more time to start the day 

and a desire to arrive home early because of safety/security considerations among older 

individuals.  While there is a generic trend to stay away from the early and late parts of the day for 

any trip purpose, there are some differences across trip purposes.  For recreational trips, the 

coefficients suggest that older individuals avoid the early morning, p.m. peak, and late evening 

periods.  The effect of age on departure time for shopping trips is similar, except that the p.m. 

peak is preferred to the a.m. peak for these trips.  Age effects for personal business activities 

indicate that older individuals stay away from travel during the evening period, and also prefer the 

earlier times of the day (morning through p.m. off-peak) to the p.m. peak.  Finally, age has only a 

marginal effect on community trips, indicating a preference of older individuals for the p.m. off-

peak.  For all trip purposes, the p.m. peak is one of the favored time periods for travel for older 

individuals (in addition to the linear effect presented in the table, non-linear spline effects of age 

and dummy variables for age categories were also explored; however, these non-linear effects 

did not dramatically improve data fit and were also difficult to interpret). 

Several ethnicity variables appear to affect departure time choice.  These results are 

rather difficult to explain, but are retained because of the rapidly changing racial composition of 

the Texas and U.S. populations.  The variables tested (with the base race being Caucasian) 

included indicators for Asian, African-American, Native American, mixed race, and “other” race 

(this category contains a high percentage of Hispanic individuals).  For recreational trips, the only 

ethnicity variable having a significant effect is the variable identifying if a person is of mixed race 

or not.  The parameter on the mixed race variable indicates that individuals with such a family 

heritage are more likely to pursue recreational activities during the mid-day periods.  Two 

ethnicity variables, African-American and “other”, significantly affect departure time for personal



Recreational      Shopping Personal Community

Variables Parameter t-statistic Parameter t-statistic Parameter t-statistic Parameter t-statistic

Female  
 Morning  

  
   
   
   
  

  

  

- - - - -1.014 -2.30 - -
Age 
 

 
Morning - - - - 0.033 7.31 - -
a.m. peak 0.020 6.83 - - 0.033 7.31 - -
a.m. off-peak 0.020 6.83 0.027 6.63 0.033 7.31 - -
p.m. off-peak

 
0.020 6.83 0.027 6.63 0.033 7.31 0.028 3.20

p.m. peak - - 0.020 5.80 0.016 2.86 - -
Ethnicity  
  Mixed race  
 a.m. off-peak, p.m. off-peak 0.918 3.84 - - - - - -
  Black  
 p.m. off-peak, p.m. peak - - - - -0.510 -2.34 - -
  Asian 
 

 
p.m. peak - - - - - - 2.767 2.41

  Other  
 a.m. peak, a.m. off-peak 

 
- - - - -0.662 -2.17 - -

p.m. off-peak - - - - -0.662 -2.17 1.606 2.49
Income (thousands)  

 
a.m. peak, a.m. off-peak,               
p.m. off-peak - - -0.055 -2.56 -0.042 -2.84 - -

TABLE 6: INDIVIDUAL SOCIO-DEMOGRAPHICS 
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trips.  The parameter on the African-American variable indicates that these individuals are less 

likely to choose the p.m. off-peak for personal business activities.  Individuals in the “other” race 

category are less likely to pursue personal activities in the a.m. peak, a.m. off-peak, or p.m. off-

peak periods.  The effect of ethnicity on community trips shows a preference by Asians for travel 

in the p.m. peak, and a preference by individuals in the “other” race category for travel in the p.m. 

off-peak. 

The final socio-demographic variable in the table is individual income.  Individual income 

affects departure time choice for shopping and personal trips only.  For both of these categories, 

the effect of income indicates that individuals with higher income tend to avoid trip-making during 

the a.m. peak and mid-day periods.  This may be the result of tighter schedule constraints of 

high-income-earning individuals during the mid-day.  As with the age variable, spline effects were 

tested for the income variable to see if its effect on departure time was non-linear.  However, the 

spline representation did not improve the model significantly, and the results were difficult to 

interpret.  

 

HOUSEHOLD-LEVEL SOCIO-DEMOGRAPHIC VARIABLES 

Several household socio-demographic attributes were tested; however, the majority of 

the variables appearing in the final specifications are those associated with the presence and age 

distribution of children.  The parameter estimates for the household socio-demographics are 

shown in Table 7. 

The presence of young children (less than 5 years of age) in the household affects the 

timing of recreational, personal, and community activities in a similar manner.  The results show 

that individuals whose households have young children are more likely to pursue recreational 

trips during the earlier periods of the day (early morning through p.m. off-peak) than in the p.m. 

peak or evening periods.  This may be related to the biological needs of young children toward 

the end of the day.  A similar result can be observed for personal trips; the p.m. peak is the least 

preferable time of day for these trips.  For community trips, the a.m. peak and a.m. off-peak are 

the preferred travel periods for households with young children.  Shopping activities, however, 

differ from the other non-work activity types with regard to the effect of young children.  The 

presence of young children in the household suggests a lower likelihood of participation in 

shopping trips during the mid-day (a.m. and p.m. off-peak) hours.  Perhaps this is a result of the 

tendency to shop alone by an adult who must remain at home in the mid-day to take care of the  



Recreational       Shopping Personal Community

Variables Parameter t-statistic Parameter t-statistic Parameter t-statistic Parameter t-statistic

Presence of children age 5 or under   
  Morning 0.988 8.09   
    
    
    
   

  
    
   

- - - - - -
a.m. peak 0.988 8.09 - - - - 1.522 4.36
a.m. off-peak 0.988 8.09 -0.407 -2.41 - - 1.522 4.36
p.m. off-peak

 
0.988 8.09 -0.407 -2.41 - - - -

p.m. peak - - - - -0.724 -3.57 - -
Presence of children age 6 to 11   
 morning, a.m. peak -0.421 -2.27  0.640 2.54 - - - -
Presence of children age 12 to 15 
  

  
a.m. off-peak - - - - -0.371 -2.57 - -
p.m. off-peak

 
0.384 3.85 -0.332 -1.88 -0.371 -2.57 - -

p.m. peak 0.384 3.85 - - - - - -
Presence of children age 6 to 15   
 a.m. peak, a.m. off-peak - -  - - - - -0.932 -3.12
Income (thousands)   

 
a.m. peak, a.m. off-peak,               
p.m. off-peak, p.m. peak - -  - - - - 0.061 2.78

TABLE 7: HOUSEHOLD-LEVEL SOCIO-DEMOGRAPHICS 
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needs of the young children.  Instead, the individual may choose to shop at other times of the day 

when another adult is available to care for the children.    

The effect of older children on trip timing is, in most cases, opposite of the effect of young 

children.  Individuals whose households have children between the ages of 6 and 15 tend to 

pursue recreational trips during the p.m. off-peak and p.m. peak.  This is quite intuitive since 

these periods offer convenient times for joint activity participation in recreational activities with 

school-going children, and are also the times when children are most likely to be participating in 

recreational activities that may require a ride from a parent.  However, members of households 

with older children are less likely to pursue shopping and personal trips during the mid-day.  This 

may be because individuals in these households tend to have other commitments during the day 

that preclude shopping and personal trip-making.  Members of households with older children 

also tend not to make community trips in the a.m. peak and a.m. off-peak, likely for much the 

same reason. 

Overall, it appears that recreational, personal, and community activities are likely to be 

pursued jointly with children and so participation in such activities appears to be organized 

around the schedule availability of children (i.e., during the day for households with young 

children and late in the day for households with older children).  However, shopping activities may 

be pursued alone and so these activities are scheduled in periods when young children have 

fewer biological needs or during times when older children are at school.  For all four categories, 

the number of children in the household does not have any significant impact beyond that of the 

presence of children. 

The final household level characteristic examined was household income.  Interestingly, 

community trips are the only category for which household income, rather than individual income, 

affects departure time.  The parameter on household income indicates that members of higher-

income households are more likely to participate in community activities during the day than in 

the late evening or early morning time periods.  This may result from members of higher-income 

households (although not perhaps the high-wage earners themselves) having, in general, more 

schedule freedom during the day and choosing to participate in community activities then.  The 

parameter effect obviously must be applied to working members of the household as well, but its 

strength may be overshadowed by the effects of some of the other, work-related variables.   
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INDIVIDUAL EMPLOYMENT-RELATED ATTRIBUTES 

Employment-related attributes make such a substantial contribution to departure time 

decisions that they are considered in this analysis as a separate category of variables.  The 

parameter estimations for the employment-related variables are given in Table 8.   

The effect of the number of hours of work variable is quite consistent across all trip 

categories.  It indicates that individuals who are employed and have a substantial work 

commitment are very unlikely to participate in non-work activities during the mid-day periods (i.e., 

the a.m. and p.m. off-peak periods).  This is a reasonable result since employed individuals are 

typically at work during these times.  These individuals are also less likely to participate in non-

work activities in the peak periods (especially the a.m. peak) relative to the evening period.  

Overall, individuals who are employed and work many hours are likely to participate in non-work 

activities during the evening period because of work schedule constraints during the earlier times 

of the day (technically speaking, the results suggest that working individuals are as likely to 

participate in activities during the early morning period as in the evening period; however, this 

result is simply a statistical manifestation of the extremely few number of working individuals who 

choose the early morning period). 

The parameter indicating whether an individual was self-employed, as opposed to 

externally (non-self) employed, also exhibits considerable consistency across categories.  Self-

employed individuals are more likely to participate in recreational, shopping, and personal 

activities during the mid-day (a.m. off-peak and p.m. off-peak) than externally employed 

individuals.  That is, self-employed individuals are able to “sandwich” an activity from home 

between periods of a.m. and p.m. work because of lesser schedule rigidity.  For personal trips, 

this effect also carries over into the a.m. and p.m. peak periods, indicating that self-employed 

individuals are more likely than externally employed persons to make personal trips during the 

peak periods.  Across trip purposes, the greatest difference in the effect of the self-employed 

variable is for community trips.  In this category, self-employment affects only the p.m. peak 

period, again increasing the likelihood of participation.  This may be due, in part, to the temporal 

distribution of community activities; very few take place prior to the p.m. peak, so the self-

employment effect may be statistically negligible during those periods. 

Like the employment variables, the student variable is also reasonably consistent across 

categories.  The coefficients on this variable suggest a preference by students for the p.m. peak 

and evening periods for participation in recreational and shopping activities, an intuitive result 

because students are generally free from academic obligations at these times.  Students tend to 



 

       Recreational Shopping Personal Community

Variables Parameter t-statistic Parameter t-statistic Parameter t-statistic Parameter t-statistic

Hours worked per week   
  a.m. peak -0.029 -6.43   
    
    
   

  
  

   
   

   
   

  
   

   
   

-0.021 -3.43 -0.017 -4.90 -0.033 -3.64
a.m. off-peak -0.049 -12.09 -0.057 -12.18 -0.042 -11.81 -0.061 -6.23
p.m. off-peak

 
-0.041 -12.70 -0.048 -12.71 -0.042 -11.81 -0.046 -3.26

p.m. peak -0.016 -6.97 -0.016 -5.68 -0.017 -4.90 -0.026 -3.83
Self-employed
  

 
a.m. peak - - - - 0.568 1.83 - -

 a.m. off-peak, p.m. off-peak 
 

0.994 6.18  0.721 3.49 1.108 3.66 - -
p.m. peak - - - - 0.568 1.83 1.028 2.50

Student
 a.m. peak, a.m. off-peak 

 
-0.768 -5.24  -1.204 -4.89 - - -2.079 -4.48

p.m. off-peak
 

-0.768 -5.24 -0.907 -4.06 - - - -
p.m. peak - - - - 0.392 1.92 - -

Homemaker
 

 
p.m. off-peak

 
- - - - - - 0.997 2.49

p.m. peak - - - - - - -1.082 -2.22
Retired
 p.m. off-peak, p.m. peak - -  - - - - 0.783 2.88

TABLE 8: INDIVIDUAL EMPLOYMENT-RELATED ATTRIBUTES 
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prefer the p.m. peak period for personal trips, and they avoid the a.m. peak and a.m. off-peak 

periods for participation in community activities.  The reasoning behind this is much the same as 

for recreational and shopping trips.  An interesting difference between students and employed 

individuals (externally-employed or self-employed) is that students are equally likely to participate 

in non-work activities (with the exception of personal trips) during the p.m. peak and evening 

periods, while employed individuals are more likely to choose the evening period than the p.m. 

peak.  This difference may be attributed to the increased flexibility of students during the p.m. 

peak, since the typical school day of a student ends earlier than the typical workday of an 

employee. 

In addition to the above variables, there were two attributes that had significant effects for 

the personal business category, but were not significant in any of the other trip categories.  

Individuals who were primarily occupied as homemakers prefer the p.m. off-peak for personal 

activity participation, while avoiding the p.m. peak.  These individuals probably have more 

schedule freedom in the early afternoon than in the p.m. peak, when children are arriving home 

from school.  However, it is interesting that the personal business category is the only one in 

which this effect was exhibited.   

Finally, retired persons prefer the p.m. off-peak and p.m. peak for personal activity 

participation.  As with the homemaker variable, this variable is present only in the personal 

business model.   

For each trip purpose, a specification was considered that also included a dummy 

variable corresponding to external-employment in addition to the number of hours and self-

employment variables.  Such a variable would add a generic effect (i.e., independent of hours of 

work) of being externally employed.  The resulting specification showed a marginal (though 

statistically significant) improvement in data fit, but also led to results that were quite difficult to 

interpret.  Therefore, the external-employment dummy variable was excluded from the model.  An 

alternative specification that replaced the hours of work variable with the external-employment 

dummy variable also performed well and provided easy-to-interpret results, but was statistically 

inferior to the current specification (however, this alternative specification might offer forecasting 

advantages since it only requires forecasting employment status, not hours of work). 

 

TRIP-RELATED ATTRIBUTES 

The trip-related attributes make up the final group of variables, and their parameter 

estimates are provided in Table 9.  The first variable indicates whether a trip was from home to an  



 

       Recreational Shopping Personal Community

Variables Parameter t-statistic Parameter t-statistic Parameter t-statistic Parameter t-statistic

Home to activity   
  Morning 0.848 4.03   
    
    
    
   

  
    
    
    
   

1.251 5.35 - - - -
a.m. peak 2.386 10.35 1.251 5.35 2.926 11.69 2.593 5.27
a.m. off-peak 1.495 10.50 0.577 4.51 1.165 8.65 1.593 5.39
p.m. off-peak

 
0.610 5.16 - - 0.548 4.29 - -

p.m. peak 1.323 13.71 - - - - 2.323 8.43
Drive alone mode 
  

  
Morning 1.247 12.08 1.199 4.66 - - - -
a.m. peak 1.247 12.08 1.199 4.66 - - 0.934 4.17
a.m. off-peak 1.247 12.08 0.437 3.94 0.515 3.75 0.934 4.17
p.m. off-peak

 
1.247 12.08 0.437 3.94 0.361 2.78 0.934 4.17

p.m. peak 0.296 2.68 - - - - - -
Total travel time -0.022 -2.37  - - - - - -

TABLE 9: TRIP-RELATED ATTRIBUTES 
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activity (as opposed to from the activity back home).  The home-to-activity variable proves to be 

highly significant in all four models.  For recreational trips, the results indicate that trips from 

home to an activity are likely to be pursued before the evening periods, and especially in the a.m. 

peak period.  This is expected, since most trips originating in the a.m. peak are likely to be 

leaving home.  The same is true, though to a lesser extent, for the a.m. off-peak period.  The 

increased likelihood of trips from home to a recreational activity in the p.m. peak compared to the 

morning and p.m. off-peak periods can be attributed to the temporal “resurgence” in recreational 

participation during the p.m. peak period; on the other hand, a sizable fraction of home-based 

recreational trips in the early morning period are late return home trips from the previous 

evening’s recreational engagement and many p.m. off-peak home-based recreational trips are 

return home trips after recreational participation in the a.m. periods.  The parameters on the 

home-to-activity variable for community trips indicate a pattern similar to that for recreational trips, 

with an overall preference for the a.m. peak period, and a temporal resurgence in the p.m. peak.  

The home-to-activity variable exhibits a different effect for shopping and personal trips.  For these 

trip types, the impact is fairly straightforward; there is a strong preference to leave for shopping 

and personal activities during the earlier parts of the day (morning through a.m. off-peak for 

shopping trips, and a.m. peak through p.m. off-peak for personal trips).   

The drive-alone dummy variable effects in the table indicate a general trend, over all trip 

purposes, toward the use of the drive alone mode during the earlier periods of the day and the 

use of non-drive alone modes (shared-ride and walking) during the later periods of the day.  This 

is a rather intuitive result; trips during the day are more likely to be pursued alone, while the late 

afternoon and evening periods are times that are most convenient for joint activity participation 

and for walking.  The differences between trip categories are slight; for personal trips, the 

preference is to pursue drive-alone trips during the mid-day, while for shopping trips, the morning 

and a.m. peak are preferred.  Both recreational and community trips show a consistent 

preference for the daytime (p.m. off-peak and earlier), but drive-alone recreational trips are more 

likely to be made in the p.m. peak than in the evening.  The overall preference for making drive-

alone trips early in the day supports the hypothesis that trips made later in the day are more 

family-oriented, while trips made early in the day are individually-oriented. 

Total travel time is the only LOS variable that demonstrates any significance whatsoever, 

and even that is only for recreational trips (a travel cost variable was also considered, as were 

separate representations of in-vehicle and out-of-vehicle travel time).  The negative effect of 

travel time in the recreational trip model is consistent with a priori expectations; individuals prefer 

departure times that result in shorter travel times.  However, the lack of any significant effect of 

trip travel time on departure time choice for the other purposes is interesting.  Two related issues 
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may be at work here.  First, many of these activities are organized around work constraints and 

other household schedule considerations, and are pursued at the most convenient time within 

these schedule considerations.  Travel time may therefore not play a substantial role in the 

departure time decision.  Second, in the current data set the average lengths of shopping, 

personal, and community trips are shorter than the average length of recreational trips.  In the 

context of the shorter lengths of these trips, there is likely to be smaller variation in travel times 

across time periods (in this data, the travel time variation across time periods is lower for 

shopping, personal, and community trips than for recreational trips).  This may be manifesting 

itself in the form of the lack of any travel time effect on departure time decisions for shopping, 

personal, and community trips.  Nonetheless, it is a somewhat unexpected result that travel time 

has such a minor effect on departure time choice. 
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CHAPTER 6:  CONCLUSIONS 

 

SUMMARY 

This thesis presents models for home-based recreational, shopping, personal business, 

and community trip departure time choice.  The departure time alternatives are represented by six 

temporally contiguous discrete time periods that collectively span the entire day.  

Two model structures are explored for departure time choice among the six discrete 

periods: the multinomial logit (MNL) and the ordered generalized extreme value (OGEV) 

structures.  The latter is a generalization of the former and allows an increased degree of 

sensitivity (due to excluded factors) between temporally adjacent departure periods compared to 

temporally non-adjacent periods.  For all trip purposes, our analysis indicates that the MNL model 

is adequate to model departure time choice. 

The empirical analysis in the paper uses the 1996 activity survey data collected by the 

North Central Texas Council of Governments (NCTCOG) in the Dallas-Fort Worth area.  Several 

sets of variables were considered in the model specifications, including individual and household 

socio-demographics, employment-related attributes and trip-related characteristics.  Important 

overall results from the empirical analysis are as follows:  

• gender does not have an important role in departure time choice, 

• older individuals are most likely to participate in non-work activities during the mid-day, 

• high-income-earning individuals avoid the mid-day periods for shopping and personal 

business, 

• individuals with very young children (under 5 years of age) in their households are 

unlikely to pursue most activities during the p.m. peak and evening, presumably because 

of the increased biological needs of young children during these late times of the day, 

• individuals with children below 5 years of age are unlikely to participate in shopping 

activities during the mid-day, 

• individuals with children above 5 years of age in their households, on the other hand, are 

most likely to pursue recreational activities during the p.m. peak period since this is the 

most convenient time to jointly participate in recreational activities, 

• individuals with children above 5 years of age are unlikely to pursue recreational, 

personal, and community activities during the mid-day, 
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• employed individuals and students are most likely to participate in non-work activities 

during the latter parts of the day, 

• self-employed individuals are more likely than externally employed individuals to 

“sandwich” a recreational, shopping, or personal activity between the a.m. and p.m. work 

periods, 

• trips to a non-work activity from home tend to be made before the evening period, 

• trips pursued together with others or by walk are likely to be undertaken during the p.m. 

peak and evening periods, and 

• in the current empirical context, the only level-of-service variable that has a significant 

impact is trip travel time and even this applies only for recreational trips.  

 

Due to the use of a trip-based approach and the choice of the familiar MNL model 

structure, the current modeling effort can be incorporated relatively easily within the travel 

demand model system used by most MPOs for transportation planning.  The results show the 

models proposed in this thesis to be an improvement over the fixed-factor approach generally 

used to accommodate the time-of-day dimension of travel choice. 

 

IMPLICATIONS OF THE EFFECT OF SOCIO-DEMOGRAPHIC AND 
EMPLOYMENT-RELATED ATTRIBUTES 

The empirical results indicate the strong impact of socio-demographic and employment-

related characteristics on departure time choice for non-work trips.  These results have 

substantial implications for transportation planning analysis.  Specifically, the analysis suggests 

that ignoring the effects of these variables can lead to misinformed transportation planning and air 

quality decisions because of changing demographic and employment-related trends over the next 

few decades.  For instance, 18% of the population will be 60 years or older in 2020 compared to 

about 13% today in the State of Texas, according to projections by the Texas State Data Center.  

Similarly, there is a rise in inter-racial marriages, and trends suggest a consequent steep rise in 

individuals with a mixed race heritage over the next few decades (Census Bureau 1999a).  The 

percentages of the population of Texas that are black and Asian are also expected to rise in the 

coming years (Census Bureau 1999b).  The structure of the household is also changing rapidly 

with an increase in households with no children (projections suggest that households with no 

children below 18 years of age will increase from about 53% today to about 60% in the next 

decade (Census Bureau 1999c).  The number of employed individuals in the household, and the 

number of self-employed individuals, are on the rise (Census Bureau 1999d) and this trend is 
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likely to continue.  All of these demographic and employment changes will have an effect on 

departure time choices, and the departure time model in this paper can be used to assess these 

impacts and provide reliable information regarding the temporal distribution of trips for input to 

transportation policy and air quality analysis.  Of course, application of this model for forecasting 

would require regional socio-demographic and employment forecasts of ethnicity, household 

structure, and employment arrangements in addition to the age and income forecasts that are 

commonly used by MPOs.  These additional forecasts may be obtained from supplementary data 

sources, and the results presented here suggest that it is important for MPOs to pursue such an 

effort (see also Deakin, Harvey, Skabardonis, Inc. 1993 for a discussion of the importance of 

including socio-demographic and lifestyle issues in forecasting travel behavior). 

The need to include socio-demographic and employment attributes is not only important 

because of changes in such variables over time, but also because of spatial differences in these 

variables within a metropolitan region.  Applying fixed factors to apportion total daily travel to 

different times of the day assumes away the existence of spatial demographic variations and will, 

in general, lead to incorrect network assignment volumes by time of day.  This, in turn, can lead 

to inaccurate VMT and speed estimates by time of day and, consequently, inaccurate 

transportation-air quality analysis. 

 

IMPLICATIONS OF THE EFFECT OF LEVEL OF SERVICE RESULTS 

An interesting finding from the research in this thesis is that level-of-service 

characteristics do not appear to substantially impact departure time for non-work trips.  This has 

significant implications for time-of-day specific transportation control measures (such as peak-

period pricing or converting a general-purpose lane to a high occupancy vehicle use lane).  

Specifically, the results imply that there will be little to no temporal displacements of non-work 

trips because of such policies.  This suggests that non-work trips may not be as temporally 

flexible as one might think.  That is, an individual considers participation in non-work activities 

within the larger spectrum of daily activities that need to be pursued based on his individual 

circumstances and household structure characteristics, and this narrows down the time-of-day of 

non-work pursuits.  Thus, scheduling issues may be so overpowering in activity participation that 

they render individuals insensitive to level-of-service changes.  However, a couple of comments 

are in order here.  First, the lack of sensitivity to level-of-service may be a result of little variation 

in times and costs across time periods in the sample.  In other metropolitan areas where there 

are substantial time/cost differences across time periods (for example, because of congestion-

pricing controls which are absent in the Dallas-Fort Worth area), the results may be different.  
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Second, the seeming lack of sensitivity to level-of-service may be partially attributable to the use 

of zone-to-zone network data where the same times and costs are assigned to all trips between a 

particular zonal pair.  Zone-to-zone impedance is considered an attribute of each individual trip, 

resulting in a confounding of individual heterogeneity (variations in impedance measures across 

trips between the same zonal pair) and place heterogeneity (variations in impedance measures 

across zonal pairs).  This can lead to incorrectly estimated parameters on the level-of-service 

variables.  An approach to handle this issue would be to use a multi-level cross-classified model 

of the type proposed recently by Bhat (1999).  However, despite the cautionary notes above, 

there is a suggestion in these results that trips for non-work purposes may not, after all, be as 

temporally flexible as widely perceived.   

 

EXTENSIONS 

This thesis has presented models of departure time choice for recreational, shopping, 

personal business, and community activities.  While this encompasses a broad range of non-work 

activities, one empirical extension of this work would be to estimate models for other trip 

purposes.  School trips are a possible category of trips that, in some ways may resemble work 

trips, but may be different in other ways.  In addition, it would be useful to break the current trip 

categories down into more disaggregate groupings.  For example, instead of analyzing social and 

recreational trips together, these two purposes could be separated.  Likewise, it would be 

interesting to investigate the differences between grocery shopping trips and other types of 

shopping trips. 

Another useful empirical extension of the current work would be to estimate a model of 

departure time choice using a data set collected in an area where there are congestion-pricing or 

peak-period pricing control strategies.  This would enable further analysis into the effect that 

level-of-service variables have on departure time choice.  As mentioned before, the temporal 

variation in the level of service variables in the current data set was limited, and using a data set 

with greater temporal variation could provide some very insightful results.   

A possible methodological extension of the current work would involve the use of a 

continuous-time hazard duration model for analyzing departure time choice decisions, as 

discussed in Chapter 3.  This approach would obviate the need for the rather ad hoc boundaries 

associated with classifying the day into discrete time periods.   
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