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CHAPTER 1: Introduction 
 

1.1 Background 
Discrete choice models can be used to analyze and predict a decision maker’s choice of one 

alternative from a finite set of mutually exclusive and collectively exhaustive alternatives.  Such 

models have numerous applications since many behavioral responses are discrete or qualitative 

in nature; that is, they correspond to choices of one or another of a set of alternatives. 

 The ultimate interest in discrete choice modeling, as in most econometric modeling, lies 

in being able to predict the decision making behavior of a group of individuals (we will use the 

term "individual" and "decision maker" interchangeably, though the decision maker may be an 

individual, a household, a shipper, an organization, or some other decision making entity).  A 

further interest is to determine the relative influence of different attributes of alternatives and 

characteristics of decision makers when they make choice decisions.  For example, 

transportation analysts may be interested in predicting the fraction of commuters using each of 

several travel modes under a variety of service conditions, or marketing researchers may be 

interested in examining the fraction of car buyers selecting each of several makes and models 

with different prices and attributes.  Further, they may be interested in predicting this fraction for 

different groups of individuals and identifying individuals who are most likely to favor one or 

another alternative.  Similarly, they may be interested in understanding how different groups 

value different attributes of an alternative; for example are business air travelers more sensitive 

to total travel time or the frequency of flight departures for a chosen destination. 

 There are two basic ways of modeling such aggregate (or group) behavior.  One approach 

directly models the aggregate share of all or a segment of decision makers choosing each 

alternative as a function of the characteristics of the alternatives and socio-demographic 

attributes of the group.  This approach is commonly referred to as the aggregate approach.  The 

second approach is to recognize that aggregate behavior is the result of numerous individual 

decisions and to model individual choice responses as a function of the characteristics of the 
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alternatives available to and socio-demographic attributes of each individual.  This second 

approach is referred to as the disaggregate approach. 

 The disaggregate approach has several important advantages over the aggregate approach 

to modeling the decision making behavior of a group of individuals. First, the disaggregate 

approach explains why an individual makes a particular choice given her/his circumstances and 

is, therefore, better able to reflect changes in choice behavior due to changes in individual 

characteristics and attributes of alternatives.  The aggregate approach, on the other hand, rests 

primarily on statistical associations among relevant variables at a level other than that of the 

decision maker; as a result, it is unable to provide accurate and reliable estimates of the change 

in choice behavior due changes in service or in the population.  Second, the disaggregate 

approach, because of its causal nature, is likely to be more transferable to a different point in 

time and to a different geographic context, a critical requirement for prediction.  Third, discrete 

choice models are being increasingly used to understand behavior so that the behavior may be 

changed in a proactive manner through carefully designed strategies that modify the attributes of 

alternatives which are important to individual decision makers.  The disaggregate approach is 

more suited for proactive policy analysis since it is causal, less tied to the estimation data and 

more likely to include a range of relevant policy variables.  Fourth, the disaggregate approach is 

more efficient than the aggregate approach in terms of model reliability per unit cost of data 

collection.  Disaggregate data provide substantial variation in the behavior of interest and in the 

determinants of that behavior, enabling the efficient estimation of model parameters.  On the 

other hand, aggregation leads to considerable loss in variability, thus requiring much more data 

to obtain the same level of model precision.  Finally, disaggregate models, if properly specified, 

will obtain un-biased parameter estimates, while aggregate model estimates are known to 

produce biased (i.e. incorrect) parameter estimates. 

1.2 Use of Disaggregate Discrete Choice Models   
The behavioral nature of disaggregate models, and the associated advantages of such models 

over aggregate models, has led to the widespread use of disaggregate discrete choice methods in 

travel demand modeling. A few of these application contexts below with references to recent 
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work in these areas are: travel mode choice (reviewed in detail later), destination choice (Bhat et 

al., 1998; Train, 1998), route choice (Yai et al., 1998; Cascetta et al., 1997, Erhardt et al., 2004, 

Gliebe and Koppelman, 2002), air travel choices (Proussaloglou and Koppelman, 1999) activity 

analysis (Wen and Koppelman, 1999) and auto ownership, brand and model choice (Hensher et 

al., 1992; Bhat and Pulugurta, 1998).  Choice models have also been applied in several other 

fields such as purchase incidence and brand choice in marketing (Kalyanam and Putler, 1997; 

Bucklin et al., 1995), housing type and location choice in geography (Waddell, 1993; Evers, 

1990; Sermons and Koppelman, 1998), choice of intercity air carrier (Proussaloglou and 

Koppelman, 1998) and investment choices of finance firms (Corres et al., 1993).  

1.3 Application Context in Current Course   
In this self-instructing course, we focus on the travel mode choice decision. Within the travel 

demand modeling field, mode choice is arguably the single most important determinant of the 

number of vehicles on roadways.  The use of high-occupancy vehicle modes (such as ridesharing 

arrangements and transit) leads to more efficient use of the roadway infrastructure, less traffic 

congestion, and lower mobile-source emissions as compared to the use of single-occupancy 

vehicles. Further, the mode choice decision is the most easily influenced travel decision for 

many trips.  There is a vast literature on travel mode choice modeling which has provided a good 

understanding of factors which influence mode choice and the general range of trade-offs 

individuals are willing to make among level-of-service variables (such as travel time and travel 

cost).  

 The emphasis on travel mode choice in this course is a result of its important policy 

implications, the extensive literature to guide its development, and the limited number of 

alternatives involved in this decision (typically, 3 – 7 alternatives).  While the methods discussed 

here are equally applicable to cases with many alternatives, a limited number of mode choice 

alternatives enable us to focus the course on important concepts and issues in discrete choice 

modeling without being distracted by the mechanics and presentation complexity associated with 

larger choice sets. 
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1.4 Urban and Intercity Travel Mode Choice Modeling  
The mode choice decision has been examined both in the context of urban travel as well as 

intercity travel.   

 

1.4.1 Urban Travel Mode Choice Modeling 
Many metropolitan areas are plagued by a continuing increase in traffic congestion resulting in 

motorist frustration, longer travel times, lost productivity, increased accidents and automobile 

insurance rates, more fuel consumption, increased freight transportation costs, and deterioration 

in air quality.  Aware of these serious consequences of traffic congestion, metropolitan areas are 

examining and implementing transportation congestion management (TCM) policies.  Urban 

travel mode choice models are used to evaluate the effectiveness of TCM policies in shifting 

single-occupancy vehicle users to high-occupancy vehicle modes.  

 The focus of urban travel mode choice modeling has been on the home-based work trip.  

All major metropolitan planning organizations estimate home-based work travel mode choice 

models as part of their transportation planning process.  Most of these models include only 

motorized modes, though increasingly non-motorized modes (walk and bike) are being included 

(Lawton, 1989; Purvis, 1997).  

 The modeling of home-based non-work trips and non-home-based trips has received less 

attention in the urban travel mode choice literature.  However, the increasing number of these 

trips and their contribution to traffic congestion has recently led to more extensive development 

of models for these trip purposes in some metropolitan regions (for example, see Iglesias, 1997; 

Marshall and Ballard, 1998). 

 In this course, we discuss model-building and specification issues for home-based work 

and home-based shop/other trips within an urban context, though the same concepts can be 

immediately extended to other trip purposes and locales. 

1.4.2 Intercity Mode Choice Models  
Increasing congestion on intercity highways and at intercity air terminals has raised serious 

concerns about the adverse impacts of such congestion on regional economic development, 
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national productivity and competitiveness, and environmental quality.  To alleviate current and 

projected congestion, attention has been directed toward identifying and evaluating alternative 

proposals to improve intercity transportation services.  These proposals include expanding or 

constructing new express roadways and airports, upgrading conventional rail services and 

providing new high-speed ground transportation services using advanced technologies.  Among 

other things, the a priori evaluation of such large scale projects requires the estimation of 

reliable intercity mode choice models to predict ridership share on the proposed new or 

improved intercity service and identify the modes from which existing intercity travelers will be 

diverted to the new (or improved) service. 

 Intercity travel mode choice models are usually segmented by purpose (business versus 

pleasure), day of travel (weekday versus weekend), party size (traveling individually versus 

group travel), etc.  The travel modes in such models typically include car, rail, air, and bus 

modes (Koppelman and Wen, 1998; Bhat, 1998; and KPMG Peat Marwick et al., 1993).  

 This manual examines issues of urban model choice; however, the vast majority of 

approaches and specifications can and have been used in intercity mode choice modeling. 

 

1.5 Description of the Course  
This self-instructing course (SIC) is designed for readers who have some familiarity with 

transportation planning methods and background in travel model estimation.  It updates and 

extends the previous SIC Manual (Horowitz et al., 1986) in a number of important ways.  First, 

it is more rigorous in the mathematical details reflecting increased awareness and application of 

discrete choice models over the past decade.  The course is intended to enhance the 

understanding of model structure and estimation procedures more so than it is intended to 

introduce discrete choice modeling (readers with no background in discrete choice modeling 

may want to work first with the earlier SIC).  Second, this SIC emphasizes "hands-on" 

estimation experience using data sets obtained from planning and decision-oriented surveys.  

Consequently, there is more emphasis on data structure and more extensive examination of 

model specification issues.  Various software packages available for discrete choice modeling 
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estimation are described briefly with the intent of providing a broad overview of their 

capabilities.  The descriptions and examples of the command structure and output for selected 

models are included in Appendix A to illustrate key differences among them.  Further, example 

command and output files for models using a module developed for Matlab (an engineering 

software package), as well as the module’s code, are included on the accompanying CD and 

documented in Appendix B.  Third, this SIC extends the range of travel modes to include non-

motorized modes and discusses issues involved in including such modes in the analysis.  Fourth, 

this SIC includes detailed coverage of the nested logit model which is being used more 

commonly in many metropolitan planning organizations today.   

 

1.6 Organization of Course Structure  
This course manual is divided into twelve chapters or modules.  CHAPTER 1, this chapter, 

provides an introduction to the course.  CHAPTER 2 describes the elements of the choice 

process including the decision maker, the alternatives, the attributes of the alternative, and the 

decision rule(s) adopted by the decision maker in making his/her choice.  CHAPTER 3 

introduces the basic concepts of utility theory followed by a discussion of probabilistic and 

deterministic choice concepts and the technical components of the utility function. 

 CHAPTER 4 describes the Multinomial Logit (MNL) Model in detail.  The discussion 

includes the functional form of the model, its mathematical properties, and the practical 

implications of these properties in model development and application.  The chapter concludes 

with an overview of methods used for estimating the model parameters.   

 In CHAPTER 5, we first discuss the data requirements for developing disaggregate mode 

choice models, the potential sources for these data, and the format in which these data need to be 

organized for estimation.  Next, the data sets used in this manual, i.e., the San Francisco Bay 

Area 1990 work trip mode choice (for urban area journey to work travel) and the San Francisco 

Bay Area Shop/Other 1990 mode choice data (for non-work travel),  are described.  This is 

followed by the development of a basic work mode choice model specification. The estimation 

results of this model specification are reviewed with a comprehensive discussion of informal and 
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formal tests to evaluate the appropriateness of model parameters and the overall goodness-of-fit 

statistics of the model. 

 CHAPTER 6 describes and demonstrates the process by which the utility function 

specification for the work mode choice model can be refined using intuition, statistical analysis, 

testing, and judgment.  Many specifications of the utility function are explored for both data sets 

to demonstrate some of the most common specification forms and testing methods.  Starting 

from a base model, incremental changes are made to the modal utility functions with the 

objective of finding a model specification that performs better statistically, and is consistent with 

theory and our a priori expectations about mode choice behavior.  The appropriateness of each 

specification change is evaluated using judgment and statistical tests.  This process leads to a 

preferred specification for the work mode choice MNL model. 

 CHAPTER 7 parallels CHAPTER 6 for the shop/other mode choice model. 

 CHAPTER 8 introduces the Nested Logit (NL) Model.  The Chapter begins with the 

motivation for the NL model to address one of the major limitations of the MNL.  The functional 

form and the mathematical properties of the NL are discussed in detail.  This is followed by a 

presentation of estimation results for a number of NL model structures for the work and 

shop/other data sets.  Based on these estimation results, statistical tests are used to compare the 

various NL model structures with the corresponding MNL.   

CHAPTER 9 describes the issues involved in formulating, estimating1 and selecting a 

preferred NL model. The results of statistical tests are used in conjunction with our a priori 

understanding of the competitive structure among different alternatives to select a final preferred 

nesting structure.  The practical implications of choosing this preferred nesting structure in 

comparison to the MNL model are discussed. 

 CHAPTER 11 describes how models estimated from disaggregate data can be used to 

predict a aggregate mode choice for a group of individuals from relevant information regarding 

the altered value (due to socio-demographic changes or policy actions) of exogenous variables.  
                                                 
1 Estimation of NL models includes the problem of searching across multiple optima and 

convergence difficulties that can arise. 
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The chapter also discusses issues related to the aggregate assessment of the performance of mode 

choice models and the application of the models to evaluate policy actions. 

 CHAPTER 12 provides an overview of the motivation for and structure of advanced 

discrete choice models. The discussion is intended to familiarize readers with a variety of models 

that allow increased flexibility in the representation of the choice behavior than those allowed by 

the multinomial logit and nested logit models.  It does not provide the detailed mathematical 

formulations or the estimation techniques for these advanced models. Appropriate references are 

provided for readers interested in this information. 
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CHAPTER 2: Elements of the Choice Decision Process 
 

2.1 Introduction  
We observe individuals (or decision makers) making choices in a wide variety of decision 

contexts.  However, we generally do not have information about the process individuals use to 

arrive at their observed choice.  A proposed framework for the choice process is that an 

individual first determines the available alternatives; next, evaluates the attributes of each 

alternative relevant to the choice under consideration; and then, uses a decision rule to select an 

alternative from among the available alternatives (Ben-Akiva and Lerman, 1985, Chapter 3).   

Some individuals might select a particular alternative without going through the structured 

process presented above.  For example, an individual might decide to buy a car of the same make 

and model as a friend because the friend is happy with the car or is a car expert.  Or an individual 

might purchase the same brand of ice cream out of habit.  However, even in these cases, one can 

view the behavior within the framework of a structured decision process by assuming that the 

individual generates only one alternative for consideration (which is also the one chosen). 

 In the subsequent sections, we discuss four elements associated with the choice process; 

the decision maker, the alternatives, the attributes of alternatives and the decision rule. 

 

2.2 The Decision Maker  
The decision maker in each choice situation is the individual, group or institution which has the 

responsibility to make the decision at hand.  The decision maker will depend on the specific 

choice situation.  For example, the decision maker will be the individual in college choice, career 

choice, travel mode choice, etc.; the household in residential location choice, vacation 

destination choice, number of cars owned, etc.; the firm in office or warehouse location, carrier 

choice, employee hiring, etc. or the State (in the selection of roadway alignments).  A common 

characteristic in the study of choice is that different decision makers face different choice 

situations and can have different tastes (that is, they value attributes differently).  For example, in 
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travel mode choice modeling, two individuals with different income levels and different 

residential locations are likely to have different sets of modes to choose from and may place 

different importance weights on travel time, travel cost and other attributes.  These differences 

among decision makers should be explicitly considered in choice modeling; consequently, it is 

important to develop choice models at the level of the decision maker and to include variables 

which represent differences among the decision makers. 

 

2.3 The Alternatives  
Individuals make a choice from a set of alternatives available to them.  The set of available 

alternatives may be constrained by the environment.  For example, high speed rail between two 

cities is an alternative only if the two cities are connected by high speed rail.  The choice set 

determined by the environment is referred to as the universal choice set.  However, even if an 

alternative is present in the universal choice set, it may not be feasible for a particular individual.  

Feasibility of an alternative for an individual in the context of travel mode choice may be 

determined by legal regulations (a person cannot drive alone until the age of 16), economic 

constraints (limousine service is not feasible for some people) or characteristics of the individual 

(no car available or a handicap that prevents one from driving).  The subset of the universal 

choice set that is feasible for an individual is defined as the feasible choice set for that individual.  

Finally, not all alternatives in the feasible choice set may be considered by an individual in 

her/his choice process.  For example, transit might be a feasible travel mode for an individual's 

work trip, but the individual might not be aware of the availability or schedule of the transit 

service.  The subset of the feasible choice set that an individual actually considers is referred to 

as the consideration choice set.  This is the choice set which should be considered when 

modeling choice decisions. 

 The choice set may also be determined by the decision context of the individual or the 

focus of the policy makers supporting the study.  For example, a study of university choice may 

focus on choice of school type (private vs. public, small vs. large, urban vs. suburban or rural 
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location, etc.), if the perspective is national, or a choice of specific schools, if the perspective is 

regional. 

 

2.4 Attributes of Alternatives  
The alternatives in a choice process are characterized by a set of attribute values.  Following 

Lancaster (1971), one can postulate that the attractiveness of an alternative is determined by the 

value of its attributes.  The measure of uncertainty about an attribute can also be included as part 

of the attribute vector in addition to the attribute itself.  For example, if travel time by transit is 

not fixed, the expected value of transit travel time and a measure of uncertainty of the transit 

travel time can both be included as attributes of transit. 

 The attributes of alternatives may be generic (that is, they apply to all alternatives 

equally) or alternative-specific (they apply to one or a subset of alternatives).  In the travel mode 

choice context, in-vehicle-time is usually considered to be specific to all motorized modes 

because it is relevant to motorized alternatives.  However, if travel time by bus is considered to 

be very onerous due to over-crowding, bus in-vehicle-time may be defined as a distinct variable 

with a distinct parameter; differences between this parameter and the in-vehicle-time parameter 

for other motorized modes will measure the degree to which bus time is considered onerous to 

the traveler relative to other in-vehicle time.  Other times, such as wait time at a transit stop or 

transfer time at a transit transfer point are relevant only to the transit modes, not for the non-

transit modes.  It is also common to consider the travel times for non-motorized modes (bike and 

walk) as specific to only these alternatives. 

 An important reason for developing discrete choice models is to evaluate the effect of 

policy actions.  To provide this capability, it is important to identify and include attributes whose 

values may be changed through pro-active policy decisions.  In a travel mode choice context, 

these variables include measures of service (travel time, frequency, reliability of service, etc.) 

and travel cost.  
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2.5 The Decision Rule  
An individual invokes a decision rule (i.e., a mechanism to process information and evaluate 

alternatives) to select an alternative from a choice set with two or more alternatives.  This 

decision rule may include random choice, variety seeking, or other processes which we refer to 

as being irrational.  As indicated earlier, some individuals might use other decision rules such as 

"follow the leader" or habit in choosing alternatives which may also be considered to be 

irrational.  However, even in this case, rational discrete choice models may be effective if the 

decision maker who adopts habitual behavior previously evaluated different alternatives and 

selected the best one for him/her and there have been no intervening changes in her/his 

alternatives and preferences.  However, in the case of follow-the-leader behavior, the decision 

maker is considered to be rational if the “leader” is believed to share a similar value system.  An 

individual is said to use a rational decision process if the process satisfies two fundamental 

constructs: consistency and transitivity.  Consistency implies the same choice selection in 

repeated choices under identical circumstances.  Transitivity implies an unique ordering of 

alternatives on a preference scale.  Therefore, if alternative A is preferred to alternative B and 

alternative B is preferred to alternative C, then alternative A is preferred to alternative C. 

 A number of possible rules fall under the purview of rational decision processes (Ben-

Akiva and Lerman, 1985; Chapter 3).  In this course, the focus will be on one such decision rule 

referred to as utility maximization.  The utility maximization rule is based on two fundamental 

concepts.  The first is that the attribute vector characterizing each alternative can be reduced to a 

scalar utility value for that alternative.  This concept implies a compensatory decision process; 

that is, it presumes that individuals make "trade-offs" among the attributes characterizing 

alternatives in determining their choice.  Thus, an individual may choose a costlier travel mode if 

the travel time reduction offered by that mode compensates for the increased cost.  The second 

concept is that the individual selects the alternative with the highest utility value.  

 The focus on utility maximization in this course is based on its strong theoretical 

background, extensive use in the development of human decision making concepts, and 

amenability to statistical testing of the effects of attributes on choice.  The utility maximization 
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rule is also robust; that is, it provides a good description of the choice behavior even in cases 

where individuals use somewhat different decision rules. 

 In the next chapter, we discuss the concepts and underlying principles of utility based 

choice theory in more detail.  
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CHAPTER 3: Utility-Based Choice Theory 
 

3.1 Basic Construct of Utility Theory  
Utility is an indicator of value to an individual.  Generally, we think about utility as being 

derived from the attributes of alternatives or sets of alternatives; e.g., the total set of groceries 

purchased in a week. The utility maximization rule states that an individual will select the 

alternative from his/her set of available alternatives that maximizes his or her utility.  Further, 

the rule implies that there is a function containing attributes of alternatives and characteristics of 

individuals that describes an individual’s utility valuation for each alternative.  The utility 

function, U , has the property that an alternative is chosen if its utility is greater than the utility 

of all other alternatives in the individual’s choice set.  Alternatively, this can be stated as 

alternative, ‘i’, is chosen among a set of alternatives, if and only if the utility of alternative, ‘i’, is 

greater than or equal to the utility of  all alternatives2, ‘j’, in the choice set, C.  This can be 

expressed mathematically as: 

 

 If ( , ) ( , )i t j tU X S U X S j i j j C≥ ∀ ⇒ ∀ ∈  3.1 

 

where  ( )U  is the mathematical utility function,  

,i jX X  are vectors of attributes describing alternatives i and j, respectively 

(e.g., travel time, travel cost, and other relevant attributes of the 

available modes), 

tS  is a vector of characteristics describing individual t, that influence 

his/her preferences among alternatives (e.g., household income and 

number of automobiles owned for travel mode choice), 

 
                                                 
2 “All j includes alternative i.  The case of equality of utility is included to acknowledge that the utility of i will be equal to the utility of i 

included in all j. 
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i j  means the alternative to the left is preferred to the alternative to the 

right, and 

j∀  means all the cases, j, in the choice set. 

That is, if the utility of alternative i is greater than or equal to the utility of all alternatives, j; 

alternative i will be preferred and chosen from the set of alternatives, C. 

 The underlying concept of utility allows us to rank a series of alternatives and identify 

the single alternative that has highest utility. The primary implication of this ranking or ordering 

of alternatives is that there is no absolute reference or zero point, for utility values.  Thus, the 

only valuation that is important is the difference in utility between pairs of alternatives; 

particularly whether that difference is positive or negative.  Any function that produces the same 

preference orderings can serve as a utility function and will give the same predictions of choice, 

regardless of the numerical values of the utilities assigned to individual alternatives.  It also 

follows that utility functions, which result in the same order among alternatives, are equivalent. 

 

3.2 Deterministic Choice Concepts  
The utility maximization rule, which states that an individual chooses the alternative with the 

highest utility, implies no uncertainty in the individual’s decision process; that is, the individual 

is certain to choose the highest ranked alternative under the observed choice conditions. Utility 

models that yield certain predictions of choice are called deterministic utility models.  The 

application of deterministic utility to the case of a decision between two alternatives is illustrated 

in Figure 3.1 that portrays a utility space in which the utilities of alternatives 1 and 2 are plotted 

along the horizontal and vertical axes, respectively, for each individual.  The 45° line represents 

those points for which the utilities of the two alternatives are equal. Individuals B, C and D 

(above the equal-utility line) have higher utility for alternative 2 than for alternative 1 and are 

certain to choose alternative 2.  Similarly, individuals A, E, and F (below the line) have higher 

utility for alternative 1 and are certain to choose that alternative.  If deterministic utility models 

described behavior correctly, we would expect that an individual would make the same choice 

over time and that similar individuals (individuals having the same individual and household 
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characteristics), would make the same choices when faced with the same set of alternatives.  In 

practice, however, we observe variations in an individual’s choice and different choices among 

apparently similar individuals when faced with similar or even identical alternatives.  For 

example, in studies of work trip mode choice, it is commonly observed that individuals, who are 

represented as having identical personal characteristics and who face the same sets of travel 

alternatives, choose different modes of travel to work.  Further, some of these individuals vary 

their choices from day to day for no observable reason resulting in observed choices which 

appear to contradict the utility evaluations; that is, person A may choose Alternative 2 even 

though 1 2U U>  or person C may choose Alternative 2 even though 2 1U U> .  These 

observations raise questions about the appropriateness of deterministic utility models for 

modeling travel or other human behavior. The challenge is to develop a model structure that 

provides a reasonable representation of these unexplained variations in travel behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Illustration of Deterministic Choice 
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There are three primary sources of error in the use of deterministic utility functions.  First, the 

individual may have incomplete or incorrect information or misperceptions about the attributes 

of some or all of the alternatives.  As a result, different individuals, each with different 

information or perceptions about the same alternatives are likely to make different choices.  

Second, the analyst or observer has different or incomplete information about the same attributes 

relative to the individuals and an inadequate understanding of the function the individual uses to 

evaluate the utility of each alternative. For example, the analyst may not have good measures of 

the reliability of a particular transit service, the likelihood of getting a seat at a particular time of 

day or the likelihood of finding a parking space at a suburban rail station.  However, the traveler, 

especially if he/she is a regular user, is likely to know these things or to have opinions about 

them.  Third, the analyst is unlikely to know, or account for, specific circumstances of the 

individual’s travel decision.  For example, an individual’s choice of mode for the work trip may 

depend on whether there are family visitors or that another family member has a special travel 

need on a particular day.  Using models which do not account for and incorporate this lack of 

information results in the apparent behavioral inconsistencies described above.  While human 

behavior may be argued to be inconsistent, it can also be argued that the inconsistency is only 

apparent and can be attributed to the analyst’s lack of knowledge regarding the individual’s 

decision making process.  Models that take account of this lack of information on the part of the 

analyst are called random utility or probabilistic choice models.   

 

3.3 Probabilistic Choice Theory  
If analysts thoroughly understood all aspects of the internal decision making process of choosers 

as well as their perception of alternatives, they would be able to describe that process and predict 

mode choice using deterministic utility models.  Experience has shown, however, that analysts 

do not have such knowledge; they do not fully understand the decision process of each 

individual or their perceptions of alternatives and they have no realistic possibility of obtaining 

this information.  Therefore, mode choice models should take a form that recognizes and 
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accommodates the analyst’s lack of information and understanding.  The data and models used 

by analysts describe preferences and choice in terms of probabilities of choosing each alternative 

rather than predicting that an individual will choose a particular mode with certainty. Effectively, 

these probabilities reflect the population probabilities that people with the given set of 

characteristics and facing the same set of alternatives choose each of the alternatives.   

 As with deterministic choice theory, the individual is assumed to choose an alternative if 

its utility is greater than that of any other alternative.  The probability prediction of the analyst 

results from differences between the estimated utility values and the utility values used by the 

traveler.  We represent this difference by decomposing the utility of the alternative, from the 

perspective of the decision maker, into two components.  One component of the utility function 

represents the portion of the utility observed by the analyst, often called the deterministic (or 

observable) portion of the utility.  The other component is the difference between the unknown 

utility used by the individual and the utility estimated by the analyst.  Since the utility used by 

the decision maker is unknown, we represent this difference as a random error.  Formally, we 

represent this by: 

 

 it it itU V ε= +  3.2 
 

where itU   is the true utility of the alternative i to the decision maker t, ( itU   

is equivalent to ( , )i tU X S  but provides a simpler notation), 

itV  is the deterministic or observable portion of the utility estimated by 

the analyst, and 

itε  is the error or the portion of the utility unknown to the analyst. 

The analyst does not have any information about the error term.  However, the total error which 

is the sum of errors from many sources (imperfect information, measurement errors, omission of 

modal attributes, omission of the characteristics of the individual that influence his/her choice 

decision and/or errors in the utility function) is represented by a random variable.  Different 

assumptions about the distribution of the random variables associated with the utility of each 
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alternative result in different representations of the model used to describe and predict choice 

probabilities.  The assumptions used in the development of logit type models are discussed in the 

next Chapter. 

 

3.4 Components of the Deterministic Portion of the Utility Function 
The deterministic or observable portion (often called the systematic portion) of the utility of an 

alternative is a mathematical function of the attributes of the alternative and the characteristics of 

the decision maker.  The systematic portion of utility can have any mathematical form but the 

function is most generally formulated as additive to simplify the estimation process.  This 

function includes unknown parameters which are estimated in the modeling process.  The 

systematic portion of the utility function can be broken into components that are (1) exclusively 

related to the attributes of alternatives, (2) exclusively related to the characteristics of the 

decision maker and (3) represent interactions between the attributes of alternatives and the 

characteristics of the decision maker.  Thus, the systematic portion of utility can be represented 

by: 

 , ( ) ( ) ( , )t i t i t iV V S V X V S X= + +  3.3 
 

where itV  is the systematic portion of utility of alternative i for individual t,  

( )tV S  is the portion of utility associated with characteristics of individual 

t, 

( )iV X  is the portion of utility of alternative i associated with the attributes 

of alternative i, and 

( , )t iV S X  is the portion of the utility which results from interactions between 

the attributes of alternative i and the characteristics of individual t. 

Each of these utility components is discussed separately.  
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3.4.1 Utility Associated with the Attributes of Alternatives 
The utility component associated exclusively with alternatives includes variables that describe 

the attributes of alternatives.  These attributes influence the utility of each alternative for all 

people in the population of interest.  The attributes considered for inclusion in this component 

are service attributes which are measurable and which are expected to influence people’s 

preferences/choices among alternatives.  These include measures of travel time, travel cost, walk 

access distance, transfers required, crowding, seat availability, and others.  For example: 

• Total travel time, 

• In-vehicle travel time, 

• Out-of-vehicle travel time, 

• Travel cost, 

• Number of transfers (transit modes), 

• Walk distance and 

• Reliability of on time arrival. 

These measures differ across alternatives for the same individual and also among individuals due 

to differences in the origin and destination locations of each person’s travel.  For example, this 

portion of the utility function could look like: 

 1 1 2 2( )i i i k iKV X X X Xγ γ γ= × + × + + ×  3.4 
 

where kγ  is the parameter which defines the direction and importance of the 

effect of attribute k on the utility of an alternative and 

ikX  is the value of attribute k for alternative i. 

Thus, this portion of the utility of each alternative, i, is the weighted sum of the attributes of 

alternative i.  A specific example for the Drive Alone (DA), Shared Ride (SR), and Transit (TR) 

alternatives is: 

 1 2( )DA DA DAV X TT TCγ γ= × + ×  3.5 
 1 2( )SR SR SRV X TT TCγ γ= × + ×  3.6 
 1 2 3( )TR TR TR TRV X TT TC FREQγ γ γ= × + × + ×  3.7 
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where iTT  is the travel time for mode i (i = DA, SR,TR) and 

iTC  is the travel cost for mode i, and 

TRFREQ   is the frequency for transit services. 

Travel time and travel cost are generic; that is, they apply to all alternatives; frequency is specific 

to transit only.  The parameters, kγ , are identical for all the alternatives to which they apply.  

This implies that the utility value of travel time and travel cost are identical across alternatives.  

The possibility that travel time may be more onerous on Transit than by Drive Alone or Shared 

Ride could be tested by reformulating the above models to: 

 11 12 2( ) 0DA DA DAV X TT TCγ γ γ= × + × + ×  3.8 
 11 12 2( ) 0SR SR SRV X TT TCγ γ γ= × + × + ×  3.9 
 11 12 2 3( ) 0TR TR TR TRV X TT TC FREQγ γ γ γ= × + × + × + ×  3.10 

That is, two distinct parameters would be estimated for travel time; one for travel time by DA 

and SR, 11γ , and the other for travel time by TR, 12γ .  These parameters could be compared to 

determine if the differences are statistically significant or large enough to be important. 

 

3.4.2 Utility ‘Biases’ Due to Excluded Variables 
It has been widely observed that decision makers exhibit preferences for alternatives which 

cannot be explained by the observed attributes of those alternatives.  These preferences are 

described as alternative specific preference or bias; they measure the average preference of 

individuals with different characteristics for an alternative relative to a ‘reference’ alternative.  

As will be shown in CHAPTER 4, the selection of the reference alternative does not influence 

the interpretation of the model estimation results.  In the simplest case, we assume that the bias is 

the same for all decision makers.  In this case, this portion of the utility function would be: 

 0i i iBias ASCβ= ×  3.11 
 

where 0iβ  represents an increase in the utility of alternative i for all choosers 

and  



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 22 
 

 
Koppelman and Bhat  January 31, 2006 

iASC   is equal to one for alternative i and zero for all other alternatives. 

More detailed observation generally indicates that people with different personal and family 

characteristics have different preferences among sets of alternatives.  For example, members of 

high income households are less likely to choose transit alternatives than low income 

individuals, all other things being equal.  Similarly, members of households with fewer 

automobiles than workers are more likely to choose transit alternatives.  Thus, it is useful to 

consider that the bias may differ across individuals as discussed in the next section. 

 

3.4.3 Utility Related to the Characteristics of the Decision Maker 
The differences in ‘bias’ across individuals can be represented by incorporating personal and 

household variables in mode choice models.  Variables commonly used for this purpose include: 

• Income of the traveler’s household, 

• Sex of traveler, 

• Age of traveler, 

• Number of automobiles in traveler’s household, 

• Number of workers in the traveler’s household, and 

• Number of adults in the traveler’s household. 

In some cases, these variables are combined.  For example, the number of automobiles may be 

divided by the number of workers to indicate the availability of automobiles to each household 

member.  This approach results in modification of the bias portion of the utility function to look 

like:  

 0 1 1 2 2i i i t i t iM MtASC S S Sβ β β β× + × + × + + ×  3.12 
 

where  imβ    is the parameter which defines the direction and magnitude of the 

incremental bias due to an increase in the thm  characteristic of the 

decision maker ( 0m =  represents the parameter associated with 

the alternative specific constant) and  



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 23 
 

 
Koppelman and Bhat  January 31, 2006 

mtS    is the value of the thm  characteristics for individual t. 

For the case of three alternatives, (Drive Alone, Shared Ride and Transit), the decision maker 

components of the utility functions are: 

 ,0 ,1 ,2( ) 1DA DA DA t DA tV S Inc NCarβ β β= × + × + ×  3.13 

 ,0 ,1 ,2( ) 1SR SR SR t SR tV S Inc NCarβ β β= × + × + ×  3.14 

 ,0 ,1 ,2( ) 1TR TR TR t TR tV S Inc NCarβ β β= × + × + ×  3.15 
 

where  0iβ  is the modal bias constant for mode i (i = DA, SR,TR), 

tInc   is the household income of the traveler, 

tNCar  is the number of cars in the traveler’s household, and 

1 2,i iβ β  are mode specific parameters on income and cars, respectively,  for 

mode i (i = DA, SR,TR) 

It is important to recognize that the parameters that describe the effect of traveler characteristics 

differ across alternatives while the variables are identical across alternatives for each individual. 

 

3.4.4 Utility Defined by Interactions between Alternative Attributes and Decision Maker 
Characteristics   
The final component of utility takes into account differences in how attributes are evaluated by 

different decision makers.  One effect of income, described earlier, is to increase the preference 

for travel by private automobile.  This representation implies that the preference for DA and SR 

increase with income, independent of the attributes of travel by each alternative.  Another way to 

represent the influence of income is that increasing income reduces the importance of monetary 

cost in the evaluation of modal alternatives.  The idea that high income travelers place less 

importance on cost can be represented by dividing the cost of travel of an alternative by annual 

income or some function of annual income of the traveler or his/her household.  Another 

interaction effect might be that different travelers evaluate travel time differently.  For example, 

one might argue that because women commonly take increased responsibility for home 

maintenance and child care, they are likely to evaluate increased travel time to work more 

( )
( )
( )

, 0 , 1 , 2

, 0 , 1 , 2

, 0 , 1 , 2

1                      

1                      

1      
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V S I n c N C a r

V S I n c N C a r

β β β

β β β
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negatively than men.  This could be represented by adding a variable to the model which 

represents the product of a dummy variable for female (one if the traveler is a woman and zero 

otherwise) times travel time, as illustrated below in the utility equations for a three alternative 

mode choice example (Drive Alone, Shared Ride, and Transit) using the same notation described 

previously.   

 1 2 3( , )DA i DA DA DAV X S TT TT Fem TCγ γ γ= × + × × + ×  3.16 
 1 2 3( , )SR i SR SR SRV X S TT TT Fem TCγ γ γ= × + × × + ×  3.17 
 1 2 3 4( , )TR i TR TR TR TRV X S TT TT Fem TC FREQγ γ γ γ= × + × × + × + × 3.18 
 

In this example, 1γ  represents the utility value of one minute of travel time to men and 2γ  

represents the additional utility value of one minute of travel time to women.  Thus, the total 

utility value of one minute of travel time to women is 1 2γ γ+ .  In this case, 1γ , is expected to 

be negative indicating that increased travel time reduces the utility of an alternative.  2γ  may be 

negative or positive, indicating that women are more or less sensitive to increases in travel time. 

3.5 Specification of the Additive Error Term 
As described in section 3.3, the utility of each alternative is represented by a deterministic 

component,  which is represented in the utility function by observed and measured variables,  

and an additive error term, iε   which represents those components of the utility function which 

are not included in the model.  In the three alternative examples used above, the total utility of 

each alternative can be represented by: 

 ( ) ( ) ( ),  DA t DA t DA DAU V S V X V S X ε= + + +  3.19 

 ( ) ( ) ( ),SR t SR t SR SRU V S V X V S X ε= + + +  3.20 

 ( ) ( ) ( ),   TR t TR t TR TRU V S V X V S X ε= + + +  3.21 

 

where ()V   represents the deterministic components of the utility for the 

alternatives, and 
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iε  represents the random components of the utility, also called the 

error term.  
 The error term is included in the utility function to account for the fact that the analyst is 

not able to completely and correctly measure or specify all attributes that determine travelers’ 

mode utility assessment.  By definition, error terms are unobserved and unmeasured.  A wide 

range of distributions could be used to represent the distribution of error terms over individuals 

and alternatives.  If we assume that the error term for each alternative represents many missing 

components, each of which has relatively little impact on the value of each alternative, the 

central limit theorem suggests that the sum of these small errors will be distributed normally.  

This assumption leads to the formulation of the Multinomial Probit (MNP) probabilistic choice 

model.  However, the mathematical complexity of the MNP model; which makes it difficult to 

estimate, interpret and predict; has limited its use in practice.  An alternative distribution 

assumption, described in the next chapter, leads to the formulation of the multinomial logit 

(MNL) model.  
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CHAPTER 4: The Multinomial Logit Model 
 

4.1 Overview Description and Functional Form  
The mathematical form of a discrete choice model is determined by the assumptions made 

regarding the error components of the utility function for each alternative as described in section 

3.5.  The specific assumptions that lead to the Multinomial Logit Model are (1) the error 

components are extreme-value (or Gumbel) distributed, (2) the error components are identically 

and independently distributed across alternatives, and (3) the error components are identically 

and independently distributed across observations/individuals.  We discuss each of these 

assumptions below. 

 The most common assumption for error distributions in the statistical and modeling 

literature is that errors are distributed normally.  There are good theoretical and practical reasons 

for using the normal distribution for many modeling applications.  However, in the case of 

choice models the normal distribution assumption for error terms leads to the Multinomial Probit 

Model (MNP) which has some properties that make it difficult to use in choice analysis3.  The 

Gumbel distribution is selected because it has computational advantages in a context where 

maximization is important, closely approximates the normal distribution (see Figure 4.1 and 

Figure 4.2) and produces a closed-form4 probabilistic choice model. 

 

                                                 
3 These include numerical problems, because the MNP can only be calculated using multi-dimensional integration, and problems of 

interpretation.  A special case of the MNP, when the error terms are distributed independently (no covariance) and identically (same variance), 

obtains estimation and prediction results that are very similar to those for the MNL model. 

4 A model for which the probability can be calculated without use of numerical integration or simulation methods. 
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Figure 4.1 Probability Density Function for Gumbel and Normal Distributions  

(same mean and variance) 
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Figure 4.2 Cumulative Distribution Function for Gumbel and Normal Distribution with the 
Same Mean and Variance 
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The Gumbel has the following cumulative distribution and probability density functions: 

 ( ){ }( ) exp exp  F µ η⎡ ⎤∈ = − − ∈−⎣ ⎦  4.1 

 ( ){ } ( ){ }( ) exp exp expf µ µ η µ η⎡ ⎤ ⎡ ⎤∈ = × − ∈− × − − ∈−⎣ ⎦ ⎣ ⎦  4.2 

 

where µ   is the scale parameter which determines the variance of the 

distribution and 

η  is the location (mode) parameter. 

The mean and variance of the distribution are: 

 
0.577

Mean =  + η
µ

     4.3 

 
2

2Variance
6
π
µ

=      4.4 

The second and third assumptions state the location and variance of the distribution just as µ  

and 2σ  indicate the location and variance of the normal distribution. We will return to the 

discussion of the independence between/among alternatives in CHAPTER 8.   

 The three assumptions, taken together, lead to the mathematical structure known as the 

Multinomial Logit Model (MNL), which gives the choice probabilities of each alternative as a 

function of the systematic portion of the utility of all the alternatives.  The general expression for 

the probability of choosing an alternative ‘i’ (i = 1,2,.., J) from a set of J alternatives is: 

 
1

exp( )
Pr( )

exp( )

i

J

jj

V
i

V
=

=
∑

 4.5 

 

where Pr( )i   is the probability of the decision-maker choosing alternative i and  

jV  is the systematic component of the utility of alternative j. 
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 The exponential function is described in Figure 4.3 which shows the relationship between 

exp( )Vi  and iV .  Note that exp( )Vi  is always positive and increases monotonically with 

iV . 

Figure 4.3 Relationship between Vi and Exp(Vi) 
 

The multinomial logit (MNL) model has several important properties.  We illustrate these for a 

case in which the decision maker has three available alternatives:  Drive Alone (DA), Shared 

Ride (SR), and TRansit (TR).  The probabilities of each alternative are given by modifying 

equation 4.5 for each alternative to obtain: 
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where Pr( )DA ,  Pr( )SR , and Pr( )TR  are the probabilities of the decision-maker choosing 

drive alone, shared ride and transit, respectively, and DAV , SRV  and TRV  are the systematic 

components of the utility for drive alone, shared ride, and transit alternatives, respectively.  It is 

common to replace these three equations by a single general equation to represent the probability 

of any alternative and to simplify the equation by replacing the explicit summation in the 

denominator by the summation over alternatives as: 

 
exp( )

Pr( )
exp( ) exp( ) exp( )

i

DA SR TR

V
i

V V V
=

+ +
 4.9 

 

, ,

exp( )
Pr( )  

exp( )
i

j
j DA SR TR

V
i

V
=

=
∑

 4.10 

 

where  i indicates the alternative for which the probability is being computed.  

 This formulation implies that the probability of choosing an alternative increases 

monotonically with an increase in the systematic utility of that alternative and decreases with 

increases in the systematic utility of each of the other alternatives.  This is illustrated in Table 

4-1 showing the probability of DA as a function of its own utility (with the utilities of other 

alternatives held constant) and in Table 4-2 as a function of the utility of other alternatives with 

its own utility fixed. 

 

Table 4-1 Probability Values for Drive Alone as a Function of Drive Alone Utility  

(Shared Ride and Transit Utilities held constant) 

   Case VDA VSR VTR Pr(DA) 
1 -3.0 -1.5 -0.5 0.0566 
2 -1.5 -1.5 -0.5 0.2119 
3 0.0 -1.5 -0.5 0.5465 
4  1.5 -1.5 -0.5 0.8438 
5  3.0 -1.5 -0.5 0.9603 
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Table 4-2 Probability Values for Drive Alone as a Function of Shared Ride and Transit 
Utilities 

   Case VDA VSR VTR Pr(DA) 

6 0.0 -1.5 -1.5 0.6914 

7 0.0 -1.5 -1.0 0.6285 

8 0.0 -1.5 -0.5 0.5465 

9 0.0 -0.5 -1.5 0.5465 

10 0.0 -0.5 -1.0 0.5065 

11 0.0 -0.5 -0.5 0.4519 

 

We use this three-alternative example to illustrate three important properties of the MNL: (1) its 

sigmoid or S shape, (2) dependence of the alternative choice probabilities on the differences in 

the systematic utility and (3) independence of the ratio of the choice probabilities of any pair of 

alternatives from the attributes and availability of other alternatives. 

 

4.1.1 The Sigmoid or S shape of Multinomial Logit Probabilities 
The S shape of the MNL probabilities is illustrated in Figure 4.4 where the probability of 

choosing Drive Alone is shown as a function of its own utility, with the utilities of the other 

alternatives held constant.  The S-shape limits the probability range between zero when the 

utility of DA is very low, relative to other alternatives, and one when the utility of DA is very 

high, relative to other alternatives.  This function has very gradual slope at extreme values of DA 

utility, relative to the other alternatives, and is much steeper when its utility reaches a value such 

that its choice probability is close to one-half.  This implies that if the representative utility of 

one alternative is very low or very high, compared with the others, a small increase in the utility 

of this alternative will not substantially affect its probability of being chosen.  The point at which 

an increase in the representative utility of an alternative has the greatest effect on its probability 

of being chosen (i.e., the point of maximum slope along the curve) is when its representative 
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utility is equivalent to the combined utility of the other alternatives.  When this is true, a small 

increase in the utility of one alternative can ‘tip the balance’ and induce a large increase in the 

probability of the alternative being chosen (Train, 1993). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 Logit Model Probability Curve 
 

4.1.2 The Equivalent Differences Property 
A fundamental property of the multinomial logit and other choice models is that the choice 

probabilities of the alternatives depend only on the differences in the systematic utilities of 

different alternatives and not their actual values.  This can be illustrated in two ways.  First, we 

show that the choice probability equations are unchanged if the same incremental value, say 

V∆ , is added to the utility of each alternative.  The original probabilities for the three 

alternatives in the example are given by: 
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where  i   is the alternative for which the probabilities are being computed. 
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Adding V∆  to the systematic components of DAV , SRV  and TRV  gives5:  

 

[ ]
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Pr( )

exp( ) exp( ) exp( )

exp( ) exp( )
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V V
V V V V V V

V V
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V V V

+∆
=

+∆ + +∆ + +∆

× ∆
=

× ∆ + × ∆ + × ∆

× ∆
=

+ + × ∆

=
+ +[ ])R

4.12 

which is the same probability as before V∆  was added to each of the utilities.  This result 

applies to any value of V∆ .  We also illustrate this property through use of a numerical 

example for the three alternative choice problem used earlier.  The following equations represent 

the case when the utility values for Drive Alone, Shared Ride and Transit equal -0.5, -1.5 and 

-3.0, respectively:   

 
exp( 0.5)

Pr( ) 0.690
exp( 0.5) exp( 1.5) exp( 3.0)

DA
−

= =
− + − + −

 4.13 

 
exp( 1.5)

Pr( ) 0.254  
exp( 0.5) exp( 1.5) exp( 3.0)

SR
−

= =
− + − + −

 4.14 

 
exp( 3.0)

Pr( ) 0.057 
exp( 0.5) exp( 1.5) exp( 3.0)

TR
−

= =
− + − + −

 4.15 

Similarly, if the utility of each alternative is increased by one, the probabilities are: 

 
exp(0.5)

Pr( ) 0.690 
exp(0.5) exp( 0.5) exp( 2.0)

DA = =
+ − + −

 4.16 

 
exp( 0.5)

Pr( ) 0.254  
exp(0.5) exp( 0.5) exp( 2.0)

SR
−

= =
+ − + −

 4.17 

                                                 
5 The exponent of a summation, exp( )A B+ , is equal to the product of the exponents of the elements in the sum, 

exp( ) exp( )A B× . 
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exp( 2.0)

Pr( ) 0.057
exp(0.5) exp( 0.5) exp( 2.0)

TR
−

= =
+ − + −

 4.18 

As expected, the choice probabilities are identical to those obtained before the addition of the 

constant utility to each mode.  The calculations supporting this comparison are shown in Table 

4-3 and Table 4-4.  Table 4-3 shows the computation of the choice probabilities based on the 

initial set of modal utilities and Table 4-4 shows the same computation after each of the utilities 

is increased by one6.  

Table 4-3 Numerical Example Illustrating Equivalent Difference Property:  

Probability of Each Alternative Before Adding Delta 

Utility    
Alternative 

Expression Value Exponent Probability 

Drive Alone -0.50 -0.50 0.607 0.690 
Shared Ride -1.50 -1.50 0.223 0.254 
TRansit -3.00 -3.00 0.050 0.057 
   Σ=0.879  

 

Table 4-4 Numerical Example Illustrating Equivalent Difference Property:  

Probability of Each Alternative After Adding Delta (=1.0) 

Utility    
Alternative Expression Value Exponent Probability 

Drive Alone -0.50 + 1.00 0.50 1.649 0.690 
Shared Ride -1.50 + 1.00 -0.50 0.607 0.254 
TRansit -3.00 + 1.00 -2.00 0.135 0.057 
   Σ=2.391  

 
 The expression for the probability equation of the logit model (equation 4.9) can also be 

presented in a different form which makes the equivalent difference property more apparent.  For 
                                                 
6 We use tables to illustrate calculation of the utility values and MNL probabilities. The first column shows the specification expression with 

appropriate values for variables and parameters, the second shows the calculated utility value, the third shows the exponent of the utility 

including the sum of the exponents, and the fourth shows the probability values. 
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the drive alone alternative, this expression can be obtained by multiplying the numerator and 

denominator of the standard probability expression by exp(-VDA) as shown in the following 

equations.    

 
[ ]

( ) ( )

exp( ) exp( )
Pr( )  

exp( ) exp( ) exp( ) exp( )

exp( ) exp( )
exp( ) exp( ) exp( ) exp( )
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( ) V V V V

−
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× −
=

+ + × −

=
+ − + −

 4.19 

which simplifies to: 

 
( ) ( )

1
Pr( )  

1 exp expSR DA TR DA

DA
V V V V

=
+ − + −

 4.20 

This formulation explicitly shows that the probability of the drive alone alternative is a function 

of the differences in systematic utility between the drive alone alternative and each other 

alternative.  This can be applied to the general case for alternative i which can be represented in 

terms of the pairwise difference in its utility and the utility of each of the other alternatives by 

the following equation:   

 
1

Pr( )  
1 exp( )j i

j i

i i J
V V

≠

= ∀ ∈
+ −∑

 4.21 

4.1.2.1  

4.1.2.2 Implication of Constant Differences for Alternative Specific Constants and 
Variables 
The constant difference property of logit models has an important implication for the 

specification of the utilities of the alternatives.  Recall that the systematic portion of the utility of 

an individual, ‘t’, and alternative ‘i’ is the sum of decision-maker related bias, mode attribute 

related utility, and interactions between these.  That is: 

 ( ) ( ) ( , ) DA DA t DA t DAV V S V X V S X= + +  4.22 

 ( ) ( ) ( , ) SR SR t SR t SRV V S V X V S X= + +  4.23 
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 ( ) ( ) ( , ) TR TR t TR t TRV V S V X V S X= + +  4.24 

Each term on the right hand side of each equation can be replaced by an explicit function of the 

relevant variables.  For example, if the decision-maker preferences are a function of income, 

attribute based utility is a function of travel time and there are no interaction terms, the utility 

function becomes: 

 ,0 ,1    DA DA DA t DAV Income TTβ β γ= + × + ×  4.25 

 ,0 ,1  SR SR SR t SRV Income TTβ β γ= + × + ×  4.26 

 ,0 ,1  TR TR TR t TRV Income TTβ β γ= + × + ×  4.27 

and the differences between pairs of alternatives for prediction of DA probability become: 

( ) ( ) ( ),0 ,0 ,1 ,1+ +SR DA SR DA SR DA t SR DAV V Income TT TTβ β β β γ− = − − × × − 4.28 

( ) ( ) ( ),0 ,0 ,1 ,1+  +TR DA TR DA TR DA t TR DAV V Income TT TTβ β β β γ− = − − × × − 4.29 

It is not possible to estimate all of the constants; ,0DAβ , ,0SRβ  and ,0TRβ ; and all of the income 

parameters; ,1DAβ , ,1SRβ  and ,1TRβ ; in these equations because adding any algebraic value to 

each of the constants or to each of the income parameters does not cause any change in the 

probabilities of any of the alternatives.  This phenomenon is common to all utility-based choice 

models and follows directly from the equivalent differences property discussed above.  The 

solution to this problem is to place a single constraint on each set of parameters; in this case, the 

constants and the income parameters.  Any constraint can be adopted for each set of parameters; 

however, the simplest and most widely used is to set the preference related parameters for one 

alternative, called the base or reference alternative, to zero and to re-interpret the remaining 

parameters to represent preference differences relative to the base alternative.   

 The selection of the reference alternative is arbitrary and does not affect the overall 

quality or interpretation of the model; however, the equations and the estimation results will 

appear to be different.  For example, if we set TRansit as the reference alternative by setting 

,0TRβ  and ,1TRβ  equal to zero, the utility functions become: 

 , ,0 ,1  tDA t DA TR DA TR DAV Inc TTβ β γ− −= + × + ×  4.30 
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 , ,0 ,1 tSR t SR TR SR TR SRV Inc TTβ β γ− −= + × + ×  4.31 

 ,                     0             TR t TRV TTγ= + ×  4.32 

where the modified notation for the remaining constants and income parameters is used to 

emphasize that these parameters are ‘relative to the TRansit alternative.’  Alternatively, if we 

select Drive Alone as the reference alternative, we obtain:  

 ,                     0              DA t DAV TTγ= + ×  4.33 

 , ,0 ,1SR t SR DA SR DA SRV Income TTβ β γ− −= + × + ×  4.34 

 , ,0 ,1TR t TR DA TR DA TRV Income TTβ β γ− −= + × + ×  4.35 

where the constants and income parameters are relative to the Drive Alone alternative. 

 These two models are equivalent as shown in Table 4-5 and Table 4-6 which correspond 

to the TRansit reference and Drive Alone reference examples, respectively, for an individual 

from a household with $50,000 annual income and facing travel times of 30, 35 and 50 minutes 

for Drive Alone, Shared Ride and TRansit, respectively. 

 

Table 4-5 Utility and Probability Calculation with TRansit as Base Alternative 

Utility    

Alternative Expression Value Exponent Probability 

Drive alone 1.1+0.008×507-0.02×308 0.90 2.460 0.569 
Shared ride 0.8+0.006×50-0.02×35 0.40 1.492 0.345 
TRansit 0.0+0.000×50-0.02×50 -1.00 0.368 0.085 
   Σ=4.319  

 

                                                 
7 Income in thousands of dollars ($000). 
8 Time in minutes. 
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Table 4-6 Utility and Probability Calculation with Drive Alone as Base Alternative 

Utility    

Alternative Expression Value Exponent Probability 

Drive alone 0.0+0.000×50-0.02×30 -0.60 0.549 0.569 
Shared ride -0.3-0.002×50-0.02×35 -1.10 0.333 0.345 
TRansit -1.1-0.008×50-0.02×50 -2.50 0.082 0.085 
   Σ=0.964  

 

As expected, the resultant probabilities are identical in both cases.  Table 4-7 shows that the 

differences in the alternative specific constants and income parameters between alternatives are 

the same for the TRansit base case and the Drive Alone base case. 

Table 4-7 Changes in Alternative Specific Constants and Income Parameters 

 TRansit as Base 

Alternative  

Change in 

Parameters 

Drive Alone as Base 

Alternative 

Alternative Constant Income Constant Income Constant Income 

Drive Alone 1.1 0.008 -1.1 -0.008 0.0 0.000 
Shared Ride 0.8 0.006 -1.1 -0.008 -0.3 -0.002 
TRansit  0.0 0.000  -1.1 -0.008 -1.1 -0.008 

 

4.2 Independence of Irrelevant Alternatives Property  
One of the most widely discussed aspects of the multinomial logit model is its independence 

from irrelevant alternatives (IIA) property.  The IIA property states that for any individual, the 

ratio of the probabilities of choosing two alternatives is independent of the presence or attributes 

of any other alternative.  The premise is that other alternatives are irrelevant to the decision of 

choosing between the two alternatives in the pair.  To illustrate this, consider a multinomial logit 

model for the choice among three intercity travel modes – automobile, rail, and bus.  The 

probability of choosing automobile, rail and bus are:  
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The ratios of each pair of probabilities are: 

 
Pr( ) exp( )

=exp( - )  
Pr( ) exp( )

Auto
Auto Bus

Bus
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V V

Bus V
=  4.39 

 
Pr( ) exp( )
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Bus Rail
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Bus V
V V
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=  4.41 

The ratios of probabilities for each pair of alternatives depend only on the attributes of those 

alternatives and not on the attributes of the third alternative and would remain the same 

regardless of whether that third alternative is available or not.  This formulation can be 

generalized to any pair of alternatives by: 

 
Pr( ) exp( )

exp( )   
Pr( ) exp( )

i
i k

k

i V
V V

k V
= = −  4.42 

which, as before, is independent of the number or attributes of other alternatives in the choice 

set.  

 The IIA property has some important ramifications in the formulation, estimation and use 

of multinomial logit models.  The independence of irrelevant alternatives property allows the 

addition or removal of an alternative from the choice set without affecting the structure or 

parameters of the model.  The flexibility of applying the model to cases with different choice 

sets has a number of advantages.  First, the model can be estimated and applied in cases where 

different members of the population (and sample) face different sets of alternatives.  For 

example, in the case of intercity mode choice, individuals traveling between some city pairs may 

not have air service and/or rail service.  Second, this property simplifies the estimation of the 

parameters in the multinomial logit model (as will be discussed later).  Third, this property is 
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advantageous when applying a model to the prediction of choice probabilities for a new 

alternative. 

 On the other hand, the IIA property may not properly reflect the behavioral relationships 

among groups of alternatives.  That is, other alternatives may not be irrelevant to the ratio of 

probabilities between a pair of alternatives. In some cases, this will result in erroneous 

predictions of choice probabilities.  An extreme example of this problem is the classic “red 

bus/blue bus paradox.”   

 

4.2.1 The Red Bus/Blue Bus Paradox 
Consider the case of a commuter who has a choice of going to work by auto or taking a blue bus.  

Assume that the attributes of the auto and the blue bus are such that the probability of choosing 

auto is two-thirds and blue bus is one-third so the ratio of their choice probabilities is 2:1. Now 

suppose that a competing bus operator introduces red bus service (the bus is painted red, rather 

than blue) on the same route, operating the same vehicle type, using the same schedule and 

serving the same stops as the blue bus service.  Thus, the only difference between the red and 

blue bus services is the color of the buses.    

 The most reasonable expectation, in this case, is that the same share of people will 

choose auto and bus and that the bus riders will split equally between the red and blue bus 

services.  That is, the addition of the red bus to the commuters’ choice set should have no, or 

very little, effect on the share of commuters choosing auto since this change does not affect the 

relative quality of drive alone and bus.  Therefore, we expect choice probabilities following the 

initiation of red bus service to be auto, two-thirds; blue bus, one-sixth and red bus, one-sixth.  

However, due to the IIA property, the multinomial logit model will maintain the relative 

probability of auto and blue bus as 2:1.  If we assume that people are indifferent to color of their 

transit vehicle, the two bus services will have the same representative utility and consequently, 

their relative probabilities will be 1:1 and the share probabilities for the three alternatives will be: 

Pr(Auto) = ½, Pr(Blue Bus) = 1/4, and Pr(Red Bus) = 1/4. That is, the probability (share) of 

people choosing auto will decline from two-thirds to one half as a result of introducing an 
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alternative which is identical to an existing alternative9.  The red bus/blue bus paradox provides 

an important illustration of the possible consequences of the IIA property. Although this is an 

extreme case; the IIA property can be a problem in other, less extreme cases. 

 

4.3 Example: Prediction with Multinomial Logit Model  
We illustrate the application of multinomial logit models with different specifications in the 

context of mode choice analysis.  Consider a commute trip by an individual who has three 

available modes in the choice set: drive alone, carpool, and bus.  The examples in this section 

illustrate the manner in which different utility specifications and the estimated parameters 

associated with them are used to predict choice probabilities based on characteristics of the 

traveler (decision-maker) and attributes of the alternatives.  These examples progress from the 

simplest models to moderately complex models. 

 

Example 1 -- Constants Only Model  
 The simplest specification of the multinomial logit model is the ‘constants only’ model, 

in which the utility of each alternative has a fixed value for all decision-makers.  Typically, the 

alternative specific constants are considered to represent the average effect of all factors that 

influence the choice but are not included in the utility specification.  For example, factors such as 

comfort, safety, privacy and reliability may be excluded due to the difficulty associated with 

their measurement.  In the constants only model, it is implicitly assumed that the constants 

reflect the average effects of all the variables affecting the choice decision, since no variables are 

included explicitly in the utility specification.  If these constants are 0.0, -1.6 and -1.8 for drive 

alone, shared ride and transit, respectively, the probability calculation is as shown in Table 4-8 

                                                 
9 This example ignores the increase in bus service frequency which might increase the probability of persons 
choosing bus; however, the increase is unlikely to be of the magnitude suggested by the IIA property. 
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Table 4-8 MNL Probabilities for Constants Only Model 

Utility    

Alternative Expression Value Exponent Probability 

Drive Alone 0.0 0.0 1.0000 0.7314 
Shared Ride -1.60 -1.60 0.2019 0.1477 
Transit -1.80 -1.80 0.1653 0.1209 
   1.3672  

                

As expected, Drive Alone has the highest probability, followed by Shared Ride, and TRansit. 

 

Example 2  --  Including Mode Related Variables - Travel Time and Travel Cost 
 Two key attributes that influence choice of mode are travel time and travel cost.  We 

include these variables in the deterministic component of the utility function of each mode with 

the parameter for time (in minutes) equal to -0.045 and for cost (in cents) equal to -0.004 for all 

three modes, Table 4.9.  This implies that a minute of travel time (or a cent of cost) has the same 

marginal disutility regardless of the mode; such variables are referred to as generic variables.  

The negative signs of the travel time and travel cost coefficients imply that the utility of a mode 

and the probability that it will be chosen decreases as the travel time or travel cost of that mode 

increases.  Positive coefficients would be inconsistent with our understanding of travel behavior 

and therefore any specification which results in a positive sign for travel time or travel cost 

should be rejected.  Such counter-intuitive results are most likely due to an incorrect or 

inadequate model specification; however, it is possible that the data from any particular sample 

leads to such counter-intuitive results.   

 The inclusion of travel time and travel cost variables induces a change in the alternative 

specific constants, to -1.865 for shared ride and -0.650 for transit, as the effect of excluding these 

time and cost variables is removed from the constants.  Such changes in alternative specific 
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constants, as a result of the introduction of new variables or the elimination of included variables 

preserve the sample shares10 and are expected. 

 To illustrate the application of the multinomial logit model for the above utility equation, 

we assume travel time and travel cost values as follows: 

 Mode     Travel Time    Travel Cost 

 Drive Alone    25 minutes    $1.75 

 Shared Ride    28 minutes    $0.75 

 TRansit    55 minutes    $1.25 

 

The utilities and probabilities are calculated as shown in Table 4-9.   

Table 4-9 MNL Probabilities for Time and Cost Model 

Utility    

Alternative Expression Value Exponent Probability 

Drive Alone           -0.045 × 25 -0.004 ×175 -1.825 0.1612 0.7314 
Shared Ride -1.865 -0.045 × 28  -0.004 × 75 -3.425 0.0325 0.1477 
TRansit -0.650 -0.045 × 55 -0.004 ×125 -3.625 0.0266 0.1209 
   0.2204  

 

 This specification can be refined further by decomposing travel time into its two major 

components: (1) in-vehicle travel time, and (2) out-of-vehicle travel time.  In-vehicle time (IVT) 

is defined as the time spent inside the vehicle, and out-of-vehicle time (OVT) is the time not 

spent inside the vehicle (including access time, waiting time, and egress time).  There is an 

abundance of empirical evidence that travelers are much more sensitive to out-of-vehicle time 

than to in-vehicle time and therefore a minute of out-of-vehicle time will generate a higher 

disutility than a minute of in-vehicle time.  This will be reflected in the modal utilities by a larger 

negative coefficient on out-of-vehicle time than on in-vehicle time.  Introduction of this 

refinement will usually result in a less negative parameter for in vehicle time and a more 

                                                 
10 In this case, we show the preservation of probabilities for the individual.  In general, the individual probabilities 
are expected to change. 
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negative parameter for out of vehicle time than for total time; say -0.031 and -0.062, 

respectively.  If the travel times are split as follows: 

 Mode   IVT   OVT   Travel Cost 

 Drive Alone  21 minutes  4 minutes  $1.75 

 Shared Ride  23 minutes  5 minutes  $0.75 

 Bus   25 minutes  30 minutes  $1.25 

the new systematic utilities and choice probabilities are as computed in Table 4-10: 

Table 4-10 MNL Probabilities for In and Out of Vehicle Time and Cost Model 

Utility    

Alternative Expression Value Exponent Probability

Drive Alone -0.031×21 -0.062×4 -0.004×175 -1.599 0.202 0.773 
Shared Ride -1.90 -0.031×23 -0.062×5 -0.004 × 75 -3.223 0.040 0.152 
TRansit -0.80-0.031×25-0.062×30-0.004×125 -3.935 0.020 0.075 
   0.261  

 

Example 3  -- Including Decision-Maker Related Biases - Income 
 The preceding examples do not include any characteristics of the traveler in the modal 

utilities.  However, we know that choice probabilities of the available modes also depend on 

characteristics of the traveler, such as his/her income.  Economic theory and empirical evidence 

suggests that higher income travelers are less likely to choose transit than drive alone or carpool.  

We can incorporate this behavior in the model by including an alternative specific income 

variable in the utility of up to two of the alternatives; in this case, we include income in the 

transit alternative with a negative coefficient.  That is, everything else held constant, the utility of 

transit decreases as the income of the traveler increases.  Consequently, a higher income traveler 

will have a lower probability of choosing transit than a lower income traveler.  The absence of an 

alternative specific parameter for the carpool alternative implies that the choice of carpool, 

relative to drive alone, is unaffected by a traveler’s income.  The alternative specific constant of 

the transit utility changes substantially from the preceding example as it no longer reflects the 
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average effect of excluding income from the transit utility specification.  The calculation of 

utilities and probabilities for this model for a person from a household with $50,000 annual 

income is shown in Table 4-11. 

Table 4-11 MNL Probabilities for In and Out of Vehicle Time, Cost and Income Model 

Utility    

Alternative Expression Value Exponent Probability 

Drive Alone -0.031×21 -0.062×4 -0.004×175 -1.599 0.202 0.780 
Shared Ride  -1.90 -0.031×23 -0.062×5 - 0.004×75 -3.223 0.040 0.154 
TRansit -0.50 -0.031×25 -0.062×30-0.004×125  

-0.0087×50

-4.070 0.017 0.066 

   0.259  
 

The probability of choosing transit is smaller for this traveler than would have been predicted 

using the model reported in the preceding example.  This model will give decreasing transit 

probabilities for higher income travelers and increasing transit probabilities for lower income 

travelers.  That is, the lower the traveler’s income, the greater his/her probability of choosing the 

least expensive mode of travel (transit), an intuitive and reasonable result.  

 

Example 4  –  Interaction of Mode Attributes and Decision-Maker Related Biases  
 An alternative method of including income in the utility specification is to use income as 

a deflator of cost by forming a variable by dividing cost by income.  This formulation reflects the 

rationale that cost becomes a less important factor in the choice of a travel mode as the income 

of the traveler increases.  The revised utility functions and calculations are shown in Table 4-12 

using the values for the modal attributes and income as used in preceding example.  
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Table 4-12 MNL Probabilities for In and Out of Vehicle Time, and Cost/Income Model 

Utility    

Alternative Expression Value Exponent Probability 

Drive Alone         -0.031×21 -0.062×4 -0.153×(175/50) -1.435 0.238 0.763 
Shared Ride -1.90 -0.031×23 -0.062×5 - 0.153× (75/50) -3.153 0.043 0.137 
TRansit -0.45 -0.031×25 -0.062×30-0.153×(125/50) -3.468 0.031 0.100 
   0.312  

 

This specification of income in the utility function also results in lower income travelers 

predicted to have higher probability of choosing transit; it also suggests that such travelers will 

increase their probability of choosing carpool, the least expensive mode. The reader should 

compute the probabilities for different income values and verify the response pattern.   

 

4.4 Measures of Response to Changes in Attributes of Alternatives  
Choice probabilities in logit models are a function of the values of the attributes that define the 

utility of the alternatives; therefore, it is useful to know the extent to which the probabilities 

change in response to changes in the value of those attributes.  For example, in a traveler’s mode 

choice decision, an important question is to what extent the probability of choosing a mode (rail, 

for example) will decrease/increase, if the fares of that mode are increased by a certain amount.  

Similarly, a transit agency may want to know the gain in ridership that is likely to occur in 

response to service improvements (increased frequency).  This section describes various aspects 

of understanding and quantifying the response to changes in attributes of alternatives. 

 

4.4.1 Derivatives of Choice Probabilities  
One measure for evaluating the response to changes is to calculate the derivatives of the choice 

probabilities of each alternative with respect to the variable in question.  Usually, one is 

concerned about the change in probability of an alternative, iP , with respect to the change in 

attributes of that alternative iX .  This measure, the direct derivative, is computed by 
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differentiating iP  with respect to ikX , the kth attribute of alternative i.  The mathematical 

expression for the direct derivative of iP  with respect to ikX  is:  

 ( ) ( )1  i i
i i

ik ik

P V
P P

X X

⎛ ⎞∂ ∂ ⎟⎜ ⎟= × × −⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
 4.43 

 

where iV   is the utility of the alternative11 

Typically the utility function is specified to be linear in parameters; that is: 
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In this case, the expression for the direct derivative of iP   with respect to ikX  reduces to: 
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where kβ   is the coefficient of attribute k. 

The value of the derivative is largest at iP  = ½ and becomes smaller as iP  approaches 

zero or one.  This implies that the magnitude of the response to a change in an attribute will be 

greatest when the choice probability for the alternative under consideration is 0.5 and this 

response diminishes as the probability approaches zero or one. The direct derivative is simply 

the slope of the logit model probability curve illustrated in Figure 4.4 and that its mathematical 

properties are consistent with the qualitative discussion of the S-shape of the logit probability 

curve in section 4.1.1.  The sign of the derivative is the same as the sign of the parameter 

describing the impact of ikX  in the utility of alternative i.  Thus, an increase in ikX  will 

increase (decrease) iP  if ikβ  is positive (negative). 

Often it is important to understand how the choice probability of other alternatives 

changes in response to a given change in the attribute level of the action alternative.  This 

                                                 
11 Interested readers are referred to Train (1986) for a derivation and proof. 
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measure, termed the cross derivative, is obtained by computing the derivative of the choice 

probability of an alternative, jP , with respect to the attribute of the changed alternative, ikX .  

This cross derivative for linear utility functions is: 

 ( ) ( )       j
k i j
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12 4.46 

 

where jkβ   is the coefficient of the kth attribute of alternative j, 

iP  is the probability of alternative i, and 

jP   is the probability of alternative j.  

In this case, the sign of the derivative is opposite to the sign of the parameter describing the 

impact of ikX  on the utility of alternative i.  Thus an increase in ikX  will decrease (increase) the 

probability of choosing alternative, jP , if the parameter kβ  is positive (negative). 

 It is useful to recognize that the sum of the derivatives over all the alternatives must be 

equal to zero.  That is,  
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This is as expected.  Since the sum of all probabilities is fixed at one, the sum of the derivatives 

of the probability due to a change in any attribute of any alternative must be equal to zero. 

4.4.2 Elasticities of Choice Probabilities 
Elasticity is another measure that is used to quantify the extent to which the choice probabilities 

of each alternative will change in response to the changes in the value of an attribute.  In general, 

                                                 
12 As before, interested readers are referred to Train (1986) for derivation and proof. 
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elasticity is defined as the percentage change in the response variable with respect to a one 

percent change in an explanatory variable.  In the context of logit models, the response variable 

is the choice probability of an alternative, such as iP , and the explanatory variable is the 

attribute ikX .  Elasticities are different from derivatives in that elasticities are normalized by the 

variable units.  To clearly illustrate the concept of elasticity, let us consider that 1iP  and 2iP  are 

choice probabilities of an alternative i at attribute levels 1iX  and 2iX , respectively.  In this case, 

the elasticity is the proportional change in the probability divided by the proportional change in 

the attribute under consideration: 

 
2 1 1 1

2 1 1
1
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There is some ambiguity in the computation of this elasticity measure in terms of whether it 

should be normalized using the original probability-attribute combination ( 1iP , 1iX ) or the new 

probability-attribute combination ( 2iP , 2iX ).  A compromise approach is to compute the 

elasticity relative to the mid-point of both sets of variables, yielding a measure called the arc 

elasticity.  The expression for arc elasticity is:    
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 4.49 

Estimates of elasticity will differ depending on whether the normalization is at the start value, 

final value or mid-point values.  This confusion can be avoided by computing elasticities for 

very small changes.  When the elasticity is computed for infinitesimally small changes, the 

elasticity obtained is termed the point elasticity.  The expression for point elasticity is given as a 

function of the derivatives discussed earlier (section 4.4.1): 
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 We are interested in both direct- and cross-elasticities corresponding to the direct- and 

cross-derivatives discussed above.  The direct elasticity measures the percent change in the 

choice probability of alternative, iP  with respect to a percent change in the attribute level ( ikX ) 

of that alternative: 
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We can substitute equation 4.45 into 4.51 to obtain the following expression for the direct 

elasticity 
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Thus, the direct elasticity is not only a function of the parameter value, kβ , for the attribute in 

the utility, but is also a function of the attribute level, ikX , at which the elasticity is being 

computed. 

Similarly, the cross-elasticity is defined as the proportional change in the choice 

probability of an alternative ( jP ) with respect to a proportional change in some attribute of 

another alternative ( ikX ).  The expression for cross elasticity in a multinomial logit model is 

given by: 
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We substitute equation 4.46 into 4.53 to obtain the following expression for cross elasticity of 

logit model probabilities:  
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An important property of MNL models is that the cross-elasticities are the same for all the other 

alternatives in the choice set.  This property of the multinomial logit model is another 

manifestation of the IIA property discussed in the previous section. 

The elasticity expressions derived above are based on the assumption that the 

independent variables for which the elasticities are being derived are continuous variables (e.g., 

travel time and travel cost).  However, if the variable of interest is discrete in nature (e.g., 

number of automobiles in a household), it is not differentiable by definition.  For this reason, 

derivatives can not be derived for ordinal or categorical variables.  An alternative is to calculate 

the incremental change is each probability with respect to a one unit change in an ordered 

variable or a category shift for categorical variables and to use the differences to compute arc 

elasticities. 

 

4.5 Measures of Responses to Changes in Decision Maker Characteristics 
Choice probabilities in logit models are also a function of the values of the characteristics of the 

decision maker (traveler).  Therefore, it is equally useful to know the extent to which the 

probabilities of alternatives change in response to changes in the value of these characteristics.  

For example, in a traveler’s mode choice decision, an important question is to what extent the 

probability of choosing a mode will decrease/increase, if the income of the traveler changes by a 

certain amount.  This section formulates both the derivatives and elasticity equations for 

evaluating such responses and thereby provides understanding and quantifies the response to 

changes in the characteristics of travelers. 

4.5.1 Derivatives of Choice Probabilities 
Derivatives indicate the change in probability of each alternative in the choice set per unit 

change in a characteristic of the traveler. The analysis approach is similar to that employed in 
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section 4.4.  The important difference is that in section 4.4, we were assessing the impact of a 

change in probability of an alternative in response to a change in an attribute of a single 

alternative; either the same alternative (direct-derivative and direct-elasticity) or another 

alternative (cross-derivative and cross-elasticity).  In the case of traveler characteristics, those 

characteristics may appear in alternative specific form in all alternatives (except for one 

reference alternative).  Thus, we are considering what, in effect, becomes a combination of one 

direct response and multiple cross responses.  Consider, for example, the probability of choosing 

alternative i  in response to a change in income, specific to alternative i .  That is, 
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However, since an identical change in income will occur for all alternatives in which income 

appears as an alternative specific variable, we consider the cross-derivative of the probability of 

choosing alternative i  in response to a change in income, specific to alternative j .  That is, 
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The corresponding sum over all alternatives j i≠  is 
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and the sum over all alternatives including i  is 
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where Incβ  is the probability weighted average of the alternative specific 

income parameters 

That is, the derivative of the probability with respect to a change in income is equal to the 

probability times the amount by which the income coefficient for that alternative exceeds the 

probability weighted average income coefficient over all alternatives13. 

 It should be apparent that the sum over all alternatives of the income derivatives must be 

equal to one to ensure that the total probability over all alternatives is unchanged by any change 

in income.  This can be shown by summing equation 4.58 over all alternatives in the choice set. 

4.5.2 Elasticities of Choice Probabilities 
Elasticity is another measure that can be used to quantify the extent to which the choice 

probabilities are influenced by changes in a variable; in this case, a variable that describes the 

characteristics of the traveler.  In this case, the elasticity of the probability of alternative i  to a 

change in income is given by  

( )i

i

P
Inc Inc Inc Incη β β= − ×  4.59 

 

As before, the elasticity represents the proportional change in probability of an alternative to a 

proportional change in the explanatory variable. 

 
                                                 
13 This comparison is independent of which alternative is chosen as the reference alternative since the effect of changing the reference alternative 

will be to increase each parameter by the same value. 
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4.6 Model Estimation: Concept and Method  
Logit model development consists of formulating model specifications and estimating numerical 

values of the parameters for the various attributes specified in each utility function by fitting the 

models to the observed choice data.  The critical elements of this process become the selection of 

a preferred specification based on statistical measures and judgment.  Under some 

circumstances, the model developer may impose constraints on the estimation to ensure desired 

relationships with respect to the relative value of different variables. 

 

4.6.1 Graphical Representation of Model Estimation 
We illustrate the basic concepts of model estimation using a binary choice model with two 

variables and no constant.  Consider that the only two modes available to a traveler are auto and 

bus and the deterministic component of the utility function for the two modes is defined as 

follows: 

   1 2V TravelTime TravelCostAuto Auto Autoβ β= × + ×  4.60 

 1 2V TravelTime TravelCostBus Bus Busβ β= × + ×  4.61 

Let us assume that in this example, bus has higher travel time and lower cost than car.  For a 

traveler, the choice of travel mode will depend on his/her relative valuation of travel time and 

travel cost.  A traveler who values time much more than cost will have a higher utility for car; 

whereas, a traveler who values time less than cost will have a higher utility for bus. This concept 

is illustrated in Figure 4.5 which shows the time and cost values for auto and bus iso-utility line14 

for both types of travelers.  When the iso-utility lines are steep enough to ensure that some iso-

utility line is below bus and above car (case 1) implying a low value of time, bus will be the 

chosen mode.  Conversely, if the iso-utility lines are flat enough to ensure that some iso-utility 

line is below car and above bus (case 2) implying a high value of time, car will be the chosen 

mode. 

 

                                                 
14 Iso-utility lines connect all points for which the values of time and cost result in the same utility.  The slope of these lines equals the inverse of 

the value of time, 1 2/β β . 
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Figure 4.5 Iso-Utility Lines for Cost-Sensitive versus Time-Sensitive Travelers 
 

The concept of iso-utility lines can be used to graphically describe the estimation of model 

parameters using observed choice data.  This is illustrated in Figure 4.6 which shows the 

observed choice data for two travelers where each traveler has a choice between bus and car.  

The first traveler chooses bus (Bus 1) whereas the second traveler chooses car (Car 2).  The 

objective is to find an iso-utility line with a slope that is steep enough to place Bus 1 above Car 1 

and flat enough to place Bus 2 below Car 2.  The figure shows that there many iso-utility lines 

with different slopes that satisfy the above conditions. However, even with only two 

observations, the range of the slopes of these lines is limited.  The addition of more choice 

observation will further reduce the possible range of iso-utility lines.  If all choosers are 

governed by the strict utility equations 4.60 and 4.61; additional observations will narrow the 

range of results to any satisfactory level of precision. 
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Figure 4.6 Estimation of Iso-Utility Line Slope with Observed Choice Data 
 

 However, as discussed previously, we expect that the analyst will not know all the 

variables that influence the traveler’s choice and/or will measure some variables differently than 

the user.  Thus, it is unlikely that the observations can be separated by a single boundary.  In this 

case, it becomes necessary to use an estimation method which scores different estimation results 

in terms of how well they identify the chosen alternatives.  This is accomplished by using 

maximum likelihood estimation methods.  The maximum likelihood method consists of finding 

model parameters which maximize the likelihood (posterior probability) of the observed choices 

conditional on the model.  That is, to maximize the likelihood that the sample was generated 

from the model with the selected parameter values. 

4.6.2 Maximum Likelihood Estimation Theory 
The procedure for maximum likelihood estimation involves two important steps: 1) developing a 

joint probability density function of the observed sample, called the likelihood function, and 

2) estimating parameter values which maximize the likelihood function.  The likelihood function 

for a sample of ‘T’ individuals, each with ‘J’ alternatives is defined as follows: 
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 ( ) ( )( ) jt

jt
t T j J

L P
δ

β β
∀ ∈ ∀ ∈

= ∏ ∏  4.62 

 

where 1jtδ =   is chosen indicator (=1 if j is chosen by individual t and 0, 

otherwise) and 

jtP   is the probability that individual t chooses alternative j. 

The values of the parameters which maximize the likelihood function are obtained by finding the 

first derivative of the likelihood function and equating it to zero.  Since the log of a function 

yields the same maximum as the function and is more convenient to differentiate, we maximize 

the log-likelihood function instead of the likelihood function itself.  The expressions for the 

log-likelihood function and its first derivative are shown in equations 4.63 and 4.64 respectively: 

 ( ) ( ) ( )( ) ln( ) jt jt
t T j J

LL Log L Pβ β δ β
∀ ∈ ∀ ∈

= = ×∑∑  4.63 

 
( )( ) 1 jt

jt
t T j Jk jt

PLL
k

P

β
δ

β β∀ ∈ ∀ ∈

∂∂
= × × ∀

∂ ∂∑∑  4.64 

 

Further development of the derivative requires representation of the probability 

function, jtP , expanded from the version that appears in Equation 4.5 is 

 
( )
( )

exp
exp

jt
jt

j t
j

X
P

X
β

β′
′

′
=

′∑
 4.65 

 

and the first derivative with respect to each element of β  is 

 jt
jt jkt j t j kt

jk

P
P X P X k

β ′ ′
′

∂ ⎛ ⎞
′= − ∀⎜ ⎟∂ ⎝ ⎠

∑       15 4.66 

 

 Substituting Equation 4.66 into Equation 4.64 gives  

                                                 
15 Dependence of j tP ′  on β  is made implicit to simplify notation. 
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 4.67 

 

for the derivative of the log-likelihood with respect to kβ . The maximum likelihood is obtained 

by setting Equation 4.67 equal to zero and solving for the best values of the parameter vector, β̂ . 

We can be sure this is the solution for a maximum value provided that the second derivative is 

negative definite.  In this case, the second derivative of the log-likelihood with respect to β  is  

 ( )( )
2( )

jt t jt tj t
t T j J

LL
P X X X X

β β ′
∀ ∈ ∀ ∈

∂ ′′ ′= − − −
′∂ ∂ ∑∑  4.68 

 
is negative definite for all values of β .  Equations 4.67 and 4.68 are used to solve the maximum 

likelihood problem using a variety of available algorithms.   In most practical problems, this 

involves significant computations and specialized computer programs to find the desired 

solution.   

The following example illustrates the application of maximum likelihood to estimate 

logit model parameters. 

4.6.3 Example of Maximum Likelihood Estimation 
Suppose a logit model of binary choice between car and bus is to be estimated.  For simplicity, 

let us assume the utility specification includes only the travel time variable and that the 

deterministic portion of the utility function for the two modes is defined as follows: 

 1  Auto AutoV Travel Timeβ= ×  4.69 
 1  Bus BusV Travel Timeβ= ×  4.70 
Suppose that the estimation sample consists of observations of mode choice of only three 

individuals.  The modal travel times and observed choice for each of the three individuals in the 

sample is as follows: 
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Individual # Auto Travel Time Bus Travel Time Chosen Mode 
1 30 minutes 50 minutes Car (mode 1) 
2 20 minutes 10 minutes Car (mode 1) 
3 40 minutes 30 minutes Bus (mode 2) 

 

According to the logit model, the probabilities for the observed mode for each individual are: 

 11

exp(30 ) 1
 1 ( ) =  

exp(50 ) exp(30 ) 1+exp(20 )
Individual P

β
β β β

=
+

 4.71 

 

 12

exp(20 ) 1
 2 ( ) =

exp(10 ) exp(20 ) 1+exp(-10 )
Individual P

β
β β β

=
+

 4.72 

 

 23

exp(30 ) 1
 3 ( ) =  

exp(30 ) exp(40 ) 1+exp(10 )
Individual P

β
β β β

=
+

 4.73 

 

The log-likelihood expression for this sample will be as follows: 

 

1,2 1,2,3

11 21 12

22 13 23

11 12 23

ln( )

1 ln( ) 0 ln( ) 1 ln( )

0 ln( ) 0 ln( ) 1 ln( )

ln( ) ln( ) ln( ) 

jt jt
j t

LL P

P P P

P P P

P P P

δ
= =

= ×

= × + × + ×

+ × + × + ×

= + +

∑ ∑

 4.74 

 

A maximum likelihood estimator finds the value of the parameter β  which maximizes the log-

likelihood value.  This solution is obtained by setting the first derivative of the log-likelihood 

function equal to zero, and solving for β̂ .  However, for this illustrative example, we can plot the 

graph for log-likelihood (or likelihood) as a function of β  to find the point where the maximum 

occurs.  Figure 4.7 shows the graph of likelihood and log-likelihood as a function ofβ .  It can be 

seen that the point where the maximum occurs is identical for both the likelihood and the log-

likelihood functions, i.e., at 0.076β = − .  This value is called the maximum likelihood 

estimate ofβ . 
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 Practical applications of logit models include multiple parameters and many 

observations.  Consequently, the maximum likelihood estimates for the parameters cannot be 

found graphically.  Specialized software packages are available for this purpose.    

 

 
Figure 4.7 Likelihood and Log-likelihood as a Function of a Parameter Value 

0 
0.0
2 

0.0
4 

0.0
6 

0.0
8 

0.1

0.1
2 

0.1
4 

0.1
6 

0.1
8 

0.2

-0.2 -0.15 -0.1 -0.05 0

Beta

Likelihood 

-2.5

-2

-1.5

-1

-0.5

0

-0.2 -0.15 -0.1 -0.05 0

Beta

Log Likelihood



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 61 
 

 
Koppelman and Bhat  January 31, 2006 

 

CHAPTER 5: Data Assembly and Estimation of Simple Multinomial 
Logit Model 

 

5.1 Introduction  
This chapter describes the estimation of basic specifications for the multinomial logit (MNL) 

model including the collection and organization of data required for model estimation. The 

chapter is organized as follows: Section 5.2 presents an overview of the data required to estimate 

mode choice models. Section 5.3 reviews data collection approaches for obtaining traveler and 

trip- related data. Section 5.4 discusses the methods for collecting data which describes the 

availability and service characteristics of the various modal alternatives.  Section 5.5 illustrates 

two different data structures used by software packages for estimation of MNL and NL models. 

Section 5.6 describes the data used to estimate work mode choice model in the San Francisco 

Bay Region.  Section 5.7 describes preliminary estimation results for mode choice to work based 

on this data and interpret these results in terms of judgment, descriptive measures and statistical 

tests.  CHAPTER 6 extends this example to the estimation of more sophisticated models.  

CHAPTER 7 develops a parallel example for shop/other mode choice in the San Francisco Bay 

Region.  CHAPTER 9 extends the examples from previous chapters and explores nested logit 

models for work and shop/other trips in the San Francisco Bay Region. Additional examples 

based on data collected in different urban regions are presented in the appendices. 

 

5.2 Data Requirements Overview  
The first step in the development of a choice model is to assemble data about traveler choice and 

the variables believed to influence that choice process. In the context of travel mode choice, such 

data include: 
 

• Traveler and trip related variables that influence the travelers’ assessment of modal 

alternatives (e.g., income, automobile ownership, trip purpose, time of day of travel, 

origin and destination of trip, and travel party size),  
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• Mode related variables describing each alternative available to the traveler (e.g., travel 

time, travel cost and service frequency for carrier modes) and 

• The observed or reported mode choice of the traveler (the “dependent” or “endogenous” 

variable). 

 The first two categories of variables are selected to describe the factors which influence 

each decision maker’s choice of an alternative.  These independent or exogenous variables are 

likely to differ across trip purpose.  The commonly used explanatory variables in mode choice 

models include: 

• Traveler (Decision Maker) Related Variables 
 

• Income of traveler or traveler's household,  

• Number of automobiles in traveler's household, 

• Number of workers in traveler's household, 

• Sex of the traveler, 

• Age group of the traveler, 

• Functions of these variables such as number of autos divided by number of workers 

and 

• Trip Context Variables  

• Trip purpose, 

• Employment density at the traveler's workplace, 

• Population density at the home location and 

• Dummy variable indicating whether the traveler's workplace is in the Central 

Business District (CBD). 
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• Mode (Alternative) Related Variables 

• Total travel time,  

• In-vehicle travel time,  

• Out-of-vehicle travel time,  

• Walk time, 

• Wait time, 

• Number of transfers  

• Transit headway and  

• Travel cost.  

• Interaction of Mode and Traveler or Trip Related Variables 

• Travel cost divided by household income, 

• Travel time or cost interacted with sex or age group of traveler, and 

• Out-of-vehicle time divided by total trip distance. 

 

5.3 Sources and Methods for Traveler and Trip Related Data Collection  
Traveler and trip related data (including the actual mode choice of the traveler) needed for 

estimation of mode choice models are generally obtained by surveying a sample of travelers 

from the population of interest.  This section discusses the types of surveys that may be used to 

obtain traveler and/or trip-related information (Section 5.3.1) and associated sample design 

considerations (Section 5.3.2). 

 

5.3.1 Travel Survey Types 
There are several types of travel surveys.  The most common of these are household, workplace 

and intercept surveys. 

 Household Travel Surveys involve contacting respondents in their home and collecting 

information regarding their household characteristics (e.g., number of members in household, 

automobile ownership, etc.), their personal characteristics (such as income, work status, etc.) and 
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the travel decisions made in the recent past (e.g., number of trips, mode of travel for each trip, 

etc.).  Historically, most household traveler surveys were conducted through personal interviews 

in the respondent’s home.  Currently, most household travel surveys are conducted using 

telephone or mail-back surveys, or a combination of both.  It is common practice to include 

travel diaries as a part of the household travel survey.  Travel diaries are a daily log of all trips 

(including information about trip origin and destination, start and end time, mode of travel, 

purpose at the origin and destination, etc.) made by each household member during a specified 

time period. This information is used to develop trip generation, trip distribution, and mode 

choice models for various trip purposes.  Recently, travel diaries have been extended to include 

detailed information about the activities engaged in at each stop location and at home to provide 

a better understanding of the motivation for each trip and to associate trips of different purposes 

with different members of the household.  Also, in some cases, diaries have been collected 

repeatedly from the same ‘panel’ of respondents to understand changes in their behavior over 

time. 

 Workplace Surveys involve contacting respondents at their workplace. The information 

collected is similar to that for household surveys but focuses exclusively on the traveler working 

at that location and on his/her work and work-related trips.  Such surveys are of particular 

interest in understanding work commute patterns of individuals and in designing alternative 

commuter services.  

 Destination Surveys involve contacting respondents at other destinations.  Similar 

information is collected as for workplace surveys but the objective is to learn more about travel 

to other types of destinations and possibly to develop transportation services which better serve 

such destinations.   

 Intercept Surveys “intercept” potential respondents during their travel.  The emphasis of 

the survey is on collecting information about the specific trip being undertaken by the traveler.  

Intercept surveys are commonly used for intercity travel studies due to the high cost of 

identifying intercity travelers through home-based or work-based surveys.  In intercept surveys, 

travelers are intercepted at a roadside rest area for highway travel and on board carriers (or at 

carrier terminals) for other modes of travel.  The traveler is usually given a brief survey (paper or 
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interview) for immediate completion or future response and/or recruited for a future phone 

survey.  A variant of highway intercept surveys is to record the license plate of vehicles and 

subsequently contact the owners of a sample of vehicles to obtain information on the trip that 

was observed. Intercept surveys can be used to cover all available modes or they can be used to 

enrich a household or workplace survey sample by providing additional observations for users of 

infrequently used modes since few such users are likely to be identified through household or 

workplace surveys. 

5.3.2 Sampling Design Considerations 
The first issue to consider in sample design is the population of interest in the study. Obviously, 

the population of interest will depend on the purpose of the study. In the context of urban work 

mode choice analysis, the population of interest would be all commuters in the urban region. In 

the context of non-business intercity mode choice, the population of interest would be all non-

business intercity travelers in the relevant corridor.  However, most surveys are designed to 

addresses a number of current or potential analysis and decision issues.  Thus, the population of 

interest is selected based on the full range of such issues and is likely to include a wide range of 

households and household members each undertaking a variety of trips. 

 After identifying the population of interest, the next step in sample design is to determine 

the unit for sampling. The sampling units should be mutually exclusive and collectively exhaust 

the population. Thus, if the population of interest is commuters in an urban region, the sampling 

unit could be firms in the area (whose employees collectively represent the commuting 

population). Within each firm, all or a sample of workers could be interviewed.  However, if the 

survey is addressed to multiple urban travel issues, the population of interest is likely to be all 

individuals or households resident in the urban region.  A comprehensive list of all sampling 

units constitutes the sampling frame. This may be a directory of firms or households obtained 

from a combination of public and private sources such as local or regional commerce 

departments, business directories, tourism offices, utilities, etc. Of course, the sampling frame 

may not always completely represent the population of interest. For example, some commuters 
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may be employed by firms outside the urban region and some households may not have 

telephones or other utility connections. 

 Once the sampling frame is determined, a sampling design is used to select a sample of 

cases. The most common class of sampling procedures is probability sampling, where each 

sampling unit has a pre-determined probability of being selected into the survey sample.  

 A probability sampling procedure in which each sampling unit has an equal probability 

of being selected is simple random sampling.  In this method, the sampling units are selected 

randomly from the sampling frame. This would apply to household sampling, for example. An 

alternative approach for work place sampling would be to sample each employer to further 

sample workers for those employers sampled.  This is referred to as a two-stage sample.  In 

either case, the result is an unbiased sample which is representative of the population of interest.  

Simple random sampling offers the advantage of being easy to understand, communicate, and 

implement in the field, making it less prone to errors.  However, a random sample may not 

adequately represent some population segments of interest.   

 This problem can be addressed by using stratified random sampling.  This entails 

partitioning the sampling frame into several mutually exclusive and collectively exhaustive 

segments (or strata) based on one or more stratification variables, followed by random sampling 

within each stratum. Thus, households in a region may be stratified by location within the 

region; city vs. suburban residence; or income.  Similarly, employment firms in a region may be 

stratified by the number of employees or the type of business. Stratified random sampling may 

be useful in cases where it is important to understand the characteristics of certain 

subpopulations as well as the overall population. For example, it might be useful to study the 

mode choice behavior of employees working for very small employers in a region and compare 

their behavior with those of employees working for large employers. But if the number of small 

employers in a region is a small proportion of all employers, they may not be well-represented in 

a simple random sample.  In such a case, the analyst might stratify the sampling frame to ensure 

adequate representation of very small employers in the survey sample. Stratified random 

sampling can also be less expensive than simple random sampling. This can occur, for example, 

because per-person sampling is less expensive if a few large employers are targeted rather than 
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several smaller ones. Finally, increased dispersion in the range of important independent 

variables can be increased through “clever” identification of alternative strata based on income, 

household size, number of vehicles owned or number of workers providing benefits in estimation 

efficiency. 

 The use of stratified random sampling does not present any new problems in estimation 

as long as the stratification variable(s) is (are) exogenous to the choice process. However, in 

some situations, one may want to use the discrete choice of interest (the dependent or 

endogenous variable) as the stratification variable. For example, if the bus mode is rarely chosen 

for urban or intercity travel, a random sampling procedure or even an exogenously stratified 

sample might not provide sufficient observations of bus riders to understand the factors that 

affect the choice of the bus mode. In this case, bus riders can be intentionally over sampled by 

interviewing them at bus stops or on board the buses. Such choice based sampling may also be 

motivated by cost considerations. Special techniques are required to estimate model parameters 

using choice based sampling methods.  

 A further problem is that it may be difficult to obtain a random sample as it may not be 

possible to get an up to date and complete list of potential respondents from which to select a 

sample. This is the primary reason for using "deterministic rules" of sampling. In systematic 

sampling, sample units are drawn by deterministic rather than random rules.  For example, rather 

than drawing a random sample of 5 percent all households in a region from a published 

directory, a systematic sampling plan may pick out every 20th household in the directory. As 

long as there is no inherent bias in setting up the deterministic rule, the systematic sampling plan 

is essentially equivalent to random sampling, and the choice of one over the other may be a 

matter of operational convenience. 

 In addition to the sampling approaches discussed above, combinations of the approaches 

can also be used.  For example, enriched sampling uses a combination of household or 

workplace sampling with choice based sampling to increase the number of transit users in the 

study data.  As with choice based sampling, special estimation techniques are required to offset 

the biases associated with this sampling approach. 
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 Another issue in survey sampling is the sample size to be used.  The size of the sample 

required to adequately represent the population is a function of the level of statistical accuracy 

and confidence desired from the survey.  The precision of parameter estimates and the statistical 

validity of estimation results improve with sample size.  However, the cost of the survey also 

increases with sample size and in many cases it is necessary to restrict the sample size to ensure 

that the cost of the survey remains within budgetary constraints.  The decision about sample size 

requires a careful evaluation of the need for adequate data to satisfy study objectives vis-à-vis 

budgetary constraints. Interested readers are referred to Ben-Akiva and Lerman (1985; Chapter 

8) or Börsch-Supan (1987) for a more comprehensive discussion of sampling methods and 

sample size issues. 

 

5.4 Methods for Collecting Mode Related Data  
Surveys can be used to collect information describing the trip maker and his or her household, 

the context of the trip (purpose, time of day, frequency of travel, origin, and destination), the 

chosen mode and the respondent’s perception of travel service.  However, objective data about 

modal service (mode availability and level of service) must be obtained from other sources. 

Modal data is usually generated from simulation of network service characteristics including 

carrier schedules and fare and observed volumes, travel times and tolls on roadway links. 

  Network analysis provides the zone-to-zone in-vehicle travel times for the highway 

(non-transit) and transit modes (the urban area is divided into several traffic analysis zones for 

travel demand analysis purposes). The highway out-of-vehicle time by the highway mode is 

assigned a nominal value to reflect walk access/egress to/from the car. The transit out-of-vehicle 

time is based on transit schedules, the presence or absence of transfers, and location of bus stops 

vis-à-vis origin and destination locations. The highway distance of travel is obtained from the 

network structure and a per-mile vehicle operation cost is applied to obtain highway zone-to-

zone driving costs. Parking costs are obtained from per-hour parking rates at the destination zone 

multiplied by half the estimated duration of the activity pursued at the destination zone (allowing 

half the parking cost to be charged to the incoming and departing trips) and toll costs can be 
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identified from the network. Transit cost is determined from the actual fare for travel between 

zones plus any access costs to/from the transit station from/to the origin/destination. The 

highway in-vehicle times, out-of-vehicle times, and costs are used as the relevant values for 

driving alone and these values are modified appropriately to reflect increased in-vehicle times 

and decreased driving/parking costs for the shared ride modes. The travel times for non-

motorized modes (such as bike and walk) are obtained from the zone-to-zone distance and an 

assumed walk/bike speed. Finally, the appropriate travel times and cost between zones is 

appended to each trip in the trip file based on the origin and destination zones of the trip.  

 

5.5 Data Structure for Estimation  
The data collected from the various sources described in the previous sections must be 

assembled into a single data set to support model estimation.  This can be accomplished using a 

variety of spreadsheet, data base, statistical software or user prepared programs.  The structure of 

the resultant data files must satisfy the format requirements of the software packages designed 

for choice model estimation.  The commonly used software packages for discrete choice model 

estimation require the data to be structured in one of two formats: a) the trip format or b) the trip-

alternative format.  This are commonly referred to as IDCase (each record contains all the 

information for mode choice over alternatives for a single trip) or IDCase-IDAlt (each record 

contains all the information for a single mode available to each trip maker so there is one record 

for each mode for each trip).  

 In the trip format, each record provides all the relevant information about an individual 

trip, including the traveler/trip related variables, mode related variables for all available modes 

and a variable indicating which alternative was chosen.  In the trip-alternative format, each 

record includes information on the traveler/trip related variables, the attributes of that modal 

alternative, and a choice variable that indicates whether the alternative was or was not chosen16. 

 The two data structures are illustrated in Figure 5.1 for four observations (individuals) 

with up to three modal alternatives available.  The first column in both formats is the trip 

                                                 
16 The data formats required vary for different programs and are documented in the relevant software. 
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number. In the trip (or IDCase) format, this is followed by traveler/trip related variables (e.g., 

income), the level of service (time and cost in the figure) variables associated with each 

alternative and a variable that indicates the chosen alternative.  In the trip-alternative (or IDCase-

IDAlt) format, the second column generally identifies the alternative number with which that 

record is associated. Additional columns will generally include a 0-1 variable indicating the 

chosen alternative17, the number of alternatives available, traveler/trip related variables mode 

related attributes for the alternative with which the record is associated. Data is displayed in 

these two formats in Figure 5.1.   

                                                 
17 When the same behavior is observed repeatedly for a case, the chosen alternative will be replaced by the 
frequency with which each alternative is chosen. 
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Figure 5.1 Data Structure for Model Estimation 
 

The unavailability of an alternative is indicated in the trip format by zeros for all attribute 

variables of the unavailable alternative and in the trip-alternative format by excluding the record 

for the unavailable alternative. Thus, the second individual in the sample of Figure 5.1 has only 

two alternatives available. 

 Either of the two data formats may be used to represent the information required for 

model estimation.  The choice is based on the programming decisions of the software developer 

taking into account data storage and computational implications of each choice. 

 

 Data Layout Type I: Trip Format     

 Trip    Alternative 1  Alternative 2  Alternative 3 Alternative 
 Number Income Time Cost Time Cost Time Cost Chosen 
 
   1 30000  30 150  40 100  20 200   1 

  2 30000  25 125  35 100   0   0   2 

   3 40000  40 125  50  75  30 175   3 

   4 50000  15 225  20 150  10 250   3 

 

 Data Layout Type II: Trip-Alternative Format   

 Trip Alternative  Number of Income Time Cost Alternative  
 Number Number     Alternatives    Chosen   
    1   1  3 30000  30 150   1   

    1   2  3 30000  40 100   0   

    1   3  3 30000  20 200   0   

    2   1  2 30000  25 125   0   

    2   2  2 30000  35 100   1    

    3   1  3 40000  40 125   0   

    3   2  3 40000  50  75   0   

    3   3  3 40000  30 175   1   

    4   1  3 50000  15 225   0   

    4   2  3 50000  20 150   0 

   4     3  3 50000  10 250   1 
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5.6 Application Data for Work Mode Choice in the San Francisco Bay Area 
The examples used in previous chapters are based on simulated or hypothetical data to highlight 

fundamental concepts of multinomial logit choice models.  Henceforth, our discussion of model 

specification and interpretation of results will be based on application data sets assembled from 

travel survey and other data collection to support transportation decision making in selected 

urban regions. Use of real data provides richer examples and “hands-on” experience in 

estimating mode choice models. The data used in this chapter was collected for the analysis of 

work trip mode choice in the San Francisco Bay Area in 1990.  

 The San Francisco Bay Area work mode choice data set comprises 5,029 home-to-work 

commute trips in the San Francisco Bay Area.  The data is drawn from the San Francisco Bay 

Area Household Travel Survey conducted by the Metropolitan Transportation Commission 

(MTC) in the spring and fall of 1990 (see White and Company, Inc., 1991, for details of survey 

sampling and administration procedures). This survey included a one day travel diary for each 

household member older than five years and detailed individual and household socio-

demographic information.  

 There are six work mode choice alternatives in the region: drive alone, shared-ride with 2 

people, shared ride with 3 or more people, transit, bike, and walk18. The drive alone mode is 

available for a trip only if the trip-maker's household has a vehicle available and if the trip-maker 

has a driver's license. The shared-ride modes (with 2 people and with 3 or more people) are 

available for all trips. Transit availability is determined based on the residence and work zones of 

individuals. The bike mode is deemed available if the one-way home-to-work distance is less 

than 12 miles, while the walk mode is considered to be available if the one-way home to work 

distance is less than 4 miles (the distance thresholds to determine bike and walk availability are 

determined based on the maximum one-way distance of bike and walk-users, respectively). 

 Level of service data were generated by the Metropolitan Transportation Commission for 

each zone pair and for each mode.  These data were appended to the home-based work trips 

                                                 
18 The estimation reported by the Metropolitan Transportation Commission (Travel Demand Models for the San Francisco Bay Area 

(BAYCAST-90): Technical Summary, Metropolitan Transportation Commission, Oakland, California, June 1997) includes drive alone, shared-

ride with 2 people, shared ride with 3 or more people, transit with walk access, transit with auto access, bike and walk. 
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based on the origin and destination of each trip. The data includes traveler, trip related area and 

mode related variables for each trip including in-vehicle travel time, out-of-vehicle travel time, 

travel cost, travel distance, and a mode availability indicator. 
 
 Table 5-1 provides information about the availability and usage of each alternative and 

the average values of in-vehicle time, out-of-vehicle time and travel cost in the sample.  Drive 

alone is available to most work commuters in the Bay Area and is the most frequently chosen 

alternative. The shared-ride modes are available for all trips (by construction) and together 

account for the next largest share of chosen alternatives.  The combined total of drive alone and 

shared ride trips represent close to 85% of all work trips. Transit trips constitute roughly 10% of 

work trips, a substantially greater share than in most metropolitan regions in the U.S.  The 

fraction of trips using non-motorized modes (walk and bike) constitutes a small but not 

insignificant portion of total trips. 

Table 5-1 Sample Statistics for Bay Area Journey-to-Work Modal Data 

Mode Fraction of 

Sample with 

Mode Available 

Market 

Share 

Average 

IVTT 

(minutes) 

Average 

OVTT 

(minutes) 

Average 

Cost 

 (1990 cents) 

1. Drive Alone  94.6% 72.3% 21.0   3.8 176 

2. Shared Ride (2) 100.0% 10.3% 25.0   3.9   89 

3. Shared Ride (3+) 100.0%   3.2% 27.0   3.9   50 

4. Transit 79.6%   9.9% 24.5 28.8 123 

5. Bike 34.6%  1.0% 28.0  3.7 - 

6. Walk 29.4%  3.3% - 49.0 - 
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5.7 Estimation of MNL Model with Basic Specification  
 We use the San Francisco Bay Area data to estimate a multinomial logit work mode choice 

model using a basic specification which includes travel time, travel cost and household income 

as the explanatory variables.  Travel time and travel cost represent mode related attributes; all 

other things being equal, a faster mode of travel is more likely to be chosen than a slower mode 

and a less expensive mode is more likely to be chosen than a costlier mode.  Household income 

is included in the model with the expectation that travelers from high income households are 

more likely to drive alone than to use other travel modes. 

 The multinomial logit work trip mode choice models are estimated using ALOGIT, 

LIMDEP and ELM software, to illustrate differences in the outputs of these packages19, as well 

as a specially programmed module for Matlab.  The data sets, input control files, and estimation 

output results for this a selection of other model specifications for both software packages are 

included in the CD-ROM supplied with this manual.  The Matlab module code, command files 

and output for all specifications in the manual are also included in the CD-ROM.  

 The travel time (TT) and travel cost (TC) variables are specified as generic in this model.  

This implies that an increase of one unit of travel time or travel cost has the same impact on 

modal utility for all six modes.  Household Income (Inc) is included as an alternative-specific 

variable. The drive alone mode is considered the base alternative for household income and the 

modal constants (see section 4.1.2.2 for a discussion of the need for a base alternative for these 

variables). 

 The following mode labels are used in the subsequent discussion and equations: DA 

(drive alone), SR2 (shared ride with 2 people), SR3+ (shared ride with 3 or more people), TR 

(transit), BK (bike) and WK (walk).  The deterministic portion of the utility for these modes, 

based on the utility specification discussed above, may be written as: 

                                                 
19 Essentially identical estimation results are produced by these and a variety of other commercially available and programmer developed 

estimation procedures.  However, some software applies simplifying assumptions that are not appropriate in every case.  See Appendix A for 

additional information. 
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 1 2                DA DA DAV TT TCβ β= × + ×  5.1 
 2 2 1 2 2 2 2    SR SR SR SR SRV TT TC Incβ β β γ= + × + × + ×  5.2 
 3 3 1 3 2 3 3SR SR SR SR SRV TT TC Incβ β β γ+ + + + += + × + × + ×  5.3 
 1 2         TR TR TR TR TRV TT TC Incβ β β γ= + × + × + ×  5.4 
 1 2       BK BK BK BK BKV TT TC Incβ β β γ= + × + × + ×  5.5 
 1 2      WK WK WK WK WKV TT TC Incβ β β γ= + × + × + ×  5.6 
The estimation results reported in this manual are obtained from software programmed in the 

Matlab language and included in the CD-Rom distributed with the manual.  The output for the 

above model specification is shown in structured format in Table 5-2.  The corresponding 

estimation results for this specification from various commercial packages; ALOGIT, LIMDEP 

and ELM; are reported in Appendix A.  The outputs from these and other software package 

typically include, at least, the following estimation results: 

• Parameter20 names, parameter estimates, standard errors of these estimates and the 

corresponding t-statistics for each variable/parameter;  

• Log-likelihood values at zero (equal probability model), constants only (market shares 

model) and at convergence and 

• Rho-Squared and other indicators of goodness of fit. 

In addition, different software reports a variety of other information either as part of the default 

output or as a user selected option.  These include: 

• The number of observations, 

• The number of cases for which each alternative is available, 

• The number of cases for which each alternative is chosen, 

• The number of iterations required to obtain convergence, and 

• The status of the convergence process at each iteration. 

The value for the log-likelihood at zero and constants can be obtained for either software by 

estimating models without (zero) and with (constants) alternative specific constants21 and no 

                                                 
20 Commonly, the name is selected to match the corresponding variable name. 
21 The zero model can be estimated with constants included but restricted to zero, the constants model can be 
estimated with constants included and not restricted. 
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other variables.  Further, the log-likelihood at zero can be calculated directly as 

( )ln 1/ t
t

NAlt∑ .   

 In the next three sections, we review the estimation results for the base model using 

informal judgment-based tests (section 5.7.1), goodness-of-fit measures (section 5.7.2), and 

statistical tests (section 5.7.3). These elements, taken together, provide a basis to evaluate each 

model and to compare models with different specifications.   

 

Table 5-2 Estimation Results for Zero Coefficient, Constants Only and Base Models 

Variables Zero Coefficients 

Model 

Constants Only 

Model 

Base 

Model 

Travel Cost (1990 cents)  -0.0049 (-20.6)

Total Travel Time (minutes)  -0.0513 (-16.6)

Income (1,000’s of 1990 DOLLARS) 
   Drive Alone (Base) 
   Shared Ride 2 
   Shared Ride 3+ 
   Transit 
   Bike 
   Walk 

 
0.0

-0.0022 (-1.4)
0.0004 (0.1)

-0.0053 (-2.9)
-0.0128 (-2.4)
-0.0097 (-3.2)

Mode Constants 
   Drive Alone (base) 
   Shared Ride 2 
   Shared Ride 3+ 
   Transit 
   Bike 
   Walk 

 
0.0 

-2.137 (-44.1) 
-3.303 (-40.6) 
-1.950 (-38.5) 
-3.334 (-23.1) 
-2.040 (-23.9) 

0.0
-2.178 (-20.8)
-3.725 (-21.0)
-0.6709 (-5.1)
-2.376 (-7.8)

-0.2068 (-1.1)

Log-likelihood at Zero  -7309.601 -7309.601 

Log-likelihood at Constant   -4132.916 

Log-likelihood at Convergence -7309.601 -4132.916 -3626.186 

Rho-Squared w.r.t. Zero NA 0.4346 0.5039 

Rho-Squared w.r.t. Constants NA NA 0.1226 
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5.7.1 Informal Tests 
A variety of informal tests can be applied to an estimated model.  These tests are designed to 

assess the reasonableness of the implications of estimated parameters.  The most common tests 

concern: 

• The sign of parameters (do the associated variables have a positive or negative effect on 

the alternatives with which they are associated?),  

• The difference (positive or negative) within sets of alternative specific variables (does the 

inclusion of this variable have a more or less positive effect on one alternative relative to 

another?) and 

• The ratio of pairs of parameters (is the ratio between the parameters of the correct sign 

and in a reasonable range?). 

5.7.1.1 Signs of Parameters 
The most basic test of the estimation results is to examine the signs of the estimated parameters 

with theory, intuition and judgment regarding the expected impact of the corresponding 

variables.  The estimated coefficients on the travel time and cost variables in Table 5-2 are 

negative, as expected, implying that the utility of a mode decreases as the mode becomes slower 

and/or more expensive.  This, in turn, will reduce the choice probability of the corresponding 

mode. 

5.7.1.2 Differences in Alternative Specific Variable Parameters across Alternatives 
We often have expectations about the impact of decision-maker characteristics on different 

alternatives.  For example, when analyzing mode choice, we expect a number of variables to be 

more positive for automobile alternatives, especially Drive Alone, than for other alternatives.  

These include income, automobile ownership, home ownership, single family dwelling unit, etc. 

Since DA is the reference alternative in these models, we expect negative parameters on all 

alternative specific income variables, with small values for the shared ride alternatives and larger 

values for other alternatives, to reflect our intuition that increasing income will be associated 

with decreased preference for all other alternatives relative to drive alone. All the estimated 
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alternative specific income parameters in Table 5-2 Estimation Results for Zero Coefficient, 

Constants Only and Base Models are negative, as expected, with the exception of the parameter 

for shared ride 3+.  The positive sign for the shared ride 3+ parameter is counter-intuitive but 

very small and not significantly different from zero. An approach to address this problem is 

described in section 5.7.3.1. 

Additional informal tests involve comparisons among the estimated income parameters. 

The differences in the magnitude of these alternative-specific income parameters indicate the 

relative impact of increasing income on the utility and, hence, the choice probability of each 

mode. The results reported in Table 5-2 show that an increase in income will have a larger 

negative effect on the utilities of the non-motorized modes (bike and walk) than on those of 

transit and shared ride 2 modes. It is important to understand that the change in the choice 

probability of that alternative is not determined by the sign of the income parameter for a 

particular alternative but on the value of the parameter relative to the weighted mean of the 

income parameters across all alternatives, as described in section 4.5. For example, in the base 

model specification (Table 5-2), an increase in income will increase the probability of choosing 

drive alone and shared ride 3+ (the alternatives with the most positive parameters22) and will 

decrease the probability of choosing walk and bike (the alternatives with the smallest, most 

negative, parameters).  However, the effect on shared ride 2 and transit is unclear; as income 

increases, they will lose some probability to drive alone and shared ride 3+ and gain some from 

walk and bike.  The net effect will depend on the difference between the parameter for the 

alternative of interest and the individual choice probability weighted average of all the 

alternative specific income parameters (including zero for the base alternative) as illustrated in 

equation 4.58. 

5.7.1.3 The Ratio of Pairs of Parameters 
 The ratio of the estimated travel time and travel cost parameters provides an estimate of 

the value of time implied by the model; this can serve as another important informal test for 

evaluating the reasonableness of the model. For example, in the Base Model reported in Table 

                                                 
22 If all the reported constants are negative, the alternative with the most positive parameter is drive alone at zero. 
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5-2, the implied value of time is (-0.05134)/(-0.00492) or 10.4 cents per minute (the units are 

determined from the units of the time and cost variables used in estimation). This is equivalent to 

$6.26 per hour which is much lower that the average wage rate in the area at the time of the 

survey, approximately $21.20 per hour, suggesting that the estimated value of time may be too 

low.  We revisit this issue in greater detail in the next chapter. 

 Similar ratios may be used to assess the reasonableness of the relative magnitudes of 

other pairs of parameters.  These include out of vehicle time relative to in vehicle time, travel 

time reliability (if available) relative to average travel time, etc. 

5.7.2 Overall Goodness-of-Fit Measures 
This section presents a descriptive measure, called the rho-squared value 2( )ρ  which can be 

used to describe the overall goodness of fit of the model. We can understand the formulation of 

this value in terms of the following figure which shows the scalar relationship among the log-

likelihood values for a zero coefficients model (or the equally likely model), a constants only or 

market share model, the estimated model and a perfect prediction model. In the figure, LL(0) 

represents the log-likelihood with zero coefficients (which results in equal likelihood of choosing 

each available alternative), (0)LL  represents the log-likelihood for the constants only model, 

ˆ( )LL β  represents the log-likelihood for the estimated model and LL(*) = 0 is the log-likelihood 

for the perfect prediction model. 

  

 

Figure 5.2 Relationship between Different Log-likelihood Measures 
 

The relationships among modeling results will always appear in the order shown provided the 

estimated model includes a full set of alternative specific constants.  That is, the constants only 

model is always better than the equally likely model, and the estimated model with constants is 
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always better than the constants only model.  The order of different estimated models will vary 

except that any model which is a restricted version of another model will be to the left of the 

unrestricted model. 

 The rho-squared ( 2
0ρ ) value is based on the relationship among the log-likelihood values 

indicated in Figure 5.2. It is simply the ratio of the distance between the reference model and the 

estimated model divided by the difference between the reference model and a perfect model.  If 

the reference model is the equally likely model, the rho square with respect to zero, 2
0ρ , is: 

 2
0

ˆ( ) (0)
(*) (0)

LL LL
LL LL

β
ρ

−
=

−
 5.7 

Since the log-likelihood value for the perfect model is zero23, the 2
0ρ  measure reduces to: 

 2
0

ˆ( )
1

(0)
LL
LL

β
ρ = −  5.8 

Similarly, the rho-square with respect to the constants only model is: 

 

2
ˆ( ) ( )

(*) ( )
ˆ( )

1
( )

c

LL LL c
LL LL c

LL
LL c

β
ρ

β

−
=

−

= −

  5.9 

By definition, the values of both rho-squared measures lie between 0 and 1 (this is similar to the 

R2 measure for linear regression models).  A value of zero implies that the model is no better 

than the reference model, whereas a value of one implies a perfect model; that is, every choice is 

predicted correctly. 

 The rho-squared values for the basic model specification in Table 5-2 are computed 

based on the formulae shown below as: 

 2 2
0 c

( 3626.2) ( 3626.2)
1 0.5039         1 0.1226

( 7309.6) ( 4132.9)
ρ ρ

− −
= − = = − =

− −
 5.10 

                                                 
23 The perfect model “predicts” a probability of one for the chosen mode for each and every case so the contribution of each case to the log-

likelihood function is ln(1) = 0. 
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 The rho-squared measures are widely used to describe the goodness of fit for choice 

models because of their intuitive formulation.  The 2
0ρ  measures the improvement due to all 

elements of the model, including the fit to market shares, which is not very interesting for 

disaggregate analysis so it should not be used to assess models in which the sample shares are 

very unequal.  The rho-squared measure with respect to the constant only model, 2
cρ , controls 

for the choice proportions in the estimation sample and is therefore a better measure to use for 

evaluating models. 

 A problem with both rho-squared measures is that there are no guidelines for a “good” 

rho-squared value. Consequently, the measures are of limited value in assessing the quality of an 

estimated model and should be used with caution even in assessing the relative fit among 

alternative specifications. It is preferable to use the log-likelihood statistic (which has a formal 

and convenient mechanism to test among alternative model specifications) to support the 

selection of a preferred specification among alternative specifications.   

 Another problem with the rho-squared measures is that they improve no matter what 

variable is added to the model independent of its importance.  This directly results from the fact 

that the objective function of the model is being modeled with one or more additional degrees of 

freedom and that the same data that is used for estimation is used to assess the goodness of fit of 

the model.  One approach to this problem is to replace the rho-squared measure with an adjusted 

rho-square measure which is designed to take account of these factors.  The adjusted rho-squared 

for the zero model is given by:   

 

2
0

ˆ( ) (0)

(*) (0)
ˆ( )

1
(0)

LL K LL

LL LL

LL K
LL

β
ρ

β

⎡ ⎤− −⎢ ⎥⎣ ⎦=
−

−
= −

 5.11 

 

where K is the number of degrees of freedom (parameters) used in the model. 

The corresponding adjusted rho-squared for the constants only model is given by:   
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ˆ( )
1
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C
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LL LL C K
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β
ρ

β
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=

− −

−
= −

−

 5.12 

 

where Kms is the number of degrees of freedom (parameters) used in the constants only 

model. 

 

5.7.3 Statistical Tests 
Statistical tests may be used to evaluate formal hypotheses about individual parameters or groups 

of parameters taken together. In this section we describe each of these tests. 

5.7.3.1 Test of Individual Parameters 
There is sampling error associated with the model parameters because the model is estimated 

from only a sample of the relevant population (the relevant population includes all commuters in 

the Bay Area). The magnitude of the sampling error in a parameter is provided by the standard 

error associated with that parameter; the larger the standard error, the lower the precision with 

which the corresponding parameter is estimated. The standard error plays an important role in 

testing whether a particular parameter is equal to some hypothesized value, as we discuss next. 

 The statistic used for testing the null hypothesis that a parameter k̂β  is equal to some 

hypothesized value, *
kβ , is the asymptotic t-statistic, which takes the following form:    

 
*

k̂ k

k

t statistic
S

β β−
− =  5.13 

 

where k̂β  is the estimate for the kth parameter,  

*
kβ  is the hypothesized value for the kth parameter and 

kS  is the standard error of the estimate. 
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Sufficiently large absolute values of the t-statistic lead to the rejection of the null hypothesis that 

the parameter is equal to the hypothesized value. When the hypothesized value, *
kβ , is zero, the 

t-statistic becomes the ratio of the estimated parameter to the standard error.  The default 

estimation output from most software packages includes the t-statistic for the test of the 

hypothesis that the true value is zero.  The rejection of this null hypothesis implies that the 

corresponding variable has a significant impact on the modal utilities and suggests that the 

variable should be retained in the model.  Low absolute values of the t-statistic imply that the 

variable does not contribute significantly to the explanatory power of the model and can be 

considered for exclusion.  If it is concluded that the hypothesis is not rejected, the equality 

constraint can be incorporated in the model by creating a new variable kl k lX X X= + . 

 The selection of a critical value for the t-statistic test is a matter of judgment and depends 

on the level of confidence with which the analyst wants to test his/her hypotheses. The critical t-

values for different levels of confidence for samples sizes larger than 150 (which is the norm in 

mode choice analysis) are shown in Table 5-3.  It should be apparent that the critical t-value 

increases with the desired level of confidence.  Thus, one can conclude that a particular variable 

has no influence on choice (or equivalently that the true parameter associated with the variable is 

zero) can be rejected at the 90% level of confidence if the absolute value of the t-statistic is 

greater than 1.645 and at the 95% level of confidence if the t-statistic is greater than 1.96024.   

 

                                                 
24 Confidence levels commonly used are in the range of 90% to 99%. 
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Table 5-3 Critical t-Values for Selected Confidence Levels and Large Samples 

Confidence Level Critical  

t-value  

(two-tailed test) 

90% 1.645 

95% 1.960 

99% 2.576 

99.5% 2.810 

99.9% 3.290 
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Figure 5.3 t-Distribution Showing 90% and 95% Confidence Intervals 
 

We illustrate the use of the t-test by reviewing the t-statistics for each parameter in the initial 

model specification (Table 5-2). Both the travel cost and travel time parameters have large 

90%

95%
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absolute t-statistic values (20.6 and 16.6, respectively) which lead us to reject the hypothesis that 

these variables have no effect on modal utilities at a confidence level higher than 99.9%. Thus, 

these variables should be retained in the model. All of the other t-statistics, except for Income-

Shared Ride 2,  Income-Shared Ride 3+ and the walk constant are greater than 1.960 (95% 

confidence) supporting the inclusion of the corresponding variables.  The t-statistics on the 

shared ride specific income variables are even less than 1.645 in absolute value (90% 

confidence), suggesting that the effect of income on the utilities of the shared ride modes may 

not differentiate them from the reference (drive alone) mode. Consequently, the analyst should 

consider removing these income variables from the utility function specifications for the shared 

ride modes. The case is particularly compelling for removal of the income shared ride 3+ 

variable since the t-statistic is very low and the parameter has a counter-intuitive sign. Another 

alternative would be to combine the two shared ride income parameters suggesting that income 

has differential effect between drive alone and shared ride but not between shared ride 2 and 

shared ride 3+ (when this is done, the combined variable obtains a small negative parameter 

which is not statistically different from zero).  This variable could be deleted or retained 

according to the judgment of the analyst as described in Section 6.2.1. 

 An alternative approach is to report the t-statistic to two or three decimal places and 

calculate the probability that a t-statistic value of that magnitude or higher would occur due to 

random variation in sampling as shown in Table 5-4.  This is reported as the significance level, 

which is the complement of the level of confidence. The significance of each parameter can be 

read directly from the table.  Parameters with significance greater than 0.05 (lower in magnitude 

but more significant), provide a stronger basis for rejecting the hypothesis that the true parameter 

is zero and that the corresponding variable can be excluded from the model. On the other hand, 

significance levels of 0.163 (for Income-SR2), 0.888 (for Income-SR3+) and 0.287 (for ASC-

Walk) provide little evidence about whether the corresponding variable should or should not be 

included in the model25. 

 

                                                 
25 Generally, it is good policy to retain or eliminate full sets of constants and alternative specific variables unless 
there is a good reason to do otherwise until all other variables have been selected. 
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Table 5-4 Parameter Estimates, t-statistics and Significance for Base Model 

Variables Parameter 
Estimate 

t-statistic Significance 
Level 

Travel Cost (1990 cents) -0.0049 -20.60 0.000026 

Total Travel Time (minutes) -0.0513 -16.57 0.0000 

Income (1,000’s of 1990 dollars) 
   Drive Alone (Base) 
   Shared Ride 2 
   Shared Ride 3+ 
   Transit 
   Bike 
   Walk 

0.0
-0.0022
0.0004 

-0.0053
-0.0128
-0.0097

------
-1.40
0.14

-2.89
-2.41
-3.19

 
 

------- 
0.1628 
0.8879 
0.0039 
0.0164 
0.0015 

Mode Constants 
   Drive Alone (base) 
   Shared Ride 2 
   Shared Ride 3+ 
   Transit 
   Bike 
   Walk 

0.0
-2.178 
-3.725

-0.6709 
-2.376 

-0.2068 

------
-20.82
-21.96
-5.106
-7.80
-1.06

 
------- 

0.0000 
0.0000 
0.0000 
0.0000 
0.2867 

 

 It is important to recognize that a low t-statistic does not require removal of the 

corresponding variable from the model.  If the analyst has a strong reason to believe that the 

variable is important, and the parameter sign is correct, it is reasonable to retain the variable in 

the model.  A low t-statistic and corresponding low level of significance can best be interpreted 

as providing little or no information rather than as a basis for excluding a variable.  Also, one 

should be cautious about prematurely deleting variables which are expected to be important as 

the same variable may be significant when other variables are added to or deleted from the 

model.   

 The lack of significance of the alternative specific walk constant is immaterial since the 

constants represent the average effect of all the variables not included in the model and should 

always be retained despite the fact that they do not have a well-understood behavioral 

interpretation. 

                                                 
26 Significance levels reported as 0.0000 are equivalent to less than 0.00005 
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5.7.3.2 Test of Linear Relationship between Parameters 
It is often interesting to determine if two parameters are statistically different from one another 

or if two parameters are related by a specific value ration.  These tests are similarly based on the 

t-statistic; however, the formulation of the test is somewhat different from that described in 

Section 5.7.3.1.  To test the hypothesis 0 : k lH β β=  vs. :A k lH β β≠ ; we use the 

asymptotic t-statistic, which takes the following form:    

 
2 2

,

ˆ ˆ

2
k l

k l k l

t statistic
S S S

β β−
− =

+ −
 5.14 

 

where ˆ ˆ,k lβ β  are the estimates for the kth and lth  parameters,  

,k lS S  are the standard errors of the estimates for the kth and lth  

parameters and 

,k lS  is the error covariance for the estimates for the kth and lth  

parameters. 

That is the ratio is the differences between the two parameter estimates and the standard 

deviation of that difference.  As before, sufficiently large absolute values of the t-statistic lead to 

the rejection of the null hypothesis that the parameters are equal. Again, rejection of this null 

hypothesis implies that the two corresponding variables have a significant different impact on 

the modal utilities and suggests that the variable should be retained in the model and low 

absolute values of the t-statistic imply that the variables do not have significantly different 

effects on the utility function or the explanatory power of the model and can be combined in the 

model. 

 This test can be readily extended to the test of a hypothesis that the two parameters are 

related by a predefined ratio; for example, the parameter for time and cost may be related by an a 

priori value of time.  In that case, the null hypothesis becomes ( )0 cos: t timeH VOTβ β= ×  

and the alternative hypothesis is ( )cos:A t timeH VOTβ β≠ × .  The corresponding t-statistic 

becomes 
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( )

( ) ( )
cos

22 2
cos ,cos2

t time

t time time t

VOT
t statistic

S VOT S VOT S

β β−
− =

+ −
 5.15 

 

The interpretation is the same as above except that the hypothesis refers to the equality of one 

parameter to the other parameter times an a priori fixed value.  In this case, if it is concluded that 

the hypothesis is not rejected, the ratio constraint can be incorporated in the model by creating a 

new variable time, cost cost time( )X X VOT X= + . 

 

5.7.3.3 Tests of Entire Models 
The t-statistic is used to test the hypothesis that a single parameter is equal to some pre-selected 

value or that there is a linear relationship between a pair of parameters. Sometimes, we wish to 

test multiple hypotheses simultaneously. This is done by formulating a test statistic which can be 

used to compare two models provided that one is a restricted version of the other; that is, the 

restricted model can be obtained by imposing restrictions (setting some parameters to zero, 

setting pairs of parameters equal to one another and so on) on parameters in the unrestricted 

model. This test statistic can then be used for any case when one or more restrictions are 

imposed on a model to obtain another model. 

 If all the restrictions that distinguish between the restricted and unrestricted models are 

valid, one would expect the difference in log-likelihood values (at convergence) of the restricted 

and unrestricted models to be small. If some or all the restrictions are invalid, the difference in 

log-likelihood values of the restricted and unrestricted models will be “sufficiently” large to 

reject the hypotheses. This underlying logic is the basis for the likelihood ratio test. The test 

statistic is: 

 [ ]2 R ULL LL− × −  5.16 
 

where RLL  is the log-likelihood of the restricted model, and  

ULL  is the log-likelihood of the unrestricted model. 
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This test-statistic is chi-squared distributed.  Example chi-squared distributions are 

shown in Figure 5.4. As with the test for individual parameters, the critical value for determining 

if the statistic is “sufficiently large” to reject the null hypothesis depends on the level of 

confidence desired by the model developer.  It is also influenced by the number of restrictions27 

between the models.  Table 5-5 shows the chi-squared values for selected confidence levels and 

for different numbers of restrictions.   

Figure 5.5 illustrates the 90% and 95% confidence thresholds on the chi-squared 

distribution for five degrees of freedom.  The critical chi-square values increase with the desired 

confidence level and the number of restrictions. 

 

Figure 5.4 Chi-Squared Distributions for 5, 10, and 15 Degrees of Freedom  
 

                                                 
27 The number of restrictions is the number of constraints imposed on the unrestricted model to obtain the restricted model.  If three variables are 

deleted from the unrestricted mode; that is, their parameters are restricted to zero; the number of restrictions is three. 
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Figure 5.5 Chi-Squared Distribution for 5 Degrees of Freedom Showing 90% and 95% 

Confidence Thresholds 

 

Table 5-5 Critical Chi-Squared (χ2) Values for Selected Confidence Levels by Number of 
Restrictions 

 Number of Restrictions  Level of 

Conf. 
1 2 3 4 5 7 10 12 15 

90% 2.71 4.61 6.25 7.78 9.24 12.01 15.99 18.54 22.31 

95% 3.84 5.99 7.81 9.49 11.07 14.06 18.31 21.02 25.00 

99% 6.63 9.21 11.34 13.28 15.09 18.48 23.21 26.21 30.58 

99.5% 7.88 10.60 12.84 14.86 16.75 20.28 25.19 28.30 32.80 

99.9% 10.83 13.82 16.27 18.47 20.51 24.32 29.59 32.91 37.70 
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The likelihood ratio test can be applied to test null hypotheses involving the exclusion of groups 

of variables from the model.  Table 5-6 illustrates the tests of two hypotheses describing 

restriction on some or all the parameters in the San Francisco Bay Area commuter mode choice 

model.  The first hypothesis is that all the parameters are equal to zero. The formal statement of 

the null hypothesis in this case, is: 

 

0,a

2 3

2 3

H :

0, and

0,

0

SR SR TR WK BK

Travel Time Travel Cost

Income SR Income SR Income Transit

Income Bike Income Walk

β β β β β

β β

β β β

β β
− − + −

− −

= = = = =

= =

= =

= = =

 5.17 

 This test is not very useful because we almost always reject the null hypothesis that all 

coefficients are zero. A somewhat more useful null hypothesis is that the variables in the initial 

model specification provide no additional information in addition to the market share 

information represented by the alternative specific constants.  The restrictions for this null 

hypothesis are: 

 

0,

2 3

:

,  and

0, and

0

b Travel Time Travel Cost

Income SR Income SR Income Transit

Income Bike Income Walk

H β β

β β β

β β
− − + −

− −

= =

= =

= = =

 5.18 

The log-likelihood values needed to test each of these hypotheses are reported in Table 5-2.  In 

each case, we include the log-likelihood of the restricted and unrestricted models, the calculated 

chi-square value and the number of restrictions or degrees of freedom as shown in Table 5-6. 

The confidence or significance of the rejection of the null hypothesis in each case can be 

obtained by referring to Table 5-5, more extensive published tables or software (most 

spreadsheet programs) that calculates the precise level of confidence/significance associated with 

each test result. 
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Table 5-6 Likelihood Ratio Test for Hypothesis H0,a and H0,b 

Variables Test for 

Hypothesis 

H0,a 

Test for 

Hypothesis 

H0,b 

Log-Likelihood of Unrestricted Model (LLU) -3626.186 -3626.186 

Log-Likelihood of Restricted Model (LLR) -7309.601 -4132.916 

Test Statistics [-2(LLR-LLU)] 7366.830 1013.460 

Number of Restrictions 12 7 

Critical Chi-Squared Value at 99.9% Confidence 32.91 24.32 

Rejection Confidence 99.9% 99.9% 

Rejection Significance 0.001 0.001 

 

 These two applications of the likelihood ratio test correspond to situations where the null 

hypothesis leads to a highly restrictive model.  These cases are not very interesting since the real 

value of the likelihood ratio test is in testing null hypotheses which are not so extreme. The log-

likelihood ratio test can be applied to test null hypotheses involving the exclusion of selected 

groups of variables from the model. We consider two such hypotheses.  The first is that the time 

and cost variables have no impact on the mode choice decision, that is, 

 0, : 0C Travel Time Travel CostH β β= =  

The second is that income has no effect on the travel mode choice; that is 

 0, 2 3:

0
D Income SR Income SR Income Transit

Income Bike Income Walk

H β β β

β β
− − + −

− −

= =

= = =

 

The restricted models that reflect each of these hypotheses and the corresponding unrestricted 

model are reported in Table 5-7 along with their log-likelihood values.   
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Table 5-7 Estimation Results for Base Models and its Restricted Versions 

Variables Base Model Base Model 

without Time and 

Cost Variables 

Base Model 

without  

Income Variables

Travel Cost (1990 cents) -0.0049 (-20.6)  -0.0048 (-20.6)

Total Travel Time (minutes) -0.0513 (-16.6)  -0.0514 (-16.6)

Income (1,000’s of 1990 dollars) 
   Drive Alone (Base) 
   Shared Ride 2 
   Shared Ride 3+ 
   Transit 
   Bike 
   Walk 

0.0
-0.0022 (-1.4)
0.0004  (0.1)

-0.0053 (-2.9)
-0.0128 (-2.4)
-0.0097 (-3.2)

 
0.0 

-0.0004 (-0.2) 
0.0030  (1.3) 

-0.0022 (-1.4) 
-0.0122 (-2.3) 
-0.0089 (-3.0) 

Mode Constants 
   Drive Alone (base) 
   Shared Ride 2 
   Shared Ride 3+ 
   Transit 
   Bike 
   Walk 

0.0
-2.178 (-20.8)
-3.725 (-21.0)
-0.6709 (-5.1)
-2.376   (-7.8)
-0.2068 (-1.1)

 
0.0 

-2.110 (-21.3) 
-3.472 (-21.0) 
-1.820 (-17.8) 
-2.672   (-8.8) 
-1.598   (-9.8) 

0.0
-2.308 (-42.2)
-3.702 (-39.9)
-0.974 (-11.0)
-3.071 (-19.9)
-0.704   (-5.4)

Log-likelihood at Zero -7309.601 -7309.601 -7309.601 

Log-likelihood at Constant -4132.916 -4132.916 -4132.916 

Log-likelihood at Convergence -3626.186 -4123.615 -3637.579 

Rho-Squared w.r.t. Zero 0.5039 0.4359 0.5024 

Rho-Squared w.r.t. Constants 0.1226 0.0023 0.1198 

Adjusted Rho-Squared w.r.t. Zero 0.5023 0.4345 0.5014 

Adjusted Rho-Squared w.r.t. 
Const. 0.1197 0.0010 0.1181 
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The statistical test of the hypothesis that time and cost have no effect has a chi-square value of 

 

 ( )( )2 2 4123.6 3626.2 994.8χ = − − − − =  5.19 

 

with two degrees of freedom (two parameters constrained to zero).  The critical χ2 with two 

degrees of freedom at 99.9% confidence (or 0.001 level of significance) is 13.82.  Similarly, the 

statistical test of the hypothesis that income has no effect on mode choice has a chi-square value 

of  

 
 ( )( )2 2 3637.6 3626.2 22.8χ = − − − − = ,  5.20 

 

with five degrees of freedom (five income parameters are constrained to zero).  The critical χ2 

with five degrees of freedom at 99.9% confidence level (or 0.001 level of significance) is 20.51.   

Thus, both null hypotheses can be rejected at very high levels; that is, neither time and cost nor 

the income variables should be excluded from the model.  The log-likelihood ratio tests for both 

the above hypotheses are summarized in Table 5-8. 

 

Table 5-8 Likelihood Ratio Test for Hypothesis H0,c and H0,d 

Variables Test for 
Hypothesis 

H0,c 

Test for 
Hypothesis 

H0,d 

Log-Likelihood of Unrestricted Model (LLU) -3626.186 -3626.186 

Log-Likelihood of Restricted Model (LLR) -4123.615 -3637.579 

Test Statistics [-2(LLR-LLU)] 994.858 22.786 

Number of Restrictions 2 5 

Critical Chi-Squared Value at 99.9% Confidence 13.82 20.51 

Rejection Confidence >>99.9% >>99.9% 

Rejection Significance 0.000 0.000 
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5.7.3.4 Non-nested Hypothesis Tests 
The likelihood ratio test can only be applied to compare models which differ due to the 

application of restrictions to one of the models.  Such cases are referred to as nested hypothesis 

tests. However, there are important cases when the rival models do not have this type of 

restricted – unrestricted relationship.  For example, we might like to compare the base model to 

an alternative specification in which the variable cost divided by income is used to replace cost.  

This reflects the expectation that the importance of cost diminishes with increasing income.  This 

analysis can be performed by using the non-nested hypothesis test proposed by Horowitz (1982).   

The non-nested hypothesis test uses the adjusted likelihood ratio index, 2ρ , to test the hypothesis 

that the model with the lower 2ρ  value is the true model28.  In this test, the null hypothesis that 

the model with the lower value is the true model is rejected at the significance level determined 

by the following equation29: 

 ( ) ( )( )
1

2 2
2Significance Level 2 (0)H L H LLL K Kρ ρ= Φ − − × + −⎡ ⎤−⎢ ⎥⎣ ⎦

 5.21 

 

where 2
Lρ  is the adjusted likelihood ratio index for the model with the lower 

value,  
2
Hρ   is the adjusted likelihood ratio index for the model with the higher 

value,       

,H LK K  are the numbers of parameters in models H and L, respectively, 

and  

Φ  is the standard normal cumulative distribution function. 

 

 We illustrate the non-nested hypothesis test by applying it to compare the base model 

with alternative specifications that replace the cost variable with cost divided by income or cost 

                                                 
28 The alternative test, that the model with the higher 

2ρ  value is the true model, cannot be undertaken as an inferior model can never be used 

to reject a superior model. 

29 Modified from Ben-Akiva and Lerman, Chapter 7, 1985 
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divided by ln(income).  The estimation results for all three models are presented in Table 5-9.  

Since the model using cost not adjusted for income has the best goodness of fit (highest 2ρ ), the 

null hypotheses for these tests is that the model with cost by income variable or the model with 

cost by ln(income) is the true model. higher 2ρ .  Since all the models have the same number of 

parameters, the term (KH-KL) drops out, and the equation for the test of the cost by income 

model being true is: 

 
( )( ) ( )( )( )

[ ]

1

2

1
2 2 2

13.58 0.001

2 (0) 2 0.5023 0.4897 7309.6H L LLρ ρ =

= −

⎡ ⎤⎛ ⎞ ⎡ ⎤⎟⎜⎢ ⎥Φ − − × Φ − − − −⎟ ⎢ ⎥⎜ ⎟⎟⎢ ⎥⎜⎝ ⎠ ⎣ ⎦⎣ ⎦
Φ

 5.22 

 
The corresponding test for the cost by ln(income) being true is: 
 

 
( )( ) ( )( )( )

[ ]

1

2

1
2 2 2

3.420 0.001

2 (0) 2 0.5023 0.5015 7309.6H L LLρ ρ =

= −

⎡ ⎤⎛ ⎞ ⎡ ⎤⎟⎜⎢ ⎥Φ − − × Φ − − − −⎟ ⎢ ⎥⎜ ⎟⎟⎢ ⎥⎜⎝ ⎠ ⎣ ⎦⎣ ⎦
Φ <

 5.23 

 
The above result implies that the null hypotheses that the models with cost by income variable or 

cost by ln(income) are true are rejected at a significance level greater than 0.001.  However, the 

significance of rejection is much lower for the cost by ln(income) model and many analysts 

would adopt that specification on the grounds that it is conceptually more appropriate.  This 

specification suggests that the value of money declines with income but the rate of decline 

diminishes at higher levels of income. 

 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 97 
 

 
Koppelman and Bhat  January 31, 2006 

Table 5-9 Models with Cost vs. Cost/Income and Cost/Ln(Income) 

Variables Base Model 
(Cost Variable)

Model with 
Cost by Income 

Variable 

Model with 
Cost by 

Ln(Income) 
Variable 

Travel Cost (1990 cents) -0.0049 (-20.6)   

Travel Cost by Income, Ln(Income)
(1990 cents,  1,000 1990 dollars) 

 
By Income 

-0.1692 (-17.4) 
By Ln(Income) 
-0.0191 (-20.8) 

Total Travel Time (minutes) -0.0513 (-16.6) -0.0512 (-16.7) -0.0512 (-16.5)

Income (1,000’s of 1990 dollars) 
Drive Alone (Base) 
Shared Ride 2 
Shared Ride 3+ 
Transit 
Bike 
Walk 

 
0.0 

-0.0022 (-1.4) 
0.0004 (0.1) 

-0.0053 (-2.9) 
-0.0128 (-2.4) 
-0.0097 (-3.2) 

 
0.0 

0.0030 (2.0) 
0.0096 (4.1) 

-0.0009 (-0.5) 
-0.0042 (-0.8) 
-0.0020 (-0.7) 

 
0.0 

-0.0004 (-0.3) 
0.0035 (1.4) 

-0.0039 (-2.2) 
-0.0098 (-1.9) 
-0.0072 (-2.4) 

Mode Constants 
Drive Alone (base) 
Shared Ride 2 
Shared Ride 3+ 
Transit 
Bike 
Walk 

 
0.0 

-2.1780 (-20.8) 
-3.7251 (-21.0) 
-0.6708   (-5.1) 
-2.3763   (-7.8) 
-0.2068  (-1.1) 

 
0.0 

-2.3770 (-22.5) 
-4.0797 (-23.3) 
-0.7579   (-5.7) 
-2.7714   (-9.4) 
-0.5982   (-3.1) 

 
0.0 

-2.2817 (-21.7) 
-3.9059 (-22.1) 
-0.7312   (-5.5) 
-2.5561   (-8.5) 
-0.3686   (-1.9)

Log-likelihood at Zero -7309.601 -7309.601 -7309.601 

Log-likelihood at Constant -4132.916 -4132.916 -4132.916 

Log-likelihood at Convergence -3626.19 -3718.39 -3629.00 

Rho-Squared w.r.t. Zero 0.5039 0.4913 0.5035 

Rho-Squared w.r.t. Constants 0.1226 0.1003 0.1219 

Adjusted Rho-Squared w.r.t. Zero 0.5023 0.4897 0.5015 

Adjusted Rho-Squared w.r.t. Const. 0.1197 0.0974 0.1197 
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5.8 Value of Time 

5.8.1 Value of Time for Linear Utility Function 
The value of time, as described in Section 5.7.1.3, is calculated as the ratio of the parameter for 

time over the parameter for cost.  This ratio assumes that the utility function is linear in both 

time and cost and that neither value is interacted with any other variables.  That is, when the time 

and cost portion of the utility function is  

 

 β β= + + +... ...i TVT i Cost iV TVT Cost  5.24 
 
the value of time is given by 
 

 β
βVofT= TVT

Cost
 5.25 

 
The units of time value are obtained from the units of the variables used to measure time and 

cost.  In the Base Model in Table 5.9, the units are minutes and cents.  Thus the value of time in 

cents per minute implied by this model is -0.0513/-0.0049=10.5 cents per minute .  This can 

be modified to $ per hour by multiply by ( ) ( )0.6 1/100 $ per cent 1/60 hour per minute= . 

However, in general, the value of time is equal to the ratio between the derivative of 

utility with respect to time and the derivative of utility with respect to cost.  That is 

  

∂
∂

∂
∂

VofT=

i

i

i

i

V
Time

V
Cost

 5.26 

 
In the case described in Equation 5.24, this produces the ratio in Equation 5.25.  However, this 

more general formulation allows us to infer the value of time for a variety of special cases in 

addition to the linear utility case described above.  
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5.8.2 Value of Time when Cost is Interacted with another Variable 
This approach can be applied to any case including when either time or cost is interacted with 

another variable, usually a variable describing the decision maker or the decision context. For 

example, if cost is divided by income30 as in the second model reported in Table 5-9 Models 

with Cost vs. Cost/Income and Cost/Ln(Income)Table 5-9, on the basis that a unit of cost is 

proportionally less important with increasing income, the utility expression becomes 

 

 β β= + + +... ...it
it TVT it CostInc

t

Cost
V TVT

Income
 5.27 

 
and the value of time becomes 
 
 

 β
β

∂
∂ =∂

∂

VofT=

i

i TVT

CostInci

t
i

V
Time

V
IncomeCost

 5.28 

 
which can be converted to 
 

 
( )

IVT

centsVofT= minute$1000Income year

COST

β
β

 5.29 

 
or 
 

( )

IVT0.6
$VofT= hour$1000Income year

COST

β
β

×
  

                                                 
30 The value of income commonly used is the total household income since that value is most commonly collected in 
surveys.  This raises a variety of potential problems in interpretation as the hourly wage rate based on household 
income is only the wage rate of the worker in a single worker household and does not readily apply to any worker in 
multi-worker household to non-workers.  This issue is not explicitly addressed in this manual but raises more 
general issues of model interpretation and use of the results. 
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Similarly, the value of time for the third specification in Table 5-9 Models with Cost vs. 

Cost/Income and Cost/Ln(Income) is 

( )

IVT0.6
$VofT=VofT= hour$1000ln year

COST

Income

β
β

×

⎡ ⎤
⎢ ⎥⎣ ⎦

 

The value of time implied by each of these formulations is illustrated in Table 5-10 and by 

showing the values of time for different income levels.  In each case, the values of travel time 

appear to be quite low.  This will be addressed in model specification refinement (Section 6.2.6).  

 

Table 5-10 Value of Time vs. Income 
Value of Time Annual Income Hourly Wage 

Linear Cost/Income Cost/Ln(Inc.) 
  $25,000 $12.50 $6.26 $4.53 $5.18 
  $50,000 $25.00 $6.26 $9.07 $6.29 
  $75,000 $37.50 $6.26 $13.60 $6.95 
$100,000 $50.00 $6.26 $18.13 $7.41 
$125,000 $62.50 $6.26 $21.94 $7.72 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Value of Time vs. Income 
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Another approach that can be used in this case is to relate the value of travel directly to 

the wage rate by assuming that the working year consists of 2000 hours or 120,000 minutes and 

recognizing that $1000 dollars is equivalent to 100,000 cents.  This gives us  

 =

=

VofT

cents
minuteUnits = $1000year

cents
minute

100,000 cents
120,000 minutes

1.2

 5.30 

 
That is, there are no units but a simple factor of 1.2.  This is interpreted as the value by which the 

ratio of the parameters should be multiplied to get the value of travel time as a fraction of the 

wage rate.  In the cost by income model in Table 5-9 Models with Cost vs. Cost/Income and 

Cost/Ln(Income), this becomes  

 

 β
β

−
× = × =

−
0.0512

VofT= 1.2 1.2 0.363 Wage Rate
0.1692

TVT

CostInc
 5.31 

 
which, as before, is quite low. However, as shown in Figure 5.6 and discussed in Section 5.7.3.4, 

this specification and the related specification for cost by ln(income) have the advantage that the 

value of time is differentiated across households with different income.   

5.8.3 Value of Time for Time or Cost Transformation 
If time or cost is transformed, it becomes necessary to explicitly take the derivative of utility 

with respect to both time and cost.  For example, if time enters the utility function using the 

natural log transformation, to suggest that the utility effect of increasing time decreases with 

time, the utility function becomes 

 ( ) ( )β β= + + +ln... ln ...it it Cost itTVTV TVT Cost   . 5.32 
 
and the value of time becomes  
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( )

( )

β
β

β β

∂
∂ = = ×∂

∂

ln

ln 1
VofT=

it TVT
TVTit it

Costit Cost it

it

V
Time TVT

V TVT
Cost

 5.33 

 
Similarly, if cost is entered as the natural log of cost, the value of time becomes 

 

 
( ) ( )

ββ
β β

∂
∂ = = ×∂

∂
ln

ln

VofT=

it

TVTit TVT
it

Costit Cost
itit

V
Time CostV

CostCost

 5.34 

 
which can be reported in a table for selected values of time or plotted in a graph of Value of 

Time as a function of TVT or Cost, as appropriate (see below).  Models using each of these 

formulations are estimated and reported, along with the Base Model in Table 5-11. The goodness 

of fit is substantially improved by using ln(time), which is generally expected, but is worse when 

using ln(cost), for which there is no conceptual basis.  
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Table 5-11  Base Model and Log Transformations 

Variables Base Model 
(Cost Variable)

Model with Log 
of Travel Time 

Model with Log 
of Travel Cost 

Travel Cost (1990 cents) -0.0049 (-20.6) -0.0034 (-15.1)  

Log of Travel Cost    -1.05 (-20.4) 

Total Travel Time (minutes) -0.0513 (-16.6)  -0.0598 (-19.0) 

Log of Total Travel Time  -2.4 (-19.3)  

Income (1,000’s of 1990 dollars) 
Drive Alone (Base) 
Shared Ride 2 
Shared Ride 3+ 
Transit 
Bike 
Walk 

 
0.0 

-0.0022 (-1.4) 
0.0004 (0.1) 

-0.0053 (-2.9) 
-0.0128 (-2.4) 
-0.0097 (-3.2) 

 
0.0 

-0.0026 (-1.6) 
0.0001 (0.0) 

-0.0066 (-3.5) 
-0.0125 (-2.4) 
-0.0090 (-2.9) 

 
0.0 

-0.0009 (-0.6) 
0.0024 (1.0) 

-0.0052 (-2.9) 
-0.0132 (-2.4) 
-0.0089 (-2.8) 

Mode Constants 
Drive Alone (base) 
Shared Ride 2 
Shared Ride 3+ 
Transit 
Bike 
Walk 

 
0.0 

-2.1780 (-20.8) 
-3.7250 (-21.0) 
-0.6709   (-5.1) 
-2.3760   (-7.8) 
-0.2068  (-1.1) 

 
0.0 

-1.75 (-16.0) 
-3.14 (-17.4) 
0.0788 (0.5) 
-1.64 (-5.3) 
1.19 (5.1) 

 
0.0 

-2.48 (-23.1) 
-4.31 (-24.2) 
0.0062 (0.0) 
-5.95 (-16.2) 
-3.30 (-12.6) 

Log-likelihood at Zero -7309.601 -7309.601 -7309.601 

Log-likelihood at Constant -4132.916 -4132.916 -4132.916 

Log-likelihood at Convergence -3626.186 -3590.502 -3674.385 

Rho-Squared w.r.t. Zero 0.5039 0.5088 0.4973 

Rho-Squared w.r.t. Constants 0.1226 0.1312 0.1109 

Adjusted Rho-Squared w.r.t. Zero 0.5023 0.5072 0.4957 

Adjusted Rho-Squared w.r.t. Const. 0.1197 0.1294 0.1091 
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The implications for value of time of these different formulations are shown in Table 5-12 and 

Table 5-13 Value of Time for Log of Cost Modeland also in Figure 5.7 and Figure 5.8.   

Table 5-12 Value of Time for Log of Time Model 

Trip Time (min) Value of Time (¢/min) Value of Time ($/hr) 
5 141.2 $84.71 
15 47.1 $28.24 
30 23.5 $14.12 
60 11.8 $7.06 
90 7.8 $4.71 

120 5.9 $3.53 
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Figure 5.7  Value of Time for Log of Time Model 
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Table 5-13 Value of Time for Log of Cost Model 
 

Trip Cost Value of Time 
($/hr) 

$0.25  $0.85 
$0.50  $1.71 
$1.00  $3.42 
$2.00  $6.83 
$5.00  $17.09 
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Figure 5.8 Value of Time for Log of Cost Model 
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CHAPTER 6: Model Specification Refinement: San Francisco Bay 
Area Work Mode Choice 

 

6.1 Introduction  
This chapter describes and demonstrates the refinement of the utility function specification for 

the multinomial logit (MNL) model for work mode choice in the San Francisco Bay Area.  The 

process combines the use of intuition, statistical analysis and testing, and judgment.  The 

intuition and judgment components of the model refinement process are based on theory, 

anecdotal evidence, logical analysis, and the accumulated empirical experience of the model 

developer.  This empirical experience can be and often is enhanced through the advice of others 

or through review of reports and published papers documenting previous modeling studies for 

similar choice problems and contexts.   

 We explore a variety of different specifications of the utility functions to demonstrate 

some of the most common specifications and testing methods.  These tests include both formal 

statistical tests and informal judgments about the signs, magnitudes, or relative magnitudes of 

parameters based on our knowledge about the underlying behavioral relationships that influence 

mode choice.  The use of judgment and experience is an essential element of successful model 

development since it is almost impossible to determine the “best” model specification solely on 

the basis of statistical tests.  A model that fits the data well may not necessarily describe the 

causal relationships and may not produce the most reasonable predictions.  Also, it is not 

uncommon to find several model specifications that, for all practical purposes, fit the data 

equally well, but which have very different specifications and forecast implications.  Therefore, 

practical model building involves considerable use of subjective judgment and is as much an art 

as it is a science.  

 Different modelers have different styles and approaches to the model development 

process.  One of the most common approaches is to start with a minimal specification which 

includes those variables that are considered essential to any reasonable model.  In the case of 

mode choice, such a specification might include travel time, travel cost and departure frequency 
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where appropriate for each alternative.  Working from this minimal specification, incremental 

changes are proposed and tested in an effort to improve the model in terms of its behavioral 

realism and/or its empirical fit to the data while avoiding excessive complexity of the model.  

Another common approach is to start with a richer specification which represents the model 

developer’s judgment about the set of variables that is likely to be included in the final model 

specification.  For example, such a model might include travel time (separated into in-vehicle 

and out-of-vehicle time), out of vehicle travel time might be adjusted to take account of the total 

distance traveled, out of pocket travel cost (possibly adjusted by household income), frequency 

of departure for carrier modes, household automobile ownership or availability, household 

income, and size of the travel party. 

 We adopt the first of these methods in the following section for refinement of the 

specification of a model of work mode choice as it is the most appropriate approach for those 

who are new to discrete choice modeling.  At each stage in the model development process, we 

introduce incremental changes to the modal utility functions and re-estimate the model with the 

objective of finding a more refined model specification that performs better statistically and is 

consistent with theory and our a priori expectations about mode choice behavior. We introduce 

small changes at each step as the estimation results for each stage provide useful insights which 

may be helpful in further refining the model.  The appropriateness of each specification change 

is evaluated at each step using both judgmental and statistical tests.   

 In the rest of this chapter, we describe and demonstrate this process for work mode 

choice in the San Francisco Bay Area. 

 

6.2 Alternative Specifications 
The basic multinomial logit mode choice model for work commute in the San Francisco Bay 

Area was reported in Table 5-2 in CHAPTER 5. The refinements we consider include: 

• Different specifications of the income effects, 

• Different specifications of travel time, 

• Additional decision maker related variables such as gender and automobiles owned, 
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• Additional variables that represent the interaction of decision maker related variables 

with mode related variables (e.g., interaction of income with cost), and 

• Additional trip context variables (e.g., dummy variable indicating if the trip 

origin/destination is in a Central Business District). 

 

6.2.1 Refinement of Specification for Alternative Specific Income Effects 
The estimation results for the base model in CHAPTER 5 yielded time and cost parameter 

estimates that had the expected (negative) sign and were statistically significant.  The parameters 

for the alternative specific income variables were significant and had the expected sign (negative 

relative to drive alone) except for the shared ride specific income variables (shared ride 2 and 

shared ride 3+) which were not significant and the sign on the shared ride 3+ income variable 

was counter-intuitive.  All else being equal, we expect the preference for shared ride 2 to be 

negative relative to drive alone and for shared ride 3+ to be more negative than shared ride 2 

because of the increasing inconvenience of coordinating with other travelers as the number of 

persons in the ride sharing group increases. However, the empirical results provide only limited 

support for the first expectation and are inconsistent with the second expectation. This suggests 

that the effect of income on choice is not necessarily different among the automobile modes.   

 We approach this inconsistency between expectation and empirical results by thinking of 

other plausible relationships for the effect of income on shared ride choice and developing 

alternative specifications which represent these relationships.  Options for consideration include:  
• The effect of income relative to drive alone is the same for the two shared ride modes (shared 

ride 2 and shared ride 3+) but is different from drive alone and different from the other 

modes.  This relationship is represented by constraining the income coefficients in the two 

shared alternatives to be equal as follows: 

 0 2 3: IncomeSR IncomeSRH β β +=  6.1 
• The effect of income relative to drive alone is the same for both shared ride modes and 

transit but is different for the other modes.  This is represented in the model by constraining 

the income coefficients in both shared ride modes and the transit mode to be equal as: 
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 0 2 3: Income SR Income SR Income TransitH β β β− − + −= =  6.2 
• The effect of income on all the automobile modes (drive alone, shared ride 2, and shared 

ride 3+) is the same, but the effect is different for the other modes.  We include this 

constraint by setting the income coefficients in the utilities of the automobile modes to be 

equal.  In this case, we set them to zero since drive alone is the reference mode. 

 0 2 3: 0IncomeSR IncomeSRH β β += =  6.3 
The estimation results for the base model (from CHAPTER 5) and for these three alternative 

models are reported in Table 6-1.  The parameter estimates for all three models are consistent 

with expectations.  That is, the effect of increasing income is neutral or negative for the shared 

ride modes relative to drive alone and equal to or more negative for transit, bike and walk than 

for shared ride.  Further, all the parameters are significant except for the shared ride income 

parameters in Model 1W. 

 Selection of one of these four models to represent the effect of income should consider 

the statistical relationships among them and the reasonableness of the resultant models.  Since 

Models 1W, 2W and 3W are constrained versions of the Base Model and Models 2W and 3W 

are constrained versions of Model 1W, we can use the likelihood ratio test to evaluate the 

hypotheses implied by each of these models (see section 5.7.3.2).  We use this test to determine 

if the hypothesis that each of these models is the true model is or is not rejected by the less 

restricted model.  The likelihood ratio statistics (equation 5.16), the degrees of freedom or 

number of restrictions and the level of significance for each test are reported relative to the Base 

Model and to Model 1W in the first and second rows of Table 6-2, respectively.  The Base 

Model cannot reject any of the subsequent models at a reasonable level of significance.  Further, 

the Base Model has a counter-intuitive relationship between the parameters for shared ride 2 and 

shared ride 3+.  Thus, Model 1W or Model 3W can represent the effect of income on mode 

choice in this case.  We choose Model 1W because it is most consistent with our prior 

hypotheses about the effect of income on preference between drive alone and shared ride and 

other modes.  However, the differences among these models are small both statistically and 
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behaviorally so the decision should be subject to a review before adoption of the final 

specification.31 

Table 6-1 Alternative Specifications of Income Variable 
Variables Base  Model Model 1W Model 2W Model 3W 

Travel Cost (1990 cents) -0.0049  (-20.6) -0.0049  (-0.6) -0.0049  (-20.6) -0.0049 (-20.6)
Total Travel Time (minutes) -0.0513  (-16.6) -0.0513  (-16.6) -0.0514  (-16.6) -0.0513 (-16.6)
Income (1000’s of 1990 dollars)    
   Drive Alone (Base) 0 0 0   0
   Shared Ride 2 -0.0022  (-1.4) -0.0016  (-1.1) -0.0029  (-2.3)  0
   Shared Ride 3+ 0.0004 -0.1 -0.0016  (-1.1) -0.0029  (-2.3)  0
   Transit -0.0053  (-2.9) -0.0053  (-2.9) -0.0029  (-2.3) -0.0049 (-2.7)
   Bike -0.0128  (-2.4) -0.0128  (-2.4) -0.0125  (-2.3) -0.0125 (-2.3)
   Walk -0.0097  (-3.2) -0.0098  (-3.2) -0.0092  (-3.1) -0.0093 (-3.1)
Mode Constants   
   Drive Alone (base) 0 0 0   0
   Shared Ride 2 -2.178  (-20.8) -2.212  (-22.7) -2.137  (-24.2) -2.304 (-42.1)
   Shared Ride 3+ -3.725  (-21.0) -3.612  (-29.3) -3.532  (-30.6) -3.704 (-39.8)
   Transit -0.6709  (-5.1) -0.6698  (-5.1) -0.7996  (-7.1) -0.6976 (-5.4)
   Bike -2.376    (-7.8) -2.377    (-7.8) -2.39    (-7.9) -2.398 (-7.9)
   Walk -0.2068  (-1.1) -0.2075  (-1.1) -0.2297  (-1.2) -0.2292 (-1.2)
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 
Log-likelihood at Constant -4132.916 -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3626.186 -3626.590 -3628.286 -3627.234 

Rho-Squared w.r.t. Zero 0.5039 0.5039 0.5036 0.5038 
Rho-Squared w.r.t. Constants 0.1535 0.1534 0.153 0.1532 

 

Table 6-2 Likelihood Ratio Tests between Models in Table 6-1 

(Likelihood Ratio Statistic, Degrees of Freedom, and Rejection Significance Level) 

Reference Model→ Model 1W Model 2W Model 3W 

Base Model  0.8, 1, 0.371 4.2, 2, 0.122 2.0, 2, 0.368 

Model 1W NA 3.4, 1, 0.065  1.2, 1, 0.273 
 

                                                 
31 As other variables are added to the model, the differences between these two specifications may change providing a stronger statistical basis 

for selecting Model 1 or 3. 
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6.2.2 Different Specifications of Travel Time 
The specification for travel time in the above models implies that the utility value of time is 

equal for all the alternatives and between in-vehicle and out-of-vehicle time.  However, we 

expect travelers in non-motorized modes to be more sensitive to travel time than travelers in 

motorized modes (since walking or biking is physically more demanding than traveling in a car) 

and we expect that travelers are more sensitive to out-of-vehicle travel time (OVT) than to in-

vehicle travel time (IVT).  

 The estimation results for two specifications of travel time that relax these constraints are 

reported with those for Model 1W in Table 6-3.  Model 5W relaxes the time constraints in Model 

1W by specifying distinct time variables for the motorized and non-motorized modes based on 

our expectation that travelers are likely to be more sensitive to travel time by non-motorized 

modes.  Model 6W relaxes the constraint further by disaggregating the travel time for motorized 

modes into distinct components for IVT and OVT.  This specification allows the two 

components of travel time for motorized travel to have different effects on utility with the 

expectation that travelers are more sensitive to out-of-vehicle time than in-vehicle time.  

 The estimation results for Model 5W rejects the hypothesis of equal value of travel time 

across modes implied in Model 1W and Model 6W rejects the hypothesis of equal value of in 

and out of travel time for the motorized modes at a very high level of significance (0.001). The 

estimated parameters associated with travel time in Model 6W have the correct signs and the 

magnitude of the parameters for OVT for motorized modes and for time for non-motorized 

modes are larger in magnitude than the parameter for IVT, as expected; however, the parameter 

for IVT is very small and not statistically significant. Further, the ratio of OVT to IVT for 

motorized modes, 30 times, is far greater than expected.  Nonetheless, since Model 6W rejects 

the constraints imposed by both Models 1W and 5W at a very high level of significance, we 

cannot discard this model without further exploration. 

 Another perspective on the suitability of these models can be obtained by calculating the 

relative importance of each component of travel time and cost which gives us the implied value 

of each component of time.  The implied value of in-vehicle-time for motorized modes is 
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computed for each model using the estimated motorized in-vehicle-time and cost parameters and 

similarly for the other time components:   

 
motorized ivtt (1/min.)

cost (1/cents)

60 min./hour
    ($/ ) = 

100 cents/$
Value of motorized IVTT hour

β
β

×  6.4 

The implied values of in- and out-of-vehicle times for motorized modes in Models 1W, 5W, and 

6W are reported in Table 6-4.  The values of motorized in-vehicle time and non-motorized time 

are somewhat low but not unreasonable compared to the average wage rate of $21.20 per hour in 

the region (1990 dollars); however, the value of in-vehicle time is unreasonably low.  

Nevertheless, the likelihood ratio tests reject both Model 5W and Model 1W at very high levels 

of significance.  This raises doubt about the suitability of those models and suggests the need to 

consider other specifications to evaluate the influence of travel time components on the utilities 

of the different alternatives. 

 Two approaches are commonly taken to identify a specification which is not statistically 

rejected by other models and has good behavioral relationships among variables.  The first is to 

examine a range of different specifications in an attempt to find one which is both behaviorally 

sound and statistically supported.  The other is to constrain the relationships between or among 

parameter values to ratios which we are considered reasonable.  The formulation of these 

constraints is based on the judgment and prior empirical experience of the analyst.  Therefore, 

the use of such constraints imposes a responsibility on the analyst to provide a sound basis for 

his/her decision.  The advice of other more experienced analysts is often enlisted to expand 

and/or support these judgments. 
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Table 6-3 Estimation Results for Alternative Specifications of Travel Time 
Variables Model 1W Model 5W Model 6W 

Travel Cost (1990 cents) -0.0049  (-20.6) -0.005  (-20.7) -0.0048  (-20.2)
Travel Time (minutes)   
   All Modes -0.0513  (-16.6)   
   Motorized Modes Only -0.0431  (-12.3)  
   Non-Motorized Modes Only -0.0687  (-12.9) -0.0632  (-11.8)
In-vehicle Travel Time (Motorized Modes)  -0.0025  (-0.4)

Out-of-vehicle Travel Time (Motorized Modes)   -0.0759  (-13.0)
Income    (1,000’s of 1990 dollars)   
Drive Alone (Base) 0 0  0 
   Shared Ride 2 -0.0016  (-1.1) -0.0015  (-1.1) -0.0016  (-1.1)
   Shared Ride and  3+ = Shared Ride 2 -0.0016  (-1.1) -0.0015  (-1.1) -0.0016  (-1.1)
   Transit -0.0053  (-2.9) -0.0055  (-3.0) -0.0057  (-3.1)
   Bike -0.0128  (-2.4) -0.0125  (-2.4) -0.0122  (-2.3)
   Walk -0.0098  (-3.2) -0.0095  (-3.1) -0.0093  (-3.0)
Constants   Drive Alone (Base) 0 0  0 
   Shared Ride 2 -2.212  (-22.7) -2.262  (-23.0) -2.43  (-24.1)
   Shared Ride 3+ -3.612  (-29.3) -3.677  (-29.6) -3.883  (-30.5)
   Transit -0.6698  (-5.1) -0.852  (-6.1) -0.49  (-3.3)
   Bike -2.377    (-7.8) -1.844    (-5.7) -1.719    (-5.3)
   Walk -0.2075  (-1.1) 0.477     (1.9) 0.409     (1.6)
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 
Log-likelihood at Constant -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3626.590 -3616.894 -3588.039 
Rho-Squared w.r.t. Zero 0.5039 0.5052 0.5091 
Rho-Squared w.r.t. Constants 0.1225 0.1249 0.1318 
  Likelihood Ratio Test vs Model 2W32 NA 19.4, 1, 0.001 123.6, 2, < 0.001 
  Likelihood Ratio Test vs Model 5W NA NA 57.8, 1, < 0.001 

 

Table 6-4 Implied Value of Time in Models 1W, 5W, and 6W33 

 Model 1W Model 5W Model 6W

Value of Non-Motorized Time $6.28/hr $8.24/hr $7.90/hr 

Value of Out-of-vehicle Time $6.28/hr $5.17/hr $9.49/hr 

Value of In-vehicle Time  $6.28/hr $5.17/hr $0.31/hr 
 

                                                 
32 Model in column used to test null hypothesis that the model identified in the row label is the true model.  Values are log-likelihood test 

statistic, degrees of freedom, and significance of rejection of null hypothesis. 

33 Values of time in this and subsequent tables are rounded to the nearest ten cents per hour.   
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 The primary shortcoming of the specification in Model 6W is that the estimated value of 

IVT is unrealistically small.  At least two alternatives can be considered for getting an improved 

estimate of the value of out-of-vehicle time.  One is to use an approach that has been effective in 

other contexts; that is, to assume that the sensitivity of travelers to OVT diminishes with the trip 

distance.  The idea behind this is that travelers are more willing to tolerate higher out-of-vehicle 

time for a long trip rather than for a short trip.  We still expect that travelers will be more 

sensitive to OVT than IVT for any travel distance.  A formulation which ensures this result is to 

include total travel time (the sum of in-vehicle and out-of-vehicle time) and out-of-vehicle time 

divided by distance in place of in- and out-of-vehicle travel time.  This specification, as shown 

below, is consistent with our expectations provided that β1 and β2 are negative: 
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An alternative approach is to impose a constraint on the relative importance of OVT and IVT.  

This is achieved by replacing the travel time variables in the modal utility equations with a 

weighted travel time (WTT) variable defined as in-vehicle time plus the appropriate travel time 

importance ratio (TIR) times out-of-vehicle time (IVT + TIR×OVT).  The mechanics of how this 

constraint works is illustrated as follows: 
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 6.6 

so that the parameter for out-of-vehicle time is equal to the parameter for in-vehicle time 

multiplied by the selected travel time ratio (TTR).  In Models 8W and 9W, we use travel 

importance ratios of 2.5 and 4.0, respectively.   The estimation results for these models 

compared to Model 6W are reported in 
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Table 6-5.  The parameter estimates obtained for the travel time, cost, and income variables in all 

four models have the correct signs and are statistically significant.  Model 7W has substantially 

better goodness-of-fit than Models 6W, 8W and 9W.  Since none of the other models are 

constrained versions of Model 7W, we use the non-nested hypothesis test (see Section 5.7.3.2, 

Equation 5.21) to compare it with Models 6W, 8W, and 9W.     

 We illustrate the non-nested hypothesis test by applying it to the hypothesis that 

Model 6W is the true model given that Model 7W has a higher 2ρ .  Since both models have the 

same number of parameters, the term (K7-K6) drops out, and the equation becomes 

 

2 2 1/2
7 6

1/2

(Level of Rejection)= [-(-2( ) (0)) ]

[-(-2(0.5129 0.5074)( 7309.6)) ]

( 8.97) 0.001

ρ ρΦ −

= Φ − −

= Φ − <<

 6.7 

That is, the null hypothesis that Model 6W is the true model is rejected with significance much 

greater than 0.001.  Models 8W and 9W are also rejected as the true model at an even higher 

level of significance.  
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Table 6-5 Estimation Results for Additional Travel Time Specification Testing 

Variables Model 6W Model 7W Model 8W Model 9W 

Travel Cost (1990 cents) -0.0048  (-20.2) -0.0041  (-17.2) -0.0049  (-20.4) -0.0048  (-20.3)

Travel Time (minutes)      

   Motorized Modes  -0.0415  (-11.8)    

   Non-Motorized Modes -0.0632  (-11.8) -0.0475    (-8.6) -0.0663  (-12.6) -0.0652  (-12.4)

   IVT      (Motorized Modes) -0.0025    (-0.4)  -0.0254  (-13.4) -0.0173  (-13.7)

   OVT     (Motorized Modes) -0.0759  (-13.0)  -0.0635  (-13.4) -0.0692  (-13.6)

   OVT by Distance (mi.)    
               (Motorized Modes) 

  -0.1812   (-10.1)   

Income   (1,000’s of 1990 dollars)      

   Drive Alone (Base) 0  0  0   0

   Shared Ride 2 -0.0016  (-1.1) -0.0014  (-1.0) -0.0016  (-1.1) -0.0016  (-1.1)

   Shared Ride 3+ = Shared Ride 2 -0.0016  (-1.1) -0.0014  (-1.0) -0.0016  (-1.1) -0.0016  (-1.1)

   Transit -0.0057  (-3.1) -0.0072  (-3.8) -0.0055  (-3.0) -0.0056  (-3.0)

   Bike -0.0122  (-2.3) -0.0118  (-2.3) -0.0123  (-2.4) -0.0123  (-2.3)

   Walk -0.0093  (-3.0) -0.0082  (-2.6) -0.0095  (-3.1) -0.0094  (-3.1)

Constants   Drive Alone (Base) 0  0  0   0

   Shared Ride 2 -2.43  (-24.1) -2.188  (-22.4) -2.33  (-24.0) -2.364  (-24.4)

   Shared Ride 3+ -3.883  (-30.5) -3.518  (-28.6) -3.756  (-30.6) -3.799  (-31.1)

   Transit -0.49    (-3.3) -0.042    (-0.3) -0.582    (-4.0) -0.527    (-3.6)

   Bike -1.719    (-5.3) -2.687    (-8.1) -1.802    (-5.6) -1.775    (-5.5)

   Walk 0.409     (1.6) -1.023    (-3.5) 0.442     (1.7) 0.429     (1.7)

Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 

Log-likelihood at Constant -4132.916 -4132.916 -4132.916 -4132.916 

Log-likelihood at Convergence -3588.039 -3547.344 -3595.317 -3590.929 

Rho-Squared w.r.t. Zero 0.5091 0.5147 0.5081 0.5087 

Rho-Squared w.r.t. Constants 0.1318 0.1417 0.1301 0.1311 

Adjusted Rho-Squared w.r.t. Zero 0.5074 0.5129 0.5064 0.5070 

Adjusted Rho-Squared w.r.t. Constants 0.1304 0.1402 0.1286 0.1297 

Likelihood Ratio Test to reject Model 8W 14.4, 1, < 0.001 NA NA NA 

Likelihood Ratio Test to reject Model 9W 5.8, 1, 0.016 NA NA NA 

Non-nested Hyp. Test to reject Model 6W NA < 0.001 NA NA 
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 Before adopting Model 7W, it is a good idea to evaluate and interpret the relative 

importance of in-vehicle and out-of-vehicle time and between each component of time and cost.  

Despite the difference in the specification, this analysis is undertaken the same way as earlier; 

that is, the parameters for time is divided by the parameter for cost to obtain the values of time. 

The values of IVT and OVT in cents-per-minute (and dollars-per-hour) are shown in Table 6-6 

as a function of distance.  The time values are obtained as described earlier by dividing each of 

the time parameters (in utils-per-minute) by the cost parameter in utils per cent.  For example, 

the values for Model 7W are: 

 
mot tvtt

cost

0.0415
Value of IVTT = 

0.0041

10.1 cents/min= $6.07/hr.

β
β

−
=

−
=

 

 

/Dist
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19.0 cents/min=$11.38/hr.

OVTβ
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−
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−
=

 

 
These values of time are fixed for IVT but vary with distance for OVT34 as reported in Table 6-6 

for Model 7W.  The corresponding values of time for Models 6W, 8W and 9W are shown in 

Table 6-7. 

 

                                                 
34 This formulation is similar to that of cost divided by income described Section 5.8.2. 
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Table 6-6 Model 7W Implied Values of Time as a Function of Trip Distance 

 Trip Distance 

 5 Miles 10 Miles 20 Miles 

Value of Motorized Out-of-vehicle Time 19.0 cents/min 
($11.38/hr) 

14.5 cents/min 
($8.72/hr) 

12.3 cents/min 
($7.40/hr) 

Value of Motorized In-vehicle Time 10.1 cents/min 
($6.07/hr) 

10.1 cents/min 
($6.07/hr) 

10.1 cents/min 
($6.07/hr) 

Value of Non-Motorized Time 11.6 cents/min 
($6.95/hr) 

11.6 cents/min 
($6.95/hr) 

11.6 cents/min 
($6.95/hr) 

 

Table 6-7 Implied Values of Time in Models 6W, 8W, 9W 

 Model 6W Model 8W Model 9W 

Value of Out-of-vehicle Time $9.50/hr $7.80/hr $8.70/hr 

Value of In-vehicle Time $0.30/hr $3.10/hr $2.20/hr 
 

 The prevailing wage rate in the San Francisco Bay Area is $21.20 per hour35.  In 

comparison, the values of in-vehicle time implied by Models 6W, 8W, and 9W are very low and 

the values of out of vehicle time are somewhat low.  Model 7W produces higher, but still low, 

values of time.  Finally, we can examine the ratio of time values of OVT relative to IVT for all 

four models as shown in Figure 6.1.  The ratio for Model 6W is clearly unacceptable.  Those for 

Models 7W, 8W and 9W are more reasonable.   

 

 

 

 

 

 

 
                                                 
35 Refer to the “San Francisco Bay Area 1990 Travel Model Development Project”, Compilation of Technical Memoranda, Volume VI. 
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Figure 6.1 Ratio of Out-of-Vehicle and In-Vehicle Time Coefficients  

for Work Models 6, 7, 8, and 9 
The selection of a preferred travel time specification among the four alternative specifications 

tested is relatively straightforward in this case.  Model 7W outperforms the other models in all 

the evaluations undertaken; it has the best goodness-of-fit, the most intuitive relationship 

between the IVT and OVT variables and the most acceptable values of time36.  Consequently, 

Model 7W is our preferred travel time specification.  We can still consider imposing a constraint 

between the time and cost variables to force the value of time to more reasonable levels.  

However, we defer this until we explore other specification improvements. 

 

6.2.3 Including Additional Decision Maker Related Variables 
There are strong theoretical and empirical reasons to expect that a variety of decision maker 

related variables such as income, car availability, residential location, number of workers in the 

household and others, influence workers’ choice of travel mode.  The models reported to this 

point include income as the only decision maker related explanatory variable.  To the extent that 

these variables influence the mode choice decision of travelers, their inclusion in the model will 

increase the explanatory power and predictive accuracy of the model.   

                                                 
36 Based on these results, the model developer might impose constraints between the parameters for the time and cost to obtain higher values of 

time. The student can demonstrate this by modifying models 7 and 9 so that the value of IVT equals $10/hour (retaining all other elements of the 

specifications). 
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 There are two general approaches to including decision maker related variables in 

models.  One is to include such variables as specific to each alternative (except for one base or 

reference alternative) to indicate the extent to which changes in the variable value will increase 

or decrease the utility of the mode to that traveler (relative to the reference alternative).  The 

other is to include such variables as interactions with mode related characteristics.  For example, 

dividing cost by income to reflect the decreasing importance of cost with increasing annual 

income.  The inclusion of decision maker related variables as alternative specific variables is 

demonstrated in this section.  Similar treatment of trip context variables is considered in section 

6.2.4.  Interactions with mode characteristics are demonstrated in section 6.2.5. 

 We consider number of automobiles in the household, the number of autos divided by the 

number of household workers and the number of autos divided by the number of persons of 

driving age in the household.  Since these variables are constant across all alternatives, they must 

be included as distinct variables for each alternative (except for the reference alternative).  This 

is considered a full set of alternative specific variables. The estimation results for these 

specifications and Model 7W are reported in Table 6-8. 

 These three new models have much better goodness-of-fit than Model 7W.  Each model 

rejects Model 7W as the true model at a very high level of significance.  The parameters for 

alternative specific automobile availability variables in all the three models have the expected 

signs, negative relative to drive alone, with the exception of the shared ride 3+ variable in Model 

10W which is not significant.  Further, the signs and magnitude of the parameters for time, cost, 

and income are stable across the models.  Finally, Models 11W and 12W which include cars-per-

worker and cars-per-number-of-adults, respectively, reject Model 10W as the true model.   

 Overall, Models 11W and 12W are superior to the other two models in terms of 

behavioral appeal, they provide an indication of automobile availability, and goodness of fit, 

they statistically reject Models 7W and 10W statistical fit.  Model 11W has slightly better 

goodness-of-fit than Model 12W but the difference is so small that the non-nested hypothesis test 

is not able to distinguish between the two models.  Therefore, selection of a preferred model is 

primarily a matter of judgment.  We select Model 11W but selection of Model 12W would be 

equally appropriate.  
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Table 6-8 Estimation Results for Auto Availability Specification Testing 
Variables Model 7W Model 10W Model 11W Model 12W 

Travel Cost (1990 cents) -0.004  (-17.2) -0.004  (-16.9) -0.004  (-17.4) -0.004  (-17.2)
Travel Time (minutes)    
   Motorized Modes Only -0.042  (-11.8) -0.038  (-10.5) -0.038  (-10.7) -0.038  (-10.6)
   Non-Motorized Modes Only -0.048    (-8.6) -0.048    (-8.4) -0.047    (-8.4) -0.047    (-8.3)
OVT by Distance (mi.) Motorized Modes -0.181   (-10.1) -0.179    (-9.6) -0.181    (-9.8) -0.185    (-9.9)
Income (1,000’s of 1990 dollars)   
   Drive Alone (Base) 0 0 0  0
   Shared Ride 2 -0.001  (-1.0) -0.002  (-1.4) -0.002  (-1.2) -0.001  (-0.9)
   Shared Ride 3+ = Shared Ride 2 -0.001  (-1.0) -0.002  (-1.4) -0.002  (-1.2) -0.001  (-0.9)
   Transit -0.007  (-3.8) -0.001  (-0.7) -0.006  (-3.0) -0.005  (-2.3)
   Bike -0.012  (-2.3) -0.01  (-1.8) -0.012  (-2.2) -0.012  (-2.2)
   Walk -0.008  (-2.6) -0.004  (-1.2) -0.008  (-2.5) -0.008  (-2.3)
 Auto Ownership (Autos per 

household) 
(Autos per 

worker) (Autos per adult)

  Drive Alone (Base) 0 0  0
   Shared Ride 2 -0.035  (-0.9) -0.433  (-5.6) -0.595  (-5.5)
   Shared Ride 3+ 0.0723 (1.3) -0.267  (-2.4) -0.448  (-2.7)
   Transit -0.555  (-8.0) -0.99  (-8.6) -1.409  (-9.1)
   Bike -0.229  (-1.7) -0.673  (-2.7) -0.642  (-2.1)
   Walk   -0.366  (-3.7) -0.628  (-3.9) -0.794  (-3.8)
Constants   
   Drive Alone (Base) 0 0 0  0
   Shared Ride 2 -2.188  (-22.4) -2.054  (-16.9) -1.594  (-12.1) -1.537  (-10.9)
   Shared Ride 3+ -3.518  (-28.6) -3.643  (-20.3) -3.14  (-17.0) -3.023  (-14.8)
   Transit -0.042    (-0.3) 0.574     (3.2) 0.963     (4.8) 1.05     (5.3)
   Bike -2.687    (-8.1) -2.22    (-5.8) -1.831    (-4.5) -1.962    (-4.7)
   Walk -1.023    (-3.5) -0.441    (-1.3) -0.238    (-0.7) -0.217    (-0.6)
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 
Log-likelihood at Constant -4132.916 -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3547.34 -3501.643 -3489.236 -3490.358 
Rho-Squared w.r.t. Zero 0.5147 0.5210 0.5227 0.5225 
Rho-Squared w.r.t. Constants 0.1417 0.1528 0.1558 0.1555 
Adjusted Rho-Squared w.r.t. Zero 0.5122 0.5185 0.5202 0.5200 
Adjusted Rho-Squared w.r.t. Constants 0.1411 0.1511 0.1541 0.1538 
Likelihood Ratio Test vs. Model 7W NA 91.4, 5, < 0.001 116.2, 5, < 0.001 113.8, 5, < 0.001
Adj. LRT vs. Model 10W NA NA < 0.001 < 0.001 

 

6.2.4 Including Trip Context Variables 
The models considered to this point include variables that describe the attributes of alternatives, 

modes, and the characteristics of decision-makers (the work commuters).  The mode choice 
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decision also is influenced by variables that describe the context in which the trip is made.  For 

example, a work trip to the regional central business district (CBD) is more likely to be made by 

transit than an otherwise similar trip to a suburban work place because the CBD is generally 

well-served by transit, has more opportunities to make additional stops by walking and is less 

auto friendly due to congestion and limited and expensive parking.  This suggests that the model 

specification can be enhanced by including variables related to the context of the trip, such as 

destination zone location.  

 We consider two distinct variables to describe the trip destination context.  One is a 

dummy variable which indicates whether the destination zone (workplace) is located in the 

CBD; the other is the employment density of different workplace destinations.  The CBD 

variable implies an abrupt increase in the likelihood of using public transit at the CBD boundary.  

The density variable implies a continuous increase in the likelihood of using public transit with 

increasing workplace density.  A third option is to include both variables in the model.  There is 

disagreement about whether to include such combinations of variables since they both represent 

the same underlying phenomenon:  increasing transit use with increasing density of 

development.  There is no firm rule about this point; each case must be evaluated on its merits 

based on statistical tests and reasonableness of the estimation results.  As with the addition of 

characteristics of the traveler, we introduce each variable as a full set of alternative specific 

variables, each of which represents the effect of a change in that variable on the utility of the 

alternative relative to the reference alternative (drive alone).  Model 13W adds the alternative 

specific CBD dummy variables to the variables in Model 11W.  Model 14W adds the alternative 

specific employment density variables and Model 15W adds both.   Estimation results for these 

specifications and Model 11W are reported in Table 6-9.    

 

Table 6-9 Estimation Results for Models with Trip Context Variables 
Variables Model 11W Model 13W Model 14W Model 15W 

Travel Cost (1990 cents) -0.0042  (-17.4) -0.0033  (-13.0) -0.0029  (-9.4) -0.0024  (-7.7)
Travel Time (minutes)   
   Motorized Modes Only -0.0384  (-10.7) -0.0286  (-10.6) -0.0299  (-8.0) -0.0231  (-5.9)
   Non-Motorized Modes Only -0.0470    (-8.4) -0.0464    (-8.1) -0.0459  (-8.1) -0.0467  (-8.1)
OVT by Distance (mi.)  Motorized Modes -0.1814    (-9.8) -0.1501    (-7.6) -0.1575  (-8.3) -0.1324  (-7.9)
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Variables Model 11W Model 13W Model 14W Model 15W 

Income  (1,000’s of 1990 dollars)   
   Drive Alone (Base) 0 0 0  0
   Shared Ride 2 and Shared Ride 3+   -0.002  (-1.2) -0.002  (-1.2) -0.002  (-1.3) -0.002  (-1.3)
   Transit -0.006  (-3.0) -0.006  (-3.1) -0.007  (-3.5) -0.007  (-3.4)
   Bike -0.012  (-2.2) -0.011  (-2.1) -0.011  (-2.1) -0.011  (-2.1)
   Walk -0.008  (-2.5) -0.008  (-2.5) -0.008  (-2.4) -0.008  (-2.5)
 Autos per Worker   
   Drive Alone (Base) 0 0 0  0
   Shared Ride 2 -0.433  (-5.6) -0.415  (-5.4) -0.407  (-5.3) -0.401  (-5.2)
   Shared Ride 3+ -0.267  (-2.4) -0.212  (-1.9) -0.237  (-2.1) -0.183  (-1.7)
   Transit -0.99  (-8.6) -0.911  (-7.9) -0.995  (-8.4) -0.93  (-7.9)
   Bike -0.673  (-2.7) -0.698  (-2.7) -0.714  (-2.8) -0.715  (-2.8)
   Walk   -0.628  (-3.9) -0.719  (-4.3) -0.681  (-4.1) -0.727  (-4.3)
CBD Dummy (1 = in CBD; 0 = not in CBD)   
   Drive Alone (Base) 0   0
   Shared Ride 2 0.256 (2.3)   0.204 (1.6)
   Shared Ride 3+ 1.057 (6.1)   1.018 (5.3)
   Transit 1.356 (8.4)   1.204 (7.2)
   Bike 0.376 (1.2)   0.462 (1.3)
   Walk 0.175 (0.8)   0.109 (0.4)
Emp. Density - Work Zone (Emp/sq. mi.)   
   Drive Alone (Base) 0  0
   Shared Ride 2 0.0011 (3.1) 0.001 (2.5)
   Shared Ride 3+ 0.0022 (5.1) 0.0013 (2.7)
   Transit 0.0027 (7.0) 0.0021 (5.5)
   Bike 0.0011 (1.0) 0.0008 (0.7)
   Walk   0.0015 (2.2) 0.0018 (2.4)
Constants   
   Drive Alone (Base) 0 0 0  0
   Shared Ride 2 -1.594  (-12.1) -1.634 -12 -1.605  (-12.1) -1.64  (-12.0)
   Shared Ride 3+ -3.14  (-17.0) -3.537  (-17.3) -3.212  (-17.0) -3.55  (-17.4)
   Transit 0.963 -4.8 -0.202  (-0.8) 0.419 (2.0) -0.471  (-1.9)
   Bike -1.831  (-4.5) -1.651  (-3.9) -1.597  (-3.8) -1.515  (-3.5)
   Walk -0.238  (-0.7) 0.083 -0.2 -0.041  (-0.1) 0.21 (0.6)
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 
Log-likelihood at Constant -4132.916 -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3489.236 -3440.644 -3460.678 -3424.550 
Rho-Squared w.r.t. Zero 0.5227 0.5293 0.5266 0.5315 
Rho-Squared w.r.t. Constants 0.1558 0.1675 0.1627 0.1714 
Adjusted Rho-Squared w.r.t. Zero 0.5202 0.5262 0.5234 0.5277 
Adjusted Rho-Squared w.r.t. Constants 0.1524 0.1630 0.1581 0.1656 
Likelihood Ratio Test versus Model 11W NA 97.2, 5, < 0.001 57.0, 5, < 0.001 129.2, 10, < 0.001
Likelihood Ratio Test Model 15W vs. 13W NA NA NA 32.0, 5, < 0.001 
Likelihood Ratio Test Model 15W vs. 14W NA NA NA 72.2, 5, < 0.001 
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Table 6-10 Implied Values of Time in Models 13W, 14W, and 15W 
 
 

 
Model 13W 

 
Model 14W 

 
Model 15W 

 
Value of Motorized IVT 

 
$5.22/hr 

 
$6.22/hr 

 
$5.88/hr 

 
Value of Motorized OVT     (10 mile trip) 
                                              (20 mile trip) 

 
$7.96/hr 
$6.59/hr 

 
$9.50/hr 
$7.86/hr 

 
$9.25/hr 
$7.57/hr 

 
Value of Non-Motorized Time 

 
$8.48/hr 

 
$9.54/hr 

 
$11.88/hr 

 

 Each of the new Models (13W, 14W and 15W) significantly reject Model 11W as the 

true model at a very high level of significance.  Further, the parameters for all of the alternative 

specific CBD dummy and employment density variables have a positive sign, implying that all 

else being equal, an individual is less likely to choose drive alone mode for trips destined to a 

CBD and/or high employment density zones, as expected. 

 Since Models 13W and 14W are restricted versions of Model 15W, we can use the log-

likelihood test which rejects the hypothesis that each of these models is the true model. 

Therefore, purely on statistical grounds, Model 15W is preferred over Models 13W and 14W.  

However, this improvement in statistical fit comes at the cost of increased model complexity, 

and it may be appropriate to adopt Model 13W or 14W, sacrificing statistical fit in favor of 

parsimony37.  For now, we choose Model 15W as the preferred model for its stronger statistical 

results, but we will return to the issue of model complexity. 

6.2.5 Interactions between Trip Maker and/or Context Characteristics and Mode 
Attributes 
Another approach to the inclusion of trip maker or context characteristics is through interactions 

with mode attributes.  The most common example of this approach is to take account of the 

expectation that low-income travelers will be more sensitive to travel cost than high-income 

travelers by using cost divided by income in place of cost as an explanatory variable.  Such a 

specification implies that the importance of cost in mode choice diminishes with increasing 

                                                 
37 Parsimony emphasizes the use of less extensive specifications to reduce the burden of forecasting predictive variables and to provide simpler 

model interpretation. 
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household income.  Table 6-11 portrays the estimation results for two models that differ only in 

how they represent cost; Model 15W includes travel cost while Model 16W includes travel cost 

divided by income. 

 

Table 6-11 Comparison of Models with and without Income as Interaction Term 
Variables Model 15W Model 16W 

Travel Cost (1990 cents) -0.0024  (-7.7)  
Travel Cost by Income (1990 cents per 1000 1990 dollars)  -0.0518  (-4.8)
Travel Time (minutes)   
   Motorized Modes Only -0.0231  (-5.9) -0.0202  (-5.3)
   Non-Motorized Modes Only -0.0467  (-8.1) -0.0455  (-7.9)
Out-of-vehicle Travel Time by Distance (miles)   Motorized Modes -0.1324  (-7.9) -0.1328  (-6.8)
Income (1,000’s of 1990 dollars)   
   Drive Alone (Base) 0  0 
   Shared Ride 2 -0.002  (-1.3) -1E-04  (-0.1)
   Shared Ride 3+   -0.002  (-1.3) -1E-04  (-0.1)
   Transit -0.007  (-3.4) -0.005  (-2.6)
   Bike -0.011  (-2.1) -0.009  (-1.7)
   Walk -0.008  (-2.5) -0.006  (-1.9)
Autos per  Worker   
   Drive Alone 0  0 
   Shared Ride 2 -0.401  (-5.2) -0.382  (-5.0)
   Shared Ride 3+ -0.183  (-1.7) -0.139  (-1.3)
   Transit -0.93  (-7.9) -0.938  (-7.9)
   Bike -0.715  (-2.8) -0.704  (-2.7)
   Walk   -0.727  (-4.3) -0.724  (-4.3)
CBD Dummy (1 = in CBD; 0 = not in CBD)   
   Drive Alone (Base) 0  0 
   Shared Ride 2 0.204 (1.6) 0.247  (2.0)
   Shared Ride 3+ 1.018 (5.3) 1.094  (5.7)
   Transit 1.204 (7.2) 1.306  (7.9)
   Bike 0.462  (1.3) 0.486  (1.3)
   Walk 0.109  (0.4) 0.098  (0.4)
Employ. Density at Work Zone (employees per square mile)    
   Drive Alone (Base) 0  0 
   Shared Ride 2 0.001  (2.5) 0.0016  (4.1)
   Shared Ride 3+ 0.0013  (2.7) 0.0022  (4.8)
   Transit 0.0021  (5.5) 0.0031  (8.6)
   Bike 0.0008  (0.7) 0.0019  (1.6)
   Walk   0.0018  (2.4) 0.0029  (3.9)
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Variables Model 15W Model 16W 

Constants   
   Drive Alone (Base) 0  0 
   Shared Ride 2 -1.64  (-12.0) -1.73  (-12.5)
   Shared Ride 3+ -3.55  (-17.4) -3.656  (-17.7)
   Transit -0.471    (-1.9) -0.692    (-2.8)
   Bike -1.515    (-3.5) -1.622    (-3.8)
   Walk 0.21     (0.6) 0.075     (0.2)
Log-likelihood at Zero -7309.601 -7309.601 
Log-likelihood at Constant -4132.916 -4132.916 
Log-likelihood at Convergence -3424.550 -3442.334 
Rho-Squared w.r.t. Zero 0.5315 0.5291 
Rho-Squared w.r.t. Constants 0.1714 0.1671 

 

 The cost by income variable has the expected sign and is statistically significant, but the 

overall goodness-of-fit for the cost divided by income model is lower than that for model 15 that 

uses cost without interaction with income.  However, because theory and common sense suggest 

that the importance of cost should decrease with income, we may choose Model 16W despite the 

differences in the goodness-of-fit statistics.  Since the estimation results contradict our 

understanding of the decision making behavior, it is useful to consider other aspects of model 

results.  In the case of mode choice, we are particularly interested in the relative value of the time 

and cost parameters because it measures the implied value of time used by travelers in choosing 

their travel mode.  Values of time evaluated with earlier models were somewhat lower than 

expected when compared to the average wage rate.  Using the cost by income formulation in 

Model 16W, we can calculate the implied value of time using the relationship developed in 

Section 5.8.2. 
The implied values of IVT and OVT from Model 16W are substantially higher than those 

from Model 15W (Table 6-12) and more in line with our a priori expectations.  This 

improvement in the estimate of values of time more than offsets the difference in goodness-of-fit 

so we adopt Model 16W as our preferred specification.  Thus, our strong belief in both valuing 

time relative to wage rate and higher estimates of the value of time provide evidence which is 

strong enough to override the statistical test results.  Nonetheless, we may still decide to impose 

parameter constraints to obtain higher values of time. 
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Table 6-12 Implied Value of Time in Models 15W and 16W 
 
 

 
Model 15W 

 
Model 16W 

Wage Rate = $21.20 

 
Value of In-Vehicle Time 

 
$5.88/hr 

 
0.47 × Wage Rate 

($9.90/hr) 

Value of Out-of-Vehicle Time  

(10 mile trip) 

 

(20 mile trip) 

 

$9.25/hr 

 

$7.57/hr 

 

0.77 × Wage Rate 

($16.42/hr) 

0.62 × Wage Rate 

($13.16/hr) 

 

6.2.6 Additional Model Refinement 
Generally, it is appropriate to test the preferred model specification against a variety of other 

specifications; particularly reviewing decisions made earlier in the model development process.  

Such testing would include reducing model complexity by the elimination of selected variables 

(e.g., dropping either the CBD Dummy or Employment Density variables or combining some of 

the alternative specific parameters), changing the form used for inclusion of different variables 

(e.g., replacing income by log of income) or adding new variables which substantially improve 

the explanatory power and behavioral realism of the model. 

 In this section, we consider simplifying the model specification by dropping variables 

that are not statistically significant or by collapsing alternative specific variables that do not 

differ across alternatives.  The cost and time parameters are all significant and should be 

included because they represent the impact of policy changes in mode service attributes.  Among 

the traveler and context variables, those for income have the lowest t-statistics so might be 

considered for elimination; however, we prefer to keep these in the model since income 

differences are important in mode selection, particularly for transit.  However, the extremely low 
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values and lack of significance for the shared ride alternatives suggest that income has no 

differential impact on the choice of drive alone versus any of the shared ride alternatives and 

these variables should be dropped from the model (or constrained to zero).  In addition, the 

parameter for the number of automobiles by number of workers variable for shared ride 3+ 

alternative is smaller in magnitude than the parameter for the shared ride 2 alternative.  This is 

counter-intuitive as we expect shared ride 3+ travelers to be more sensitive to automobile 

availability.  This can be addressed by constraining the alternative specific variables for the 

shared ride modes to be equal (we accomplish by summing the two variables).  The estimation 

results for the simplified specification (constraining income for the shared ride alternatives to 

zero, and constraining the automobile ownership by number of workers variable for the two 

shared ride alternatives to be equal) and Model 16W are reported in Table 6-13. 

 The goodness-of-fit for the two models are very close, suggesting that the constraints 

imposed to simplify the model do not significantly impact the explanatory power of the model.  

The results of the likelihood ratio test confirm that the restrictions imposed in Model 17W 

cannot be statistically rejected.  The parameter estimates for all the variables have the right sign 

and are all statistically significant (except CBD dummy for bike and walk).  We therefore select 

Model 17W as our preferred model. 

 As discussed in the next section, the other major approach to searching for improved 

models is market segmentation and segmenting the population into groups which are expected to 

use different criteria in making their mode choice decisions. 

 

Table 6-13 Estimation Results for Model 16W and its Constrained Version 
Variables Model 16W Model 17W 

Travel Cost by Income (1990 cents per 1000 1990 $) -0.052  (-4.8) -0.052  (-5.0)
Travel Time (minutes)   
            Motorized Modes Only -0.02  (-5.3) -0.02  (-5.3)
            Non-Motorized Modes Only -0.045  (-7.9) -0.045  (-7.9)
            Out-of-vehicle Travel Time by Distance in Miles   (Motorized Modes) -0.133  (-6.8) -0.133  (-6.8)
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Variables Model 16W Model 17W 

Income (1990 dollars)   
   Drive Alone (Base) 0  0 
   Shared Ride 2 0.0001  (-0.1) 0 
   Shared Ride 3+   0.0001  (-0.1) 0 
   Transit -0.005  (-2.6) -0.005  (-2.7)
   Bike -0.009  (-1.7) -0.009  (-1.7)
   Walk -0.006  (-1.9) -0.006  (-1.9)
 Autos per Worker   
   Drive Alone (Base) 0  0 
   Shared Ride 2 -0.382  (-5.0) -0.317  (-4.8)
   Shared Ride 3+ -0.139  (-1.3) -0.317  (-4.8)
   Transit -0.938  (-7.9) -0.946  (-8.0)
   Bike -0.704  (-2.7) -0.702  (-2.7)
   Walk   -0.724  (-4.3) -0.722  (-4.3)
CBD Dummy (1 = in CBD; 0 = not in CBD)   
   Drive Alone (Base) 0  0 
   Shared Ride 2 0.247  (2.0) 0.26  (2.1)
   Shared Ride 3+ 1.094  (5.7) 1.069  (5.6)
   Transit 1.306  (7.9) 1.309  (7.9)
   Bike 0.486  (1.3) 0.489  (1.4)
   Walk   0.098  (0.4) 0.102  (0.4)
Empl. Density - Work Zone (employees / square mile)   
   Drive Alone (Base) 0  0 
   Shared Ride 2 0.0016  (4.1) 0.0016  (4.0)
   Shared Ride 3+ 0.0022  (4.8) 0.0023  (5.0)
   Transit 0.0031  (8.6) 0.0031  (8.7)
   Bike 0.0019  (1.6) 0.0019  (1.6)
   Walk 0.0029  (3.9) 0.0029  (3.9)
Constants   
   Drive Alone (Base) 0  0 
   Shared Ride 2 -1.73  (-12.5) -1.808  (-17.0)
   Shared Ride 3+ -3.656  (-17.7) -3.434  (-22.6)
   Transit -0.692  (-2.8) -0.685  (-2.8)
   Bike -1.622  (-3.8) -1.629  (-3.8)
   Walk 0.075  (0.2) 0.068  (0.2)
Log-likelihood at Zero -7309.601 -7309.601 
Log-likelihood at Constant -4132.916 -4132.916 
Log-likelihood at Convergence -3442.334 -3444.185 
Rho-Squared w.r.t. Zero 0.5291 0.5288 
Rho-Squared w.r.t. Constants 0.1671 0.1666 
Likelihood Ratio Test versus Model 16W NA 3.8, 3, 0.28 

6.3 Market Segmentation 
The models considered to this point implicitly assume that the entire population, represented by 

the sample, uses the same model decision structure, variable and importance weights 

(parameters) to select their commute to work mode. That is, we assume that the population is 
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homogeneous with respect to the importance it places on different aspects of service except as 

differentiated by decision-maker characteristics included in the model specification.  If this 

assumption is incorrect, the estimated model will not adequately represent the underlying 

decision processes of the entire population or of distinct behavioral groups within the population.  

For example, mode preference may differ between low and high-income travelers as low-income 

travelers are expected to be more sensitive to cost and less sensitive to time than high-income 

travelers.  This phenomenon is incorporated in the preceding models to a limited extent through 

the use of alternative specific income variables and cost divided by income in the utility 

specification.  Market segmentation can be used to determine whether the impact of other 

variables is different among population groups.  The most common approach to market 

segmentation is for the analyst to consider sample segments which are mutually exclusive and 

collectively exhaustive (that is, each case is included in one and only one segment).  Models are 

estimated for the sample associated with each segment and compared to the pooled model (all 

segments represented by a single model) to determine if there are statistically significant and 

important differences among the market segments. 

 Market segmentation is usually based on socio-economic and trip related variables such 

as income, auto ownership and trip purpose which may be used separately or jointly.  Trip 

purpose has already been used in our analysis by considering work commute trips exclusively.  

Once segmentation variables are selected (income, auto ownership, etc.), different numbers of 

segments may be considered for each dimension (e.g., we could use high, medium and low 

income segments or only high and low income segments).  All members of each segment are 

assumed to have identical preferences and identical sensitivities to all the variables in the utility 

equation. 

 Analysts will often have some a priori ideas about the best segmentation variables and 

the appropriate groupings of the population with respect to these variables.  In the case of 

continuous variables, such as income, the analyst may consider different boundaries between 

segments.  In cases where the analyst does not have a strong basis for selecting model segments, 

he/she can test different combinations of socio-economic and trip-related variables in the data for 

segmentation.  This approach is limited by the fact that the number of segments grows very fast 
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with the number of segmentation variables (e.g., three income segments, two gender segments 

and three home location segments results in 18 distinct groups).  The multiplicity of segments 

creates interpretational problems due to the complexity of comparing results among segments 

and estimation problems due to the small number of observations in some of the segments (with 

as many as 2,000 cases, eighteen segments would be likely to produce many segments with 

fewer than 100 cases and some with fewer than 50 cases, well below the threshold for reliable 

estimation results).  The alternative of pre-defining market segments along one dimension at a 

time is practical and easy to implement but it has the disadvantage that this approach does not 

account for interactions among the segmentation variables. 

 

6.3.1 Market Segmentation Tests 
The determination of whether to segment the data is based on a comparison of the pooled model 

for the entire sample/population and a set of segment specific models for each segment of the 

sample/population.  This comparison includes:  (1) a statistical test, referred to as the market 

segmentation or taste variation test, to determine if the segments are statistically different from 

one another, (2) statistical significance and reasonableness of the parameters in each of the 

segments, and (3) reasonableness of the relationships among parameters in each segment and 

between parameters in the different market segments. 

 The statistical test for market segmentation consists of three steps.  First, the sample is 

divided into a number of market segments which are mutually exclusive and collectively 

exhaustive.  A preferred model specification is used to estimate a pooled model for the entire 

data set and to estimate models for each market segment.  Finally, the goodness-of-fit differences 

between the segmented models (taken as a group) and the pooled model are evaluated to 

determine if they are statistically different.  This test is an extension of the likelihood ratio test 

described earlier to test the difference between two models.  In this case, the unrestricted model 

is the set of all the segmented models and the restricted model is the pooled model which 

imposes the restriction that the parameters for each segment are identical.   



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 132 
 

 
Koppelman and Bhat  January 31, 2006 

 Thus, the null hypothesis is that 1 2 s Sβ β β β= = = = = , where sβ , is the 

vector of coefficients for the sth market segment.  Following the approach described in 

CHAPTER 5, we reject the null hypothesis that the restricted model is the correct model at 

significance level p if the calculated value of the statistic is greater than the test or critical value.  

That is, if: 

 2
R ,( )2  [ ]U n pχ− × − ≥  6.8 

Substituting the log-likelihood for the pooled model for R  and the sum of market segment 

model log-likelihoods for U  in equation 5.16, the null hypothesis, that all segments have the 

same choice function, is rejected at level p if: 

 
S

2
,( )

s=1

-2  ( )  ( )s n pβ β χ
⎡ ⎤
⎢ ⎥× − ≥
⎢ ⎥⎣ ⎦

∑  6.9 

 

where ( )β   is the log-likelihood for the pooled model, 

( )sβ   is the log-likelihood of the model estimated with sth market 

segment, 
2
nχ   is the chi-square distribution with n degrees of freedom, 

n  is equal to the number of restrictions, 
1

S

s
s

K K
=

−∑  

K  is the number of coefficients in the pooled model, and  

sK  is the number of coefficients in the sth market segment model.   

sK  is generally equal to K  in which case n  is given by   (S-1)K ×   38.   

 

                                                 
38 If one or more segments is defined so that one or more of the variables is fixed for all members of the segment, the parameters for that 

segment, K
s
, will be fewer than K.  For example, if none of the members of the low income group owned cars in income segmentation, it would 

not be possible to estimate parameters for the effect of auto ownership in that segment. 
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6.3.2 Market Segmentation Example 
We illustrate the market segmentation test for two cases, automobile ownership (zero/one car 

households and households with more than one car), and gender (male and female).  In the case 

of segmentation by automobile ownership, it is appealing to include a distinct segment for 

households with no cars since the mode choice behavior of this segment is very different from 

the rest of the population due to their dependence on non-automobile modes.  However, the 

small size of this segment in the data set, only 160 of the 5029 work trip reports from households 

with no cars, precludes use of a no car segment; this group is combined with the one car 

ownership households for estimation.  Using the same utility specification as in Model 17W, the 

estimation results for the pooled and segmented models for auto ownership and for gender are 

reported in Table 6-14 and Table 6-15.   

 We can make the following observations from the estimation results of the automobile 

ownership segmentation models (Table 6-14): 

• The segmented model rejects the pooled model at a very high level of statistical significance. 

 
1

2 ( ) ( ) 2  [-3444.2 - (-1049.3 - 2296.7)]=196.4
S

s

β β
=

⎡ ⎤
⎢ ⎥− × − = − ×
⎢ ⎥⎣ ⎦

∑  

• The alternative specific constants for all other modes relative to drive alone are much more 

negative for the higher auto ownership group than for the lower auto ownership group.  

These differences indicate the increased preference for drive alone among persons from 

multi-car households.  This makes intuitive sense, as travelers in households with fewer 

automobiles are more likely to choose non-automobile modes, all else being equal. 

• The alternative specific income coefficients are insignificant or marginally significant for 

both segments suggesting that the effect of income differences is adequately explained by the 

segment difference.   
Table 6-14 Estimation Results for Market Segmentation by Automobile Ownership 

Variables Pooled Model 0-1 Car HH’s 2+ Car HH’s 

Travel Cost by Income (1990 cents per 1000 1990 dollar) -0.052  (-5.0) -0.023  (-1.6) -0.098  (-6.1)
Travel Time (minutes)   
   Motorized Modes -0.02  (-5.3) -0.021  (-3.5) -0.019  (-3.6)
   Non-Motorized Modes -0.045  (-7.9) -0.044  (-5.4) -0.045  (-5.2)
OVT by Distance    Motorized Modes -0.133  (-6.8) -0.113  (-4.4) -0.194  (-5.9)
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Variables Pooled Model 0-1 Car HH’s 2+ Car HH’s 

Income (1,000’s of 1990 dollars)   
   Drive Alone (Base), Shared Ride 2 and Shared Ride 3+   0 0  0
   Transit -0.005  (-2.7) -0.007  (-1.8) 0.0004  (0.1)
   Bike -0.009  (-1.7) -0.001  (-1.2) -0.002  (-0.3)
   Walk -0.006  (-1.9) -0.001  (-2.0) 0.0007  (0.2)
Autos per Worker   
   Drive Alone (Base) 0 0  0
   Shared Ride 2 and Shared Ride 3+ -0.317  (-4.8) -3.015  (-8.6) -0.241  (-3.3)
   Transit -0.946  (-8.0) -3.963  (-10.5) -0.24  (-1.8)
   Bike -0.702  (-2.7) -2.664  (-4.0) -0.191  (-0.6)
   Walk   -0.722  (-4.3) -3.32  (-7.5) -0.098  (-0.5)
CBD Dummy (1 = in CBD; 0 = not in CBD)   
   Drive Alone (Base) 0 0  0
   Shared Ride 2 0.26  (2.1) 0.372  (1.5) 0.163  (1.1)
   Shared Ride 3+ 1.069  (5.6) 0.229  (0.6) 1.33  (6.0)
   Transit 1.309  (7.9) 1.106  (4.3) 1.279  (5.2)
   Bike 0.489  (1.4) 0.395  (0.7) 0.487  (1.0)
   Walk   0.102  (0.4) 0.03  (0.1) 0.111  (0.3)
Empl. Density - Work Zone (employees per square mile)   
   Drive Alone (Base) 0 0  0
   Shared Ride 2 0.0016  (4.0) 0.002  (2.8) 0.0011  (2.2)
   Shared Ride 3+ 0.0023  (5.0) 0.0035  (3.9) 0.0013  (2.5)
   Transit 0.0031  (8.7) 0.0032  (4.7) 0.0029  (6.4)
   Bike 0.0019  (1.6) 0.0015  (0.8) 0.0016  (1.0)
   Walk 0.0026  (3.9) 0.0038  (3.9) 0.0001  (-0.1)
Constants   
   Drive Alone (Base) 0 0  0
   Shared Ride 2 -1.808  (-17.0) 0.593  (2.0) -1.979  (-15.4)
   Shared Ride 3+ -3.434  (-22.6) -0.765  (-2.2) -3.717  (-20.0)
   Transit -0.685  (-2.8) 2.258  (5.1) -2.163  (-5.6)
   Bike -1.629  (-3.8) 0.977  (1.4) -3.218  (-4.4)
   Walk 0.061 (0.2) 2.907  (5.2) -1.535  (-2.7)
Log-likelihood at Zero -7309.601 -1775.420 -5534.280 
Log-likelihood at Constant -4132.916 -1309.145 -2716.215 
Log-likelihood at Convergence -3444.185 -1049.280 -2296.667 
Rho-Squared w.r.t. Zero 0.5288 0.4090 0.5850 
Rho-Squared w.r.t. Constants 0.1666 0.1985 0.1544 
Sample Size 5029 1221 3808 

Likelihood Ratio Test versus Pooled model   196.4, 26, < 0.001 

 

• The sensitivity to automobile availability is much higher among low auto ownership 

households where an increase in availability (from 0) will be relatively important, than 

among higher auto ownership households where the number of cars is likely to closely 
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approximate the number of drivers and an increase in availability will be relatively 

unimportant. 

• The differences in the alternative specific CBD dummy variables and the Employment 

Density variables are very small and not significant suggesting that these variables could be 

constrained to be equal across auto ownership segments. 

• The differences in the time parameters also are very small and not significant suggesting that 

these variables could be constrained to be equal across auto ownership segments. 

• The magnitude of the cost by income parameter is much smaller in the lower automobile 

ownership segment than in the higher automobile ownership segment indicating that cost 

may be of little importance in households with low car availability. 

We can make the following observations from the estimation results of the gender segmentation 

models (Table 6-15): 

• The segmented model rejects the pooled model at a very high level of statistical significance.  

• The alternative specific constants relative to the drive alone mode are less negative (more 

positive) in the female segment suggesting the preference for drive alone mode is less 

pronounced among females.  This is especially true for the non-motorized modes (bike and 

walk) where the difference in the modal constants between the two groups is large and highly 

significant. 

Table 6-15 Estimation Results for Market Segmentation by Gender 
Variables Pooled Model Males Only Females Only 

Travel Cost by Income (1990 cents per 1000 1990 dollar) -0.0524  (-5.0) -0.064  (-4.4) -0.0437  (-2.9)
Travel Time (minutes)  
   Motorized Modes Only -0.0202  (-5.3) -0.0195  (-3.7) -0.0191  (-3.4)
   Non-Motorized Modes Only -0.0454  (-7.9) -0.0245  (-3.3) -0.0703  (-7.5)
OVT by Distance (miles) for    Motorized Modes -0.1329  (-6.8) -0.1865  (-6.0) -0.09  (-3.6)
Income (1,000’s of 1990 dollars)  
   Drive Alone (Base), SR2 and SR3+   0 0  0
   Transit -0.0053  (-2.7) -0.0021  (-0.8) -0.0089  (-3.0)
   Bike -0.0086  (-1.7) -0.0014  (-0.2) -0.0378  (-2.7)
   Walk -0.006  (-1.9) -0.005  (-1.1) -0.0049  (-1.1)
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Variables Pooled Model Males Only Females Only 
Autos per Worker  
   Drive Alone (Base) 0 0  0
   Shared Ride 2 and Shared Ride 3+ -0.3166  (-4.8) -0.21  (-2.8) -0.607  (-4.5)
   Transit -0.9462  (-8.0) -0.833  (-5.3) -1.173  (-6.2)
   Bike -0.7021  (-2.7) -0.992  (-3.1) -0.056  (-0.1)
   Walk   -0.7218  (-4.3) -0.611  (-2.7) -0.904  (-3.3)
CBD Dummy (1 = in CBD; 0 = not in CBD)  
   Drive Alone (Base) 0 0  0
   Shared Ride 2 0.26  (2.1) 0.028  (0.2) 0.454  (2.5)
   Shared Ride 3+ 1.069  (5.6) 1.424  (6.0) 0.377  (1.1)
   Transit 1.309  (7.9) 1.196  (5.0) 1.381  (6.0)
   Bike 0.489  (1.4) 0.311  (0.7) 1.039  (1.7)
   Walk   0.102  (0.4) 0.224  (0.6) 0.081  (0.1)
Empl. Density - Work Zone (employees per square mile)  
   Drive Alone (Base) 0 0  0
   Shared Ride 2 0.0016  (4.0) 0.0009  (1.7) 0.003  (4.5)
   Shared Ride 3+ 0.0023  (5.0) 0.0006  (1.0) 0.0051  (6.6)
   Transit 0.0031  (8.7) 0.0025  (5.5) 0.0046  (7.0)
   Bike 0.0019  (1.6) 0.0005  (0.3) 0.0041  (1.9)
   Walk 0.0026  (3.9) 0.0013  (1.2) 0.0055  (4.7)
Constants  
   Drive Alone (Base) 0 0  0
   Shared Ride 2 -1.808  (-17.0) -1.912  (-14.2) -1.564  (-8.6)
   Shared Ride 3+ -3.434  (-22.6) -3.551  (-17.9) -3.199  (-13.0)
   Transit -0.685  (-2.8) -0.865  (-2.4) -0.477  (-1.3)
   Bike -1.629  (-3.8) -1.928  (-3.6) -1.153  (-1.5)
   Walk 0.061  (0.2) -1.221  (-2.4) 1.305  (2.6)
Log-likelihood at Zero -7309.601 -4068.809 -3240.792 
Log-likelihood at Constant -4132.916 -2239.877 -1884.644 
Log-likelihood at Convergence -3444.185 -1889.784 -1511.319 
Rho-Squared w.r.t. Zero 0.5288 0.5355 0.5337 
Rho-Squared w.r.t. Constants 0.1666 0.1563 0.1981 
Sample Size 5029 2842 2187 

Likelihood Ratio Test versus Pooled Model   86.2, 26, < 0.001 

 

• The female segment parameters for alternative specific variables; Income, Autos per Worker, 

CBD Dummy and Employment Density are generally more favorable to non-auto modes and 

especially bike and walk, but the differences are small and marginally or not significant. 

• Both groups show almost identical sensitivity to motorized in-vehicle travel time.  However, 

the female group is more sensitive to non-motorized travel time while the male group is more 

sensitive to out-of-vehicle time.   

• The female segment exhibits a much lower sensitivity to cost than males. 
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The above observations demonstrate that taste variations exist between the auto ownership 

segments and between the gender segments. However, in each case, the differences appear to be 

associated with a subset of parameters.  One approach to simplifying the segmentation is to 

adopt a pooled model which includes segment related parameters where the differences are 

important39.  For example, such a model would at a minimum include different parameters for 

each of the segment for the following variables: 
 

• Travel cost by income, 

• Total travel time for non-motorized modes, and 

• Out-of-vehicle time by distance. 

 

6.4 Summary  
This chapter demonstrates the development of an MNL model specification for work mode to 

choice using data from the San Francisco Bay Area for a realistic context.  We start with 

relatively simple model specifications and develop more complex models which provide 

additional insight into the behavioral choices being made.  We begin with the variables:  travel 

cost, total travel time and household income.  We then develop a more comprehensive model 

which includes: 1) cost divided by income to account for travelers different sensitivity to cost 

depending on household income, 2) two variables for time by motorized vehicle (which capture 

the constraint that OVTT is valued less for longer trips than shorter trips but is valued more 

highly than IVTT for all trip distances) and an additional variable for non-motorized personal 

transport (walk and bike), 3) alternative specific income variables, 4) number of autos per 

worker in the household,  5) location of the work zone (CBD or not), and 6) employment density 

of the work location.   

 The specification search was not necessarily exhaustive and improvements to the final 

preferred model specification are possible.  The example describes the basis for the decisions 

made at each point in the model specification search process.  Clearly, different decisions could 

                                                 
39 For a more extensive discussion see Chapter 7, Section 7.5, in Ben-Akiva and Lerman [1985]. 
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be made at some of these points.  Thus, the final model result is based on a complex mix of 

empirical results, statistical analysis and judgment.  The challenge to the analyst is to make good 

judgment, describe the basis for the judgments made, and be prepared to demonstrate the 

implications of making different judgments. 

 In the next chapter, we extend our work to consideration of home-based shop/other trips 

and we consider adoption of the more sophisticated nested logit model.  
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CHAPTER 7: San Francisco Bay Area Shop/Other Mode Choice 
 

7.1 Introduction   
This chapter extends the work of the preceding chapter by application of mode choice model 

development to the choice of mode for shop/other purpose trips in the San Francisco Bay Area. 

The modal alternatives in this case are more complex because a substantial share of the sample 

uses different modes to and from the shopping destination.  The specific alternatives considered 

include: 

• Drive Alone: Car driver both outbound to and return from shopping, 

• Shared Ride 2: Shared ride with one other person both outbound to and return from 

shopping, 

• Shared Ride 3+: Shared ride with two or more other people both outbound to and return 

from shopping, 

• Shared Ride 2+ & Drive Alone: Shared ride with one or more other people outbound to 

or return from shopping and drive alone on the other trip, 

• Shared Ride 2/3+: Shared ride with one or other person outbound to or return from 

shopping and shared ride 3+ on the other trip, 

• Bike 

• Walk 

The frequency of mode availability and choice for these alternatives in the sample of 3157 cases 

is shown in Table 7-1.   
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Table 7-1 Sample Statistics for Bay Area Home-Based Shop/Other Trip Modal Data 

Mode Fraction of 

Sample with 

Mode Available 

Market 

Share 

Average 

IVTT 

(minutes) 

Average 

OVTT 

(minutes) 

Average 

Cost 

 (1990 cents) 

1. Transit 94.9% 1.2% 13.7 82.2 92.0 

2. Shared Ride 2 100.0% 22.2% 7.6 1.8 31.0 

3. Shared Ride 3+ 100.0% 10.9% 7.6 1.8 17.6 

4. Shared Ride 2+  

    & Drive Alone 
100.0% 17.5% 7.6 1.8 43.4 

5. Shared Ride 2/3+ 100.0% 3.7% 7.6 1.8 24.1 

6. Bike 67.7% 0.9% 12.6 0.0 0.0 

7. Walk 60.4% 5.1% 34.2 0.0 0.0 

8. Drive Alone 97.4% 38.6% 7.8 1.7 62.3 

        

We will build on what has been learned in the preceding chapter to simplify the variety of 

specifications testing while recognizing that the factors that determine mode choice may be 

different or have different impacts when applied to travel for a different purpose.  In addition to 

building on intuition, statistical analysis and testing, and judgment; we will be building on the 

experience of the estimation undertaken in the preceding chapter.   

 In this case, we adopt the approach of starting with a moderately advanced model 

specification and explore variations through addition, deletion or substitution of variables to 

identifying preferred specification. 
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7.2 Specification for Shop/Other Mode Choice Model 
The choice of mode for shop/other trips is determined differently than the choice of mode for 

work trips.  Nonetheless, some of the things we learned in the preceding estimation are likely to 

be relevant to this choice.  Thus, we begin with a specification that reflects some of the results of 

the previous section.  We have five groups of variables to consider for specification of the 

Shop/Other Mode Choice model.  These are alternative specific constants, measures of 

household size, measures of vehicle availability, measures of income, various specifications of 

time components and different specifications of travel cost.  Our initial specification includes the 

alternative specific constants and one selection from each other group of variables, as well as a 

few additional alternative specific dummy variables we found helpful.  Subsequently, we 

estimate alternative forms from each major group of variables.  After assessing the results of 

each of these estimations, we select a combined specification including the best specification 

results from each of the groups of variables. 

 

7.3 Initial Model Specification 
The first model includes alternative specific constants, the number of persons in the household 

(alternative specific), the number of vehicles in the household (alternative specific), household 

income (alternative specific), three measures of travel time (non-motorized time, motorized time 

and motorized out of vehicle time divided by trip distance) and travel cost.  The results of this 

estimation are reported in Table 7-2. 

 Some of the most interesting observations are: 

• The effect of persons per household increases the utility of every mode relative to drive 

alone.  All of these parameters are significantly different from zero. 

• The opposite effect is observed for number of vehicles with the greatest negative impact for 

the transit alternative.  Again, all of these parameters are highly significant. 

• The effect of household income (in 1990 $000) is small and insignificant suggesting that any 

wealth effect is adequately captured by the automobile ownership variable. 
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• The travel time and cost variables are all negative, as expected; however, the value of in 

vehicle time for motorized modes is low for this time period.   

• The zero vehicle ownership variables, constrained to be equal for transit, bike and walk is 

positive and significant as expected. 

• The core destination variable is positive and significant for transit but small and not 

significant for all other alternatives relative to drive alone. 

• Overall, the goodness of fit is reasonable but not as high as for the work mode choice.  

However, we can reasonably expect that improvements in the model will substantially 

improve the goodness of fit. 

 

Table 7-2 Base Shopping/Other Mode Choice Model 
Variables Model 1 S/O 

Constants   
 Transit 0.373 (0.5) 
 Shared Ride 2 -1.20 (-8.4) 
 Shared Ride 3+ -2.88 (-13.6) 
 Shared Ride 2+ & Drive Alone -2.00 (-12.3) 
 Shared Ride 2/3+ -3.86 (-12.3) 
 Bike -4.69 (-7.7) 
 Walk 0.304 (0.7) 
 Drive Alone (base) 0.00 ---- 

Persons per Household  
 Transit 0.733 (5.4) 
 Shared Ride 2 0.364 (8.6) 
 Shared Ride 3+ 0.915 (18.3) 
 Shared Ride 2+ & Drive Alone 0.639 (14.4) 
 Shared Ride 2/3+ 0.815 (11.8) 
 Bike 0.798 (5.9) 
 Walk 0.535 (6.8) 
 Drive Alone (base) 0.00 ---- 

Number of Vehicles  
 Transit -1.84 (-5.8) 
 Shared Ride 2 -0.182 (-3.4) 
 Shared Ride 3+ -0.768 (-9.4) 
 Shared Ride 2+ & Drive Alone -0.422 (-6.8) 
 Shared Ride 2/3+ -0.651 (-5.4) 
 Bike -0.376 (-1.8) 
 Walk -0.679 (-5.0) 
 Drive Alone (base) 0.00 ---- 
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Variables Model 1 S/O 
Household Income (1,000's of 1990 dollars)  

 Transit -0.0062 (-0.8) 
 Shared Ride 2 -0.0023 (-1.4) 
 Shared Ride 3+ 0.0016 (0.7) 
 Shared Ride 2+ & Drive Alone 0.0017 (0.9) 
 Shared Ride 2/3+ 0.0034 (1.1) 
 Bike -0.0010 (0.0) 
 Walk -0.0049 (-1.4) 
 Drive Alone (base) 0.00 ---- 

Travel Time (minutes)  
 Non-Motorized Modes Only -0.0853 (-8.1) 
 IVTT, Motorized Modes -0.0343 (-3.1) 
 OVT by Distance (mi.), Motorized Modes -0.215 (-4.1) 

Travel Cost (1990 cents) -0.00345 (-3.7) 
Zero Vehicle Household Dummy Variable  

 Transit, Bike and Walk 1.63 (4.4) 
Dummy Variable for Destination in Core   

 Transit 1.94 (3.0) 
 Shared Ride 2 0.492 (1.1) 
 Shared Ride 3+  -0.0481 (-0.1) 
 Shared Ride 2+ & Drive Alone 1.42 (3.4) 
 Shared Ride 2/3+ -25.040 (0.0) 
 Bike 1.25 (1.1) 
 Walk 0.147 (0.2) 
 Drive Alone (base) 0.0 ---- 

Log-likelihood at Zero -6201.516 
Log-likelihood at Constants -4962.194 
Log-likelihood at Convergence -4486.445 
Rho Squared w.r.t Zero 0.2766 
Rho Squared w.r.t. Constants 0.0959 

 

                                                 
40 The large negative parameter effectively drives the probability of choosing Shared Ride 2/3+ to zero for trips to 
the core of the region.  This is consistent with the data as no trips to the core are made by Shared Ride 2/3+. 
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Table 7-3 Implied Value of Time in Base S/O Model 
 
Value of Time Components 

 
Base S/O 

Model 

 
Non-Motorized Time 

 
$14.83/hr 

 
In-Vehicle Time 

 
$5.97/hr 

Out-of-Vehicle Time  

(10 mile trip) 

(20 mile trip) 

 

$9.70/hr 

$7.83/hr 

 

Although several of the model parameters are not statistically significant, and could be removed 

or combined, they are left for the time being while alternative specifications are explored in part 

because their significance may be affected by other variables.   

 

7.4 Exploring Alternative Specifications  
The base model specification for shop/other trips will be enhanced by considering alternative 

specification for each group of variables as stated earlier.  The first examination is to consider 

alternative specifications for persons per household.  Table 7-4 shows the results for the base 

model, a second model that separates the effect of increasing from one to two persons to 

increases beyond two persons (partially recognizing that the third and additional persons are 

likely to be minors or dependent adults and a third model in which persons is replaced for 

ln(persons).  It is obvious that both new specifications give substantially better goodness of fit 

indicating that the effect of increasing household size should be treated non-linearly.  In this case 

either of these representations, the natural log transformation or a spline (larger effect for the 

second person than for additional persons) produce almost identical goodness of fit.  This 

suggests that one of these two variations should be considered for inclusion in the final model 
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specification.  Neither of the changes has any substantial impact on other model parameters 

except for the constants which are expected to change with any change in model specification. 

 

Table 7-4 Alternative Specifications for Household Size 
Variables Model 1 S/O Model 2 S/O Model 3 S/O 
Constants  

 Transit 0.373 (0.5) 0.763 (0.9) 0.696 (0.9)
 Shared Ride 2 -1.20 (-8.4) -1.84 (-8.7) -1.10 (-7.9)
 Shared Ride 3+ -2.88 (-13.6) -2.88 (-7.2) -3.15 (-13.0)
 Shared Ride 2+ & Drive Alone -2.00 (-12.3) -1.65 (-7.9) -1.83 (-11.1)
 Shared Ride 2/3+ -3.86 (-12.3) -4.93 (-4.9) -4.11 (-11.2)
 Bike -4.69 (-7.7) -4.00 (-5.1) -4.44 (-6.9)
 Walk 0.304 (0.7) 0.837 (2.0) 0.581 (1.4)
 Drive Alone (base) 0.00 0.00  0.00

Household Size Persons 2+ Persons DV Log of Persons 
 Transit 0.733 (5.4) 1.65 (2.8) 2.11 (5.4)
 Shared Ride 2 0.364 (8.6) 1.84 (8.6) 1.16 (10.0)
 Shared Ride 3+ 0.915 (18.3) 2.18 (5.4) 3.19 (18.2)
 Shared Ride 2+ & Drive Alone 0.639 (14.4) 1.16 (5.4) 1.90 (14.3)
 Shared Ride 2/3+ 0.815 (11.8) 3.14 (3.1) 2.89 (11.2)
 Bike 0.798 (5.9) 1.12 (1.3) 2.29 (4.8)
 Walk 0.535 (6.8) 0.581 (2.0) 1.37 (6.3)
 Drive Alone (base) 0.00 0.00  0.00

Additional Person beyond 2  
 Transit 0.585 (3.6) 
 Shared Ride 2 0.206 (4.5) 
 Shared Ride 3+ 0.797 (15.2) 
 Shared Ride 2+ & Drive Alone 0.547 (11.5) 
 Shared Ride 2/3+ 0.680 (9.3) 
 Bike 0.721 (5.0) 
 Walk 0.527 (6.0) 
 Drive Alone (base) 0.00  

Number of Vehicles  
 Transit -1.84 (-5.8) -2.01 (-6.0) -1.91 (-5.9)
 Shared Ride 2 -0.182 (-3.4) -0.234 (-4.4) -0.233 (-4.3)
 Shared Ride 3+ -0.768 (-9.4) -0.801 (-9.8) -0.835 (-10.1)
 Shared Ride 2+ & Drive Alone -0.422 (-6.8) -0.444 (-7.1) -0.456 (-7.3)
 Shared Ride 2/3+ -0.651 (-5.4) -0.696 (-5.7) -0.740 (-6.0)
 Bike -0.376 (-1.8) -0.405 (-1.9) -0.388 (-1.8)
 Walk -0.679 (-5.0) -0.691 (-5.1) -0.669 (-5.0)
 Drive Alone (base) 0.00 0.00  0.00

Household Income (1,000's of 1990 dollars)  
 Transit -0.0062 (-0.8) -0.0068 (-0.8) -0.0072 (-0.9)
 Shared Ride 2 -0.0023 (-1.4) -0.0035 (-2.1) -0.0033 (-1.9)
 Shared Ride 3+ 0.0016 (0.7) 0.0008 (0.3) -0.0006 (-0.3)
 Shared Ride 2+ & Drive Alone 0.0017 (0.9) 0.0011 (0.6) 0.0004 (0.2)
 Shared Ride 2/3+ 0.0034 (1.1) 0.0023 (0.7) 0.0015 (0.5)
 Bike 0.0001 (0.0) -0.0006 (-0.1) -0.0015 (-0.2)
 Walk -0.0049 (-1.4) -0.0053 (-1.5) -0.0055 (-1.5)
 Drive Alone (base) 0.00 0.00  0.00
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Variables Model 1 S/O Model 2 S/O Model 3 S/O 
Travel Time (minutes)  

 Non-Motorized Modes Only -0.0853 (-8.1) -0.0850 (-8.0) -0.0850 (-8.0)
 Motorized Modes Only -0.0343 (-3.1) -0.0340 (-3.1) -0.0343 (-3.1)
 OVT by Distance (mi.) Motorized Modes -0.215 (-4.1) -0.215 (-4.1) -0.214 (-4.1)

Travel Cost (1990 cents) -0.0035 (-3.7) -0.0036 (-3.7) -0.0037 (-3.9)
Zero Vehicle Household Dummy Variable  
 Transit, Bike and Walk 1.63 (4.4) 1.36 (3.5) 1.58 (4.2)
Dummy Variable for Destination in Core  
 Transit 1.94 (3.0) 1.86 (2.9) 1.88 (2.9)
 Shared Ride 2 0.492 (1.1) 0.397 (0.9) 0.443 (1.0)
 Shared Ride 3+ -0.0481 (-0.1) -0.124 (-0.2) -0.113 (-0.2)
 Shared Ride 2+ & Drive Alone 1.42 (3.4) 1.36 (3.2) 1.38 (3.3)
 Shared Ride 2/3+ -25.0 (0.0) -12.7 (0.0) -26.7 (0.0)
 Bike 1.25 (1.1) 1.19 (1.1) 1.22 (1.1)
 Walk 0.147 (0.2) 0.0223 (0.0) 0.0358 (0.0)
 Drive Alone (base) 0.00 0.00  0.00
Log-likelihood at Zero -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4486.445 -4445.800 -4445.078 
Rho Squared w.r.t Zero 0.2766 0.2831 0.2832 
Rho Squared w.r.t. Constants 0.0959 0.1041 0.1042 

 

 The next variation to be considered is the replacement of the number of cars by the 

number of cars per person or the number of cars per worker.  As can be seen in Table 7-5, the 

use of number of cars per person substantially improves model goodness of fit while the effect of 

number of cars per worker results in poorer goodness of fit. We would prefer cars per driver or 

per adults or at least cars per person greater than five years of age but these are not available in 

the current data.  Nonetheless there is a clear indication that some normalization by household 

size (which relates to travel needs) should be included in the model. 

Table 7-5 Alternative Specifications for Vehicle Availability 
Variables Model 1 S/O Model 4 S/O Model 5 S/O 
Constants   

 Transit 0.373 (0.5) 1.76 (2.0) 0.713 (0.9)
 Shared Ride 2 -1.20 (-8.4) -0.437 (-2.0) -1.22 (-7.9)
 Shared Ride 3+ -2.88 (-13.6) -0.84 (-2.8) -3.25 (-14.1)
 Shared Ride 2+ & Drive Alone -2.00 (-12.3) -0.866 (-3.5) -1.95 (-11.0)
 Shared Ride 2/3+ -3.86 (-12.3) -1.77 (-4.0) -4.08 (-11.7)
 Bike -4.69 (-7.7) -4.55 (-5.8) -4.79 (-7.4)
 Walk 0.304 (0.7) 0.802 (1.6) 0.331 (0.8)
 Drive Alone (base) 0.00 0.00  0.00 
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Variables Model 1 S/O Model 4 S/O Model 5 S/O 
Persons per Household   

 Transit 0.733 (5.4) 0.129 (0.9) 0.452 (3.6)
 Shared Ride 2 0.364 (8.6) 0.164 (3.8) 0.305 (7.9)
 Shared Ride 3+ 0.915 (18.3) 0.398 (7.8) 0.738 (16.3)
 Shared Ride 2+ & Drive Alone 0.639 (14.4) 0.303 (6.6) 0.522 (13.0)
 Shared Ride 2/3+ 0.815 (11.8) 0.316 (4.2) 0.654 (10.2)
 Bike 0.798 (5.9) 0.573 (4.3) 0.688 (5.5)
 Walk 0.535 (6.8) 0.185 (2.3) 0.366 (5.1)
 Drive Alone (base) 0.00 0.00  0.00 

Vehicle Availability Autos per HH Autos per Person Autos per Worker
 Transit -1.84 (-5.8) -3.44 (-4.6) -1.65 (-4.2)
 Shared Ride 2 -0.182 (-3.4) -0.715 (-5.0) -0.105 (-1.8)
 Shared Ride 3+ -0.768 (-9.4) -2.84 (-10.4) -0.269 (-3.2)
 Shared Ride 2+ & Drive Alone -0.422 (-6.8) -1.28 (-7.1) -0.332 (-4.7)
 Shared Ride 2/3+ -0.651 (-5.4) -2.69 (-6.6) -0.296 (-2.2)
 Bike -0.376 (-1.8) -0.278 (-0.5) -0.197 (-0.8)
 Walk -0.679 (-5.0) -0.897 (-2.9) -0.503 (-3.4)
 Drive Alone (base) 0.00 0.00  0.00 

Household Income (1,000's of 1990 dollars)   
 Transit -0.0062 (-0.8) -0.0114 (-1.4) -0.0178 (-2.2)
 Shared Ride 2 -0.0023 (-1.4) -0.0019 (-1.2) -0.0033 (-2.0)
 Shared Ride 3+ 0.0016 (0.7) 0.0011 (0.5) -0.0038 (-1.8)
 Shared Ride 2+ & Drive Alone 0.0017 (0.9) 0.0014 (0.8) -0.0007 (-0.4)
 Shared Ride 2/3+ 0.0034 (1.1) 0.0037 (1.2) -0.0008 (-0.3)
 Bike -0.0001 (0.0) -0.001 (-0.2) -0.002 (-0.3)
 Walk -0.0049 (-1.4) -0.0075 (-2.1) -0.009 (-2.6)
 Drive Alone (base) 0.00 0.00  0.00 

Travel Time (minutes)   
 Non-Motorized Modes Only -0.0853 (-8.1) -0.0856 (-8.1) -0.0856 (-8.1)
 Motorized Modes Only -0.0343 (-3.1) -0.0340 (-3.0) -0.0357 (-3.2)
 OVT by Distance (mi.) Motorized Modes -0.215 (-4.1) -0.239 (-4.4) -0.218 (-4.2)

Travel Cost (1990 cents) -0.0035 (-3.7) -0.0038 (-4.0) -0.0034 (-3.7)
Zero Vehicle Household Dummy Variable   

 Transit, Bike and Walk 1.63 (4.4) 2.48 (6.2) 1.78 (4.8)
 All Private Vehicle Modes 0.00 0.00  0.00 

Dummy Variable for Destination in Core   
 Transit 1.94 (3.0) 1.93 (3.0) 1.92 (3.1)
 Shared Ride 2 0.492 (1.1) 0.409 (0.9) 0.487 (1.1)
 Shared Ride 3+ -0.0481 (-0.1) -0.125 (-0.2) 0.0913 (0.1)
 Shared Ride 2+ & Drive Alone 1.42 (3.4) 1.37 (3.3) 1.41 (3.4)
 Shared Ride 2/3+ -25.0 (0.0) -25.1 (0.0) -24.9 (0.0)
 Bike 1.25 (1.1) 1.23 (1.1) 1.24 (1.1)
 Walk 0.147 (0.2) 0.136 (0.2) 0.107 (0.1)
 Drive Alone (base) 0.00 0.00  0.00 

Log-likelihood at Zero -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4486.445 -4469.880 -4543.708 
Rho Squared w.r.t Zero 0.2766 0.2792 0.2673 
Rho Squared w.r.t. Constants 0.0959 0.0992 0.0843 

 

 The third variation, shown in Table 7-6, is an alternative specification for including 

household income.  We consider income as a linear variable and as a log transformation.  The 
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goodness of fit for both models is almost identical.  Thus, the analyst can choose to use either 

specification.  It is also reasonable for the analyst to reconsider this issue when the final model 

specification is being formulated. 

 

Table 7-6 Alternative Specifications for Income 
Variables Model 1 S/O Model 6 S/O 
Constants     
 Transit 0.373 (0.5) 0.829 (0.8) 
 Shared Ride 2 -1.20 (-8.4) -0.958 (-3.7) 
 Shared Ride 3+ -2.88 (-13.6) -2.81 (-7.3) 
 Shared Ride 2+ & Drive Alone -2.00 (-12.3) -2.31 (-7.4) 
 Shared Ride 2/3+ -3.86 (-12.3) -4.36 (-7.1) 
 Bike -4.69 (-7.7) -4.84 (-4.3) 
 Walk 0.304 (0.7) 0.605 (1.1) 
 Drive Alone (base) 0.00 0.00  
Persons per Household   
 Transit 0.733 (5.4) 0.732 (5.4) 
 Shared Ride 2 0.364 (8.6) 0.366 (8.6) 
 Shared Ride 3+ 0.915 (18.3) 0.913 (18.2) 
 Shared Ride 2+ & Drive Alone 0.639 (14.4) 0.636 (14.2) 
 Shared Ride 2/3+ 0.815 (11.8) 0.813 (11.7) 
 Bike 0.798 (5.9) 0.797 (5.8) 
 Walk 0.535 (6.8) 0.532 (6.8) 
 Drive Alone (base) 0.00 0.00  
Number of Vehicles   
 Transit -1.84 (-5.8) -1.84 (-5.7) 
 Shared Ride 2 -0.182 (-3.4) -0.181 (-3.4) 
 Shared Ride 3+ -0.768 (-9.4) -0.748 (-9.1) 
 Shared Ride 2+ & Drive Alone -0.422 (-6.8) -0.431 (-6.9) 
 Shared Ride 2/3+ -0.651 (-5.4) -0.660 (-5.4) 
 Bike -0.376 (-1.8) -0.394 (-1.8) 
 Walk -0.679 (-5.0) -0.689 (-5.1) 
 Drive Alone (base) 0.00 0.00  
Household Income (1,000's of 1990 dollars) Income Log of Income 
 Transit -0.0062 (-0.8) -0.195 (-0.8) 
 Shared Ride 2 -0.0023 (-1.4) -0.0969 (-1.3) 
 Shared Ride 3+ 0.0016 (0.7) -0.0045 (0.0) 
 Shared Ride 2+ & Drive Alone 0.0017 (0.9) 0.112 (1.3) 
 Shared Ride 2/3+ 0.0034 (1.1) 0.187 (1.1) 
 Bike -0.0001 (0.0) 0.049 (0.2) 
 Walk -0.0049 (-1.4) -0.144 (-1.1) 
 Drive Alone (base) 0.00 0.00  
Travel Time (minutes)   
 Non-Motorized Modes Only -0.0853 (-8.1) -0.0847 (-8.0) 
 Motorized Modes Only -0.0343 (-3.1) -0.0343 (-3.1) 
 OVT by Distance (mi.) Motorized Modes -0.215 (-4.1) -0.218 (-4.1) 
Travel Cost (1990 cents) -0.0035 (-3.7) -0.0034 (-3.7) 
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Variables Model 1 S/O Model 6 S/O 
Zero Vehicle Household Dummy Variable   
 Transit, Bike, and Walk 1.63 (4.4) 1.59 (4.3) 
 All Private Vehicle Modes (base) 0.00 0.00  
Dummy Variable for Destination in Core   
 Transit 1.94 (3.0) 1.91 (3.0) 
 Shared Ride 2 0.492 (1.1) 0.492 (1.1) 
 Shared Ride 3+ -0.0481 (-0.1) -0.0499 (-0.1) 
 Shared Ride 2+ & Drive Alone 1.42 (3.4) 1.42 (3.4) 
 Shared Ride 2/3+ -25.0 (0.0) -25.0 (0.0) 
 Bike 1.25 (1.1) 1.27 (1.1) 
 Walk 0.147 (0.2) 0.130 (0.2) 
 Drive Alone (base) 0.00 0.00  
Log-likelihood at Zero -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 
Log-likelihood at Convergence -4486.445 -4486.560 
Rho Squared w.r.t Zero 0.2766 0.2765 
Rho Squared w.r.t. Constants 0.0959 0.0959 

 

 The fifth set of variables concerns travel time.  In this case, we consider two alternatives 

for out-of-vehicle time: time divided by distance and time divided by the natural log of distance.  

In terms of goodness of fit, the results in Table 7-7 are almost identical.  There is no strong 

reason to choose one formulation over the other.  The analyst can select a preferred specification 

at this point of when the final specification is being developed. 

 

Table 7-7 Alternative Specifications for Travel Time 
Variables Model 1 S/O Model 7 S/O 
Constants  

 Transit 0.373 (0.5) 0.525 (0.6)
 Shared Ride 2 -1.20 (-8.4) -1.20 (-8.4)
 Shared Ride 3+ -2.88 (-13.6) -2.88 (-13.7)
 Shared Ride 2+ & Drive Alone -2.00 (-12.3) -2.00 (-12.3)
 Shared Ride 2/3+ -3.86 (-12.3) -3.87 (-12.3)
 Bike -4.69 (-7.7) -4.64 (-7.6)
 Walk 0.304 (0.7) 0.335 (0.8)
 Drive Alone (base) 0.00 0.00 

Persons per Household  
 Transit 0.733 (5.4) 0.729 (5.4)
 Shared Ride 2 0.364 (8.6) 0.364 (8.6)
 Shared Ride 3+ 0.915 (18.3) 0.916 (18.3)
 Shared Ride 2+ & Drive Alone 0.639 (14.4) 0.639 (14.4)
 Shared Ride 2/3+ 0.815 (11.8) 0.816 (11.8)
 Bike 0.798 (5.9) 0.800 (5.9)
 Walk 0.535 (6.8) 0.535 (6.8)
 Drive Alone (base) 0.00 0.00 
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Variables Model 1 S/O Model 7 S/O 
Number of Vehicles  

 Transit -1.84 (-5.8) -1.77 (-5.6)
 Shared Ride 2 -0.182 (-3.4) -0.182 (-3.4)
 Shared Ride 3+ -0.768 (-9.4) -0.769 (-9.4)
 Shared Ride 2+ & Drive Alone -0.422 (-6.8) -0.423 (-6.8)
 Shared Ride 2/3+ -0.651 (-5.4) -0.652 (-5.4)
 Bike -0.376 (-1.8) -0.380 (-1.8)
 Walk -0.679 (-5.0) -0.687 (-5.1)
 Drive Alone (base) 0.00 0.00 

Household Income (1,000's of 1990 dollars)  
 Transit -0.0062 (-0.8) -0.0065 (-0.8)
 Shared Ride 2 -0.0023 (-1.4) -0.0023 (-1.4)
 Shared Ride 3+ 0.0016 (0.7) 0.0016 (0.7)
 Shared Ride 2+ & Drive Alone 0.0017 (0.9) 0.0017 (0.9)
 Shared Ride 2/3+ 0.0034 (1.1) 0.0034 (1.1)
 Bike -0.0001 (0.0) -0.0001 (0.0)
 Walk -0.0049 (-1.4) -0.0048 (-1.4)
 Drive Alone (base) 0.00 0.00 

Travel Time (minutes)  
 Non-Motorized Modes Only -0.0853 (-8.1) -0.0839 (-7.8)
 Motorized Modes Only -0.0343 (-3.1) -0.0035 (-0.3)
 OVT by Distance (mi.) Motorized Modes -0.215 (-4.1)  
 OVT by Log of Distance (mi.) Motorized Modes -0.166 (-4.2)

Travel Cost (1990 cents) -0.0035 (-3.7) -0.0036 (-3.9)
Zero Vehicle Household Dummy Variable   

 Transit, Bike, and Walk 1.63 (4.4) 1.66 (4.4)
 All Private Vehicle Modes 0.00 0.00 

Dummy Variable for Destination in Core  
 Transit 1.94 (3.0) 1.89 (3.0)
 Shared Ride 2 0.492 (1.1) 0.470 (1.0)
 Shared Ride 3+ -0.0481 (-0.1) -0.0548 (-0.1)
 Shared Ride 2+ & Drive Alone 1.42 (3.4) 1.41 (3.3)
 Shared Ride 2/3+ -25.0 (0.0) -26.7 (0.0)
 Bike 1.25 (1.1) 1.31 (1.2)
 Walk 0.147 (0.2) 0.226 (0.3)
 Drive Alone (base) 0.00 0.00 

Log-likelihood at Zero -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 
Log-likelihood at Convergence -4486.445 -4486.394 
Rho Squared w.r.t Zero 0.2766 0.2766 
Rho Squared w.r.t. Constants 0.0959 0.0959 

 

 The last specification variation to be considered is the adjustment of cost by income 

either as cost divided by income or cost divided by the natural log of income.  There are strong 

theoretical reasons to adjust the effect of cost by household income.  The non-nested hypothesis 

test rejects the cost divided by income specification at a very high level but is not able to reject 

the cost divided by ln(income) at any reasonable level of significance.  This and the strong 
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theoretical reasons for adjusting cost by income support the adoption of the cost by ln(income) 

specification.   

 

Table 7-8 Alternative Specifications for Cost 
Variables Model 1 S/O Model 8 S/O Model 9 S/O 
Constants   

 Transit 0.373 (0.5) 0.536 (0.7) 0.482 (0.6)
 Shared Ride 2 -1.20 (-8.4) -1.16 (-8.1) -1.22 (-8.5)
 Shared Ride 3+ -2.88 (-13.6) -2.83 (-13.3) -2.92 (-13.6)
 Shared Ride 2+ & Drive Alone -2.00 (-12.3) -1.98 (-12.1) -2.01 (-12.4)
 Shared Ride 2/3+ -3.86 (-12.3) -3.81 (-12.1) -3.89 (-12.3)
 Bike -4.69 (-7.7) -4.69 (-7.7) -4.73 (-7.7)
 Walk 0.304 (0.7) 0.304 (0.7) 0.277 (0.7)
 Drive Alone (base) 0.00 0.00  0.00

Persons per Household   
 Transit 0.733 (5.4) 0.738 (5.5) 0.739 (5.5)
 Shared Ride 2 0.364 (8.6) 0.361 (8.6) 0.365 (8.6)
 Shared Ride 3+ 0.915 (18.3) 0.915 (18.3) 0.916 (18.3)
 Shared Ride 2+ & Drive Alone 0.639 (14.4) 0.636 (14.3) 0.638 (14.4)
 Shared Ride 2/3+ 0.815 (11.8) 0.813 (11.8) 0.816 (11.8)
 Bike 0.798 (5.9) 0.801 (5.9) 0.799 (5.9)
 Walk 0.535 (6.8) 0.536 (6.8) 0.534 (6.8)
 Drive Alone (base) 0.00 0.00  0.00

Number of Vehicles   
 Transit -1.84 (-5.8) -1.85 (-5.8) -1.86 (-5.8)
 Shared Ride 2 -0.182 (-3.4) -0.178 (-3.4) -0.180 (-3.4)
 Shared Ride 3+ -0.768 (-9.4) -0.762 (-9.3) -0.764 (-9.3)
 Shared Ride 2+ & Drive Alone -0.422 (-6.8) -0.420 (-6.8) -0.422 (-6.8)
 Shared Ride 2/3+ -0.651 (-5.4) -0.646 (-5.4) -0.648 (-5.4)
 Bike -0.376 (-1.8) -0.371 (-1.8) -0.371 (-1.8)
 Walk -0.679 (-5.0) -0.681 (-5.0) -0.677 (-5.0)
 Drive Alone (base) 0.00 0.00  0.00

Household Income (1,000's of 1990 dollars)   
 Transit -0.0062 (-0.8) -0.0095 (-1.1) -0.0084 (-1.0)
 Shared Ride 2 -0.0023 (-1.4) -0.0016 (-0.9) -0.0017 (-1.0)
 Shared Ride 3+ 0.0016 (0.7) 0.0025 (1.1) 0.0024 (1.1)
 Shared Ride 2+ & Drive Alone 0.0017 (0.9) 0.0021 (1.2) 0.0020 (1.1)
 Shared Ride 2/3+ 0.0034 (1.1) 0.0041 (1.3) 0.0041 (1.3)
 Bike -0.0001 (0.0) 0.0008 (0.1) 0.0007 (0.1)
 Walk -0.0049 (-1.4) -0.0038 (-1.1) -0.004 (-1.1)
 Drive Alone (base) 0.00 0.00  0.00

Travel Time (minutes)   
 Non-Motorized Modes Only -0.0853 (-8.1) -0.0849 (-8.0) -0.0855 (-8.1)
 Motorized Modes Only -0.0343 (-3.1) -0.0370 (-3.3) -0.0350 (-3.2)
 OVT by Distance (mi.) Motorized Modes -0.215 (-4.1) -0.216 (-4.1) -0.213 (-4.0)

Travel Cost (1990 cents) -0.0035 (-3.7)   
Travel Cost by Income (1990 cents per 1000 1990 dollars) -0.0349 (-2.2) 
Travel Cost by Log of Income (1990 cents per log of 1000 
1990 dollars)   -0.0111 (-3.6)

Zero Vehicle Household Dummy Variable   
 Transit, Bike, and Walk 1.63 (4.4) 1.63 (4.4) 1.61 (4.3)
 All Private Vehicle Modes (base) 0.00 0.00  0.00
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Variables Model 1 S/O Model 8 S/O Model 9 S/O 
Dummy Variable for Destination in Core   

 Transit 1.94 (3.0) 2.20 (3.5) 1.96 (3.0)
 Shared Ride 2 0.492 (1.1) 0.653 (1.4) 0.494 (1.1)
 Shared Ride 3+ -0.0481 (-0.1) 0.150 (0.2) -0.0578 (-0.1)
 Shared Ride 2+ & Drive Alone 1.42 (3.4) 1.53 (3.6) 1.43 (3.4)
 Shared Ride 2/3+ -25.0 (0.0) -26.5 (0.0) -26.7 (0.0)
 Bike 1.25 (1.1) 1.41 (1.2) 1.2 (1.1)
 Walk 0.147 (0.2) 0.277 (0.3) 0.0709 (0.1)
 Drive Alone (base) 0.00 0.00  000

Log-likelihood at Zero -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4486.445 -4490.817 -4486.695 
Rho Squared w.r.t Zero 0.2766 0.2759 0.2765 
Rho Squared w.r.t. Constants 0.0959 0.0950 0.0958 
Adjusted Rho Squared w.r.t Zero 0.27011 0.2694 0.27007 

----- -8.2539 -0.7131 Non-nest hypothesis of cost by income and cost by ln(income)  
----- <<0.001 0.237 

 

 The next step in developing a preferred model specification is to combine the preferred 

alternative from each of the specifications considered to this point.  The log of household size is 

selected over the spline variables, as it achieves the same goodness-of-fit with fewer variables.  

Autos per person is used for vehicle availability, and income and travel time are retained as 

modeled in the base model.  Given the very similar goodness-of-fit of the unadjusted cost 

variable and the cost divided by the log of income, both are tested.  The resulting models, 

Models 10 S/O and 11 S/O, are displayed in Table 7-9.   

 Table 7-9 also includes Model 3 S/O and a variation on it, dividing cost by the log of 

income, showing that Model 3 S/O has superior goodness-of-fit to both Models 10 S/O and 11 

S/O.  While this result may seem surprising, it illustrates the possible interactions which can 

occur between variables in a model and highlights the importance of reviewing earlier decisions 

in the development of the utility specification as the final specification is approached.  

Unfortunately, there is no approach, other than testing every possible combination of variables, 

to ensure that the best statistical model is obtained.  However, the time and effort required to test 

every possible specification may not be justified when a simpler approach, with a reasonable, but 

limited, amount of checking alternative specifications is likely to produce nearly as good a 

model as the full factorial search.  This is particularly true if one has a judgmental basis to guide 

the specification selection process. 
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Table 7-9 Composite Specifications from Earlier Results Compared with other Possible 
Preferred Specifications 

Variables Model 10 S/O Model 11 S/O Model 3 S/O Model 12 S/O 
Constants        
  Transit 1.79 (2.1) 1.91 (2.3) 0.696 (0.9) 0.803 (1.0)
  Shared Ride 2 -0.659 (-3.2) -0.700 (-3.4) -1.10 (-7.9) -1.13 (-8.1)
  Shared Ride 3+ -1.30 (-4.0) -1.36 (-4.1) -3.15 (-13.0) -3.20 (-13.1)
  Shared Ride 2+ & Drive Alone -0.914 (-3.7) -0.933 (-3.8) -1.83 (-11.1) -1.84 (-11.2)
  Shared Ride 2/3+ -2.38 (-4.8) -2.42 (-4.9) -4.11 (-11.2) -4.15 (-11.3)
  Bike -4.33 (-5.2) -4.38 (-5.3) -4.44 (-6.9) -4.48 (-7.0)
  Walk 0.967 (2.0) 0.941 (1.9) 0.581 (1.4) 0.551 (1.4)
  Drive Alone (base) 0.00 0.00 0.00  0.00
Log of Persons per Household        
  Transit 0.426 (1.1) 0.441 (1.2) 2.11 (5.4) 2.14 (5.5)
  Shared Ride 2 0.668 (5.5) 0.677 (5.5) 1.16 (10.0) 1.17 (10.1)
  Shared Ride 3+ 1.55 (8.5) 1.56 (8.6) 3.19 (18.2) 3.19 (18.2)
  Shared Ride 2+ & Drive Alone 0.965 (6.9) 0.968 (6.9) 1.90 (14.3) 1.90 (14.3)
  Shared Ride 2/3+ 1.37 (5.0) 1.39 (5.1) 2.89 (11.2) 2.90 (11.2)
  Bike 1.68 (3.5) 1.69 (3.5) 2.29 (4.8) 2.29 (4.8)
  Walk 0.399 (1.8) 0.397 (1.8) 1.37 (6.3) 1.36 (6.3)
  Drive Alone (base) 0.00 0.00 0.00  0.00
Number of Vehicles        
  Transit    -1.91 (-5.9) -1.93 (-6.0)
  Shared Ride 2    -0.233 (-4.3) -0.231 (-4.3)
  Shared Ride 3+    -0.835 (-10.1) -0.831 (-10.0)
  Shared Ride 2+ & Drive Alone    -0.456 (-7.3) -0.456 (-7.3)
  Shared Ride 2/3+    -0.740 (-6.0) -0.737 (-6.0)
  Bike    -0.388 (-1.8) -0.382 (-1.8)
  Walk    -0.669 (-5.0) -0.667 (-4.9)
  Drive Alone (base)     0.00  0.00
Vehicles per Person        
  Transit -3.57 (-4.7) -3.62 (-4.7)     
  Shared Ride 2 -0.567 (-4.0) -0.559 (-3.9)     
  Shared Ride 3+ -2.63 (-9.6) -2.61 (-9.5)     
  Shared Ride 2+ & Drive Alone -1.22 (-6.7) -1.21 (-6.6)     
  Shared Ride 2/3+ -2.38 (-5.7) -2.37 (-5.7)     
  Bike -0.386 (-0.7) -0.371 (-0.6)     
  Walk -0.948 (-3.0) -0.949 (-3.0)     
  Drive Alone (base) 0.00 0.00      
Household Income (1,000's of 1990 

dollars)        

  Transit -0.0123 (-1.5) -0.0150 (-1.8) -0.0072 (-0.9) -0.0096 (-1.2)
  Shared Ride 2 -0.0033 (-2.0) -0.0026 (-1.6) -0.0033 (-1.9) -0.0026 (-1.5)
  Shared Ride 3+ -0.0007 (-0.3) 0.0001 (0.0) -0.0006 (-0.3) 0.0003 (0.1)
  Shared Ride 2+ & Drive Alone 0.0003 (0.2) 0.0007 (0.4) 0.0004 (0.2) 0.0008 (0.4)
  Shared Ride 2/3+ 0.0017 (0.5) 0.0024 (0.7) 0.0015 (0.5) 0.0022 (0.7)
  Bike -0.0022 (-0.3) -0.0013 (-0.2) -0.0015 (-0.2) -0.0006 (-0.1)
  Walk -0.0073 (-2.1) -0.0064 (-1.8) -0.0055 (-1.5) -0.0046 (-1.3)
  Drive Alone (base) 0.00 0.00 0.00  0.00



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 154 
 

 
Koppelman and Bhat  January 31, 2006 

Variables Model 10 S/O Model 11 S/O Model 3 S/O Model 12 S/O 
Travel Time (minutes)        
  Non-Motorized Modes Only -0.0846 (-8.0) -0.0849 (-8.0) -0.0850 (-8.0) -0.0853 (-8.1)
  Motorized Modes Only -0.0331 (-2.9) -0.0334 (-2.9) -0.0343 (-3.1) -0.0348 (-3.1)
  OVT by Distance (mi.) Motorized Modes -0.236 (-4.4) -0.232 (-4.3) -0.214 (-4.1) -0.210 (-4.0)
Travel Cost (1990 cents) -0.0039 (-4.0)   -0.0037 (-3.9)  

Travel Cost by Log of Income (1990 
cents per log of 1000 1990 dollars)   -0.0128 (-4.0)     -0.0124 (-3.9)

Zero Vehicle Household Dummy 
Variable        

  Transit, Bike, Walk 2.2 (5.4) 2.17 (5.3) 1.58 (4.2) 1.56 (4.2)
  All Private Vehicle Modes 0.00 0.00 0.00  0.00
Dummy Variable for Destination in 

Core        

  Transit 1.94 (3.1) 1.95 (3.1) 1.88 (2.9) 1.87 (2.9)
  Shared Ride 2 0.426 (0.9) 0.415 (0.9) 0.443 (1.0) 0.422 (0.9)
  Shared Ride 3+ -0.107 (-0.2) -0.107 (-0.2) -0.113 (-0.2) -0.127 (-0.2)
  Shared Ride 2+ & Drive Alone 1.38 (3.3) 1.38 (3.3) 1.38 (3.3) 1.37 (3.3)
  Shared Ride 2/3+ -25.0 (0.0) -25.0 (0.0) -26.7 (0.0) -26.7 (0.0)
  Bike 1.24 (1.1) 1.16 (1.0) 1.22 (1.1) 1.15 (1.0)
  Walk 0.112 (0.1) 0.0105 (0.0) 0.0358 (0.0) -0.0649 (-0.1)
  Drive Alone (base) 0.00 0.00 0.00  0.00
Log-likelihood at Zero -6201.516 -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4455.014 -4455.143 -4445.078 -4444.851 
Rho Squared w.r.t Zero 0.2816 0.2816 0.2832 0.2833 
Rho Squared w.r.t. Constants 0.1022 0.1022 0.1042 0.1043 

 

 Among the models in Table 7-9, Model 12 S/O is chosen as the preferred specification, 

because it’s goodness of fit is slightly better than any of the other models, it obtains slightly 

better values of time than any other models and theoretical considerations support the use of cost 

divided by a function of income.  Before accepting it as the final MNL model, however, it is 

important to return to the issue of the significance of the variables included.  Variables that are 

not statistically significant are usually excluded to simplify the model unless there are important 

theoretical or policy reasons for their retention.  However, case descriptive variables are 

generally included or excluded as a full set of alternative specific variables although this is not a 

firm rule and special cases are included in this chapter.   

 Therefore, Table 7-10 presents two final additional models which simplify Model 12 S/O 

by eliminating or combining insignificant variables.  Model 13 S/O eliminates household income 

as an alternative specific variable, since none of these variables are significant and income is 

included in the model through its interaction with cost.  Model 14 S/O combines the dummy 
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variables for destination in the core to improve the significance of these variables.  The chi-

squared log-likelihood test rejects Model 13 S/O but does not reject Model 14 S/O in favor of 

Model 12 S/O.   

Table 7-10 Refinement of Final Specification Eliminating Insignificant Variables 

Variables Model 12 S/O Model 13 S/O Model 14 S/O 
Constants      
  Transit 0.803 (1.0) 0.546 (0.7) 0.53 (0.7)
  Shared Ride 2 -1.13 (-8.1) -1.20 (-9.0) -1.19 (-9.0)
  Shared Ride 3+ -3.20 (-13.1) -3.19 (-13.6) -3.20 (-13.7)
  Shared Ride 2+ & Drive Alone -1.84 (-11.2) -1.82 (-11.6) -1.78 (-11.4)
  Shared Ride 2/3+ -4.15 (-11.3) -4.08 (-11.7) -4.11 (-11.7)
  Bike -4.48 (-7.0) -4.49 (-7.3) -4.41 (-7.3)
  Walk 0.551 (1.4) 0.462 (1.2) 0.461 (1.2)
  Drive Alone (base) 0.00 0.00  0.00
Log of Persons per Household      
  Transit 2.14 (5.5) 2.10 (5.3) 2.10 (5.4)
  Shared Ride 2 1.17 (10.1) 1.14 (9.9) 1.14 (9.9)
  Shared Ride 3+ 3.19 (18.2) 3.19 (18.3) 3.19 (18.3)
  Shared Ride 2+ & Drive Alone 1.90 (14.3) 1.90 (14.5) 1.90 (14.5)
  Shared Ride 2/3+ 2.90 (11.2) 2.90 (11.3) 2.89 (11.3)
  Bike 2.29 (4.8) 2.28 (4.8) 2.27 (4.8)
  Walk 1.36 (6.3) 1.32 (6.2) 1.32 (6.2)
  Drive Alone (base) 0.00 0.00  0.00
Number of Vehicles      
  Transit -1.93 (-6.0) -2.05 (-6.6) -2.06 (-6.6)
  Shared Ride 2 -0.231 (-4.3) -0.250 (-4.7) -0.248 (-4.7)
  Shared Ride 3+ -0.831 (-10.0) -0.826 (-10.3) -0.819 (-10.3)
  Shared Ride 2+ & Drive Alone -0.456 (-7.3) -0.448 (-7.4) -0.456 (-7.5)
  Shared Ride 2/3+ -0.737 (-6.0) -0.712 (-6.0) -0.700 (-6.0)
  Bike -0.382 (-1.8) -0.383 (-1.9) -0.401 (-2.0)
  Walk -0.667 (-4.9) -0.715 (-5.5) -0.714 (-5.5)
  Drive Alone (base) 0.00 0.00  0.00
Household Income (1,000's of 1990 dollars)      
  Transit -0.0096 (-1.2)    
  Shared Ride 2 -0.0026 (-1.5)    
  Shared Ride 3+ 0.0003 (0.1)    
  Shared Ride 2+ & Drive Alone 0.0008 (0.4)    
  Shared Ride 2/3+ 0.0022 (0.7)    
  Bike -0.0006 (-0.1)    
  Walk -0.0046 (-1.3)    
  Drive Alone (base) 0.00     
Travel Time (minutes)      
  Non-Motorized Modes Only -0.0853 (-8.1) -0.0850 (-8.0) -0.0848 (-8.0)
  Motorized Modes Only -0.0348 (-3.1) -0.0341 (-3.1) -0.0344 (-3.1)
  OVT by Distance (mi.) Motorized Modes -0.210 (-4.0) -0.208 (-3.9) -0.208 (-3.9)
Travel Cost by Log of Income (1990 cents per log of    
1000 1990 dollars) -0.0124 (-3.9) -0.0126 (-4.0) -0.0111 (-3.6)

Zero Vehicle Household Dummy Variable      
  Transit, Bike, Walk 1.56 (4.2) 1.56 (4.2) 1.57 (4.2)
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Variables Model 12 S/O Model 13 S/O Model 14 S/O 
  All Private Vehicle Modes (base) 0.00 0.00  0.00
Dummy Variable for Destination in Core      
  Transit 1.87 (2.9) 1.87 (2.9) 2.01 (3.2)
  Shared Ride 2 0.422 (0.9) 0.404 (0.9) 0.716 (1.8)
  Shared Ride 3+ -0.127 (-0.2) -0.147 (-0.2) 0.716 (1.8)
  Shared Ride 2+ & Drive Alone 1.37 (3.3) 1.36 (3.2) 0.716 (1.8)
  Shared Ride 2/3+ -26.7 (0.0) -26.7 (0.0) 0.716 (1.8)
  Bike 1.15 (1.0) 1.11 (1.0) 0.301 (0.2)
  Walk -0.0649 (-0.1) -0.0736 (-0.1) 0.301 (0.2)
  Drive Alone (base) 0.00 0.00  0.00
Log-likelihood at Zero -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4444.851 -4448.481 -4457.235 
Rho Squared w.r.t Zero 0.2833 0.2827 0.2813 
Rho Squared w.r.t. Constants 0.1043 0.1035 0.1018 
Chi-Squared vs. Model 12  S/O   7.2600 24.7680 
  Confidence   59.8% 99.0% 
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CHAPTER 8: Nested Logit Model 
 

8.1 Motivation  
The Multinomial Logit Model (MNL) structure has been widely used for both urban and 

intercity mode choice models primarily due to its simple mathematical form, ease of estimation 

and interpretation, and the ability to add or remove choice alternatives.  However, the MNL 

model has been widely criticized for its Independence of Irrelevant Alternatives (IIA) property 

(see Section 4.2.  The IIA property of the MNL restricts the ratio of the choice probabilities for 

any pair of alternatives to be independent of the existence and characteristics of other 

alternatives in the choice set.  This restriction implies that introduction of a new mode or 

improvements to any existing mode will reduce the probability of existing modes in proportion 

to their probabilities before the change. 

 The IIA property is a major limitation of the MNL model as it implies equal competition 

between all pairs of alternatives, an inappropriate assumption in many choice situations.  For 

example, in the case of urban mode choice among drive alone, shared ride, bus and light rail; the 

bus and light rail alternatives are likely to be more similar to each other than they are to either of 

the other alternatives due to shared attributes which are not included in the measured portion of 

the utility function; for example, bus and light rail may have the same fare structure and 

operating policies, the same lack of privacy, control of the environment, and so on.  Such 

similarities, if not included in the measured portion of the utility function, lead to correlation 

between the errors associated with these alternatives, a violation of the assumptions which 

underlie the derivation of the MNL. 

 The way in which this undesirable characteristic of the IIA property manifests itself can 

be illustrated using this example.  Assume that the choice probabilities (for an individual or a 

homogeneous group of individuals) are 65%, 15%, 10% and 10% for drive alone, shared ride, 

bus and light rail, respectively.  If the light rail service were to be improved in such a way as to 

increase its choice probability to 19%, the MNL model would predict that the shares of the other 

alternatives would decrease proportionately as shown in Table 8-1, decreasing the probability for 
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the drive alone, shared ride and bus alternatives by a factor of 0.90.  As a result, the MNL model 

predicts that most of the increased light rail ridership comes from drive alone (6.5%) while only 

1.5% comes from car pool and 1% from bus.  This is inconsistent with expectations and 

empirical evidence that most of the new light rail riders will be diverted from bus and carpool.  

This inconsistency is a direct result of the IIA property of the MNL model.  Thus, in these types 

of choice situations, the MNL model will yield incorrect predictions of diversions from existing 

modes. 

Table 8-1 Illustration of IIA Property on Predicted Choice Probabilities 

Alternative Choice Probability 
Before 

Improvements to 
LRT 

Choice Probability 
After 

Improvements  
to LRT 

Proportional 
Change in 

Choice 
Probabilities 

Algebraic 
Change in 

Choice 
Probabilities 

Drive Alone 0.650 0.585 0.900 -0.065 

Carpool 0.150 0.135 0.900 -0.015 

Bus 0.100 0.009 0.900 -0.010 

Light Rail 0.100 0.190 1.900 +0.090  

 

More extreme examples of this phenomenon have been described in the modeling literature.  

Most widely known among them is the red bus/blue bus problem described in section 4.2.1. 

 These and numerous other examples illustrate that the IIA property is difficult to justify 

in situations where some alternatives compete more closely with each other than they do with 

other alternatives.  This limitation of the MNL model results from the assumption of the 

independence of error terms in the utility of the alternatives (section 3.5), which is used to derive 

the model.  Different models can be derived through the use of different assumptions concerning 

the structure of the error distributions of alternative utilities.  Among them, the Nested Logit 

(NL) model (Williams, 1977; McFadden, 1978; Daly and Zachary, 1978), is the simplest and most 

widely used.  The NL model represents important deviations from the IIA property but retains 
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most of the computational advantages of the MNL model (Borsch-Supan, 1987).  The NL model 

is characterized by grouping (or nesting) subsets of alternatives that are more similar to each 

other with respect to excluded characteristics than they are to other alternatives. 

 Alternatives in a common nest exhibit a higher degree of similarity and competitiveness 

than alternatives in different nests.  This level of competitiveness, represented by cross-

elasticities between pairs of alternatives (the impact of a change in one mode on the probability 

of another mode) is identical for all pairs of alternatives in the nest.  Complex tree structures can 

be developed which offer substantial flexibility in representing differential competitiveness 

between pairs of alternatives; however, the nesting structure imposes a system of restrictions 

concerning relationships between pairs of alternatives as will be discussed later in this chapter. 

8.2 Formulation of Nested Logit Model  
The derivation of the nested logit model is based on the assumption that some of the alternatives 

share common components in their random error terms.  That is, the random term of the nested 

alternatives can be decomposed into a portion associated with each alternative and a portion 

associated with groups of alternatives.  For example, consider an urban mode choice where a 

traveler has four modes (drive alone, shared ride, commuter rail and bus) available for making an 

intercity trip.  The utility equations for these alternatives are: 

 

DA DA DA

SR SR SR

Bus PT Bus PT Bus

LTR PT LTR PT LTR

U V

U V

U V V

U V V

ε

ε

ε ε

ε ε

= +

= +

= + + +

= + + +

 8.1 

The utility terms for bus and light rail each include a distinct observed component, BusV  and 

LTRV , and a common observed component, PTV , for public transit (PT); they also include 

distinct random components, Busε  and LTRε , and a common random component, PTε .  The 

common error component creates a covariance between the total errors for bus, PT Busε ε+ , 

and Light Rail, PT LTRε ε+ .  This covariance violates the assumption underlying the MNL 
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model representing an increased similarity between pairs of nested alternatives (bus and Light 

Rail, in this case) and leads to greater cross-elasticity between these alternatives.   

 The total error for each of the four alternatives is assumed to be distributed Gumbel with 

scale parameter equal to one, as in the MNL model.  The variance of these distributions is:  

 
2

SR    ( ) ( ) ( ) ( )
6DA PT Bus PT LTRVar Var Var Var
π

ε ε ε ε ε ε= = + = + =  8.2 

The distinct error components, Busε  and LTRε , also are assumed to be distributed Gumbel, but 

with scale parameter, PTµ .   However, in practice we estimate 
1

PT
PT

θ
µ

= , the inverse of the 

Gumbel scale parameter.   PTθ  , commonly referred to as the logsum parameter, is bounded by 

zero and one.  That is, the variance of these distributions is: 

 
2 2 2

2( ) ( )
6 6

PT

PT
Bus LTRVar Var

π π θ
µ

ε ε= = =  8.3 

where PTµ  is bounded by one and positive infinity ( PTθ  is bounded by zero and one) to ensure 

that the conditional variance for bus, ( )BusVar ε ,  is less than the total variance for bus, 

( )PT BusVar ε ε+ , and similarly for Light Rail.  This is required to ensure that the variance for 

the common public transit error component, PTε , is non-negative. These assumptions are 

adequate to derive a nested logit model using utility maximization principles.  The choice 

structure implied by these equations is depicted by the nesting structure in Figure 8.3, in which 

bus and light rail are more similar to each other than they are to drive alone and shared ride.  

It is convenient to interpret this structure as if there are two levels of choice even though 

the derivation of the model makes no assumptions about the structure of the choice process41.  

The figure depicts an upper level (marginal) choice among drive alone, shared ride, and public 

transit and a lower level (conditional) choice between bus and light rail, given that public transit 

is chosen. 

                                                 
41 The hierarchy of choice and the notion of a “decision tree” are purely analytical devices - they do not necessarily imply that an individual 

makes choices in a certain order (Borsch-Supan, 1987). 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 161 
 

 
Koppelman and Bhat  January 31, 2006 

Figure 8.1 Two-Level Nest Structure with Two Alternatives in Lower Nest 
 

 The choice probabilities for the lower level nested alternatives (commuter rail or bus), 

conditional on choice of these alternatives are given by: 
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This is the standard logit form except for the inclusion of the logsum parameter in the 

denominator of each utility function. The marginal choice probabilities for the drive alone, 

shared ride, and public transit alternatives are: 
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 8.6 
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 8.8 

 

where  PTΓ   represents the expected value of the maximum of the bus and light rail 

utility.   

The expected utility of the public transit alternatives equals this value, PTΓ , times the logsum 

parameter, PTθ , plus other attributes common to the pair of alternatives, PTV .  PTΓ  is 

computed from the log of the sum of the exponents of the nested utilities (equations 8.4 and 8.5), 

commonly referred to as the “logsum” variable.   

  log exp  exp
PT PT

LTRBus
PT

VV
θ θ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎟⎟⎢ ⎥⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟⎢ ⎥⎜⎜ ⎟⎟⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
Γ = +  8.9 

An important feature of these equations is that the logsum parameter, PTθ , appears in the 

denominator of the conditional utility for all the nested alternatives.  The implication of this is 

that all of the utility function parameters, β , are scaled by a common value.  Since PTθ  is 

bounded by zero and one, the magnitudes of all the resultant parameters, / PTβ θ , are increased 

implying that the choice between the nested alternatives is more sensitive to changes to any of 

the variables in these functions than are alternatives not in the nest.  Further, if the number of 

alternatives in any nest is reduced to one, the utility in the marginal model becomes identically 

equal to the utility for the remaining alternative.  That is, if the bus alternative is not available to 

some travelers, the utility of the nest becomes: 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 163 
 

 
Koppelman and Bhat  January 31, 2006 

 
*    log  exp

  

LTR
PT PT PT

PT

PT LTR

V
V V

V V

θ
θ

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= + ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦
= +

 8.10 

The probability of choosing the nested alternatives can be obtained by multiplying the 

conditional probability of the nested alternative by the marginal probability as follows: 

 Pr( )  Pr( | )  Pr( )Bus Bus PT PT= ×  8.11 
 Pr( )  Pr( | )  Pr( )LTR LTR PT PT= ×  8.12 

8.2.1 Interpretation of the Logsum Parameter 
The logsum parameter,θ , (sometimes called the “dissimilarity parameter” or the “nesting 

coefficient”), is a function of the underlying correlation between the unobserved components for 

pairs of alternatives in that nest, and it characterizes the degree of substitutability between those 

alternatives.  The value of the logsum parameter is bounded by zero and one to ensure 

consistency with random utility maximization principles.  Different values of the parameter 

indicate the degree of dissimilarity between pairs of alternatives in the nest. The interpretation of 

different values of the logsum parameter is as follows: 

• 1θ >  Not consistent with the theoretical derivation.  Reject NL model. 

• 1θ =  Implies zero correlation among mode pairs in the nest so the NL model collapses 

to the MNL model. 

• 0 1θ< <   Implies non-zero correlation among pairs.  This range of values is 

appropriate for the nested logit model.  Decreasing values of θ  indicate increased 

substitution between/among alternatives in the nest. 

• 0θ =  Implies perfect correlation between pairs of alternatives in the nest.  That is, the 

choice between the nested alternatives, conditional on the nest, is deterministic. 

• 0θ <  Not consistent with the theoretical derivation.  Therefore, we reject the nested 

logit model. 

8.2.2 Disaggregate Direct and Cross-Elasticities  
The differences between the nested logit model and the multinomial logit model can be 

illustrated by comparison of the elasticities of each alternative to changes in the value of a 
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variable associated with it (direct elasticity) or with another alternative (cross elasticity) as 

reported in Table 8-2.  The MNL direct- and cross-elasticity equations are the same for all 

alternatives.  This is a manifestation of the IIA property of the MNL model.   

 However, the elasticity expressions for the NL model are differentiated between cases in 

which the alternative being considered is or is not in the same nest as the alternative which is 

changed.  Both models produce identical direct- and cross-elasticities when the attribute that is 

changed is for one of the non-nested alternatives.  However, the elasticity equations for changes 

in the attributes of nested alternatives are different.  These differences are attributable to the 

value of θ  in the elasticity equations.  When θ  is equal to one, its maximum value, the 

expression, 
1 θ

θ

−
, in the elasticity formulae in Table 8-2 becomes zero and the direct and cross-

elasticity expressions for the nested alternatives collapse to the corresponding equations for the 

alternatives not in the nest.  As the scale parameter, θ , decreases from one to zero, this 

expression increases and the direct- and cross-elasticities within the nest become larger 

(possibly, much larger) than the direct- and cross-elasticities between the nests.  That is, the 

sensitivity of a nested alternative to changes in its attributes or to changes in the attributes of 

other nested alternatives becomes much greater than the corresponding changes for non-nested 

alternatives.  Although the same comparison appears to exist between nested alternatives and 

similar alternatives in the MNL model, this can only be evaluated by taking account of 

differences in the β  parameters between the MNL and NL models. 
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Table 8-2 Elasticity Comparison of Nested Logit vs. MNL Models 

Elasticity of Probability of 
 Choosing Mode 

Changes in  
Non-Nested 

Alternative, ‘j’ 

Changes in  
Nested  

Alternative, ‘k’ 

I.   Direct Elasticity   

      Multinomial Logit 

      Nested Logit 

 

( )1 j LOS jP LOSβ−  

 ( )1 j LOS jP LOSβ−

 

Not Applicable 

( ) ( )|

1
1 1N

k k N
N

LOS k

P P

LOS

θ
θ

β

⎛ ⎞⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎟− + −⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
×

II.  Cross Elasticity 

a.)  Effect on Non-nested Alts. 

      Multinomial Logit 

      Nested Logit 

 

 

j LOS jP LOSβ−  

j LOS jP LOSβ−  

 

 

Not Applicable 

k LOS kP LOSβ−  

b.)  Effect on Nested Alts. 

             Multinomial Logit 

             Nested Logit 

 

Not Applicable 

j LOS jP LOSβ−  

 

Not Applicable 

( )|

1 N
k k N

N

LOS k

P P

LOS

θ
θ

β

⎛ ⎞⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎟− +⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
×

 

Source: Modified from Forinash and Koppelman, 1993 

 

8.3 Nesting Structures  
The assumptions underlying the model described in the preceding section (correlation of error 

terms for the bus and light rail alternatives) results in a two-level model with a single public 

transit nest for the four alternative (drive alone, shared ride, commuter rail, and bus) mode 
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choice problem.  This nesting structure is one of many possible two-level nested logit models 

which can be constructed for a choice set with four alternatives.  The possible set of two-level 

nested logit models includes six combinations of two alternatives in a nest with the remaining 

alternatives at the upper level, four combinations of three alternatives in a nest and one at the 

upper level and three combinations of two alternatives in a nest and two alternatives in a parallel 

nest for a total of thirteen two-level nest structures (Figure 8.2).  The number of two level nest 

structures increases rapidly with the number of alternatives as shown in Table 8-3 below.   

 

 

Figure 8.2 Three Types of Two Level Nests 
 

Some of these nesting structures are likely to be behaviorally unreasonable; for example, it 

doesn’t seem reasonable to include bus and car in the same nest. The selection of a preferred 

nesting structure requires a combination of judgment (about reasonable nesting structures) and 

statistical hypothesis testing; specifically, testing the hypothesis that the MNL or a simpler NL 

model is the true model.   

 Further, sub-groups of alternatives within any group may themselves be more similar to 

each other than to other alternatives in the larger group.  Representation of these differences in 

similarity can result in multiple levels of nesting, hierarchically identifying increasingly similar 

alternatives at each level (Borsch-Supan, 1987).  For example, in the four alternative case, the 

Two alternatives in one 
lower nest 

Three alternatives in one 
lower nest 

Two alternatives in each 
of two lower nests 
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case of three alternatives in a lower nest might represent alternatives that include group riding 

(shared ride, bus and light rail).  If we believe that the bus and light rail alternatives are more 

similar than either alternative is to shared ride, utility equations with the following common error 

terms will show an intermediate level of error correlation among all group travel modes, and an 

additional level of error correlation between commuter rail and bus. 
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 8.13 

In this case, the group travel modes (shared ride, commuter rail and bus) will be nested at the 

second level and commuter rail and bus will be nested at the third or lowest level as shown in 

Figure 8.3.  In this model structure, the lower level nest is a binary choice between commuter rail 

and bus, conditional on choice of public transit; the second level nest represents a choice 

between shared ride and public transit conditional on group travel; and the highest level 

represents a choice between drive alone and group travel. 

Figure 8.3 Three-Level Nest Structure for Four Alternatives 
 

Drive Alone 

Public Transit 

Bus Shared Ride Light Rail 

Group Travel 
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Twelve three-level nested structures are possible with four alternatives; these are combinations 

of two alternatives at the lowest level, one alternative at the intermediate level and one 

alternative at the upper level.  

The probability equations for the two-level nested logit model can be extended readily to 

the three-level case as illustrated below.  The probabilities for each nested alternative in the 

lowest level, commuter rail or bus, conditional on choice of public transit (PT) are given by:  
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where PTθ   is the logsum parameter at the lowest (i.e., public transit)  nest 

level.   

The probabilities for each alternative in the second level nest, shared ride and public transit, 

conditional on the choice of group travel (GRP) modes are: 
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where GRPθ  is the logsum parameter for the intermediate level (i.e., for the 

group travel modes) and , 
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PTΓ  is the “logsum” of the exponents of the nested utilities for the 

lower nest level:    

    log exp  + exp 
  

Bus LTR
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θ θ
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Finally, the probabilities for automobile and the common carrier nest are: 
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where GRPθ  is the logsum parameter for the intermediate level (i.e., for the 

common carrier modes), and  

 GRPΓ   is the logsum of the exponents of the nested utilities for the 

intermediate nest: 

 PT PT PTV  + 
log exp  + expSR
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GRP GRP

V θ
θ θ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪Γ⎟ ⎟⎪ ⎪⎜ ⎜⎟ ⎟Γ = ⎜ ⎜⎨ ⎬⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎪ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
 8.20 

The marginal probabilities of shared ride, commuter rail and bus are the product of the 

probabilities of each branch from the root (top of the tree) to the alternative: 

 

Pr( ) Pr( | ) Pr( )

Pr( ) Pr( | ) Pr( | ) Pr( )

Pr( ) Pr( | ) Pr( | ) Pr( )

SR SR GRP GRP

Bus Bus PT PT GRP GRP

LTR LTR PT PT GRP GRP

= ×

= × ×

= × ×

 8.21 

   
The value of the logsum parameters decrease as we go down the tree.  This follows from the 

requirement that the error variance at each level of the tree must be lower than at the next higher 

level since the total variance for each alternative is fixed and the variance at each level of the tree 

must be positive (non-negative).  The total variance for each alternative, *( )ModeVar ε , is given 

by:    
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*
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π
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= + +
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 8.24 

 

*

2

( ) ( )

( ) ( ) ( )
6

LTR GRP PT LTR

GRP PT LTR

Var Var

Var Var Var

ε ε ε ε

π
ε ε ε

= + +

= + + =
 8.25 

 

The variance components for alternatives, group elements and public transit elements of each 

alternative are shown in the following figure. 

 
Figure 8.4 Decomposition of Error Variance 

This figure helps to explain the hierarchical restrictions on logsum parameters.  Section 8.2.1 

described the initial restriction on the logsum for a single nest level or a two level tree as 

follows: 0 1θ< < .  However, in multi-level tree structures, as shown in Section 8.3, the 

logsum parameter at each level is restricted to be between zero and the logsum parameter at the 
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PT Mode 
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next higher level of the nesting structure.  Thus, in the example in Figure 8.4 above, 

0 1Grpθ< <  and 0 PT Grpθ θ< < .  This hierarchical restriction ensures that the variance of 

each error term in equations 8.22 through 8.25 is positive, as required.  In particular, the 

variances are defined as 

 
2

( )
6TotalVar
π

ε =  8.26 

 
2 2

( )
6
Grp

GRPVar
π θ

ε =  8.27 

 
2 2

( )
6

PT
PTVar

π θ
ε =  8.28 

 ( )
2

2( ) 1
6Total GRP GrpVar
π

ε ε θ− = −  8.29 

 ( )
2

2 2( )
6Grp PT Grp PTVar
π

ε ε θ θ− = −  8.30 

To ensure that all the variance components are positive, as required, the nesting parameters must 

be constrained as shown 1PT Grpθ θ< < .  These hierarchical constraints apply to all levels of 

nested logit models.  The examples of two-level and three-level nesting structures shown in 

Figure 8.2 and Figure 8.3 represent four of the twenty-eight different nested models (13 two-

level and 12 three-level) that are feasible for a four-alternative case.  The number of distinct 

nests increases rapidly with an increasing alternatives (see Table 8-3).  

 The large number of feasible nesting structures poses a substantial problem of 

determining which one best reflects the choice behavior of the population.  The analyst’s 

judgment can be used to substantially reduce this to a smaller number of realistic structures 

(based on our understanding of the competitive relationships); however, the analyst needs to be 

cautious in excluding structures since some apparently non-intuitive structures may have good fit 

statistics and their interpretation may provide useful insight into the choice behavior under study. 
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Number of 

Alternatives 

Possible 2-Level 

Nesting Structures 

Possible 3-Level 

Nesting Structures 

Total Possible 

Nesting Structures 

All Levels42 

3 3 0 3 

4 13  12 25 

5 50 125 235 

6 201 1040 2711 

Table 8-3 Number of Possible Nesting Structures 
 

8.4 Statistical Testing of Nested Logit Structures 
Adopting a nested logit model implies rejection of the MNL43.  We can use standard statistical 

tests of the hypothesis that the MNL model is the true model since the nested logit model is a 

generalization of the MNL model.  In the case of multiple nests, the hypothesis that the MNL is 

the true model is equivalent to the hypothesis that all the logsum parameters are equal to one.  

We can use the likelihood ratio statistic with degrees of freedom equal to the number of logsum 

parameters (the number of restrictions between the NL and the MNL) to test this hypothesis.  We 

reject the null hypothesis that the MNL model is the correct model if the calculated value is 

greater than the test or critical value for the distribution as: 

 MNL NL 22  [  - ] nχ− × ≥  8.31 
 

 where n  is the number of restrictions (nests) between the MNL and NL models. 

                                                 
42 The maximum number of levels is one fewer than the number of alternatives 
43 Test can also be made between any NL and a simpler NL that is a reduced form of the initial model. 
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In the case of a simple NL model with a single nest, we can use the t-statistic to test the 

hypothesis that the logsum parameter is equal to one.  Even in a more complex NL model, we 

can test each logsum term to determine if a portion of the nesting structure can be eliminated.  

For each case in which the hypothesis that the logsum parameter is equal to one is not rejected, 

the corresponding branch of the tree can be eliminated and the alternatives can go directly to the 

next level.  The t-statistics must be evaluated for the appropriate null hypothesis.  For nests 

directly under the root of the tree, the null hypothesis is 0 : 1kH µ = ; for other nests, the null 

hypothesis is that the parameter for that nest is equal to the parameter for the next higher nest in 

the tree.  That is, for a top level nest, 

 
ˆ 1

t-statistic  k

kS
θ −

=  8.32 

where k̂θ   is the estimate of the logsum parameter for nest k , 

1  is the hypothesized value against which the logsum parameter is 

being tested; 

kS  is the standard error of the parameter estimate. 

 

For other nests,  

 
2 2

,

ˆ ˆ
t-statistic  

2
k j j

k j j k j jS S S

θ θ⊂

⊂ ⊂

−
=

+ −
 8.33 

 

where k̂ jθ ⊂  is the estimate of the logsum parameter for nest k  that is included 

under nest j , 

 ĵθ  is the estimate of the logsum parameter for nest j , 
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 2
k jS ⊂  is the error variance of the logsum parameter for nest k  that is 

included under nest j , 

 2
jS  is the error variance of the logsum parameter for nest j , and  

 ,k j jS ⊂  is the error covariance of the two logsum parameters. 

It is important to note that these are not necessarily the test values that will be reported by all 

computer programs, many of which apply the test for the null hypothesis that the logsum is equal 

to zero or one only.  If the test against zero is reported44, the user must obtain or calculate the 

standard errors of estimate for the relevant parameters and calculate the t-statistic(s) as defined 

above. 

 The likelihood ratio test can also be used to test the significance of more complex nested 

models or between models with different nesting structures as long as the nesting structure of 

one model can be obtained as a restriction of the other.  To choose between two nested logit 

models where neither model is a restricted version of the other, we use the non-nested hypothesis 

test discussed in CHAPTER 5 (section 5.7.3.2). 

                                                 
44 Also, the statistic must be calculated if the test against one is reported for logsums not directly below the root of 
the tree. 
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CHAPTER 9: Selecting a Preferred Nesting Structure 
 

9.1 Introduction 
This chapter re-examines the San Francisco mode choice models estimated in CHAPTER 6 and 

CHAPTER 7 and evaluates whether the MNL models should be replaced by nested logit models.  

The final, un-segmented, specifications, Model 17W for work trips and Model 14 S/O for 

shop/other trips, are taken as the base specifications for estimating nested logit models45.  Nested 

models for work trips are examined first, followed by shop/other trips.  The chapter concludes 

with consideration of the policy implications of adopting alternative nesting structures.   

Although the number of possible nests for six alternatives is large, the nature of the 

alternatives allows certain nests to be rejected as implausible.  For example, it is unreasonable to 

suppose that Bike and Transit have substantial unobserved characteristics that lead to correlation 

in the error terms of their utility functions.  For this reason, this chapter considers four plausible 

nests which are combined in different ways.  For Work trips46, these are: 

• Motorized (M) alternatives, comprised of Drive Alone, Shared Ride 2, Shared Ride 3+, 

and Transit;  

• Private automobile (P) alternatives, including Drive Alone, Shared Ride 2 and Shared 

Ride 3+ alternatives;  

• Shared ride (S) alternatives; and  

• Non-Motorized (NM) alternatives comprised of Bike and Walk.   

   

Given these four nests or groupings of alternatives and recognizing that Motorized 

includes both Automobile and Transit alternatives and that Automobile includes Drive Alone 

                                                 
45 Estimated parameters from the MNL model are typically used as initial values for utility function parameters and one is typically used for the 

initial values of logsum parameters of the nested logit model.  However, as noted in this chapter and discussed more thoroughly in the next 

chapter it is sometimes desirable to start the estimation with other values for the logsum parameters. 

 
46 For Shop/Other trips, the shared ride alternatives include Shared Ride 2, Shared Ride 3+, Shared Ride 2+ & Drive 
Alone, and Shared Ride 2/3+ as defined in Section 7.1.  All other nests are as described for Work trips. 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 176 
 

 
Koppelman and Bhat  January 31, 2006 

and the Shared Ride alternatives, fifteen nest structures as described below. We begin with four 

single nest models (and, based on the results of these estimations, we explore a selection of more 

complex structures.   

  

Figure 9.1 Single Nest Models 
 

9.2 Nested Models for Work Trips 
The estimation of nested logit models for work trips begins with consideration of the four single 

nest models mentioned above and illustrated in Figure 9.1. Each of these models obtains 

improved goodness-of-fit relative to the MNL model (see Table 9-1).  Three of the four models; 

Models 18W, 20W, 21W; result in acceptable logsum parameters and two of these models 

(Models 18W and 20W) significantly reject the MNL model at close to the 0.05 level (see the 

chi-square test and significance in the last two rows of  Table 9-1.  However, the model with the 

private automobile nest (Model 19W) is rejected because the logsum parameter is greater than 

 DA  SR2 SR3+ TRN   WLK  BIK DA  SR2  SR3+ TRN  WLK  BIK 

Motorized Nest 
(Model 18W) 

Shared Ride Nest 
(Model 20W) 

Non-Motorized Nest 
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(Model 19W) 
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one and the model with the non-motorized nest (Model 21W) cannot reject the MNL model at 

any reasonable level.   

Table 9-1 Single Nest Work Trip Models 

Variable Model 17W Model 18W Model 19W Model 20W Model 21W 

  
Nest None Motorized  

(M) 
Private Auto  

(P) 
Shared Ride  

(S) 
Non-Motorized 

(NM) 
Travel Cost by Income  
(1990 cents per 1000 1990 $’s) 

-0.0524 (-5.0) -0.0388 (-5.1) -0.0607 (-9.3) -0.0455 (-4.6) -0.0519 (-6.3)

Travel Time (minutes)            
  Motorized Modes Only -0.0202 (-5.3) -0.0146 (-4.8) -0.0202 (-5.6) -0.0206 (-5.7) -0.0199 (-5.2)
  Non-Motorized Modes Only -0.0454 (-7.9) -0.0462 (-8.4) -0.0462 (-8.2) -0.0452 (-7.7) -0.0454 (-8.6)

  
OVT by Distance (mi.) 
Motorized Modes 

-0.133 (-6.8) -0.112 (-5.9) -0.136 (-7.1) -0.134 (-6.9) -0.135 (-8.2)

Household Income  
(1,000's of 1990 dollars) 

           

  All Private Vehicle Modes 0.00  0.00  0.00  0.00   0.00
  Transit -0.0053 (-2.7) -0.0039 (-3.5) -0.0045 (-2.4) -0.0054 (-2.8) -0.0053 (-2.8)
  Bike -0.0086 (-1.7) -0.0095 (-2.1) -0.0075 (-1.7) -0.0089 (-2.0) -0.0092 (-2.8)
  Walk -0.0060 (-1.9) -0.0066 (-2.3) -0.0050 (-1.7) -0.0062 (-2.1) -0.0056 (-2.1)
Vehicles per Worker            
  Drive Alone (base)            
  Shared Ride (any) -0.317 (-4.8) -0.225 (-4.7) -0.511 (-5.8) -0.315 (-5.2) -0.317 (-5.4)
  Transit -0.946 (-8.0) -0.704 (-5.7) -0.872 (-8.0) -0.938 (-9.0) -0.947 (-9.1)
  Bike -0.702 (-2.7) -0.742 (-3.4) -0.611 (-2.8) -0.703 (-3.2) -0.693 (-4.1)
  Walk -0.722 (-4.3) -0.772 (-5.4) -0.614 (-4.2) -0.724 (-5.0) -0.714 (-5.3)
Dummy Variable for 
Destination in CBD 

            

  Drive Alone (base) 0.00  0.00  0.00  0.00   0.00  
  Shared Ride 2 0.260 (2.1) 0.192 (2.8) 0.398 (3.8) 0.396 (3.6) 0.260 (2.1)
  Shared Ride 3+ 1.07 (5.6) 0.778 (4.9) 1.59 (6.5) 0.641 (4.6) 1.07 (5.5)
  Transit 1.31 (7.9) 0.918 (4.9) 1.37 (7.8) 1.32 (7.7) 1.31 (7.3)
  Bike 0.489 (1.4) 0.478 (1.3) 0.524 (1.5) 0.501 (1.4) 0.414 (1.5)
  Walk 0.102 (0.4) 0.113 (0.5) 0.117 (0.5) 0.114 (0.5) 0.104 (0.5)
Empl. Density - Work Zone 
(employees / square mile) 

            

  Drive Alone (base) 0.00  0.00  0.00  0.00   0.00  
  Shared Ride 2 0.0016 (4.0) 0.0011 (4.3) 0.0025 (8.1) 0.0019 (5.5) 0.0016 (4.3)
  Shared Ride 3+ 0.0023 (5.0) 0.0016 (4.6) 0.0036 (7.7) 0.0019 (5.5) 0.0023 (5.0)
  Transit 0.0031 (8.7) 0.0022 (5.3) 0.0035 (10.2) 0.0032 (9.0) 0.0031 (9.1)
  Bike 0.0019 (1.6) 0.0014 (1.2) 0.0023 (1.9) 0.0020 (1.6) 0.0022 (2.4)
  Walk 0.0029 (3.9) 0.0023 (3.0) 0.0033 (4.5) 0.0030 (3.8) 0.0028 (3.6)
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Variable Model 17W Model 18W Model 19W Model 20W Model 21W 

  
Nest None Motorized  

(M) 
Private Auto  

(P) 
Shared Ride  

(S) 
Non-Motorized 

(NM) 
Constants             
  Drive Alone (base) 0.00  0.00  0.00  0.00   0.00  
  Shared Ride 2 -1.81 (-17.0) -1.32 (-5.9) -2.57 (-12.1) -1.68 (-17.4) -1.81 (-18.5)
  Shared Ride 3+ -3.43 (-22.6) -2.50 (-5.9) -4.96 (-11.9) -2.21 (-8.8) -3.43 (-23.0)
  Transit -0.685 (-2.8) -0.404 (-2.6) -0.847 (-3.4) -0.680 (-2.8) -0.682 (-2.9)
  Bike -1.63 (-3.8) -1.38 (-3.5) -1.82 (-4.7) -1.62 (-4.2) -1.44 (-4.9)
  Walk 0.0682 (0.2) 0.334 (0.9) -0.116 (-0.3) 0.0732 (0.2) 0.0791 (0.2)
Nesting Coefficients / 
Dissimilarity Parameters 

            

  Non-Motorized Nest           0.766 (-2.1)
  Shared Ride Nest       0.329 (-5.4)   
  Automobile Nest     1.47 (4.0)       
  Motorized Nest   0.723 (-2.3)         
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 -7309.601 
Log-likelihood at Constants -4132.916 -4132.916 -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3444.185 -3442.315 -3435.996 -3442.415 -3443.554 
Rho Squared w.r.t Zero 0.5288 0.5291 0.5299 0.5291 0.5289 
Rho Squared w.r.t. Constants 0.1666 0.1671 0.1686 0.1671 0.1668 
Chi-Squared vs. MNL   3.74 16.38 3.54 1.26 
  Rejection significance   .053 .000 .060 .261 

 

Next we consider three models with the non-motorized nest in parallel with each of the three 

other nests (Figure 9.2).  In each case, the new models in Table 9-2; Models 22W, 23W and 

24W; have better goodness of fit than the corresponding single nest models.  Model 23W is 

rejected because the nest parameter for private automobile is greater than one, as before.  Models 

22W and 23W both reject the single non-motorized nest (Model 21W) at close to the 0.05 level; 

however, neither rejects the corresponding Motorized and Shared Ride models (Models 18W and 

20W, respectively).  In such cases, the analyst can decide to include the non-motorized nest or 

not, for other than statistical reasons.   
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Figure 9.2 Non-Motorized Nest in Parallel with Motorized, Private Automobile and Shared 
Ride Nests 

 

Shared Ride – Non-Motorized Nest
(Model 24W) 
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Motorized – Non-Motorized Nests 
(Model 22W) 
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Private Auto – Non-Motorized Nests
(Model 23W) 
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Table 9-2 Parallel Two Nest Work Trip Models 

Variable Model 17W Model 22W Model 23W Model 24W 
  Nest None M-NM P-NM S-NM 
Travel Cost by Income (1990 
cents per 1000 1990 dollars) -0.0524 (-5.0) -0.0386 (-4.8) -0.0600 (-9.0) -0.0449 (-4.5)

Travel Time (minutes)          
  Motorized Modes Only -0.0204 (-5.3) -0.0145 (-4.4) -0.0199 (-5.5) -0.0203 (-5.5)
  Non-Motorized Modes Only -0.0454 (-7.9) -0.0462 (-9.3) -0.0460 (-8.5) -0.0452 (-8.6)

  
OVT by Distance (mi.) Motorized 
Modes -0.133 (-6.8) -0.114 (-6.0) -0.138 (-7.3) -0.136 (-8.1)

Household Income  
   (1,000's of 1990 dollars)          

  All Private Vehicle Modes 0.00  0.00  0.00   0.00  
  Transit -0.0053 (-2.7) -0.0039 (-3.3) -0.0046 (-2.4) -0.0054 (-2.8)
  Bike -0.0086 (-1.7) -0.0101 (-2.9) -0.0081 (-2.4) -0.0095 (-2.7)
  Walk -0.0060 (-1.9) -0.0062 (-2.3) -0.0046 (-1.7) -0.0058 (-2.1)
Vehicles per Worker          
  Drive Alone (base)          
  Shared Ride (any) -0.317 (-4.8) -0.226 (-4.0) -0.512 (-4.9) -0.315 (-5.3)
  Transit -0.946 (-8.0) -0.707 (-5.4) -0.874 (-7.9) -0.939 (-9.0)
  Bike -0.702 (-2.7) -0.735 (-4.1) -0.595 (-3.6) -0.694 (-4.3)
  Walk -0.722 (-4.3) -0.764 (-5.6) -0.608 (-4.4) -0.716 (-5.4)
Dummy Variable for Destination 
in CBD          

 Drive Alone (base) 0.00  0.00  0.00   0.00  
  Shared Ride 2 0.260 (2.1) 0.193 (2.8) 0.399 (3.5) 0.398 (3.6)
  Shared Ride 3+ 1.07 (5.6) 0.781 (4.6) 1.59 (6.4) 0.639 (4.6)
  Transit 1.31 (7.9) 0.921 (4.8) 1.37 (7.8) 1.32 (7.5)
  Bike 0.489 (1.4) 0.407 (1.5) 0.445 (1.6) 0.425 (1.5)
  Walk 0.102 (0.4) 0.114 (0.5) 0.120 (0.5) 0.117 (0.5)
Empl. Density - Work Zone 
(employees / square mile)          

  Drive Alone (base) 0.00  0.00  0.00   0.00  
  Shared Ride 2 0.0016 (4.0) 0.0012 (4.1) 0.0025 (7.6) 0.0019 (5.6)
  Shared Ride 3+ 0.0023 (5.0) 0.0016 (4.5) 0.0036 (7.9) 0.0019 (5.6)
  Transit 0.0031 (8.7) 0.0022 (5.2) 0.0035 (10.1) 0.0032 (9.1)
  Bike 0.0019 (1.6) 0.0017 (1.8) 0.0026 (2.9) 0.0023 (2.3)
  Walk 0.0029 (3.9) 0.0022 (2.9) 0.0032 (4.5) 0.0029 (3.9)
Constants          
  Drive Alone (base) 0.00  0.00  0.00   0.00  
  Shared Ride 2 -1.81 (-17.0) -1.33 (-5.7) -2.57 (-12.2) -1.68 (-17.3)
  Shared Ride 3+ -3.43 (-22.6) -2.51 (-5.6) -4.96 (-12.2) -2.20 (-8.8)
  Transit -0.685 (-2.8) -0.404 (-2.6) -0.843 (-3.4) -0.677 (-2.9)
  Bike -1.63 (-3.8) -1.20 (-3.5) -1.65 (-5.0) -1.43 (-4.3)
  Walk 0.0682 (0.2) 0.345 (1.0) -0.110 (-0.3) 0.0842 (0.3)
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Variable Model 17W Model 22W Model 23W Model 24W 
  Nest None M-NM P-NM S-NM 
Nesting Coefficients / 
Dissimilarity Parameters          

  Non-Motorized Nest   0.769 (-1.5) 0.765 (-1.4) 0.762 (-1.3)
  Shared Ride Nest        0.324 (-5.4)
  Automobile Nest     1.46 (4.0)   
  Motorized Nest   0.726 (-2.1)      
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 
Log-likelihood at Constants -4132.916 -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3444.185 -3441.673 -3435.358 -3441.761 
Rho Squared w.r.t Zero 0.5288 0.5292 0.5300 0.5291 
Rho Squared w.r.t. Constants 0.1666 0.1672 0.1688 0.1672 
Chi-Squared vs. MNL   5.02 17.65 4.85 
  Rejection Significance   0.081 0.000 0.089 
Chi-Squared vs. M, P and S nests  1.28 1.28 1.31 
 Rejection Significance  0.257 0.259 0.253 

Chi-Sqrd vs. NM nest (Model21W)  3.76 16.39 3.59 
 Rejection Significance  0.052 0.000 0.058 

 

 Another option is to consider ‘hierarchical’ two nest models with Motorized and Private 

Automobile, Motorized and Shared Ride or Private Automobile and Shared Ride as illustrated in 

Figure 9.3.  Of the three models reported in Table 9-3, only Model 26W, Motorized and Shared 

Ride, produces an acceptable result.  Model 27W is rejected because the private automobile nest 

coefficient is greater than one, as before. Model 25W is also rejected, despite the fact that the 

automobile nest parameter is less than one because it is greater than the logsum parameter for the 

motorized nest which is above it (see Section 8.4).  Model 26W, however, represents an 

attractive model achieving the best goodness-of-fit of any of the models considered, with 

acceptable logsum parameters.  Further, it rejects the MNL model (Model 17W), the Motorized 

(Model 18W) and the Shared Ride (Model 20W) nest models at roughly the 0.03, 0.07 and 0.06 

levels, respectively.   
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Figure 9.3 Hierarchically Nested Models 
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Table 9-3 Hierarchical Two Nest Work Trip Models 

Variable Model 17W Model 25W Model 26W Model 27W 
  Nest None M-P M-S P-S 
Travel Cost by Income (1990 
cents per 1000 1990 dollars) -0.0524 (-5.0) -0.0363 (-5.2) -0.0336 (-3.3) -0.0526 (-7.2)

Travel Time (minutes)          
  Motorized Modes Only -0.0202 (-5.3) -0.0106 (-4.6) -0.0149 (-4.4) -0.0209 (-5.9)
  Non-Motorized Modes Only -0.0454 (-7.9) -0.0471 (-8.7) -0.0461 (-8.3) -0.046 (-8.0)

  
OVT by Distance (mi.) Motorized 
Modes -0.133 (-6.8) -0.0995 (-5.7) -0.113 (-6.6) -0.137 (-8.2)

Household Income 
   (1,000's of 1990 dollars)          

  All Private Vehicle Modes 0.00  0.00  0.00   0.00  
  Transit -0.0053 (-2.7) -0.0022 (-2.2) -0.0040 (-3.0) -0.0046 (-2.4)
  Bike -0.0086 (-1.7) -0.0091 (-2.0) -0.0970 (-2.2) -0.0077 (-1.7)
  Walk -0.0060 (-1.9) -0.0061 (-2.1) -0.0068 (-2.3) -0.0053 (-1.8)
Vehicles per Worker          
  Drive Alone (base)          
  Shared Ride (any) -0.317 (-4.8) -0.321 (-5.2) -0.224 (-4.2) -0.515 (-4.9)
  Transit -0.946 (-8.0) -0.463 (-5.2) -0.700 (-5.1) -0.86 (-7.9)
  Bike -0.702 (-2.7) -0.688 (-3.1) -0.742 (-3.4) -0.611 (-2.8)
  Walk -0.722 (-4.3) -0.705 (-4.9) -0.774 (-5.4) -0.616 (-4.2)
Dummy Variable for Destination 
in CBD          

  Drive Alone (base) 0.00  0.00  0.00   0.00  
  Shared Ride 2 0.260 (2.1) 0.275 (3.5) 0.291 (3.5) 0.62 (4.1)
  Shared Ride 3+ 1.07 (5.6) 1.02 (5.5) 0.471 (3.7) 0.889 (5.6)
  Transit 1.31 (7.9) 0.731 (5.1) 0.927 (4.6) 1.38 (7.7)
  Bike 0.489 (1.4) 0.500 (1.4) 0.486 (1.4) 0.539 (1.5)
  Walk 0.102 (0.4) 0.142 (0.6) 0.122 (0.5) 0.133 (0.5)
Empl. Density - Work Zone 
(employees / square mile)          

  Drive Alone (base) 0.00  0.00  0.00   0.00  
  Shared Ride 2 0.0016 (4.0) 0.0016 (5.0) 0.0014 (4.4) 0.0030 (6.3)
  Shared Ride 3+ 0.0023 (5.0) 0.0024 (5.3) 0.0014 (4.4) 0.0030 (6.4)
  Transit 0.0031 (8.7) 0.0019 (5.7) 0.0023 (4.9) 0.0036 (9.5)
  Bike 0.0019 (1.6) 0.0014 (1.2) 0.0015 (1.2) 0.0024 (2.0)
  Walk 0.0029 (3.9) 0.0022 (3.0) 0.0023 (3.0) 0.0034 (4.5)
Constants          
  Drive Alone (base) 0.00  0.00  0.00   0.00  
  Shared Ride 2 -1.81 (-17.0) -1.63 (-6.2) -1.23 (-5.4) -2.38 (-12.7)
  Shared Ride 3+ -3.43 (-22.6) -3.15 (-6.3) -1.62 (-4.5) -2.96 (-14.6)
  Transit -0.685 (-2.8) -0.407 (-3.0) -0.401 (-2.3) -0.837 (-3.6)
  Bike -1.63 (-3.8) -1.38 (-3.5) -1.38 (-3.5) -1.81 (-4.7)
  Walk 0.0682 (0.2) 0.339 (1.0) 0.337 (0.9) -0.113 (-0.3)
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Variable Model 17W Model 25W Model 26W Model 27W 
  Nest None M-P M-S P-S 
Nesting Coefficients / 
Dissimilarity Parameters          

  Non-Motorized Nest          
  Shared Ride Nest     0.242 (-6.6) 0.364 (-31.0)
  Automobile Nest   0.923 (-0.5)    1.48 (4.2)
  Motorized Nest   0.532 (-5.4) 0.725 (-2.0)   
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 
Log-likelihood at Constants -4132.916 -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3444.185 -3427.166 -3440.601 -3433.910 
Rho Squared w.r.t Zero 0.5288 0.5311 0.5293 0.5302 
Rho Squared w.r.t. Constants 0.1666 0.1708 0.1675 0.1691 
Chi-Squared vs. MNL  34.04 7.17 20.55 
 Rejection Significance  .000 .028 .000 
Upper Nest  Motorized Motorized Private Auto 
Chi-Squared vs. Upper Nest  30.30 3.43 4.17 
 Rejection Significance  .000 0.064 0.041 
Lower Nest  Private Auto Shared Ride Shared Ride 
Chi-Squared vs. Lower Nest   17.66 3.63 17.01 
  Rejection Significance  .000 0.057 .000 

 
Table 9-4 presents four additional nested model structures for work trips.  The first two 

models extend the nesting structures previously estimated.  Model 28W adds the non-motorized 

nest to Model 26W (see Figure 9.4) with further improved goodness-of-fit, but cannot reject 

Model 26W at any reasonable level of significance.  Model 29W which includes the Motorized, 

Private Automobile and Shared Ride Nests (see Figure 9.3) is infeasible as it obtains a logsum 

for the automobile nest that is greater than for the motorized nest, as before.  However, Model 

29W presents a structure that represents our expectation of the relationship among the motorized 

modes.  Thus, we estimate Model 30W which is identical to Model 29W except that it constrains 

the automobile nest parameter to 0.75 times the value of the motorized nest parameter.  While 

Model 30W results in a poorer goodness-of-fit than any of the other models including the simple 

MNL model; it is worth considering because it reflects increased substitution as we move from 

the Motorized Nest to the Private Automobile Nest to the Shared Ride Nest, as expected.  The 

data does not support this structure (relative to the MNL) but if the analyst or policy makers are 
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convinced it is correct, the use of the relational constraint can produce a model consistent with 

these assumptions. 

  

Figure 9.4 Complex Nested Models 
 

The final model, Model 31W, extends Model 30W by adding the Non-Motorized nest to 

the structure.  It therefore has the same issues regarding the constrained nest parameters, but it 

offers the advantage of including the substitution effects associated with all four nests previously 

selected.  Again, the decision on the acceptance of this model may be based primarily on the 

judgment of analysts and policy makers. 

 

Private Auto - Shared Ride – 
Non-Motorized Nest 

(No Model) 

DA  SR2 SR3+ TRN  WLK BIK 

Motorized - Private Auto – 
Non-Motorized Nest 

(No Model) 

DA   SR2 SR3+ TRN WLK   BIK 

Motorized – Shared Ride – 
Non-Motorized Nest 

(Model 28W) 

Motorized - Private Auto - Shared 
Ride – Non-Motorized Nest 

(No Model) 

DA  SR2 SR3+ TRN  WLK BIK DA  SR2 SR3+ TRN  WLK BIK 
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Table 9-4 Complex and Constrained Nested Models for Work Trips 

Variable Model 28W Model 29W Model 30W Model 31W 

  Nest M-S-NM M-P-S M-P-S 
Constrained 

M-P-S-NM 
Constrained 

Travel Cost by Income (1990 
cents per 1000 1990 dollars) -0.0334 (-3.5) -0.0317 (-4.4) -0.0307 (-3.4) -0.0305 (-3.4)
Travel Time (minutes)         
  Motorized Modes Only -0.0148 (-4.5) -0.0111 (-4.8) -0.0164 (-3.9) -0.0163 (-3.8)
  Non-Motorized Modes Only -0.0460 (-9.4) -0.0469 (-8.5) -0.0456 (-8.2) -0.0456 (-8.9)

  
OVT by Distance (mi.) Motorized 
Modes -0.115 (-6.5) -0.100 (-5.8) -0.118 (-5.4) -0.120 (-5.4)

Household Income 
   (1,000's of 1990 dollars)         
  All Private Vehicle Modes 0.00  0.00  0.00   0.00
  Transit -0.0040 (-3.4) -0.0022 (-2.2) -0.0048 (-3.1) -0.0049 (-2.7)
  Bike -0.0102 (-3.0) -0.0092 (-2.0) -0.0102 (-2.3) -0.0107 (-3.0)
  Walk -0.0064 (-2.4) -0.0063 (-2.1) -0.0072 (-2.5) -0.0068 (-2.5)
Vehicles per Worker         
  Drive Alone (base)         
  Shared Ride (any) -0.225 (-4.3) -0.323 (-4.8) -0.187 (-3.8) -0.187 (-3.3)
  Transit -0.703 (-5.3) -0.457 (-5.2) -0.815 (-4.6) -0.817 (-4.7)
  Bike -0.735 (-4.2) -0.688 (-3.1) -0.787 (-3.6) -0.785 (-4.5)
  Walk -0.765 (-5.6) -0.706 (-4.7) -0.830 (-5.8) -0.821 (-5.9)
Dummy Variable for Destination 
in CBD         
  Drive Alone (base) 0.00  0.00  0.00   0.00
  Shared Ride 2 0.293 (3.5) 0.416 (4.3) 0.230 (3.1) 0.231 (2.8)
  Shared Ride 3+ 0.472 (3.9) 0.578 (5.0) 0.404 (3.2) 0.404 (3.4)
  Transit 0.930 (4.6) 0.737 (5.2) 1.02 (3.9) 1.02 (3.7)
  Bike 0.416 (1.5) 0.507 (1.4) 0.485 (1.4) 0.414 (1.5)
  Walk 0.123 (0.6) 0.150 (0.6) 0.121 (0.5) 0.122 (0.5)
Empl. Density - Work Zone 
(employees / square mile)         
  Drive Alone (base) 0.00  0.00  0.00   0.00
  Shared Ride 2 0.0014 (4.5) 0.0019 (5.4) 0.0011 (3.7) 0.0011 (3.5)
  Shared Ride 3+ 0.0014 (4.5) 0.0020 (5.4) 0.0011 (3.7) 0.0011 (3.5)
  Transit 0.0023 (5.0) 0.0020 (5.5) 0.0024 (4.3) 0.0024 (4.1)
  Bike 0.0018 (2.0) 0.0015 (1.2) 0.0015 (1.2) 0.0018 (2.0)
  Walk 0.0022 (3.0) 0.0022 (2.9) 0.0024 (3.0) 0.0023 (2.9)
Constants         
  Drive Alone (base) 0.00  0.00  0.00   0.00
  Shared Ride 2 -1.24 (-5.5) -1.51 (-6.1) -1.00 (-4.5) -1.01 (-4.6)
  Shared Ride 3+ -1.62 (-4.9) -1.86 (-5.7) -1.37 (-3.8) -1.37 (-4.3)
  Transit -0.400 (-2.3) -0.397 (-3.0) -0.377 (-1.8) -0.376 (-1.5)
  Bike -1.19 (-3.6) -1.38 (-3.5) -1.33 (-3.3) -1.14 (-3.5)
  Walk 0.347 (1.0) 0.339 (0.9) 0.390 (1.1) 0.402 (1.1)
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Variable Model 28W Model 29W Model 30W Model 31W 

  Nest M-S-NM M-P-S M-P-S 
Constrained 

M-P-S-NM 
Constrained 

Nesting Coefficients / 
Dissimilarity Parameters         
  Non-Motorized Nest 0.767 (-1.4)      0.767 (-1.3)
  Shared Ride Nest 0.240 (-8.2) 0.217 (-11.0) 0.233 (-7.1) 0.231 (-8.4)
  Automobile Nest   0.928 (-0.5) 0.598 (-3.1) 0.600 (-4.8)
  Motorized Nest 0.728 (-2.1) 0.533 (-5.4) 0.798 "  47 0.800     "  
Log-likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 
Log-likelihood at Constants -4132.916 -4132.916 -4132.916 -4132.916 
Log-likelihood at Convergence -3439.943 -3425.159 -3453.824 -3453.179 
Rho Squared w.r.t Zero 0.5294 0.5314 0.5275 0.5276 
Rho Squared w.r.t. Constants 0.1677 0.1712 0.1643 0.1645 
Chi-Squared vs. MNL 8.48 N/A N/A N/A 
  Rejection significance .037 N/A N/A N/A 
Chi-Squared vs. single NM nest 7.22 N/A N/A N/A 
  Rejection significance .027 N/A N/A N/A 
Chi-Squared vs. single S nest 4.94 N/A N/A N/A 
  Rejection significance .084 N/A N/A N/A 
Chi-Squared vs. single P nest N/A N/A N/A N/A 
  Rejection significance N/A N/A N/A N/A 
Chi-Squared vs. single M nest 4.74 N/A N/A N/A 
  Rejection significance .093 N/A N/A N/A 
Chi-Squared vs. Model 22W 3.46 N/A N/A N/A 
  Rejection significance .063 N/A N/A N/A 
Chi-Squared vs. Model 24W 3.64 N/A N/A N/A 
  Rejection significance .057 N/A N/A N/A 
Chi-Squared vs. Model 26W 1.32 N/A N/A N/A 
  Rejection significance .251 N/A N/A N/A 

 

Based on these results, Models 26W, 28W, 30W and 31W are all potential candidates for 

a final model.  Model 26W is not rejected by any other model and is the simplest structure of this 

group.  Model 28W is slightly better than Model 26W but enough to statistically reject it.  

Models 30W and 31W have a poorer goodness of fit than Model 26W and 28W, respectively but 

they incorporate the private automobile intermediate nest.  The decision about which of these 

models to use is largely a matter of judgment.  It is possible that other models might also be 

considered. 
                                                 
47 The quote (ditto) mark indicates that the t-statistic is identical to the one above due to the imposition of a 
constraint on the ratio of the corresponding parameters. 
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We further examine Model 26W, because of its simplicity, to demonstrate the differences 

in direct-elasticity and cross-elasticity between the MNL (17W) model and pairs of alternatives 

in different parts of the NL tree associated with 26W. 

Table 9-5 MNL (17W) vs. NL Model 26W 

Variable Model 17W Model 26W 
  Nest None M-S 
Travel Cost by Income (1990 
cents per 1000 1990 dollars) -0.0524 (-5.0) -0.0336 (-3.3) 

Travel Time (minutes)      
  Motorized Modes Only -0.0202 (-5.3) -0.0149 (-4.4) 
  Non-Motorized Modes Only -0.0454 (-7.9) -0.0461 (-8.3) 

  
OVT by Distance (mi.) Motorized 
Modes -0.133 (-6.8) -0.113 (-6.6) 

Household Income 
   (1,000's of 1990 dollars)      

  All Private Vehicle Modes 0.00  0.00   
  Transit -0.0053 (-2.7) -0.0040 (-3.0) 
  Bike -0.0086 (-1.7) -0.0970 (-2.2) 
  Walk -0.0060 (-1.9) -0.0068 (-2.3) 
Vehicles per Worker      
  Drive Alone (base)      
  Shared Ride (any) -0.317 (-4.8) -0.224 (-4.2) 
  Transit -0.946 (-8.0) -0.700 (-5.1) 
  Bike -0.702 (-2.7) -0.742 (-3.4) 
  Walk -0.722 (-4.3) -0.774 (-5.4) 
Dummy Variable for Destination 
in CBD      

  Drive Alone (base) 0.00  0.00   
  Shared Ride 2 0.260 (2.1) 0.291 (3.5) 
  Shared Ride 3+ 1.07 (5.6) 0.471 (3.7) 
  Transit 1.31 (7.9) 0.927 (4.6) 
  Bike 0.489 (1.4) 0.486 (1.4) 
  Walk 0.102 (0.4) 0.122 (0.5) 
Empl. Density - Work Zone 
(employees / square mile)      

  Drive Alone (base) 0.00  0.00   
  Shared Ride 2 0.0016 (4.0) 0.0014 (4.4) 
  Shared Ride 3+ 0.0023 (5.0) 0.0014 (4.4) 
  Transit 0.0031 (8.7) 0.0023 (4.9) 
  Bike 0.0019 (1.6) 0.0015 (1.2) 
  Walk 0.0029 (3.9) 0.0023 (3.0) 
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Variable Model 17W Model 26W 
  Nest None M-S 
Constants      
  Drive Alone (base) 0.00  0.00   
  Shared Ride 2 -1.81 (-17.0) -1.23 (-5.4) 
  Shared Ride 3+ -3.43 (-22.6) -1.62 (-4.5) 
  Transit -0.685 (-2.8) -0.401 (-2.3) 
  Bike -1.63 (-3.8) -1.38 (-3.5) 
  Walk 0.0682 (0.2) 0.337 (0.9) 
Nesting Coefficients / 
Dissimilarity Parameters      

  Non-Motorized Nest      
  Shared Ride Nest   0.242 (-6.6) 
  Automobile Nest      
  Motorized Nest   0.725 (-2.0) 
Log-likelihood at Zero -7309.601 -7309.601 
Log-likelihood at Constants -4132.916 -4132.916 
Log-likelihood at Convergence -3444.185 -3440.601 
Rho Squared w.r.t Zero 0.5288 0.5293 
Rho Squared w.r.t. Constants 0.1666 0.1675 
Chi-Squared vs. MNL  7.17 
 Rejection Significance  .028 
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The structure of the nested logit model (26W) in Figure 9.3 is reproduced here so that 

each nest can be readily identified.  The following table reports the elasticities for the MNL 

Model 17W and the NL Model 26W. 

 

Figure 9.5 Motorized – Shared Ride Nest (Model 26W) 
 

 
 

 

 DA     SR2  SR3+  TRN   WLK   BIK 
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Figure 9.6 Elasticities for MNL (17W) and NL Model (26W) 

(All Values Multiplied by jIVT  
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( )1 0.0202jP− − ×  

 

 SR Nest    ( ) ( ) ( )|1 3.13 1 0.0149 0.0615 1j j SR Nest jP P P−
⎡ ⎤− − + × − × >− −⎢ ⎥⎣ ⎦  

 Mot. Nest  ( ) ( ) ( )|1 1.14 1 0.0149 0.319 1j j Mot Nest jP P P−
⎡ ⎤− − + × − × >− −⎢ ⎥⎣ ⎦  

 All Other  ( )0.0149 1 jP− −  
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 SR Nest       ( )( )|3.13 0.0149 0.0616j j SR Nest jP P P−− + × >−  

 Mot. Nest    ( )( ) ( )|1.14 0.0149 0.319 1j j SR Nest jP P P−− + × >− −  

 All Other     0.0149 jP−  
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It is apparent from the above table that reduction in the magnitude of the utility parameter 

for the NL model results in a lower direct and cross elasticity for alternatives that are in neither 

of the nests depicted in Figure 9.5 than they would have in the corresponding MNL model while 

alternatives in the lowest and intermediate nests have increased elasticity. The magnitude in of 

the elasticity increases as alternatives or pairs of alternatives are in lower nests in the tree.  

Possibly, a better way to think about this is that adoption of the MNL model results in some type 

of averaged elasticities rather than the distinct elasticities for alternatives in a properly formed 

NL model. 

 

9.3 Nested Models for Shop/Other Trips 
The exploration of nested logit models for shop/other trips follows the same approach as used 

with work trips, beginning with the consideration of four single nest models depicted in Figure 

9.4.  For these trips, all four of the single nest structures produce valid models (Table 9-6).  

Further, Models 15 S/O, 16 S/O and 17 S/O strongly reject the MNL model; however, the non-

motorized nest (Model 18 S/O) does not reject the MNL model at any reasonable level of 

significance.  

 

Table 9-6 Single Nest Shop/Other Trip Models 

Variables Model 14 S/O Model 15 S/O Model 16 S/O Model 17 S/O Model 18 S/O 

  
Nest None Motorized  

(M) 
Private Auto

(P) 
Shared Ride  

(S) 
Non-motorized 

(NM) 
Constants           
  Transit 0.530 (0.7) -0.139 (-0.3) -0.206 (-0.3) 0.188 (0.3) 0.561 (0.8)
  Shared Ride 2 -1.19 (-9.0) -0.612 (-3.2) -0.287 (-1.9) -0.743 (-5.1) -1.19 (-8.9)
  Shared Ride 3+ -3.20 (-13.7) -1.63 (-3.4) -0.764 (-2.0) -1.45 (-4.0) -3.19 (-14.0)
  Shared Ride 2/3 & Drive Alone -1.78 (-11.4) -0.909 (-3.4) -0.424 (-2.0) -0.929 (-4.7) -1.78 (-12.4)
  Shared Ride 2/3 -4.11 (-11.7) -2.09 (-3.3) -0.970 (-2.0) -1.70 (-3.7) -4.11 (-11.5)
  Bike -4.41 (-7.3) -4.22 (-7.5) -4.57 (-7.8) -4.30 (-7.7) -3.56 (-5.8)
  Walk 0.461 (1.2) 0.774 (2.1) 0.242 (0.6) 0.544 (1.5) 0.356 (0.9)
  Drive Alone (base) 0.00  0.00  0.00  0.00   0.00
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Variables Model 14 S/O Model 15 S/O Model 16 S/O Model 17 S/O Model 18 S/O 

  
Nest None Motorized  

(M) 
Private Auto

(P) 
Shared Ride  

(S) 
Non-motorized 

(NM) 
Log of Persons per Household           
  Transit 2.10 (5.4) 1.18 (3.2) 0.908 (2.2) 1.96 (5.4) 2.10 (5.7)
  Shared Ride 2 1.14 (9.9) 0.582 (3.2) 0.272 (2.0) 1.57 (12.7) 1.14 (9.6)
  Shared Ride 3+ 3.19 (18.3) 1.63 (3.5) 0.764 (2.1) 2.26 (11.1) 3.18 (19.2)
  Shared Ride 2/3 & Drive Alone 1.90 (14.5) 0.973 (3.4) 0.453 (2.1) 1.82 (16.8) 1.90 (15.6)
  Shared Ride 2/3 2.89 (11.3) 1.48 (3.4) 0.691 (2.1) 2.16 (11.7) 2.89 (10.9)
  Bike 2.27 (4.8) 1.65 (3.4) 1.32 (3.1) 2.20 (4.8) 1.94 (5.1)
  Walk 1.32 (6.2) 0.741 (2.9) 0.428 (1.9) 1.27 (6.4) 1.37 (7.4)
  Drive Alone (base) 0.00  0.00  0.00  0.00   0.00
Number of Vehicles           
  Transit -2.06 (-6.6) -0.796 (-2.2) -1.68 (-5.7) -2.02 (-7.6) -2.06 (-6.9)
  Shared Ride 2 -0.248 (-4.7) -0.124 (-2.8) -0.0573 (-1.1) -0.375 (-7.1) -0.248 (-4.8)
  Shared Ride 3+ -0.819 (-10.3) -0.419 (-3.3) -0.195 (-2.0) -0.556 (-9.1) -0.820 (-10.2)
  Shared Ride 2/3 & Drive Alone -0.456 (-7.5) -0.231 (-3.2) -0.107 (-2.0) -0.438 (-9.2) -0.456 (-8.0)
  Shared Ride 2/3 -0.700 (-6.0) -0.357 (-3.1) -0.166 (-1.9) -0.518 (-8.3) -0.700 (-6.0)
  Bike -0.401 (-2.0) -0.282 (-1.5) -0.161 (-0.7) -0.387 (-2.1) -0.438 (-2.6)
  Walk -0.714 (-5.5) -0.639 (-5.5) -0.495 (-3.8) -0.705 (-5.8) -0.703 (-6.0)
  Drive Alone (base) 0.00  0.00  0.00  0.00   0.00
Travel Time (minutes)           
  Non-Motorized Modes Only -0.0848 (-8.0) -0.0895 (-9.1) -0.0833 (-8.8) -0.0839 (-9.3) -0.0817 (-8.6)
  Motorized Modes Only -0.0344 (-3.1) -0.0188 (-2.3) -0.0252 (-2.3) -0.0257 (-2.6) -0.0338 (-3.4)
  OVT by Distance (mi.) M. Modes -0.208 (-3.9) -0.115 (-2.4) -0.201 (-3.9) -0.201 (-4.5) -0.215 (-4.1)
Travel Cost (1990 cents)           
Travel Cost by Log of Income  
(1990 cents per log of 1000 1990 $’s) -0.0111 (-3.6) -0.0059 (-2.6) -0.0028 (-1.3) -0.0070 (-2.4) -0.0110 (-4.1)
Zero Vehicle Household D.V.           
  Transit, Bike, Walk 1.57 (4.2) 1.33 (3.7) 1.97 (5.3) 1.53 (4.5) 1.57 (4.5)
  All Private Vehicle Modes 0.00  0.00  0.00  0.00   0.00
D.V. for Destination in Core           
  Transit 2.01 (3.2) 1.10 (2.5) 1.78 (2.9) 2.19 (3.8) 1.99 (3.5)
  Shared Ride (any) 0.716 (1.8) 0.368 (1.7) 0.157 (0.4) 0.793 (2.1) 0.717 (1.9)
  Bike, Walk 0.301 (0.2) 0.134 (0.2) 0.128 (0.7) 0.488 (0.4) 0.282 (0.6)
  Drive Alone (base) 0.00  0.00  0.00  0.00   0.00
Nesting Coefficients /  
Dissimilarity Parameters           
  Non-Motorized Nest           0.720 (-1.8)
  Shared Ride Nest       0.308 (-6.3) 
  Private Automobile Nest     0.231 (-7.1)     
  Motorized Nest   0.501 (-3.4)       
Log-likelihood at Zero -6201.516 -6201.516 -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4457.235 -4453.332 -4448.477 -4450.545 -4456.373 
Rho Squared w.r.t Zero 0.2813 0.2819 0.2827 0.2823 0.2814 
Rho Squared w.r.t. Constants 0.1018 0.1025 0.1035 0.1031 0.1019 
Chi-Squared vs. MNL   7.8060 17.5160 13.3800 1.7240 
  Rejection significance   0.005 0.000 0.000 0.189 
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 Despite the marginal significance of the non-motorized nest, the possible two parallel 

nest models including non-motorized and one other nest, were estimated and are reported in 

Table 9-7.  All three specifications result in valid models with improved goodness-of-fit over the 

MNL and the single nest NM model (Model 18 S/O) but Models 19 S/O, 20 S/O and 21 S/O do 

not reject the corresponding Motorized (Model 15 S/O), Private Automobile (Model 16 S/O) and 

Shared Ride (Model 17 S/O) nest models, which are restricted forms of these models, at a high 

level of confidence.   

It is important to note that a variety of different initial parameters were required to find 

the solution for Model 20 S/O reported here. The selection of different starting values for the 

model parameters, especially the nest parameter(s) may lead to convergence at different values in 

or out of the acceptable range as discussed in CHAPTER 10.   

Table 9-7 Parallel Two Nest Models for Shop/Other Trips 

Variables Model 14  S/O Model 19  S/O Model 20  S/O Model 21  S/O 
  Nests None M-NM P-NM S-NM 
Constants                
  Transit 0.530 (0.7) -0.115 (-0.3) -0.17 (-0.2) 0.228 (0.3)
  Shared Ride 2 -1.19 (-9.0) -0.623 (-3.8) -0.282 (-2.4) -0.739 (-5.3)
  Shared Ride 3+ -3.20 (-13.7) -1.66 (-3.9) -0.75 (-2.4) -1.43 (-4.0)
  Shared Ride 2/3 & Drive Alone -1.78 (-11.4) -0.925 (-3.9) -0.416 (-2.4) -0.922 (-4.7)
  Shared Ride 2/3 -4.11 (-11.7) -2.12 (-3.9) -0.952 (-2.3) -1.69 (-3.6)
  Bike -4.41 (-7.3) -3.44 (-5.2) -3.69 (-6.0) -3.41 (-5.7)
  Walk 0.461 (1.2) 0.679 (1.9) 0.129 (0.3) 0.433 (1.2)
  Drive Alone (base) 0.00  0.00  0.0  0.00 
Log of Persons per Household        
  Transit 2.10 (5.4) 1.20 (3.6) 0.899 (2.2) 1.95 (5.3)
  Shared Ride 2 1.14 (9.9) 0.592 (3.8) 0.266 (2.4) 1.57 (12.7)
  Shared Ride 3+ 3.19 (18.3) 1.66 (4.0) 0.75 (2.4) 2.26 (10.8)
  Shared Ride 2/3 & Drive Alone 1.90 (14.5) 0.990 (3.9) 0.445 (2.4) 1.82 (18.1)
  Shared Ride 2/3 2.89 (11.3) 1.51 (3.9) 0.678 (2.3) 2.15 (11.3)
  Bike 2.27 (4.8) 1.38 (3.6) 0.996 (2.7) 1.87 (5.8)
  Walk 1.32 (6.2) 0.790 (3.3) 0.465 (2.3) 1.32 (7.1)
  Drive Alone (base) 0.00  0.00  0.0  0.00 
Number of Vehicles        
  Transit -2.06 (-6.6) -0.812 (-2.7) -1.67 (-5.7) -2.02 (-7.8)
  Shared Ride 2 -0.248 (-4.7) -0.127 (-3.2) -0.0562 (-2.3) -0.376 (-7.8)
  Shared Ride 3+ -0.819 (-10.3) -0.426 (-3.8) -0.192 (-2.4) -0.555 (-8.4)
  Shared Ride 2/3 & Drive Alone -0.456 (-7.5) -0.235 (-3.7) -0.105 (-2.4) -0.439 (-10.3)
  Shared Ride 2/3 -0.700 (-6.0) -0.364 (-3.4) -0.163 (-2.4) -0.517 (-8.6)
  Bike -0.401 (-2.0) -0.328 (-2.0) -0.208 (-1.3) -0.428 (-2.6)
  Walk -0.714 (-5.5) -0.627 (-5.3) -0.479 (-4.0) -0.693 (-5.4)
  Drive Alone (base) 0.00  0.00  0.0  0.00 
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Variables Model 14  S/O Model 19  S/O Model 20  S/O Model 21  S/O 
  Nests None M-NM P-NM S-NM 
Travel Time (minutes)        
  Non-Motorized Modes Only -0.0848 (-8.0) -0.0867 (-9.8) -0.08 (-7.9) -0.0805 (-8.7)
  Motorized Modes Only -0.0344 (-3.1) -0.0190 (-2.7) -0.0246 (-2.4) -0.0252 (-2.8)

  
OVT by Distance (mi.) Motorized 
Modes -0.208 (-3.9) -0.120 (-2.8) -0.209 (-4.0) -0.209 (-4.1)

Travel Cost by Log of Income 
 (1990 cents per log of 1000 1990 dollars) -0.0111 (-3.6) -0.0060 (-2.9) -0.0028 (-2.3) -0.0069 (-3.0)
Zero Vehicle Household Dummy 
Variable        
  Transit, Bike, Walk 1.57 (4.2) 1.35 (4.1) 1.98 (5.6) 1.54 (4.3)
  All Private Vehicle Modes 0.00  0.00  0.0  0.00 
Dummy Variable for Destination in 
Core        
  Transit 2.01 (3.2) 1.11 (2.9) 1.76 (3.4) 2.17 (3.5)
  Shared Ride (any) 0.716 (1.8) 0.374 (1.7) 0.154 (1.8) 0.794 (2.0)
  Bike, Walk 0.301 (0.2) 0.127 (0.2) 0.103 (0.2) 0.465 (0.3)
  Drive Alone (base) 0.00  0.00  0.0  0.00 
Nesting Coefficients/Dissimilarity 
Parameters        
  Non-Motorized Nest   0.746 (-1.5) 0.226 (8.1) 0.708 (-2.0)
  Shared Ride Nest      0.304 (-5.7)
  Private Automobile Nest     0.703 (1.9)  
  Motorized Nest   0.510 (-3.8)   
Log-likelihood at Zero -6201.516 -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4457.235 -4452.593 -4447.480 -4449.592 
Rho Squared w.r.t Zero 0.2813 0.2820 0.2828 0.2825 
Rho Squared w.r.t. Constants 0.1018 0.1027 0.1037 0.1033 
Chi-Squared vs. MNL   9.2840 19.5100 15.2860 
  Rejection significance   0.010 .000 .000 
Chi-Squared vs. M, P and S nests   1.4780 1.9940 1.9060 
  Rejection significance   .224 .158 .167 
Chi-Sqrd vs. NM nest (Model 18 
S/O)   

7.5600 17.7860 13.5620 

  Rejection significance   .006 .000 .000 

 

 As in the case of work trips, hierarchical two-nest models, depicted in Figure 9.2, are 

considered next, Table 9-8.  Model 22 S/O obtains a satisfactory parameter for the automobile 

logsum but the motorized logsum is not significantly different from one and the model does not 

reject the single nest Private Automobile structure (Model 16 S/O).  However, Models 23 S/O 

(with shared ride under the motorized nest) and 24 S/O (with shared ride under the automobile 

nest) provide excellent results. The similarity interpretation of these nests is reasonable and both 
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models strongly reject the MNL model and the constrained single nest models reported in Table 

9-7.   

Table 9-8 Hierarchical Two Nest Models for Shop/Other Trips 

Variables Model 14 S/O Model 22 S/O Model 23 S/O Model 24 S/O 
  Nest None M-P M-S P-S 
Constants         
  Transit 0.530 (0.7) -0.271 (-0.4) -0.263 (-0.5) -0.420 (-0.5)
  Shared Ride 2 -1.19 (-9.0) -0.258 (-2.4) -0.450 (-3.2) -0.308 (-2.0)
  Shared Ride 3+ -3.20 (-13.7) -0.686 (-2.4) -0.900 (-2.9) -0.686 (-2.0)
  Shared Ride 2/3 & Drive Alone -1.78 (-11.4) -0.381 (-2.4) -0.569 (-3.1) -0.409 (-2.0)
  Shared Ride 2/3 -4.11 (-11.7) -0.871 (-2.4) -1.06 (-2.8) -0.830 (-2.0)
  Bike -4.41 (-7.3) -4.48 (-7.9) -4.19 (-7.6) -4.50 (-7.6)
  Walk 0.461 (1.2) 0.388 (1.0) 0.767 (2.1) 0.320 (0.8)
  Drive Alone (base) 0.00  0.0 0.00   0.00
Log of Persons per Household         
  Transit 2.10 (5.4) 0.795 (2.3) 1.21 (3.3) 1.02 (2.2)
  Shared Ride 2 1.14 (9.9) 0.244 (2.4) 0.881 (3.4) 0.491 (1.7)
  Shared Ride 3+ 3.19 (18.3) 0.686 (2.5) 1.33 (3.5) 0.871 (2.0)
  Shared Ride 2/3 & Drive Alone 1.90 (14.5) 0.407 (2.5) 1.04 (3.5) 0.628 (1.9)
  Shared Ride 2/3 2.89 (11.3) 0.621 (2.5) 1.26 (3.5) 0.814 (2.0)
  Bike 2.27 (4.8) 1.29 (3.0) 1.69 (3.7) 1.43 (2.8)
  Walk 1.32 (6.2) 0.397 (1.9) 0.786 (3.0) 0.534 (1.9)
  Drive Alone (base) 0.00  0.0 0.00   0.00
Number of Vehicles         
  Transit -2.06 (-6.6) -1.2 (-2.1) -0.906 (-2.3) -1.74 (-5.5)
  Shared Ride 2 -0.248 (-4.7) -0.0514 (-2.4) -0.207 (-3.2) -0.112 (-1.6)
  Shared Ride 3+ -0.819 (-10.3) -0.175 (-2.5) -0.325 (-3.4) -0.214 (-2.0)
  Shared Ride 2/3 & Drive Alone -0.456 (-7.5) -0.0957 (-2.4) -0.249 (-3.4) -0.148 (-1.8)
  Shared Ride 2/3 -0.700 (-6.0) -0.149 (-2.4) -0.300 (-3.4) -0.193 (-1.9)
  Bike -0.401 (-2.0) -0.163 (-0.8) -0.286 (-1.4) -0.191 (-0.9)
  Walk -0.714 (-5.5) -0.504 (-4.2) -0.637 (-5.2) -0.522 (-3.8)
  Drive Alone (base) 0.00  0.0 0.00   0.00
Travel Time (minutes)         
  Non-Motorized Modes Only -0.0848 (-8.0) -0.0855 (-8.8) -0.0885 (-9.7) -0.0833 (-7.9)
  Motorized Modes Only -0.0344 (-3.1) -0.022 (-2.4) -0.0162 (-2.2) -0.0187 (-1.6)
  OVT by Distance (mi.) Motorized Modes -0.208 (-3.9) -0.169 (-2.9) -0.123 (-2.6) -0.193 (-3.7)
Travel Cost by Log of Income  

(1990 cents per log of 1000 1990 dollars) -0.0111 (-3.6) -0.0025 (-2.4) -0.0044 (-2.4) -0.0034 (-1.7)
Zero Vehicle Household Dummy Variable         
  Transit, Bike, Walk 1.57 (4.2) 1.84 (5.6) 1.38 (4.5) 1.89 (5.0)
  All Private Vehicle Modes 0.00  0.0 0.00   0.00
Dummy Variable for Destination in Core         
  Transit 2.01 (3.2) 1.46 (2.6) 1.31 (2.7) 1.88 (3.5)
  Shared Ride (any) 0.716 (1.8) 0.142 (2.0) 0.449 (1.9) 0.240 (1.1)
  Bike, Walk 0.301 (0.2) 0.0879 (0.4) 0.248 (0.3) 0.183 (0.2)
  Drive Alone (base) 0.00  0.0 0.00   0.00
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Variables Model 14 S/O Model 22 S/O Model 23 S/O Model 24 S/O 
  Nest None M-P M-S P-S 
Nesting Coefficients/Dissimilarity Parameters         
  Non-Motorized Nest         
  Shared Ride Nest     0.197 (-9.6) 0.169 (-9.4)
  Private Automobile Nest   0.207 (9.3)     0.331 (-3.6)
  Motorized Nest   0.791 (0.9) 0.563 (-2.7) 
Log-likelihood at Zero -6201.516 -6201.516 -6201.516 -6201.516 
Log-likelihood at Constants -4962.194 -4962.194 -4962.194 -4962.194 
Log-likelihood at Convergence -4457.235 -4448.234 -4448.221 -4446.677 
Rho Squared w.r.t Zero 0.2813 0.2827 0.2827 0.2830 
Rho Squared w.r.t. Constants 0.1018 0.1036 0.1036 0.1039 
Chi-Squared vs. MNL   18.0020 18.0280 21.1160 
  Rejection significance   .001 .000 .001 
Chi-Squared vs. Upper Nest Only   10.1960 10.2220 3.6000 
  Rejection significance   .001 .001 .058 
Chi-Squared vs. Lower Nest Only   0.4860 4.6480 7.7360 
  Rejection significance   .486 .031 .005 

 

 Unlike the case of the home-based work models, the home-based shop/other data set 

supports complex nested models which combine the hierarchical and parallel nests to capture the 

different substitutability between several groups of alternatives.  Models 25 S/O and 26 S/O 

improve goodness-of-fit over both the best hierarchical (Model 24 S/O) and parallel (Model 20 

S/O) two-nest models.  These more complex models can reject all of the single nest models at the 

.05 level or higher, but cannot reject the best two-nest models at a high level of confidence.  

Even so, they may still be preferred for their potentially more realistic representation of trade-

offs between pairs of alternatives.  The same rationale could be applied between the two models, 

as Model 26 S/O cannot reject 25 S/O, either, but allows for greater substitutability between the 

non-motorized modes (for which the statistical evidence is moderately significant).  The nesting 

coefficient for the motorized nest is not particularly significant in either model, but it can be 

retained given the reasonableness of its value.   
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Table 9-9 Complex Nested Models for Shop/Other Trips 

Variables Model 25 S/O Model 26 S/O 
  Nest M-P-S M-P-S-NM 
Constants    
  Transit -0.439 (-0.8) -0.406 (-0.8)
  Shared Ride 2 -0.280 (-2.1) -0.282 (-2.1)
  Shared Ride 3+ -0.621 (-2.1) -0.624 (-2.1)
  Shared Ride 2/3 & Drive Alone -0.372 (-2.1) -0.374 (-2.1)
  Shared Ride 2/3 -0.750 (-2.0) -0.753 (-2.0)
  Bike -4.39 (-7.4) -3.55 (-6.0)
  Walk 0.490 (1.2) 0.359 (0.9)
  Drive Alone (base) 0.00 0.00  
Log of Persons per Household    
  Transit 0.891 (2.2) 0.905 (2.6)
  Shared Ride 2 0.451 (1.8) 0.454 (2.0)
  Shared Ride 3+ 0.793 (2.1) 0.798 (2.2)
  Shared Ride 2/3 & Drive Alone 0.575 (2.0) 0.578 (2.1)
  Shared Ride 2/3 0.742 (2.1) 0.747 (2.1)
  Bike 1.39 (3.2) 1.09 (2.9)
  Walk 0.498 (1.9) 0.542 (2.3)
  Drive Alone (base) 0.00 0.00  
Number of Vehicles    
  Transit -1.17 (-1.9) -1.24 (-2.2)
  Shared Ride 2 -0.104 (-1.7) -0.104 (-1.8)
  Shared Ride 3+ -0.195 (-2.1) -0.196 (-2.1)
  Shared Ride 2/3 & Drive Alone -0.136 (-1.9) -0.137 (-2.0)
  Shared Ride 2/3 -0.176 (-2.0) -0.177 (-2.0)
  Bike -0.193 (-0.8) -0.239 (-1.5)
  Walk -0.534 (-4.1) -0.518 (-4.1)
  Drive Alone (base) 0.00 0.00  
Travel Time (minutes)    
  Non-Motorized Modes Only -0.0859 (-8.7) -0.0824 (-9.0)
  Motorized Modes Only -0.0167 (-1.8) -0.0167 (-1.9)
  OVT by Distance (mi.) Motorized Modes -0.155 (-2.6) -0.167 (-3.1)

Travel Cost by Log of Income (1990 cents per log of 
1000 1989 dollars) -0.0031 (-1.7) -0.0031 (-1.8)

Zero Vehicle Household Dummy Variable    
  Transit, Bike, Walk 1.74 (5.0) 1.78 (5.2)
  All Private Vehicle Modes 0.00 0.00  
Dummy Variable for Destination in Core    
  Transit 1.49 (3.0) 1.53 (3.1)
  Shared Ride (any) 0.222 (1.3) 0.223 (1.2)
  Bike, Walk 0.138 (0.2) 0.124 (0.0)
  Drive Alone (base) 0.00 0.00  
Nesting Coefficients/Dissimilarity Parameters    
  Non-Motorized Nest  0.715 (-2.2)
  Shared Ride Nest 0.152 (-10.7) 0.153 (-10.6)
  Private Automobile Nest 0.304 (-4.5) 0.306 (-4.6)
  Motorized Nest 0.755 (-0.9) 0.789 (-0.8)
Log Likelihood at Zero -6201.516 -6201.516 
Log Likelihood at Constants -4962.194 -4962.194 
Log Likelihood at Convergence -4446.355 -4445.434 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 199 
 

 
Koppelman and Bhat  January 31, 2006 

Variables Model 25 S/O Model 26 S/O 
  Nest M-P-S M-P-S-NM 
Rho Squared w.r.t Zero 0.2830 0.2832 
Rho Squared w.r.t. Constants 0.1040 0.1041 
Chi-Squared vs. MNL 21.7600 23.6020 
  Rejection Significance 0.000 0.000 
Chi-Squared vs. Model S/O20 2.2500 4.0920 
  Rejection Significance 0.134 0.129 
Chi-Squared vs. Model S/O24 0.6440 2.4860 
  Rejection Significance 0.422 0.289 
Chi-Squared vs. Model S/O25  1.8420 
  Rejection Significance  0.175 

 

9.4 Practical Issues and Implications  
A large number of nested logit structures can be proposed for any context in which the number 

of alternatives is not very small.  As seen, even in the case of four alternatives, there are 25 

possible nest structures and this number increases to 235 for five alternatives and beyond 2000 

for six or more alternatives.  Since searching across this many nest structures is generally 

infeasible, it is the responsibility of the analyst to propose a subset of these structures for primary 

consideration or, alternatively, to eliminate a subset of such structures from consideration.  At 

the same time, it is desirable for the analyst to remain open to other possible structures that may 

be suggested by others who have familiarity with the behavior under study. 

 It is not uncommon for some or all of the proposed structures to be infeasible due to 

obtaining an estimated logsum or nesting parameter that is greater than one or greater than the 

parameter in a higher level nest.  It is a matter of judgment whether to eliminate the proposed 

structure based on the estimation results or to constrain selected nest parameters to fixed values 

or to relative values that ensure that the structure is consistent with utility maximization.  This 

‘imposition’ of a fixed value or other constraints on nest parameters requires careful judgment, 

discussion with other modeling and policy analysts and open reporting so that potential users of 

the model are aware of the basis for the proposed model. 

 An important part of the decision process is the differential interpretation associated with 

any nested logit model relative to the multinomial logit model or other nested logit models.  The 

central element of such interpretation is the way in which a change in any of the characteristics 
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of an alternative affects the probability of that alternative and each other alternative being 

chosen.  This is the essential element of competition/substitution between pairs of alternatives 

and may dramatically influence the predicted impact of selected policy changes. 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 201 
 

 
Koppelman and Bhat  January 31, 2006 

CHAPTER 10: Multiple Maxima in the Estimation of Nested Logit 
Models 

 

10.1 Multiple Optima 
One of the most important differences between the Multinomial Logit (MNL) and Nested Logit 

(NL) models is that there exists a unique optimum for the set of parameters in a MNL model but 

not necessarily in a NL model.  This means that the estimation of an MNL model will result in 

identical estimation parameters independent of the initial values adopted for such parameters at 

the start of estimation.  On the other hand, the parameters of an NL model may include multiple 

optima, some or all (or none) of which may be consistent with utility maximization.  This 

imposes an additional responsibility on the analyst; to ensure that the best feasible solution 

(consistent with utility maximization) be found if one exists48.   

This issue is illustrated for four cases; one based on Work Mode Choice and three based 

on Shop/Other Mode Choice. Multiple results are reported for work mode choice with Private 

Automobile and Non-Motorized Nests in Table 10-1.  The private automobile nest parameter is 

consistently greater than one; however, the shared ride nest parameter varies dramatically from 

large negative to positive but less than one depending on the starting parameters used.  In those 

cases where the shared ride nest parameter is negative, model parameters for the SR2 and SR3+ 

alternatives take on extreme values raising questions about the acceptability of the model.   

  

                                                 
48 The probability of finding the best feasible solution can be increased by using a variety of heuristics that take account of both feasibility and 

maximization. This problem is distinctly different from the use of algorithms designed to find the global optimum as the objective in estimating 

NL models is not finding the global optimum, but a feasible optimum.   
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Table 10-1 Multiple Solutions for Model 27W (See Table 9-3) 
 Model 27W Model 27W Model 27W Model 27W 

Nests P-S P-S P-S P-S 
Initial P-S Nest Parameters 1.0, 0.1 0.1, 0.1 0.5, 0.5 0.3 , 0.5 / 1.0, 1.0
Travel Cost by Income (1990 
cents per 1000 1989 dollars) -0.0592 (-4.8) -0.062 (-13.4 -0.059 (-4.8) -0.053 (-7.2)
Travel Time (minutes)   

 Motorized Modes Only -0.019 (-5.0) -0.0194 (-5.0) -0.019 (-4.9) -0.021 (-5.9)
 Non-Motorized Modes Only -0.0462 (-8.1) -0.0461 (-8.1) -0.046 (-8.1) -0.046 (-8.0)
 OVT by Distance (mi.) 
Motorized Modes -0.135 (-6.9) -0.136 (-8.5) -0.136 (-7.9) -0.137 (-8.2)

Household Income (1,000's of 
1989 dollars)   

 All Private Vehicle Modes 0.0 0.0 0.0  0.0 
 Transit -0.0044 (-2.3) -0.0044 (-2.4) -0.005 (-2.3) -0.005 (-2.4)
 Bike -0.0075 (-1.6) -0.0074 (-1.7) -0.007 (-1.7) -0.008 (-1.7)
 Walk -0.005 (-1.7) -0.005 (-1.7) -0.005 (-1.7) -0.005 (-1.8)

Vehicles per Worker   
 Drive Alone (base) 0.0 0.0 0.0  0.0 
 Shared Ride (any) -0.518 (-4.7) -0.581 (-13.6) -0.518 (-4.8) -0.515 (-4.9)
 Transit -0.872 (-7.6) -0.9 (-8.3) -0.875 (-7.8) -0.86 (-7.9)
 Bike -0.607 (-2.7) -0.628 (-2.8) -0.608 (-2.8) -0.611 (-2.8)
 Walk -0.615 (-4.0) -0.63 (-4.1) -0.61 (-4.2) -0.616 (-4.2)

Dummy Variable for Destination 
in CBD   

 Drive Alone (base) 0.0 0.0 0.0  0.0 
 Shared Ride 2 136 (10.9) 7.18 (13.7) 1.90 (1.4) 0.620 (4.1)
 Shared Ride 3+ -371 (-10.7) -17.8 (-13.7) -3.05 (-0.8) 0.889 (5.6)
 Transit 1.39 (8.4) 1.4 (9.1) 1.39 (7.7) 1.38 (7.7)
 Bike 0.533 (1.5) 0.546 (1.6) 0.528 (1.5) 0.539 (1.5)
 Walk 0.118 (0.5) 0.142 (0.6) 0.119 (0.5) 0.133 (0.5)

Empl. Density - Work Zone 
(employees / square mile)   

 Drive Alone (base) 0.0 0.0 0.0  0.0 
 Shared Ride 2 -0.0167 (-2.7) 0.003 (12.9) 0.0039 (4.3) 0.0030 (6.3)
 Shared Ride 3+ 0.0338 (3.4) 0.001 (12.7) 0.0013 (0.9) 0.0030 (6.4)
 Transit 0.00363 (8.3) 0.0032 (12.4) 0.0036 (8.6) 0.0036 (9.5)
 Bike 0.0024 (2.0) 0.002 (1.6) 0.0024 (1.9) 0.0024 (2.0)
 Walk 0.0034 (4.3) 0.003 (4.1) 0.0034 (4.4) 0.0034 (4.5)

Constants   
 Drive Alone (base) 0.0 0.0 0.0  0.0 
 Shared Ride 2 63.9 (10.1) 1.38 (13.6) -1.39 (-1.4) -2.38 (-12.7)
 Shared Ride 3+ 722 (10.3) 36.9 (13.8) 7.13 (0.7) -2.96 (-14.6)
 Transit -0.911 (-3.73) -0.84 (-3.8) -0.895 (-3.6) -0.837 (-3.6)
 Bike -1.81 (-4.68) -1.79 (-4.7) -1.81 (-4.7) -1.81 (-4.7)
 Walk -0.103 (-0.297) -0.095 (-0.3) -0.118 (-0.3) -0.113 (-0.3)

Nesting Coefficients / 
Dissimilarity Parameters   

 Shared Ride Nest -389. (-10.3) -21.2 (-14.4) -5.26 (-1.2) 0.364 (-31.0)
 Private Automobile Nest 1.48 (-4.1) 1.46 -(4.3) 1.48 (4.3) 1.48 (4.2)
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 Model 27W Model 27W Model 27W Model 27W 
Nests P-S P-S P-S P-S 
Initial P-S Nest Parameters 1.0, 0.1 0.1, 0.1 0.5, 0.5 0.3 , 0.5 / 1.0, 1.0
Log Likelihood at Zero -7309.601 -7309.601 -7309.601 -7309.601 
Log Likelihood at Constants -4132.916 -4132.916 -4132.916 -4132.916 
Log Likelihood at Convergence -3435.211 -3442.284 -3440.200 -3433.910 

Rho Squared w.r.t Zero 0.5300 0.5291 0.5294 0.5302 
Rho Squared w.r.t. Constants 0.1688 0.1671 0.1676 0.1691 

 

 This issue is illustrated again in Table 10-2 which reports three estimations for Model 20 

S/O with nests for private automobile and non-motorized alternatives.  The example of Model 20 

S/O not only illustrates the existence of multiple optima, but also that the shape of the log 

likelihood function may not be easy to intuit.  Very different starting points can eventually settle 

to the same solution while other, nearby starting points can diverge to different results.  The first 

estimate, using initial parameter of 0.5 for both nests obtained a result with a number of very 

small parameter estimates; those in the utility function have no significance while the private 

automobile nest parameter has an extremely high level of significance.  The other two 

estimations obtain essentially identical estimates with reasonable parameters for the utility 

function and nesting parameters.  Interestingly, the goodness of fit for the second and third 

estimates is superior to that for the first estimate. 
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Table 10-2 Multiple Solutions for Model 20 S/O (See Table 9-7) 

Variables Model 20 S/O Model 20 S/O Model 20 S/O 
 Nests P-NM P-NM P-NM 
  Initial Parameters 0.5, 0.5 0.2, 0.7 1.0, 1.0 
Constants       
  Transit -1.34 (-2.3) -0.17 (-0.2) -0.169 (-0.2)
  Shared Ride 2 -0.0001 (0.0) -0.282 (-2.4) -0.282 (-1.9)
  Shared Ride 3+ -0.0003 (0.0) -0.75 (-2.4) -0.751 (-2.0)
  Shared Ride 2/3 & Drive Alone -0.0002 (0.0) -0.416 (-2.4) -0.417 (-2.0)
  Shared Ride 2/3 -0.0004 (0.0) -0.952 (-2.3) -0.953 (-2.0)
  Bike -3.34 (-6.6) -3.69 (-6.0) -3.69 (-5.0)
  Walk 0.141 (0.4) 0.129 (0.3) 0.129 (0.3)
  Drive Alone (base) 0.0 0.0 0.0 
Log of Persons per Household   
  Transit 0.545 (1.5) 0.899 (2.2) 0.9 (2.2)
  Shared Ride 2 0.0001 (0.0) 0.266 (2.4) 0.267 (2.0)
  Shared Ride 3+ 0.0003 (0.0) 0.75 (2.4) 0.75 (2.0)
  Shared Ride 2/3 & Drive Alone 0.0002 (0.0) 0.445 (2.4) 0.445 (2.0)
  Shared Ride 2/3 0.0003 (0.0) 0.678 (2.3) 0.679 (2.0)
  Bike 0.667 (2.3) 0.996 (2.7) 0.997 (2.2)
  Walk 0.234 (1.4) 0.465 (2.3) 0.465 (2.1)
  Drive Alone (base) 0.0 0.0 0.0 
Number of Vehicles    
  Transit -1.61 (-6.4) -1.67 (-5.7) -1.67 (-5.6)
  Shared Ride 2 -2E-05 (0.0) -0.0562 (-2.3) -0.0563 (-1.1)
  Shared Ride 3+ -7E-05 (0.0) -0.192 (-2.4) -0.192 (-2.0)
  Shared Ride 2/3 & Drive Alone -4E-05 (0.0) -0.105 (-2.4) -0.105 (-2.0)
  Shared Ride 2/3 -6E-05 (0.0) -0.163 (-2.4) -0.164 (-1.9)
  Bike -0.173 (-1.1) -0.208 (-1.3) -0.209 (-0.9)
  Walk -0.421 (-3.4) -0.479 (-4.0) -0.479 (-3.7)
  Drive Alone (base) 0.0 0.0 0.0 
Travel Time (minutes)   
  Non-Motorized Modes Only -0.0762 (-8.9) -0.08 (-7.9) -0.08 (-8.2)
  Motorized Modes Only -9E-07 (0.0) -0.0246 (-2.4) -0.0246 (-2.2)

  
OVT by Distance (mi.) Motorized 
Modes -0.183 (-3.8) -0.209 (-4.0) -0.208 (-4.1)

Travel Cost by Log of Income 
 (1990 cents per log of 1000 1989 dollars) -1E-06 (0.0) -0.0028 (-2.3) -0.0028 (-1.3)
Zero Vehicle Household Dummy 
Variable   
  Transit, Bike, Walk 2.05 (5.8) 1.98 (5.6) 1.98 (5.4)
  All Private Vehicle Modes 0.0  
Dummy Variable for Destination in 
Core   
  Transit 1.85 (3.8) 1.76 (3.4) 1.76 (3.0)
  Shared Ride (any) 6E-05 (0.0) 0.154 (1.8) 0.155 (0.5)
  Bike, Walk 0.0902 (0.6) 0.103 (0.2) 0.103 (0.1)
  Drive Alone (base) 0.0  
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Variables Model 20 S/O Model 20 S/O Model 20 S/O 
 Nests P-NM P-NM P-NM 
  Initial Parameters 0.5, 0.5 0.2, 0.7 1.0, 1.0 
Nesting Coefficients/Dissimilarity 
Parameters   
  Non-Motorized Nest 0.579 (-5.6) 0.226 (8.1) 0.227 (7.2)
  Shared Ride Nest  
  Private Automobile Nest 9E-05 (-242.7) 0.703 (1.9) 0.703 (1.8)
  Motorized Nest  
Log Likelihood at Zero -6201.516 -6201.516 -6201.516 
Log Likelihood at Constants -4962.194 -4962.194 -4962.194 
Log Likelihood at Convergence -4450.573 -4447.480 -4447.480 
Rho Squared w.r.t Zero 0.2823 0.2828 0.2828 
Rho Squared w.r.t. Constants 0.1031 0.1037 0.1037 

 

 The complexity of the log likelihood objective function is also highlighted in Table 10-3.  

Model 22 S/O converges to a reasonable pair of nest parameters and the highest goodness of fit 

when the MNL solution parameters and a wide range of initial nesting parameters (including 

0.25/.075; 0.5/0.5; 1.0/1.0; 0.3/0.7; 0.4/0.6; 0.6/0.8; and 0.2/0.5) are used (first column).  

However, a variety of other initial nest parameters (columns 2, 3 and 4) produce unacceptable 

nest parameters and inferior goodness of fit.  Perhaps surprisingly, if the model is started with 

nest parameters very close to the preferred values; e.g., 0.2 and 0.8, the correct solution is not 

found.  Therefore, even a priori knowledge of the nest parameters is not guaranteed to avoid 

searching from multiple initial nest parameter values.   
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Table 10-3 Multiple Solutions for Model 22 S/O (See Table 9-8) 

Variables Model 22 S/O Model 22 S/O Model 22 S/O Model 22 S/O 
  Initial Parameters Multiple Pairs  0.1/1.0 0.1/0.8 0.2/0.8 
Constants                 
  Transit -0.269 (-0.5) -1.55 (-2.3) -1.44 (-2.9) -1.49 (-1.9) 
  Shared Ride 2 -0.258 (-1.6) -0.0492 (-1.3) -0.0241 (-8.9) -0.0104 (-3.7) 
  Shared Ride 3+ -0.685 (-1.7) -0.134 (-1.3) -0.0635 (-13.4) -0.0274 (-4.0) 
  Shared Ride 2/3 & Drive Alone -0.38 (-1.7) -0.0681 (-1.3) -0.0353 (-11.6) -0.0152 (-3.8) 
  Shared Ride 2/3 -0.87 (-1.8) -0.157 (-1.3) -0.0806 (-11.8) -0.0348 (-4.0) 
  Bike -4.48 (-8.0) -4.5 (-7.2) -4.48 (-7.6) -4.5 (-7.2) 
  Walk 0.388 (0.9) 0.262 (0.6) 0.306 (0.7) 0.278 (0.6) 
  Drive Alone (base) 0.0   0.0   0.0   0.0   
Log of Persons per Household                 
  Transit 0.795 (2.1) 0.632 (1.4) 0.554 (1.7) 0.555 (0.9) 
  Shared Ride 2 0.244 (1.7) 0.0495 (1.3) 0.0226 (9.6) 0.0097 (3.6) 
  Shared Ride 3+ 0.685 (1.8) 0.128 (1.3) 0.0635 (17.1) 0.0274 (4.0) 
  Shared Ride 2/3 & Drive Alone 0.406 (1.7) 0.077 (1.3) 0.0376 (14.0) 0.0162 (3.9) 
  Shared Ride 2/3 0.62 (1.8) 0.112 (1.3) 0.0575 (11.3) 0.0248 (4.0) 
  Bike 1.29 (3.0) 1.08 (2.5) 1.05 (2.6) 1.04 (2.3) 
  Walk 0.396 (1.7) 0.199 (1.0) 0.175 (1.0) 0.162 (0.9) 
  Drive Alone (base) 0.0   0.0   0.0   0.0   
Number of Vehicles                 
  Transit -1.2 (-1.6) -2.09 (-1.7) -1.77 (-2.1) -1.88 (-1.2) 
  Shared Ride 2 -0.0514 (-1.4) -0.0112 (-1.4) -0.0047 (-4.5) -0.002 (-2.7) 
  Shared Ride 3+ -0.175 (-1.7) -0.0314 (-1.3) -0.0162 (-9.9) -0.007 (-3.7) 
  Shared Ride 2/3 & Drive Alone -0.0956 (-1.7) -0.0194 (-1.4) -0.0088 (-7.7) -0.0038 (-3.4) 
  Shared Ride 2/3 -0.149 (-1.7) -0.0271 (-1.4) -0.0138 (-6.0) -0.0059 (-3.3) 
  Bike -0.163 (-0.8) -0.105 (-0.5) -0.101 (-0.5) -0.0955 (-0.4) 
  Walk -0.504 (-4.0) -0.439 (-3.4) -0.437 (-3.4) -0.432 (-3.4) 
  Drive Alone (base) 0.0   0.0   0.0   0.0   
Travel Time (minutes)                 
  Non-Motorized Modes Only -0.0855 (-8.5) -0.0867 (-9.8) -0.0819 (-7.0) -0.0826 (-8.1) 
  Motorized Modes Only -0.022 (-1.7) -0.019 (-2.7) -3E-05 (-0.8) -0.0008 (-0.6) 
  OVT by Distance (mi.) Motorized Modes -0.169 (-2.7) -0.12 (-2.8) -0.183 (-2.0) -0.176 (-2.6) 
Travel Cost by Log of Income (1990 cents per log 

of 1000 1989 dollars) -0.0025 (-1.3) -0.0006 (-1.4) -0.0003 (-3.7) -0.0001 (-2.7) 
Zero Vehicle Household Dummy Variable                 
  Transit, Bike, Walk 1.84 (5.0) 2.11 (4.9) 2.08 (5.0) 2.11 (5.1) 
  Personal Vehicle Modes 0.0   0.0   0.0   0.0   
Dummy Variable for Destination in Core                 
  Transit 1.46 (2.5) 1.11 (2.9) 2.09 (2.1) 2 (2.9) 
  Shared Ride (any) 0.142 (0.8) 0.374 (1.7) 0.0015 (4.3) 0.0127 (1.8) 
  Bike, Walk 0.0884 (0.4) 0.127 (0.2) 0.137 (0.2) 0.128 (0.2) 
  Drive Alone (base) 0.0   0.0   0.0   0.0   
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Variables Model 22 S/O Model 22 S/O Model 22 S/O Model 22 S/O 
  Initial Parameters Multiple Pairs  0.1/1.0 0.1/0.8 0.2/0.8 
Nesting Coefficients/Dissimilarity Parameters                 
  Non-Motorized Nest                 
  Shared Ride Nest                 
  Automobile Nest 0.207 (-6.7) 0.0387 (32.5) 0.019 (3715.9) 0.0082 (503.4) 
  Motorized Nest 0.791 (-0.7) 1.17 (-0.4) 1.05 (-0.1) 1.09 (-0.1) 
Log Likelihood at Zero -6201.516 -6201.516 -6201.516 -6201.516 
Log Likelihood at Constants -4962.194 -4962.194 -4962.194 -4962.194 
Log Likelihood at Convergence -4448.234 -4454.884 -4451.034 -4451.070 
Rho Squared w.r.t Zero 0.2827 0.2816 0.2823 0.2823 
Rho Squared w.r.t. Constants 0.1036 0.1022 0.1030 0.1030 

 

Throughout CHAPTER 9, 0.5 was used as the starting value for all nest parameters, 

except for Models 27W and 20 S/O above.  Although there is no theoretical reason for using this 

starting point, some limited experimentation lead to adopting this practice over using 1.0 (the 

MNL solution) as the starting point.  When all the nest parameters are started at 1.0, estimation 

frequently resulted in infeasible nesting coefficients.  Table 10-4 illustrates two examples of this 

result.  The result that 0.5 worked well with these models and data sets may or may not 

generalize to other specifications or data sets, and should not necessarily be taken as a general 

rule.  Rather, similar experimentation should be undertaken in any case where nesting parameters 

fall outside the desired zero to one range.   

 

Table 10-4 Multiple Solutions for Complex S/O Models (See Table 9-9) 

Variables Model 25-A S/O Model 25 S/O Model 26-A S/O Model 26 S/O 
  Nest M-P-S M-P-S M-P-S-NM M-P-S-NM 
  Initial Search Value for Nesting Coefficients 1.0 0.5 1.0 0.5 
Constants        
  Transit 0.137 (0.2) -0.439 (-0.8) 0.196 (0.2) -0.406 (-0.8)
  Shared Ride 2 0.0405 (0.6) -0.280 (-2.1) 0.0409 (0.6) -0.282 (-2.1)
  Shared Ride 3+ 0.796 (1.2) -0.621 (-2.1) 0.804 (1.2) -0.624 (-2.1)
  Shared Ride 2/3 & Drive Alone 0.310 (1.1) -0.372 (-2.1) 0.313 (1.1) -0.374 (-2.1)
  Shared Ride 2/3 1.10 (1.2) -0.750 (-2.0) 1.11 (1.2) -0.753 (-2.0)
  Bike -4.57 (-7.7) -4.39 (-7.4) -3.72 (-5.0) -3.55 (-6.0)
  Walk 0.256 (0.6) 0.490 (1.2) 0.131 (0.3) 0.359 (0.9)
  Drive Alone (base) 0.00  0.00 0.00   0.00
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Variables Model 25-A S/O Model 25 S/O Model 26-A S/O Model 26 S/O 
  Nest M-P-S M-P-S M-P-S-NM M-P-S-NM 
  Initial Search Value for Nesting Coefficients 1.0 0.5 1.0 0.5 
Log of Persons per Household        
  Transit 0.760 (1.7) 0.891 (2.2) 0.769 (1.7) 0.905 (2.6)
  Shared Ride 2 0.582 (1.3) 0.451 (1.8) 0.588 (1.3) 0.454 (2.0)
  Shared Ride 3+ -0.179 (-0.8) 0.793 (2.1) -0.180 (-0.9) 0.798 (2.2)
  Shared Ride 2/3 & Drive Alone 0.312 (1.2) 0.575 (2.0) 0.315 (1.3) 0.578 (2.1)
  Shared Ride 2/3 -0.0577 (-0.4) 0.742 (2.1) -0.0587 (-0.4) 0.747 (2.1)
  Bike 1.20 (2.8) 1.39 (3.2) 0.906 (2.0) 1.09 (2.9)
  Walk 0.342 (1.4) 0.498 (1.9) 0.383 (1.6) 0.542 (2.3)
  Drive Alone (base) 0.00  0.00 0.00   0.00
Number of Vehicles        
  Transit -1.39 (-2.1) -1.17 (-1.9) -1.45 (-2.0) -1.24 (-2.2)
  Shared Ride 2 -0.138 (-1.3) -0.104 (-1.7) -0.139 (-1.3) -0.104 (-1.8)
  Shared Ride 3+ 0.0481 (0.8) -0.195 (-2.1) 0.0484 (0.8) -0.196 (-2.1)
  Shared Ride 2/3 & Drive Alone -0.0869 (-1.2) -0.136 (-1.9) -0.0877 (-1.2) -0.137 (-2.0)
  Shared Ride 2/3 -0.0017 (0.0) -0.176 (-2.0) -0.0017 (0.0) -0.177 (-2.0)
  Bike -0.130 (-0.5) -0.193 (-0.8) -0.181 (-1.0) -0.239 (-1.5)
  Walk -0.474 (-3.6) -0.534 (-4.1) -0.458 (-3.5) -0.518 (-4.1)
  Drive Alone (base) 0.00  0.00 0.00   0.00
Travel Time (minutes)        
  Non-Motorized Modes Only -0.0844 (-8.7) -0.0859 (-8.7) -0.0809 (-8.0) -0.0824 (-9.0)
  Motorized Modes Only -0.0337 (-2.4) -0.0167 (-1.8) -0.0339 (-2.5) -0.0167 (-1.9)
  OVT by Distance (mi.) Motorized Modes -0.199 (-3.2) -0.155 (-2.6) -0.210 (-3.3) -0.167 (-3.1)

Travel Cost by Log of Income (1990 cents per log of 
1000 1989 dollars) -0.0007 (-0.6) -0.0031 (-1.7) -0.0007 (-0.6) -0.0031 (-1.8)

Zero Vehicle Household Dummy Variable        
  Transit, Bike, Walk 1.97 (4.6) 1.74 (5.0) 1.98 (4.5) 1.78 (5.2)
  All Private Vehicle Modes 0.00  0.00 0.00   0.00
Dummy Variable for Destination in Core        
  Transit 1.61 (2.3) 1.49 (3.0) 1.63 (2.3) 1.53 (3.1)
  Shared Ride (any) 0.160 (1.0) 0.222 (1.3) 0.161 (1.0) 0.223 (1.2)
  Bike, Walk 0.160 (0.2) 0.138 (0.2) 0.141 (0.2) 0.124 (0.0)
  Drive Alone (base) 0.00  0.00 0.00   0.00
Nesting Coefficients/Dissimilarity Parameters        
  Non-Motorized Nest    0.711 (-1.6) 0.715 (-2.2)
  Shared Ride Nest -0.332 (-4.9) 0.152 (-10.7) -0.335 (-4.9) 0.153 (-10.6)
  Private Automobile Nest 0.188 (-5.4) 0.304 (-4.5) 0.190 (-5.5) 0.306 (-4.6)
  Motorized Nest 0.906 (-0.3) 0.755 (-0.9) 0.932 (-0.2) 0.789 (-0.8)
Log Likelihood at Zero -6201.516 -6201.516 -6201.516 -6201.516 
Log Likelihood at Constants -4962.194 -4962.194 -4962.194 -4962.194 
Log Likelihood at Convergence -4447.275 -4446.355 -4446.320 -4445.434 
Rho Squared w.r.t Zero 0.2829 0.2830 0.2830 0.2832 
Rho Squared w.r.t. Constants 0.1038 0.1040 0.1040 0.1041 
Chi-Squared vs. MNL 19.9200 21.7600 21.8300 23.6020 
  Confidence 100.0% 100.0% 100.0% 100.0% 
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CHAPTER 11: Aggregate Forecasting, Assessment, and Application 
 

11.1 Background 
Discrete choice models explain the choice behavior of individuals as a function of individual 

characteristics and attributes of the alternatives in the individual's choice set. However, an 

important objective of discrete choice analysis from is to predict the group behavior of 

individuals due to changes in socio-demographic characteristics over time and/or changes in 

attributes of alternatives. 

 The previous chapters have discussed the specification and estimation of travel mode 

choice models. This chapter describes an aggregation approach to predicting the mode choice of 

a group of individuals from the estimated choice parameters and from relevant information 

regarding the current or future values (due to socio-demographic changes or policy actions) of 

exogenous variables.  This chapter also discusses issues related to the aggregate assessment of 

the performance of mode choice models and the application of the models to evaluate policy 

actions. 

 

11.2 Aggregate Forecasting  
The first issue in aggregate forecasting is to define the population for which we are seeking 

aggregate predictions. In the context of travel mode choice, the population will be all (or a subset 

of) residents of the metropolitan region of interest.  If the focus of the study is region-wide, the 

predictions are required for the behavior of the full population.  However, if the focus of the 

study is on a specific corridor or socioeconomic subgroup, it may be satisfactory to consider only 

the population that is relevant to the study.  Finally, even if the focus is on a sub-group of the 

population, it may be necessary to predict more population groups to account for interaction 

between groups.   

 Once the population of interest is defined and if we know the values of the exogenous 

variables nix  for each individual n and alternative i in the desired population, the expected 
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number of individuals choosing travel mode i can be obtained in a conceptually straight-forward 

fashion: 

 ( )
1 1

,
N N

i nii ni
n n

N P x Pθ
= =

= =∑ ∑  11.1 

Where θ  is the expected value of the vector of parameters obtained in the estimation phase and 

niP  is the estimated probability of choosing mode i for individual n. The expected share of the 

population using mode i can be obtained from equation 11.1 as: 
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 There are two sources of variation associated with the expressions in equations 11.1 and 

11.2. The first source is the probabilistic form of the discrete choice model at the individual-

level. Even if the true value of the parameter vector θ  is known, the probabilistic form of choice 

at the individual level implies the presence of sampling variance in the aggregate number or 

share of individuals choosing mode i. This sampling variance declines with the size N  of the 

population for which an aggregate prediction is desired49. If we are actually making predictions 

for the entire population, N  is likely to be large enough so that the sampling variance can be 

ignored (see Cramer, 1991; page 86 for a detailed discussion). Of course, we never know the true 

value of the vector θ . We only have an estimate θ  of the true value. This gives rise to the 

second source of variation, which we label as the estimation variance. An estimate of the 

asymptotic variance of the aggregate share prediction due to this estimation variance can be 

written as: 

 ( ) ( )'

1

1
,  where 

N

i ni nji i i ni nj
n j

Var S dVar d d P x P x
N

θ
=

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= = − ⋅⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑  11.3 

                                                 
49 It is important to recognize that a distinct N is associated with each subgroup of the population so that while it 
may be possible to get a fairly accurate estimate of, for example, mode shares for the entire region; it may not be 
possible to do so for distinct socio-economic or spatially defined sub-groups. 
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 ( )Var θ  is the asymptotic variance-covariance matrix of the parameters obtained in 

estimation and '
id  is the transpose matrix of id . If the dimension of the vector nix  is 1K × , 

then the dimension of id  is also 1K ×  and the dimension of ( )Var θ  is K K× . 

 The discussion thus far has assumed that we know the exogenous variable vector nix  for 

each individual n in the population for which we desire aggregate predictions. In reality, this is 

virtually impossible. Practical methods for aggregation attempt to approximate either equation 

11.1 or 11.2 while reducing the data needs and the computational burden of a full enumeration 

procedure which involves the use of data on all individuals in the desired population. 

Historically, this involved using a sample of the population for prediction in a procedure called 

sample enumeration. As its name suggests, sample enumeration uses a random sample of the 

population of interest and then applies equation 11.1 or equation 11.2 to the sample. The sample 

itself may be obtained in several ways. One approach is to use the estimation sample as the base 

and change the characteristics of the estimation sample to make it representative of the future 

population. For example, one can "age" the estimation sample over time based on information 

about birth and death rates or use temporal income trends to update the estimation sample so it is 

representative of future conditions. Alternatively, for policy analysis, one can change the level-

of-service variables for affected individuals in the estimation sample to obtain a prediction 

sample for use in sample enumeration.  

An alternative approach, which has become more widely used, is to construct a synthetic 

prediction sample for the entire population through micro-simulation.  The synthetic population 

can be generated for a specific point in time based on a combination of data sources and ‘aged’ 

over the prediction period to provide an extensive representation of the full population.   

 The central issue in the use of this approach is the generation or micro-simulation of the 

synthetic population and application of the above equations to that population, M.   

 ( )
1 1

1 1
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,  where 

M
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θ
=
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 Different procedures can be used to generate the synthetic population for the region in 

such a manner that individuals and households with specific characteristics are located in 

specific spatial locations (see Miller, 1996 and Beckman et al, 1966 for a more detailed 

discussion).  Generally, these locations are defined by census tracts as this is the smallest area for 

which data is commonly available.  The approach is based on the use of two levels of census 

data.  These are the marginal distributions of household characteristics for each census tract and 

multi-way distributions of data included in the Public Use Microdata Sample (PUMS) where 

each Public Use Microdata Area (PUMA) consists of a set of census tracts.  “A two-step iterative 

proportional fitting (IPF) procedure is used to estimate simultaneously the multi-way distribution 

for each census tract within a PUMA (Miller, 1996)”, in such a way as to match the marginal 

distribution of each census tract and the multi-way correlation of the PUMA.  Once this has been 

accomplished, individual households with relevant characteristics can be drawn from the 

generated multi-way sample for the census tract. 

11.3 Aggregate Assessment of Travel Mode Choice Models  
In CHAPTER 5 we discussed disaggregate measures of fit that can be used to evaluate the 

performance of alternative model structures/specifications. The testing of alternative model 

structures and specifications should be conducted at the disaggregate level to select a preferred 

model structure/specification. This testing and selection process should not be pursued at the 

aggregate level. There are several reasons for this. First, in some model structures such as the 

multinomial logit, the predicted aggregate share of each modal alternative in the estimation 

sample will be the same regardless of the model specification as long as a full set of alternative-

specific constants are included. Thus, aggregate testing of alternative models using the 

estimation sample is futile. Second, a model that performs poorly at the disaggregate level may 

perform as well or even better than a model that performs well at the disaggregate level when 

both models are applied to a hold-out sample to obtain aggregate predictions. For example, 
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consider the situation when the sample shares in the hold-out sample are exactly the same as in 

the estimation sample. In this situation, a multinomial logit model with just the alternative 

specific constants will fit the aggregate shares in the hold-out sample exactly. However, a 

disaggregate model with additional explanatory variables will not be able to do so. On the other 

hand, if the characteristics of the hold-out sample are quite different from that of the estimation 

sample, the latter model is likely to provide a better aggregate fit than the former model. Thus, 

the aggregate comparison of two models on a hold-out sample is heavily influenced by the 

composition of the hold-out sample vis-à-vis that of the estimation sample. Third, errors in 

individual-level predictions tend to average out in the aggregate, and so aggregate-level testing 

does not discriminate much among alternative models. Fourth, the same problems mentioned 

earlier are applicable (though to a lesser extent) even for semi-aggregate comparisons among 

alternative models. For example, consider predictions for sub-groups of the estimation sample. 

While the sub-groups will be different based on the values of one or two exogenous variables, 

they are likely to be relatively homogenous with respect to other exogenous variables. Again, 

this will affect any model comparisons conducted at the semi-aggregate level. In fact, the best 

level for comparison is the natural extension of the semi-aggregate approach to the situation 

where each sub-group represents an individual; that is, the disaggregate level. 

 The discussion above emphasizes the need to pursue model testing and selection at the 

disaggregate level. However, once a model has been selected, it becomes necessary to validate 

the models at the aggregate level.  This validation is used to ensure that the prediction of 

aggregate behavior, which drives the modeling process, is consistent with the historically 

observed aggregate data and by extension future aggregate behavior.  Effective validation 

requires matching prediction to observations at easily observable and measurable locations.  

These include screen-line crossings, total crossings of a major barrier such as a river, vehicle 

travel on selected major roadways and passenger ridership on selected transit routes.  The 

predicted shares can be compared to the actual shares and summary measures such as the root-

mean square error or average absolute error percentage may be computed (see Ben-Akiva and 

Lerman, 1985, page 210 for an example) to assess the degree to which the predictions 
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correspond to the aggregate observed data. This requires aggregate predictions based on the 

micro-simulation procedures described in the preceding section.  

 Any systematic errors in prediction would require review and revision of the underlying 

models to ensure that the models satisfy aggregate observations while retaining the most 

important elements of the underlying disaggregate models. 
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CHAPTER 12: Recent Advances in Discrete Choice Modeling 
 

12.1 Background  
In this chapter, we provide an overview of the motivation for, and structure of, advanced discrete 

choice models. The discussion is intended to familiarize readers with structural alternatives to the 

multinomial logit and nested logit models. It is not intended to provide the detailed mathematical 

formulations or the estimation techniques for these advanced models. Appropriate references are 

provided for readers interested in these details. This chapter draws from a resource paper 

presented by Bhat at the 2003 International Association of Travel Behavior Research held in 

Lucerne, Switzerland (see Bhat, 2005).  

 Before proceeding to review advanced discrete choice models, we first discuss two 

important assumptions of the multinomial logit (MNL) formulation. The first assumption in the 

MNL model is that the random components of the utilities of the different alternatives are 

independent and identically distributed (IID). The assumption of independence implies that there 

are no common unobserved factors affecting the utilities of the various alternatives. This 

assumption is violated, for example, if a decision-maker assigns a higher utility to all transit 

modes (bus, train, etc.) because of the opportunity to socialize or if the decision maker assigns a 

lower utility to all the transit modes because of the lack of privacy. In such situations, the same 

underlying unobserved factor (opportunity to socialize or lack of privacy) impacts the utilities of 

multiple modes. As indicated in CHAPTER 8, the presence of such common underlying factors 

across modal utilities has implications for competitive structure. The assumption of identically 

distributed (across alternatives) random utility terms implies that the variation in unobserved 

factors affecting modal utility is the same across all modes. In general, there is no theoretical 

reason to believe that this will be the case. For example, if comfort is an unobserved variable 

whose values vary considerably for the train mode (based on, say, the degree of crowding on 

different train routes) but little for the automobile mode, then the random components for the 

automobile and train modes will have different variances. Unequal error variances have 

significant implications for competitive structure, as discussed in detail by Bhat (1995). 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 216 
 

 
Koppelman and Bhat  January 31, 2006 

 A second assumption of the MNL model is that it maintains homogeneity in 

responsiveness to attributes of alternatives across individuals (i.e., an assumption of response 

homogeneity). More specifically, the MNL model does not allow sensitivity variations to an 

attribute (for example, travel cost or travel time in a mode choice model) due to unobserved 

individual characteristics. However, unobserved individual characteristics can and generally will 

affect responsiveness. For example, some individuals by their intrinsic nature may be extremely 

time-conscious while other individuals may be "laid back" and less time-conscious. Ignoring the 

effect of unobserved individual attributes can lead to biased and inconsistent parameter and 

choice probability estimates (see Chamberlain, 1980).  

In the rest of this Chapter, we discuss three types of advanced discrete choice model 

structures that relax one or both of the MNL assumptions discussed above. These three structures 

correspond to: (1) The GEV class of models, (2) The mixed multinomial logit (MMNL) class of 

models, and (3) The mixed GEV (MGEV) class of models.  

 

12.2 The GEV Class of Models 
The GEV-class of models relaxes the independence from irrelevant alternatives (IIA) property of 

the multinomial logit model by relaxing the independence assumption between the error terms of 

alternatives. In other words, a generalized extreme value error structure is used to characterize 

the unobserved components of utility as opposed to the univariate and independent extreme 

value error structure used in the multinomial logit model. There are three important 

characteristics of all GEV models: (1) the overall variances of the alternatives (i.e., the scale of 

the utilities of alternatives) are assumed to be identical across alternatives, (2) the choice 

probability structure takes a closed-form expression, and (3) all GEV models collapse to the 

MNL model when the parameters generating correlation take values that reduce the correlations 

between each pair of alternatives to zero. With respect to the last point, it has to be noted that the 

MNL model is also a member of the GEV class, though we will reserve the use of the term 

“GEV class” to models that constitute generalizations of the MNL model. 
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 The general structure of the GEV class of models was derived by McFadden (1978) from 

the random utility maximization hypothesis, and generalized by Ben-Akiva and Francois (1983). 

Several specific GEV structures have been formulated and applied within the GEV class, including 

the Nested Logit (NL) model (Williams, 1977; McFadden, 1978; Daly and Zachary, 1978), the 

Paired Combinatorial Logit (PCL) model (Chu, 1990; Koppelman and Wen, 2000), the Cross-

Nested Logit (CNL) model (Vovsha, 1997), the Ordered GEV (OGEV) model (Small, 1987), the 

Multinomial Logit-Ordered GEV (MNL-OGEV) model (Bhat, 1998a), the ordered GEV-nested 

logit (OGEV-NL) model (Whelan et al., 2002) and the Product Differentiation Logit (PDL) model 

(Breshanan et al., 1997). More recently, Wen and Koppelman (2001) proposed a general GEV 

model structure, which they referred to as the Generalized Nested Logit (GNL) model. Swait 

(2001), independently, proposed a similar structure, which he refers to as the choice set Generation 

Logit (GenL) model; Swait’s derivation of the GenL model is motivated from the concept of latent 

choice sets of individuals, while Wen and Koppelman’s derivation of the GNL model is motivated 

from the perspective of flexible substitution patterns across alternatives.  Wen and Koppelman 

(2001) illustrate the general nature of the GNL model formulation by deriving the other GEV model 

structures mentioned earlier as special restrictive cases of the GNL model or as approximations to 

restricted versions of the GNL model. Swait (2001) presents a network representation for the GenL 

model, which also applies to the GNL model.  

Researchers are not restricted to the GEV structures identified above, and can generate 

new GEV model structures customized to their specific empirical situation. In fact, only a 

handful of possible GEV model structures appear to have been implemented, and there are likely 

to be several, yet undiscovered, model structures within the GEV class. For example, Karlstrom 

(2001) has proposed a GEV model that is quite different in form from all other GEV models 

derived in the past. Also, Bierlaire (2002) proposed the network GEV structure which provides a 

high degree of flexibility in the formulation of GEV models. 

Of course, GEV models, while allowing flexibility in substitution patterns, can also entail 

the estimation of a substantial number of dissimilarity and allocation parameters. The net result 

is that the analyst will have to impose informed restrictions on these GEV models, customized to 

the application context under investigation.  
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An important point to note here is that GEV models are consistent with utility 

maximization only under rather strict conditions on model structure parameters. The origin of 

these restrictions can be traced back to the requirement that the variance of the joint alternatives 

be identical in the GEV models. Also, GEV models do not relax assumptions related to taste 

homogeneity in response to an attribute (such as travel time or cost in a mode choice model) due 

to unobserved decision-maker characteristics, and cannot be applied to panel data with temporal 

correlation in unobserved factors within the choices of the same decision-making agent. 

However, it is indeed refreshing to note the renewed interest and focus on GEV models today, 

since such models do offer computational tractability, and provide a theoretically sound measure 

for benefit valuation. 

 

12.3 The MMNL Class of Models 
The MMNL class of models, like the GEV class of models, generalizes the MNL model. 

However, unlike the closed form of the GEV class, the MNL class involves the analytically 

intractable integration of the multinomial logit formula over the distribution of unobserved 

random parameters. It takes the structure shown below: 
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qiP  is the probability that individual q chooses alternative i, qix  is a vector of observed variables 

specific to individual q and alternative i, β  represents parameters which are random realizations 

from a density function f(.), and θ  is a vector of underlying moment parameters characterizing 

f(.). 

The first known applications of the mixed logit structure of Equation 12.1 appear to have 

been by Boyd and Mellman (1980) and Cardell and Dunbar (1980). However, these were not 

individual-level models and, consequently, the integration inherent in the mixed logit 
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formulation had to be evaluated only once for the entire market. Train (1986) and Ben-Akiva et 

al. (1993) applied the mixed logit to customer-level data, but considered only one or two random 

coefficients in their specifications. Thus, they were able to use quadrature techniques for 

estimation. The first applications to realize the full potential of mixed logit by allowing several 

random coefficients simultaneously include Revelt and Train (1998) and Bhat (1998b), both of 

which were originally completed in the early 1996 and exploited the advances in simulation 

methods (for a detailed discussion of these recent advances, please see Train (2003) and Bhat 

(2005). 

 The MMNL model structure of Equation 12.1 can be motivated from two very different 

(but formally equivalent) perspectives (see Bhat, 2000a). Specifically, a MMNL structure may 

be generated from an intrinsic motivation to allow flexible substitution patterns across 

alternatives (error-components structure) or from a need to accommodate unobserved 

heterogeneity across individuals in their sensitivity to observed exogenous variables (random-

coefficients structure) or a combination of the two. Examples of the error-components 

motivation in the literature include Brownstone and Train (1999), Bhat (1998c), Jong et al. 

(2002a and b), Whelan et al. (2002), and Batley et al. (2001a and b). The reader is also referred 

to the work of Walker and her colleagues (Ben-Akiva et al., 2001; Walker, 2002) and Munizaga 

and Alvarez-Daziano (2002) for important identification issues in the context of the error 

components MMNL model. Examples of the random-coefficients structure include Revelt and 

Train (1998), Bhat, (2000b), Hensher (2001), and Rizzi and Ortúzar (2003). 

 A normal distribution is assumed for the density function f(.) in Equation 12.1 when an 

error-components structure forms the basis for the MMNL model. However, while a normal 

distribution remains the most common assumption for the density function f(.) for a random-

coefficients structure, other density functions may be more appropriate. For example, a log-

normal distribution may be used if, from a theoretical perspective, an element of β has to take the 

same sign for every individual (such as a negative coefficient on the travel cost parameter in a 

travel mode choice model). Other distributions that have been used in the literature include 

triangular and uniform distributions (see Revelt and Train, 2000; Train, 2001; Hensher and 

Greene, 2003) and the Rayleigh distribution (Siikamaki and Layton, 2001). The triangular and 
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uniform distributions have the nice property that they are bounded on both sides, thus precluding 

the possibility of very high positive or negative coefficients for some decision-makers as would 

be the case if normal or log-normal distributions are used. By constraining the mean and spread 

to be the same, the triangular and uniform distributions can also be customized to cases where all 

decision-makers should have the same sign for one or more coefficients. The Rayleigh 

distribution, like the lognormal distribution, assures the same sign of coefficients for all decision-

makers.50  

The MMNL class of models can approximate any discrete choice model derived from 

random utility maximization (including the multinomial probit) as closely as one pleases (see 

McFadden and Train, 2000) subject to computation limits on the number of points used to 

represent the mixture distributions. The MMNL model structure is also conceptually appealing 

and easy to understand since it is the familiar MNL model mixed with the multivariate 

distribution (generally multivariate normal) of the random parameters (see Hensher and Greene, 

2003). In the context of relaxing the IID error structure of the MNL, the MMNL model 

represents a computationally efficient structure when the number of error components (or 

factors) needed to generate the desired error covariance structure across alternatives is much 

smaller than the number of alternatives (see Bhat, 2003a,b). The MMNL model structure also 

serves as a comprehensive framework for relaxing both the IID error structure as well as the 

response homogeneity assumption.  

A few notes are in order here about the MMNL model vis-à-vis the MNP model. First, 

both these models are very flexible in the sense of being able to capture random taste variations 

and flexible substitution patterns. Second, both these models are able to capture temporal 

correlation over time, as would normally be the case with panel data. Third, the MMNL model is 

able to accommodate non-normal distributions for random coefficients, while the MNP model 

can handle only normal distributions. Fourth, researchers and practitioners familiar with the 

traditional MNL model might find it conceptually easier to understand the structure of the 

MMNL model compared to the MNP. Fifth, both the MMNL and MNP model, in general, 

                                                 
50 The reader is referred to Hess and Axhausen (2005) for a review of alternative distribution forms and the ability of 
these distributed forms to approximate several different types of true distributional forms. 
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require the use of simulators to estimate the multidimensional integrals in the likelihood function 

(the reader is referred to Bhat, 2003a, for a detailed discussion of the advances in simulation 

methods that have made it very practical to estimate the MMNL and MNP models). Sixth, the 

MMNL model can be viewed as arising from the use of a logit-smoothed Accept-Reject (AR) 

simulator for an MNP model (see Bhat 2000c, and Train 2003; page 124). Seventh, the 

simulation techniques for the MMNL model are conceptually simple, and straightforward to 

code. They involve simultaneous draws from the appropriate density function with unrestricted 

ranges for all alternatives. Overall, the MMNL model is very appealing and broad in scope, and 

there appears to be little reason to prefer the MNP model over the MMNL model subject to 

resolution of identification problems still under study (Walker 2002). However, there is at least 

one exception to this general rule, corresponding to the case of normally distributed random taste 

coefficients. Specifically, if the number of normally distributed random coefficients is 

substantially more than the number of alternatives, the MNP model offers advantages because 

the dimensionality is of the order of the number of alternatives (in the MMNL, the 

dimensionality is of the order of the number of random coefficients)51. 

 

12.4 The Mixed GEV Class of Models 
The MMNL class of models is very general in structure and can accommodate both relaxations 

of the IID assumption as well as unobserved response homogeneity within a simple unifying 

framework. Consequently, the need to consider a mixed GEV class may appear unnecessary. 

However, there are instances when substantial computational efficiency gains may be achieved 

using a MGEV structure. Consider, for instance, Bhat and Guo’s (2004) model for household 

residential location choice. It is possible, if not very likely, that the utility of spatial units that are 

close to each other will be correlated due to common unobserved spatial elements. A common 

specification in the spatial analysis literature for capturing such spatial correlation is to allow 

contiguous alternatives to be correlated. In the MMNL structure, such a correlation structure may 

                                                 
51 The reader is also referred to Munizaga and Alvarez-Daziano (2002) for a detailed discussion comparing the 
MMNL model with the nested logit and MNP models. 
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be imposed through the specification of a multivariate MNP-like error structure, which will then 

require multidimensional integration of the order of the number of spatial units (see Bolduc et 

al., 1996).  On the other hand, a carefully specified GEV model can accommodate the spatial 

correlation structure within a closed-form formulation.52 However, the GEV model structure of 

Bhat and Guo cannot accommodate unobserved random heterogeneity across individuals. One 

could superimpose a mixing distribution over the GEV model structure to accommodate such 

random coefficients, leading to a parsimonious and powerful MGEV structure. Thus, in a case 

with 1000 spatial units (or zones), the MMNL model would entail a multidimensional integration 

of the order of 1000 plus the number of random coefficients, while the MGEV model involves 

multidimensional integration only of the order of the number of random coefficients (a reduction 

of dimensionality of the order of 1000!). 

 In addition to computational efficiency gains, there is another more basic reason to prefer 

the MGEV class of models when possible over the MMNL class of models. This is related to the 

fact that closed-form analytic structures should be used whenever feasible, because they are 

always more accurate than the simulation evaluation of analytically intractable structures (see 

Train, 2003; pg. 191). In this regard, superimposing a mixing structure to accommodate random 

coefficients over a closed form analytic structure that accommodates a particular desired inter-

alternative error correlation structure represents a powerful approach to capture random taste 

variations and complex substitution patterns. 

 Clearly, there are valuable gains to be achieved by combining the state-of-the-art 

developments in closed-form GEV models with the state-of-the-art developments in open-form 

mixed distribution models. With the recent advances in simulation techniques, there appears to 

be a feeling among some discrete choice modelers that there is no need for any further 

consideration of closed-form structures for capturing correlation patterns. But, as Bhat and Guo 

(2004) have demonstrated in their paper, the developments in GEV-based structures and open-

form mixed models are not as mutually exclusive as may be the impression in the field; rather 

                                                 
52 The GEV structure used by Bhat and Guo is a restricted version of the GNL model proposed by Wen and 
Koppelman. Specifically, the GEV structure takes the form of a paired GNL (PGNL) model with equal dissimilarity 
parameters across all paired nests (each paired nest includes a spatial unit and one of its adjacent spatial units). 
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these developments can, and are, synergistic, enabling the estimation of model structures that 

cannot be estimated using GEV structures alone or cannot be efficiently estimated (from a 

computational standpoint) using a mixed multinomial logit structure. 

12.5 Summary 
The field of discrete choice has seen a quantum jump in recent years. There is a sense today of 

absolute control over the behavioral structures one wants to estimate in empirical contexts and 

renewed excitement in the field, thanks to recent conceptual and simulation developments. 

However, analysts need to be careful not to get carried away with these new developments in 

choice modeling. The fundamental idea of discrete choice models will always continue to be the 

identification of systematic variations in the population. The advanced methods presented in this 

Chapter should be viewed as formulations that recognize the inevitable presence of unobserved 

heterogeneity across individuals and/or interactions among unobserved components affecting the 

utility of alternatives even after adopting the best systematic specifications there can be. In fact, a 

valuable contribution of recent developments in the field is precisely that they enable the 

confluence of careful structural specification with the ability to accommodate flexible 

substitution patterns and unobserved heterogeneity profiles. 

 
 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 224 
 

 
Koppelman and Bhat  January 31, 2006 

References 
 
Ben-Akiva, M. and S.R. Lerman (1985) Discrete Choice Analysis: Theory and Application to 

Travel Demand, The MIT Press, Cambridge. 
 
Ben-Akiva, M. and D. Bolduc (1996) Multinomial probit with a logit kernel and a 
 general parametric specification of the covariance structure, The 3rd Invitational Choice 

Symposium, Columbia University. 
 
Bhat, C.R., A. Govindarajan and V. Pulugurta (1998) “Disaggregate attraction-end choice 

modeling: formulation and empirical analysis,” Transportation Research Record 1645, 
60-68. 

 
Bhat, C.R. and V. Pulugurta (1998) “A comparison of two alternative behavioral mechanisms 

for household auto ownership decisions,” Transportation Research, 32B, 10-24. 
 
Bhat, C.R. (1995) “A heteroscedastic extreme-value model of intercity mode choice,” 

Transportation Research, 29B, 6, 471-483.  
 
Bhat, C.R. (1997b) “An endogenous segmentation mode choice model with an application to 

intercity travel,” Transportation Science, 31, 34-48. 
 
Bhat, C.R. (1997c) “A nested logit model with covariance heterogeneity,” Transportation 

Research, 31B, 11-21. 
 
Bhat, C.R. (1998a) “An analysis of travel mode and departure time choice for urban shopping 

trips,” Transportation Research, 32B, 387-400. 
 
Bhat, C.R. (1998b) “Accommodating flexible substitution patterns in multidimensional choice 

modeling: formulation and application to travel mode and departure time choice,” 
Transportation Research, 32B, 455-466. 

 
Bhat, C.R. (1998c) “Accommodating variations in responsiveness to level-of-service measures 

in travel mode choice modeling,” Transportation Research, 32A, 495-507. 
 
Bhat, C.R. (2000) “Flexible Model Structures for Discrete Choice,” Handbook of Transportation 

Modeling, Hensher, D.A. and K. Button (eds.), 71-90. 
 
Bierlaire, M. (2002). “The network GEV model,” Proceedings, The 2nd Swiss Transportation 

Research Conference, Ascona, Switzerland. 
 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 225 
 

 
Koppelman and Bhat  January 31, 2006 

Bierlaire, M. and Y. Vandevyvere (1995)  HieLow: The Interactive User’s Guide.  
Transportation Research Group, FUNDP, Namur 

 
Brownstone, D. and K. Train (1999) “Forecasting new product penetration with flexible 

substitution patterns,” Journal of Econometrics, 89, 109. 
 
Bunch, D.S. and R. Kitamura (1991) Probit model estimation revisited: trinomial models of 

household car ownership, University of California Transportation Center, University of 
California, Berkley, CA. 

 
Börsch-Supan, A. (1987) Econometric Analysis of Discrete Choice, Lecture Notes in 

Economics and Mathematical Systems, 296, Springer-Verlag, Berlin, Germany, 202-
211. 

 
Borsch-Supan, A. (1990) HLOGIT Documentation. 
 
Bowman, J. (2004). Heteroscedastic nested logit kernel (or mixed logit) models for large 

multidimensional choice problems: Identification and estimation. Proceedings, 83rd 
Annual Meeting, Transportation Research Board, Washington, D.C. 

 
Bucklin, R.E., S. Gupta and S. Han (1995) “A brand's eye view of response segmentation in 

consumer brand choice behavior,” Journal of Marketing Research, 32, 66-74. 
 
Cascetta, E., F. Russo and F. Viola (2002) “A Model of route perception in urban road 

networks,” Transportation Research, 36A, 577-592. 
 
Chamberlain, G. (1980) “Analysis of covariance with qualitative data,” Review of Economic 

Studies, 47, 225-238. 
 
Chiou, L. & Walker, J (2006).  Identification and estimation of mixed logit models under 

simulation methods. Paper presented at the 85th Annual Meeting of the Transportation 
Research Board, Washington D.C. 

 
Chu, C. (1989) “A paired combinatorial logit model for travel demand analysis,” Proceedings of 

the Fifth World Conference on Transportation Research, 295-309, Ventura, CA. 
 
Corres, S., V.A. Hajivassiliou and Y.M. Ioannides (1993) An empirical analysis of the dynamics 

of qualitative decisions of firms, Economic Working Papers Series, Yale University. 
 
Cramer, J.S. (1991) The Logit Model: An Introduction for Economists, Edward Arnold, 

London, England.  
 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 226 
 

 
Koppelman and Bhat  January 31, 2006 

Daganzo, C. (1979) Multinomial Probit: The Theory and its Application to Demand Forecasting, 
Academic Press, New York, NY. 

 
Econometric Software Inc., LIMDEP V7.0, 1996. 
 
Erhardt, G.D., Koppelman, F.S., Freedman, J., Davidson, W.A., Mullins, A. (2004) “Modeling 

the Choice to use Toll and High-Occupancy Vehicle Facilities,” Transportation Research 
Record 1854, 135-143. 

 
Evers, G.H.M. (1990) “The residential location and workplace choice: a nested multinomial 

logit model,” in Spatial Choices and Processes, eds: M.M. Fischer, P. Nijkamp and Y.Y. 
Papageorgiou, Elsevier Science Publishers, B.V. (North-Holland), 313-329. 

 
Forinash C.V. and Koppelman F.S. (1993) “Application and interpretation of nested logit 

models of intercity mode choice,” Transportation Research Record 1413, 98-106. 
 
Gliebe, J.P., F.S. Koppelman and A. Ziliaskopoulos (1999) “Route choice using a paired 

combinatorial logit model,” Proceedings, 78th meeting of the Transportation Research 
Board, Washington, D.C. 

 
Gliebe, J.P. and F.S. Koppelman (2002) “A Model of Joint Activity Participation,” 

Transportation, 29, 49-72. 
 
Grayson, Alan (1979) “Disaggregate Model of mode choice in intercity travel,” Transportation 

Research Record 835, 36-42. 
 
Greene, William H. (2000) Econometric Analysis, 4th ed., Prentice Hall, Upper Saddle River, 

NJ. 
 
Hague Consulting Group (1995), ALOGIT: Users Guide, Version 3.8, 1995. 
 
Hensher, D.A., N.C. Smith, F.W. Milthorpe and P.O. Barnard (1992) “Dimensions of 

Automobile Demand: A Longitudinal Study of Household Automobile Ownership and 
Use,” Studies in Regional Science and Urban Economics, 22, Elsevier Science 
Publishers, Amsterdam. 

 
Hensher, D.A. (2005) The signs of the times: Imposing a globally signed condition on 

willingness to pay distributions.  Transportation, 33, 5. 
 
Hess, S., Bierlaire, M. & Polak, J.W. (2005).  Estimation of value of travel-time savings using 

Mixed Logit models, Transportation Research, Part A, 2005, Pages 221-236. 
 
 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 227 
 

 
Koppelman and Bhat  January 31, 2006 

Horowitz, J.L., F.S. Koppelman and S.R. Lerman (1986) A self-instructing course in 
disaggregate mode choice modeling, Final report, prepared for the U.S. Department of 
Transportation, University Research and Training Program, Washington, D.C. 

 
Iglesias, M. (1997) Estimation of home-based social/recreational mode choice models, technical 

report HBSRMC #1, Planning Section, Metropolitan Transportation Commission, 101 
Eight Street, Oakland, California. 

 
Kalyanam, K. and D.S. Putler (1997) “Incorporating demographic variables in brand choice 

models: an indivisible alternatives framework,” Marketing Science, 16, 166-181. 
 
Koppelman, F.S. (1975) Travel Prediction with Models of Individualistic Choice Behavior, 

Ph.D. Dissertation, Department of Civil Engineering, MIT, Cambridge, MA. 
 
Koppelman, F.S. (1989) “Multidimensional Model System for Intercity Travel Choice 

Behavior,” Transportation Research Record 1241, 1-8. 
 
Koppelman, F.S. and C-H. Wen (1998) “Nested logit models: Which are you using?” 

Transportation Research Record 1645, 1-7. 
 
Koppelman, F.S. and C-H Wen (2000) “The paired combinatorial logit model: properties, 

estimation and application,” Transportation Research, 34B, 75-89. 
 
Koppelman, F.S. and V. Sethi (2000) “Closed Form Discrete Choice Models,” Handbook of 

Transportation Modeling, Hensher, D.A. and K. Button (eds.), 211-227. 
 
KPMG Peat Marwick in association with ICF Kaiser Engineers, Inc., Midwest System Sciences, 

Resource Systems Group, Comsis Corporation and Transportation Consulting Group 
(1993) Florida High Speed and Intercity Rail Market and Ridership Study: Final Report, 
submitted to Florida Department of Transportation, July. 

 
Lancaster, K. (1971) Consumer Demand: A New Approach, New York, Columbia University 

Press. 
 
Lam, S-H (1991) Multinomial probit model estimation: computational procedures and 

applications, Unpublished Ph.D. dissertation, Department of Civil Engineering, The 
University of Texas at Austin. 

 
Lam, S-H. and H.S. Mahmassani (1991) “Multinomial probit model estimation: computational 

procedures and applications,” in Methods for Understanding Travel Behavior in the 
1990s, Proceedings of the International Association of Travel Behavior, 229-242. 

 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 228 
 

 
Koppelman and Bhat  January 31, 2006 

Lawton, K.T. (1989) Travel forecasting methodology report, Metropolitan Service District, 
Portland, OR.  

 
Marshall, N.L. and K.Q. Ballard (1998) “New distribution and mode choice models for the 

Chicago region,” presented at the Annual TRB Meeting, Washington, D.C., January. 
 
McFadden, D. and K. Train (2000) “Mixed MNL models for discrete response,” Journal of 

Applied Econometrics, 15, 447-470. 
 
McMillen, D.P. (1995) “Spatial effects in probit models: a Monte Carlo investigation,” in L. 

Anselin and R.J.G.M. Florax (editors) New Directions in Spatial Econometrics, 
Springer-Verlag, New York. 

 
Ortuzar, J. de D. and L.G. Willumsen (1997), Modelling Transport, John Wiley & Sons, New 

York, NY. 
 
Proussaloglou, K.E. and Koppelman, F.S. (1999) “The Choice of Carrier, Flight and Fare 

Class,” Journal of Air Transport Management, 5, 193-201. 
 
Purvis, C.L. (1996) Disaggregate estimation and validation of home-to-work departure time 

choice model, technical report HBWDT #1, Planning Section, Metropolitan 
Transportation Commission, 101 Eight Street, Oakland, California. 

 
Purvis, C.L. (1997) Disaggregate estimation and validation of a home-based work mode choice 

model, technical report HBWMC #2, Planning Section, Metropolitan Transportation 
Commission, 101 Eight Street, Oakland, California. 

 
Recker, W.W. (1995) “Discrete choice with an oddball alternative,” Transportation Research, 

29B, 201-212. 
 
Sermons, M.W. and F.S. Koppelman (1998) “Factor Analytic Approach to Incorporating 

Systematic Taste Variation into Models of Residential Mode Choice,” Transportation 
Research Record 1617, 194-202. 

 
Small, K.A. (1987) “A discrete choice model for ordered alternatives,” Econometrica, 55(2), 

409-424. 
 
Steckel, J.H. and W.R. Vanhonacker (1988) “A heterogeneous conditional logit model of 

choice,” Journal of Business and Economic Statistics, 6, 391-398. 
 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 229 
 

 
Koppelman and Bhat  January 31, 2006 

Swait, J. and W. Adamowicz (2001) “Choice Environment, Market Complexity, and Consumer 
Behavior: A Theoretical and Empirical Approach for Incorporating Decision 
Complexity into Models of Consumer,” Organizational Behavior and Human Decision 
Processes, V. 86, N. 2, Pages 141-167  
 

Swait, J. and E.C. Stacey (1996) Consumer brand assessment and assessment confidence in 
models of longitudinal choice behavior, presented at the 1996 INFORMS Marketing 
Science Conference, Gainesville, FL, March 7-10. 

 
Train, K. (1986) Qualitative Choice Analysis: Theory, Econometrics, and an Application to 

Automobile Demand, The MIT Press, Cambridge, MA. 
 
Train, K. (1998) “Recreation demand models with taste differences over people,” Land 

Economics, 74, 230-240. 
 
Train, K. & Sonnier, G. (2004).  Mixed logit with bounded distributions of correlated 

partworths, in A. Alberini & R. Scarpa, Eds., Applications of Simulation Methods in 
Environmental and resource Economics, Kluwer Academic Publishers, Boston, MA. 

 
Vovsha, P. (1997) “Application of cross-nested logit model to mode choice in Tel-Aviv, Israel, 

metropolitan area,” Transportation Research Record 1607, 6-15. 
 
Waddell, P. (1993) “Exogenous workplace choice in residential location models; Is the 

assumption valid?” Geographical Analysis, 25, 65-82.  
 
Wen, C-H and Koppelman, F.S. (1999), “Integrated Model System of Stop Generation and Tour 

Formation for Analysis of Activity and Travel Patterns,” Transportation Research 
Record 1676, 136-144.  

 
White, E.H. and Company, Inc. (1991) 1990 Bay Area Travel Survey: Final Report, 

Metropolitan Transportation Commission, Oakland, CA.  
 
Williams, H. C. W. L. (1977) “On the Formation of Travel Demand Models and Economic 

Evaluation Measures of User Benefit,” Environment and Planning, Part A, V.9, 285-344. 
 
Yai, T., S. Iwakura and S. Morichi (1997) “Multinomial robit with structured covariance for 

route choice behavior,” Transportation Research, 31B, 195-207.  



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 230 
 

 
Koppelman and Bhat  January 31, 2006 



Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models 231 
 

 
Koppelman and Bhat  January 31, 2006 

Appendix A: ALOGIT, LIMDEP and ELM 
 

The command files and estimation results from ALOGIT and LIMDEP for the base model 

specification reported in Table 5-2 are presented in Figure A.1 through Figure A.4.  The 

estimation results from ELM are reported in Figure A.753.  The outputs from these and other 

software packages typically include, at least, the following estimation results: 

• Variable names, parameter estimates, standard errors of these estimates and the 

corresponding t-statistics for each variable/parameter;  

• Log-likelihood values at zero (equal probability model), constants only (market shares 

model) and at convergence and 

• Rho-Squared and other indicators of goodness of fit. 

ALOGIT, LIMDEP and ELM also provide additional information either as part of a general log 

file or by optional request.  This information varies among these and other software packages.  

However, it should be noted that two of the important outputs, the log-likelihood at zero and/or 

the log-likelihood at constants only (market shares) may be based on simplifying assumption 

that do not apply in all cases.  In particular, it is not uncommon for software to compute these 

values based on the assumption that all alternatives are available to all users.  Since this may not 

be the case, the user must be careful to validate this information.  In any case, accurate estimates 

of these measures can be obtained simply by estimating models with no variables (or all 

variables constrained to zero) or with alternative specific constants only. 

Effectively, most software packages produce essentially the same information but in 

different formats.  For purposes of increased clarity and to simplify comparisons between 

models with different specifications, the estimation results for the base model and two reference 

models (zero coefficients and constants only) may be transformed to a format in which 

parameter estimates and their t-statistics are grouped by variable and model goodness of fit 

                                                 
53 No command file is provided for ELM as the primary input is through a Graphic User Interface (GUI). However, 
the interface produces an intermediate command file that can be used to direct model estimation if desired by the 
user. 
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statistics are grouped together (Table 5-2) to facilitate comparison among models.  This output 

format is standard for models estimated in a single batch in ELM. 

Further information about each of these software packages can be obtained by going to 

their websites as follows: 

• ALOGIT, http://www.hpgholding.nl/software/alo_intr.htm 

• LIMDEP, http://www.limdep.com/ 

• ELM, http://www.elm-works.com/ 
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Figure A.1 ALOGIT Input Command File 

$title MNL Model 1; Cost,Time,Income 
$subtitle @SFM1.alo 
 
$gen.stats all 
 
$estimate 
 
$nest root() da sr2 sr3 transt bik wak 
 
01 Cost 
02 Ivtt 
03 Ovtt 
04 Tott 
05 IncSh2 
06 IncSh3 
07 IncTrn 
08 IncBik 
09 IncWlk 
20 Sh2Cnst 
30 Sh3Cnst 
40 TrnCnst 
50 BikCnst 
60 WlkCnst 
 
file(name = D:\KK\sf.dat, handle = sf) 
 
Id 
Persid 
WrkZone 
HmZone 
AutCost 
Sh2Cost 
Sh3Cost 
TrnCost 
AutTott 
Sh2Tott 
Sh3Tott 
TrnTott 
BikTott 
WlkTott 
DAlone 
ShRide2 
ShRide3 
ShRide 
Transit 
Bike 
Walk 
Income 
alt 
Choice 
 
avail(da)     = ifgt(DA_Av, 0) 
avail(sr2)    = ifgt(Sh2Tott, 0) 
avail(sr3)    = ifgt(Sh3Tott, 0) 
avail(transt) = ifgt(Trn_Av, 0) 
avail(bik)    = ifgt(Bike_Av, 0) 
avail(wak)    = ifgt(Walk_Av, 0) 
 
CHOSEN = Choice 
choice = recode(CHOSEN, da, sr2, sr3, transt, bik, wak) 
 
-Utility Functions 
 
U(da)      =       p01*AutCost + p04*AutTott 
U(sr2)     = p20 + p01*Sh2Cost + p04*Sh2Tott + p05*Income 
U(sr3)     = p30 + p01*Sh3Cost + p04*Sh3Tott + p06*Income 
U(transt) = p40 + p01*TrnCost + p04*TrnTott + p07*Income 
U(bik)    = p50               + p04*BikTott + p08*Income 
U(wak)    = p60               + p04*WlkTott + p09*Income 
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Figure A.2 Estimation Results for Basic Model Specification using ALOGIT54 

                                                 
54The "Likelihood with Constants Only" is calculated as if all alternatives are available to all cases this version of 
ALOGIT. As a result,  the "Rho-Squared w.r.t. Constants" is incorrect.  

Hague Consulting Group                                             Page  5 

ALOGIT Version 3.8F (135)                            17:45:02 on  1 Jun 98 

  

       Data --> SF.DAT; Input--> SFM1.BIN; MNL Model 1; Cost,Time,Income 

   

Convergence achieved after   5 iterations 

Analysis is based on   5029 observations 

  

Likelihood with Zero Coefficients =  -7309.6010 

Likelihood with Constants only    =  -4283.5050 

Initial Likelihood                =  -7309.6010 

Final value of Likelihood         =  -3626.1860 

   Rho-Squared w.r.t. Zero        =  .5039 

   Rho-Squared w.r.t. Constants   =  .1535 

 

ESTIMATES OBTAINED AT ITERATION  5 

Likelihood =  -3626.1860 

 

             Travel     Travel     Income     Income     Income     Income 

   Time  Cost      SR 2    SR 3+  Transit Bike 

Estimate  -.4920E-02 -.5134E-01 -.2170E-02  .3576E-03 -.5286E-02 -.1281E-01 

Std. Error  .239E-03   .310E-02   .155E-02   .254E-02   .183E-02   .532E-02 

"T" Ratio  -20.6      -16.6       -1.4         .1       -2.9       -2.4 

  

            Income    Constant   Constant  Constant   Constant   Constant 

   Walk      SR 2    SR 3+ Transit Bike     Walk 

 Estimate  -.9686E-02 -2.178     -3.725     -.6709     -2.376     -.2068 

Std. Error   .303E-02   .105       .178       .133       .305       .194 

"T" Ratio   -3.2      -20.8      -21.0       -5.1       -7.8       -1.1 
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Figure A.3 LIMDEP Input Command File 

? Open data file 
read ; nobs = 22033 ; nvar = 37; 
       file = SFLIM.PRN 
     ; names = HHId, PerId, GrpSize, WkZone, HmZone, Dist, RsPopDen, 
               RsEmpDen, WkPopDen, WkEmpDen, VehAvDum, FemDum, Age, 
               DrLicDum, NonCaDum, NumVeh, HHSize, HHInc, FamType, 
               NumEmpHH, NumAdlt, HHOwnDum, NmLt5, Nm5to11, Nm12to16, 
               WkCCBD, WkNCCBD, CorReDis, VehbyWrk, Alt, 
               Cost, IVTT, OVTT, TVTT, AltNum, Chosen, NumAlts $ 
 
? Open output file 
open ; output = SFLIMRUN.OUT $ 
 
? Create alternative specific constants 
sample ; all $ 
create ; if (altnum = 2) Sh2Cnst = 1 $ 
create ; if (altnum = 3) Sh3Cnst = 1 $ 
create ; if (altnum = 4) TrnCnst = 1 $ 
create ; if (altnum = 5) BikCnst = 1 $ 
create ; if (altnum = 6) WlkCnst = 1 $ 
 
? Income as an alternative sepcific variable. 
create ; if (altnum = 2) IncSh2 = HHInc $ 
create ; if (altnum = 3) IncSh3 = HHInc $ 
create ; if (altnum = 4) IncTrn = HHInc $ 
create ; if (altnum = 5) IncBik = HHInc $ 
create ; if (altnum = 6) IncWlk = HHInc $ 
 
? **************** Model Estimation *************** 
? Compute log-likelihood at zero model 
title ; *** Model 0:  No coefficient model *** $ 
samp 
le ; all $ 
nlogit ; LHS = Chosen, NumAlts, AltNum; maxit = 0 
       ; RHS = Sh2Cnst, Sh3Cnst, TrnCnst, BikCnst, WlkCnst 
       ; choices = DrAlone, ShRide2, ShRide3, Transit, Bike, Walk $ 
? Compute log likelihood at market share 
title; *** Model C: Constants only model--DA reference *** $ 
sample ; all $ 
nlogit ; LHS = Chosen, NumAlts, AltNum 
       ; RHS = Sh2Cnst, Sh3Cnst, TrnCnst, BikCnst, WlkCnst 
       ; choices = DrAlone, ShRide2, ShRide3, Transit, Bike, Walk $ 
? MNL 
title ; *** Base Model *** $ 
sample ; all $ 
nlogit ; LHS = Chosen, NumAlts, AltNum 
       ; RHS = Sh2Cnst, Sh3Cnst, TrnCnst, BikCnst, WlkCnst, 
               Tvtt, Cost, IncSh2, IncSh3, IncTrn, 
               IncBik, IncWlk 
       ; choices = DrAlone, ShRide2, ShRide3, Transit, Bike, Walk $ 
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Figure A.4 Estimation Results for Basic Model Specification using LIMDEP55 

                                                 
55 The “Log L: No Coefficients” value in this version of Limdep (NLogit) is calculated incorrectly. 

         LIMDEP Estimation Results                                                    

              ╔═════════════════════════════════════════════════════╗ 

              ║ Discrete choice (multinomial logit) model           ║ 

              ║ Maximum Likelihood Estimates                        ║ 

              ║ Dependent variable               Choice             ║ 

              ║ Number of observations             5029             ║ 

              ║ Iterations completed                  6             ║ 

              ║ Log likelihood function       -3626.186             ║ 

              ║ Log L: No coefficients   =  -9010.75837             ║ 

              ╚═════════════════════════════════════════════════════╝ 

 

  Variable   Coefficient    Standard Error z=b/s.e.  P[│Z│≥z]   

  ─────────────────────────────────────────────────────────────────────────────── 

  Travel Cost -0.49204E-02     0.23890E-03 -20.597  0.00000 

  Travel Time -0.51341E-01     0.30994E-02 -16.565 0.00000 

  Income Shared Ride 2 -0.21700E-02     0.15533E-02 -1.397  0.16241 

  Income Shared Ride 3+  0.35756E-03     0.25377E-02  0.141    0.88795 

  Income Transit -0.52864E-02     0.18288E-02 -2.891    0.00385 

  Income Bike -0.12808E-01     0.53241E-02 -2.406    0.01614 

  Income Walk -0.96863E-02     0.30331E-02 -3.194    0.00141 

  Shared Ride 2 Constant -2.1780          0.10464    -20.815    0.00000 

  Shared Ride 3+Constant -3.7251          0.17769    -20.964    0.00000 

  Transit Constant -0.67095         0.13259   -5.060    0.00000 

  Bike Constant  -2.3763          0.30450   -7.804    0.00000 

  Walk Constant -0.20682         0.19410    -1.066    0.28664 
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Figure A.5 ELM Model Specification56

                                                 
56 ELM Model Specification Screen allows selection of variables (generic as shown for the constants or alternative 
specific as shown for total travel time) to be included in a model, selection of starting values, imposition of 
parameter constraints and imposition of ratios among parameters. 
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Figure A.6 ELM Model Estimation57

                                                 
57 ELM Model Estimation Screen allows specification of a range of estimation and output options. 
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___Summary of Models___     

     
 Base Model  

======================== ========= ========= ========= =========
Log Likelihood -3626.186   
LL @ Constants -4132.916   
->Rho Squared @ Constants 0.1226   
Log Like @ Zero -7309.601   
->Rho Squared @ Zero 0.5039   
======================== ========= ========= ========= =========
Variable Parameter Std. Error t Statistic Signif. 
tvtt -5.134E-02 3.099E-03 -16.56 <0.001
cost -4.921E-03 2.389E-04 -20.60 <0.001
hhinc*Shared_Ride_2 -2.170E-03 1.553E-03 -1.40 0.081
hhinc*Shared_Ride_3+ 3.574E-04 2.538E-03 0.14 0.444
hhinc*Transit -5.286E-03 1.829E-03 -2.89 0.002
hhinc*Bike -1.281E-02 5.324E-03 -2.41 0.008
hhinc*Walk -9.686E-03 3.033E-03 -3.19 0.001
*Shared_Ride_2 -2.178E+00 1.046E-01 -20.82 <0.001
*Shared_Ride_3+ -3.725E+00 1.777E-01 -20.96 <0.001
*Transit -6.710E-01 1.326E-01 -5.06 <0.001
*Bike -2.376E+00 3.045E-01 -7.80 <0.001
*Walk -2.069E-01 1.941E-01 -1.07 0.143
======================== ========= ========= ========= =========
Number of Cases 5029    
Alternative Available Chosen   
Drive_Alone 4755 3637   
Shared_Ride_2 5029 517   
Shared_Ride_3+ 5029 161   
Transit 4003 498   
Bike 1738 50   
Walk 1479 166   
======================== ========= ========= ========= =========

Figure A.7 ELM Estimation Results Reported in Excel58 

                                                 
58 ELM Estimation Results for multiple models included in a run are reported in a single Excel file as well as model 
specific log files. 
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Appendix B: Example Matlab Files on CD 
 

The CD accompanying this manual includes a copy of the manual, the estimation data for both 

work and shop/other trips, MATLAB code, commands, log files and reports (together with 

relevant documentation) associated with six example mode choice model estimations based on 

the 1990 household survey of the San Francisco bay area used for examples throughout this 

manual.  Two of the six models are multinomial logit models for the home-based work trip 

purpose and correspond to Models 15 W and 17 W from CHAPTER 6.  The other four are 

additional models for the home-based shop/other trip purpose, two multinomial logit models and 

two nested logit models.  These models are different from those presented earlier in this manual.   

 The contents of the CD are summarized in Table B-1.  This documentation, the Matlab 

code itself, and two compilations of the results (Reports.doc and Reports.xls) reside in the parent 

directory.  The data, data dictionaries, command files, log (complete report on estimation 

iterations and extended details on the estimation results and output reports (summary of key 

features of each estimation) are stored in two separate sub-directories corresponding to the trip 

purposes.   

 

Table B-1 Files / Directory Structure 
LM_MATLAB_Ex Parent Directory 
 Documentation.doc Documentation 
 Logit46.m MATLAB code 
 Reports.doc Reports in Word 
 Reports.xls Reports in Excel 
 SF_HBShO Sub-directory 
  Log of SFHBShO_04_MNL_L46.txt  
  Log of SFHBShO_09_MNL_L46.txt  
  Log of SFHBShO_09_NL_AC_L46.txt  
  Log of SFHBShO_09_NL_ASCc2_L46.txt  
  MATLAB_cmds.txt  
  Report SFHBShO_04_MNL_L46.txt Tab-delimited 
  Report SFHBShO_09_MNL_L46.txt Tab-delimited 
  Report SFHBShO_09_NL_AC_L46.txt Tab-delimited 
  Report SFHBShO_09_NL_ASCc2_L46.txt Tab-delimited 
  SFHBShO.sav SPSS data 
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LM_MATLAB_Ex Parent Directory 
  SFHBSHOw5.mat MATLAB data 
  SFHBSHO_DataDictionary.xls  
 SF_HBW Sub-directory 
  Log of SFW15_MNL_L46.txt  
  Log of SFW17_MNL_L46.txt  
  MATLAB_cmds.txt  
  Report SFW15_MNL_L46.txt Tab-delimited 
  Report SFW17_MNL_L46.txt Tab-delimited 
  SF MTC Work MC Data.sav SPSS data 
  SFMTCWork6.mat MATLAB data 
  SFMTCWork_DataDictionary.xls  
 
 

The MATLAB code59 used for the estimations includes its own 

documentation/instruction for use.  These can be accessed from MATLAB by (first checking 

that the working directory includes the logit46.m file and then) typing the command “help 

logit46”.  The MATLAB_cmds.txt files, which include the commands used to execute each of 

the six model estimations, can be used directly or can serve as examples for modifying the 

specification of any of the models.   

The two data sets, corresponding to the two trip purposes are included in both SPSS and 

MATLAB binary format.  The MATLAB files contain all the variables in the SPSS files, as well 

as manipulations of the variables (to make them alternative specific, for example) for purposes 

of model estimation.  Each dataset is accompanied by a data dictionary in Excel format.   

 

 

                                                 
59 The MATLAB code is open source and is not supported. 


