Source parameter inversion for wave energy focusing to a target inclusion embedded in a three-dimensional heterogeneous halfspace

Pranav M. Karve1, Arash Fathi2, Babak Poursartip1 and Loukas F. Kallivokas1,2,*,†

1Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, U.S.A.
2The Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, U.S.A.

SUMMARY

We discuss a methodology for computing the optimal spatio-temporal characteristics of surface wave sources necessary for delivering wave energy to a targeted subsurface formation. The wave stimulation is applied to the target formation to enhance the mobility of particles trapped in its pore space. We formulate the associated wave propagation problem for three-dimensional, heterogeneous, semi-infinite, elastic media. We use hybrid perfectly matched layers at the truncation boundaries of the computational domain to mimic the semi-infiniteness of the physical domain of interest. To recover the source parameters, we define an inverse source problem using the mathematical framework of constrained optimization and resolve it by employing a reduced-space approach. We report the results of our numerical experiments attesting to the methodology’s ability to specify the spatio-temporal description of sources that maximize wave energy delivery. Copyright © 2016 John Wiley & Sons, Ltd.

Received 30 October 2015; Revised 29 July 2016; Accepted 3 November 2016

KEY WORDS: elastic wave energy focusing; enhanced oil recovery; inverse source problems; perfectly matched layers

1. INTRODUCTION

Cost-effective and reliable methods for the removal of crude oil or contaminant particles from the pores of geological formations play a crucial role in petroleum engineering, hydro-geology, and environmental engineering. To date, various extraction techniques that involve injecting water, solvents, polymers, or steam into the geo-formation of interest have been used for this purpose. In the field of petroleum engineering, these methods are classified into two categories: (a) the conventional oil recovery methods (water/gas flooding) and (b) the enhanced oil recovery (EOR) methods (chemical/steam injection). Typically, the EOR methods are employed after about 50–60% of the original oil in place has been produced using the conventional oil recovery methods. In general, the EOR methods are successful in extracting a part of the remaining crude oil [1]. However, the chemical-injection-based EOR methods suffer from sweep efficiency problems in low permeability areas, and the thermal EOR (steam injection) faces problems because of heat loss. Thus, efficient and economically competitive methodologies for extracting trapped particles from the pores of geo-formations remain desirable.

*Correspondence to: L. F. Kallivokas, Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton St., Stop C1747, Austin, TX 78712, U.S.A.
†E-mail: loukas@mail.utexas.edu

Copyright © 2016 John Wiley & Sons, Ltd.
Post-earthquake observations of oil production at depleted oil fields [2–6] and a few field experiments [7–12] suggest that stress wave stimulation of oil reservoirs (geological formations) may lead to the expulsion of particles trapped in their interstices. Many researchers have conducted analytical and laboratory investigations of the underlying physical phenomenon to establish the mechanisms responsible for the vibratory mobilization of trapped oil or colloidal particles. These studies [7, 8, 13–23] suggest that (a) stress wave stimulation of geological formations can aid the expulsion of particles trapped in their pore space, provided that the wave motion exceeds the mobilization threshold and (b) an estimate of the mobilization threshold can be obtained by conducting analytical and laboratory investigations. Based on the field and laboratory observations, it was conjectured [7, 8, 24, 25] that stress wave stimulation of geological formations can provide a primary or auxiliary recourse for enhanced oil recovery. In the, so-called, wave-based EOR method, the stress wave stimulation is applied using artificial wave sources (e.g., a fleet of Vibroseis and down-hole hydraulic pumps). The effectiveness of the stimulation is contingent upon, among other factors, the strength and spatial extent of the wave motion in the oil reservoir. Thus, a successful field implementation of the said EOR method requires (a) an estimate of the strength (magnitude) of the wave motion that facilitates the removal of trapped oil from the reservoir and (b) an efficient wave energy delivery system to generate the wave motion of the required magnitude in the reservoir. When artificial wave sources are used to initiate the wave motion, equipment limitations and various sources of attenuation impose restrictions on the magnitude of the wave motion generated in the target formation. Therefore, blindly operating sources may not be able to breach the threshold of motion required for particle expulsion, or they may not deliver the stress wave stimulation in a technically and economically efficient manner. Thus, a cost-effective field implementation of the wave-based EOR method necessitates selection of advantageous or optimal spatio-temporal characteristics of the wave sources. In this article, we discuss an optimization-based algorithm for designing an efficient wave energy delivery system.

If the material and geometric description of the geostructure in question and the capabilities (maximum amplitude, frequency range, etc.) of the wave sources are known, then the spatio-temporal source characteristics that focus the wave energy into the target formation can be computed using reservoir-scale wave physics simulations. For example, if the locations of the sources are (assumed to be) fixed, then a frequency sweep could be used to determine the dominant frequency of monochromatic time signals driving the sources. The frequency sweep method uses a mathematical model of the wave physics to compute a predefined motion metric of the target formation for a range of frequencies. The frequency corresponding to the maximum value of the metric can be used to design time signals that drive the sources. However, when advantageous source locations are also required, a combined frequency-and-location sweep becomes computationally prohibitive. Another approach for focusing the wave energy into the target formation is based on the principle of time reversal [26–30]. It involves (a) placing a source in the target formation; (b) recording the waves emitted by this source at sensors placed on the boundary of the domain (the ground surface); and (c) re-transmitting the time-reversed versions of the recorded signals from their respective sensor locations. Although, under favorable conditions, the time-reversed signals could focus at the target, the methodology does not ensure maximization of a motion metric of the target zone.

Alternatively, the spatio-temporal characteristics of the wave sources that maximize a predefined motion metric of the target inclusion can be computed using an optimization-based scheme. This approach formally gives rise to an inverse source problem, which is similar to the inverse medium problems arising in exploration geophysics [31–37]. Jeong et al. used the inverse source approach to compute the optimal time signals driving the surface sources for a geostructure abstracted as a layered elastic solid in one or two spatial dimensions [38–40], whereas Karve et al. [41, 42] developed an inverse source methodology to resolve not only the optimal source signals but also the optimal source locations. They conducted numerical experiments for two-dimensional (2D), synthetically created geostructures and reported that the optimal source locations play a crucial role in maximizing wave energy delivery to the target formation.

The preceding developments are restricted to two spatial dimensions. Herein, we extend the development to the all-important three-dimensional case. As the radiation damping is much more severe in three spatial dimensions, realistic estimates of the required surface energy and of the
energy delivered to the target formation require the resolution of the inverse source problem in three dimensions. Although the methodology in three dimensions is similar to the two-dimensional development, there are various differences at the modeling level that require algorithmic modifications. Thus, in this article, we formulate and resolve the wave energy delivery inverse source problem for a three-dimensional, elastic, heterogeneous, semi-infinite solid. We truncate the semi-infinite domain of interest using a buffer of hybrid perfectly matched layers (PMLs) [43]. Our working hypotheses are (a) the material properties and the overall geometry of the target formation and the surrounding geostructure are known and (b) the stress waves are initiated by surface sources (e.g., a fleet of Vibroseis). We remark that the methodology can also be used to decide the optimal locations and frequency content of down-hole wave sources. We cast the inverse source problem as a constrained minimization problem, where minimization of a suitably defined objective functional is tantamount to the maximization of a motion metric of the target formation and the governing wave physics equations are side-imposed as constraints. In the following sections, we discuss the formulation of the forward wave propagation problem, the inverse source problem, the numerical implementation, and report the results of our numerical experiments conducted using a synthetically created geo-formation that affirms the ability of the proposed optimization methodology to yield source characteristics that lead to wave energy focusing.

Although the development is motivated by a problem arising in exploration geophysics or petroleum engineering, the methodology is equally applicable to medical applications where optimal energy delivery is of interest for therapeutic reasons.

2. THE FORWARD PROBLEM

2.1. Strong form

We are concerned with stress wave propagation in a three-dimensional, heterogeneous, elastic half-space containing a target inclusion. In order to obtain a finite computational model, we truncate the domain of interest ($\Omega_{reg} = \Omega_a \cup \Omega_b$) using hybrid PMLs ($\Omega_{PML}$) [43]. Note that in Figure 1, Ω_a represents the target inclusion and Ω_b represents the heterogeneous elastic solid surrounding the target inclusion. The governing equations in $\Omega = \Omega_{reg} \cup \Omega_{PML}$, for time $t \in J = (0, T]$, are given as

$$\text{div} \left[\mu_a \left(\nabla \hat{u}_a + \nabla \hat{u}_a^T \right) + \left(\lambda_a \text{div} \hat{u}_a \right) I \right] - \rho_a \ddot{u}_a = 0, \quad x \in \Omega_a$$

(1)
are beyond the scope of this article and can be found in [43]. For the first Lamé parameter, \(\lambda_a \) and the second Lamé parameter, \(\mu_a \), these are explained in Table I.

In Equation (2), \(S \) is the stress history tensor, that is,

\[
S(x, t) = \begin{bmatrix}
S_{11}(x, t) & S_{12}(x, t) & S_{13}(x, t) \\
S_{21}(x, t) & S_{22}(x, t) & S_{23}(x, t) \\
S_{31}(x, t) & S_{32}(x, t) & S_{33}(x, t)
\end{bmatrix} = \int_0^t \sigma(x, t') dt',
\]

where \(\sigma \) is the Cauchy stress tensor. \(\Lambda_e, \Lambda_p, \) and \(\Lambda_w \) are components of the stretching tensor, and \(a, b, c, d \) are coefficients defining co-ordinate stretching in the PML region. Their detailed definitions are beyond the scope of this article and can be found in [43]. For \(t \in I \), the governing equations are subjected to the following boundary conditions:

\[
\begin{align*}
\mathbf{u}_b &= \mathbf{0}, \quad x \in I_{\text{fixed}}, \\
\left[\mu_b \left(\nabla \mathbf{u}_b + \nabla \mathbf{u}_b^T \right) + (\lambda_b \text{div } \mathbf{u}_b) \right] \mathbf{n} &= \mathbf{f}, \quad x \in I_{\text{load}}, \\
\left[\mu_b \left(\nabla \mathbf{u}_b + \nabla \mathbf{u}_b^T \right) + (\lambda_b \text{div } \mathbf{u}_b) \right] \mathbf{n} &= \mathbf{0}, \quad x \in I_{\text{free}}, \\
\left(\hat{S}^T \Lambda_e + \hat{S}^T \Lambda_p + \hat{S}^T \Lambda_w \right) \mathbf{n} &= \mathbf{0}, \quad x \in I_{\text{PML}}, \\
\mathbf{u}_b^+ &= \mathbf{u}_b^-, \quad x \in I_1,
\end{align*}
\]

interface conditions:

\[
\begin{align*}
\mathbf{u}_a &= \mathbf{u}_b, \quad x \in \Gamma_a, \\
\sigma_a^T \mathbf{n}_a^- &= -\sigma_b^T \mathbf{n}_a^+, \quad x \in \Gamma_1;
\end{align*}
\]

where, \(\sigma_a = \mu_a \left(\nabla \mathbf{u}_a + \nabla \mathbf{u}_a^T \right) + \lambda_a (\text{div } \mathbf{u}_a) \mathbf{I} \), and \(\sigma_b = \mu_b \left(\nabla \mathbf{u}_b + \nabla \mathbf{u}_b^T \right) + \lambda_b (\text{div } \mathbf{u}_b) \mathbf{I} \).
and initial value conditions:
\[
\begin{align*}
\mathbf{u}(x, 0) &= 0, \quad \dot{\mathbf{u}}(x, 0) = 0, \quad x \in \Omega, \\
\mathbf{S}(x, 0) &= 0, \quad \dot{\mathbf{S}}(x, 0) = 0, \quad x \in \Omega_{\text{PML}}.
\end{align*}
\]
\tag{6a}\tag{6b}

Thus, the forward wave propagation problem is concerned with computing the displacement (velocity and acceleration) field in the domain of interest, given the applied loads and the material properties of the heterogeneous halfspace. We intend to use spectral elements to resolve the forward wave propagation problem. To this end, we formulate the problem in its weak form.

2.2. Weak form

We take an inner product between the test functions \(\mathbf{v}_a(x) \), \(\mathbf{v}_b(x) \), and the equilibrium Equations (1), (2a), and (2b), integrate over their respective domains, and add them. We take another inner product between the test function \(\mathbf{T}(x) \) and Equation (2c) and integrate over \(\Omega_{\text{PML}} \). After some simplifications, we arrive at the following integral equations:

\[
\int_{\Omega_{\text{reg}}} \nabla \mathbf{v}_a : \left[\mu_a (\nabla \dot{\mathbf{u}}_a + \nabla \dot{\mathbf{u}}_a^T) + \lambda_a (\text{div} \mathbf{u}_a) \mathbf{I} \right] + \mathbf{v}_a \cdot \mathbf{p}_a \mathbf{u}_a \, d\Omega \\
+ \int_{\Omega_{\text{reg}}} \nabla \mathbf{v}_b : \left[\mu_b (\nabla \dot{\mathbf{u}}_b + \nabla \dot{\mathbf{u}}_b^T) + \lambda_b (\text{div} \mathbf{u}_b) \mathbf{I} \right] + \mathbf{v}_b \cdot \mathbf{p}_b \mathbf{u}_b \, d\Omega \\
+ \int_{\Omega_{\text{PML}}} \nabla \mathbf{v}_b : \left(\mathbf{S}^T \mathbf{A}_e + \mathbf{S}^T \mathbf{A}_p + \mathbf{S}^T \mathbf{A}_w \right) + \mathbf{v}_b \cdot \mathbf{p}_b (a \mathbf{u}_b + b \mathbf{u}_b + c \mathbf{u}_b + d \mathbf{u}_b) \, d\Omega = \int_{\Gamma_{\text{load}}} \mathbf{v}_b \cdot \mathbf{f} \, d\Gamma \tag{7a}
\]

\[
\int_{\Omega_{\text{PML}}} \mathbf{T} : \left[(a \mathbf{S} + b \mathbf{S} + c \mathbf{S} + d \mathbf{S}) - \lambda_b (\text{div} (\mathbf{A}_e \mathbf{u}_b) + \text{div} (\mathbf{A}_p \mathbf{u}_b) + \text{div} (\mathbf{A}_w \mathbf{u}_b)) \right] \, d\Omega = 0 \tag{7b}
\]

where a colon, (:), represents tensor inner product. The weak form of the forward problem can be stated as given loads \(\mathbf{f}(x, t) \in L^2(\Omega_{\text{reg}}) \times J \), find \(\mathbf{u}_a(x, t) \in H^1(\Omega_{\text{a}}) \times J, \mathbf{u}_b(x, t) \in H^1(\Omega_{\text{b}} \cup \Omega_{\text{PML}}) \times J \), and \(\mathbf{S}(x, t) \in L^2(\Omega_{\text{PML}}) \times J \), so that they satisfy Equation (7) and condition (6), for every \(\mathbf{v}_a(x) \in H^1(\Omega_{\text{a}}), \mathbf{v}_b(x) \in H^1(\Omega_{\text{b}} \cup \Omega_{\text{PML}}) \), and \(\mathbf{T}(x) \in L^2(\Omega_{\text{PML}}) \). The pertinent function spaces for a scalar \(f \), a vector \(\mathbf{u} \), and a tensor \(\mathbf{T} \) are given by

\[
L^2(\Omega) = \{ f : \int_{\Omega} |f|^2 \, d\Omega < \infty \},
\tag{8a}
\]

\[
L^2(\Omega) = \{ \mathbf{u} : \mathbf{u} \in (L^2(\Omega))^3 \},
\tag{8b}
\]

\[
L^2(\Omega) = \{ \mathbf{T} : \mathbf{T} \in (L^2(\Omega))^{3 \times 3} \},
\tag{8c}
\]

\[
H^1(\Omega) = \{ f : \int_{\Omega} (|f|^2 + |\nabla f|^2) \, d\Omega < \infty, f(x) = 0 \text{ if } x \in \Gamma_{\text{PML}} \};
\tag{8d}
\]

\[
H^1(\Omega) = \{ \mathbf{u} : \mathbf{u} \in (H^1(\Omega))^3 \},
\tag{8e}
\]

2.3. Spatial discretization and the semi-discrete form

Numerical solution of the weak form requires discretization in space and time. We introduce spatial discretization using shape functions \(\Phi(x) \in H^1_h(\Omega) \subset H^1(\Omega) \) and \(\Psi(x) \in L^2_h(\Omega_{\text{PML}}) \subset L^2(\Omega_{\text{PML}}) \).
Thus, the discrete approximations for the test functions are given by

\[
\begin{align*}
\psi^h_a(x) &= \begin{bmatrix} \psi_{a_1}^T \Phi(x) \\ \psi_{a_2}^T \Phi(x) \\ \psi_{a_3}^T \Phi(x) \end{bmatrix}, \\
\psi^h_b(x) &= \begin{bmatrix} \psi_{b_1}^T \Phi(x) \\ \psi_{b_2}^T \Phi(x) \\ \psi_{b_3}^T \Phi(x) \end{bmatrix}, \\
M^h(x) &= \begin{bmatrix} T_{11}^T \Psi(x) & T_{12}^T \Psi(x) & T_{13}^T \Psi(x) \\ T_{21}^T \Psi(x) & T_{22}^T \Psi(x) & T_{23}^T \Psi(x) \\ T_{31}^T \Psi(x) & T_{32}^T \Psi(x) & T_{33}^T \Psi(x) \end{bmatrix},
\end{align*}
\]

(9)

where the vectors \(\psi_a, \psi_b,\) and \(M_{ij}\) contain the nodal values of the test functions. Similarly, the approximants for the trial solutions are given by

\[
\begin{align*}
\mathbf{u}^h_a(x, t) &= \begin{bmatrix} \Phi(x)^T u_{a_1}(t) \\ \Phi(x)^T u_{a_2}(t) \\ \Phi(x)^T u_{a_3}(t) \end{bmatrix}, \\
\mathbf{u}^h_b(x, t) &= \begin{bmatrix} \Phi(x)^T u_{b_1}(t) \\ \Phi(x)^T u_{b_2}(t) \\ \Phi(x)^T u_{b_3}(t) \end{bmatrix}, \\
S^h(x, t) &= \begin{bmatrix} \Psi(x)^T S_{11} \Psi(x) & \Psi(x)^T S_{12} \Psi(x) & \Psi(x)^T S_{13} \Psi(x) \\ \Psi(x)^T S_{21} \Psi(x) & \Psi(x)^T S_{22} \Psi(x) & \Psi(x)^T S_{23} \Psi(x) \\ \Psi(x)^T S_{31} \Psi(x) & \Psi(x)^T S_{32} \Psi(x) & \Psi(x)^T S_{33} \Psi(x) \end{bmatrix},
\end{align*}
\]

(10)

where the vectors \(u_a(t), u_b(t),\) and \(S_{ij}(t)\) contain the nodal values of the variables at time \(t.\) Introducing the approximations (Equations (9) and (10)) into Equation (7) yields the following semi-discrete form:

\[
M \ddot{d} + C \dot{d} + K d + G d = \mathbf{F},
\]

(11)

where

\[
d = [u_{a_1} u_{a_2} u_{a_3} | u_{b_1} u_{b_2} u_{b_3} | S_{11} S_{12} \ldots S_{33}]^T = [\mathbf{\ddot{u}}_a | \mathbf{\ddot{u}}_b | \mathbf{\ddot{S}}]^T,
\]

(12)

\[
F = [0 | F_1 F_2 F_3 | 0]^T.
\]

(13)

and the temporal dependencies have been suppressed for brevity. In Equation (11), \(M, C, K,\) and \(G\) are the global system matrices. They can be computed given the values of the Lamé parameters \(\lambda\) and mass densities in the heterogeneous domain \(\Omega_{\text{reg}}\) and the parameters defining coordinate stretching in the PML region \(\Omega_{\text{PML}}.\) Detailed definitions of the system matrices and their constituent element matrices can be found in [43]. We remark that the matrix \(G\) has zero elements everywhere except in the PML region. Thus, the matrix-vector product \(Gd\) is nonzero only in \(\Omega_{\text{PML}}.\) Next, we discuss the time integration of the semi-discrete form (11).

2.4. Temporal discretization and integration

Various schemes for integrating the system of third-order ordinary differential equations (ODEs, Equation 11) in time have been discussed in [43]. Here, we favor an explicit time integration scheme that requires recasting the semi-discrete form as a system of first-order ODEs in time. To this end, we (analytically) integrate Equation (11) in time to obtain a system of second-order ODEs given by

\[
M \ddot{d} + C \dot{d} + K d + G d = \mathbf{F}, \quad \dot{d} = d|_{\text{PML}},
\]

(14)

where we have assumed silent initial conditions and \(\dot{d}\) contains the displacement and stress history degrees-of-freedom within \(\Omega_{\text{PML}}\) only [43]. Equation (14) can be expressed as a first-order system
in time, as
\[
A\ddot{y} = By + D,
\]
where
\[
y = [z_0 \ z_1 \ z_2]^T, \quad z_0 = \ddot{d}, \ z_1 = d, \ z_2 = \dot{d}.
\]
\[
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & M \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -G & -K & -\hat{C} \end{bmatrix}, \quad \text{and } D = \begin{bmatrix} 0 \\ 0 \\ F \end{bmatrix}.
\]

An explicit scheme can be used to solve (15) if the inverse of \(A\) (i.e., the mass-like matrix, \(M\)) can be computed efficiently. This can be achieved if the mass-like matrix \(M\) is diagonal. To obtain a diagonal matrix \(M\), we use spectral elements for spatial discretization and employ the Legendre–Gauss–Lobatto quadrature rule for computing the system matrices. Now, Equation (15) can be rewritten as
\[
\dot{y} = Ly + R, \quad \text{where}
\]
\[
L = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\hat{C} & -\hat{K} & -\hat{\mathcal{C}} \end{bmatrix}, \quad R = \begin{bmatrix} 0 \\ 0 \\ \hat{F} \end{bmatrix},
\]
\[
\hat{C} = M^{-1}C, \quad \hat{K} = M^{-1}K, \quad \hat{G} = M^{-1}G, \quad \hat{F} = M^{-1}F,
\]
and the inverse of the mass-like matrix \((M^{-1})\) can be easily computed by taking the reciprocals of the diagonal entries.

The temporal dimension is now discretized using a timestep \(\tau\). The value of a variable at the \(i\)-th timestep is denoted by superscript \('i'\), that is, \(y^i \equiv y(t)\) at \(t = i \tau\). We employ the fourth-order Runge–Kutta (RK4) scheme for time integration of Equation (16a). Using this method, \(y^{i+1}\) can be computed using \(y^i\) as
\[
y^{i+1} = y^i + \frac{\tau}{6} \left[H^i_1 + 2H^i_2 + 2H^i_3 + H^i_4 \right],
\]
where \(H^i_k = [h^i_{k0} \ h^i_{k1} \ h^i_{k2}]^T\) and
\[
h^i_{10} = z^i_1, \quad (18a)
\]
\[
h^i_{11} = z^i_2, \quad (18b)
\]
\[
h^i_{12} = -\hat{C}z^i_2 - \hat{K}z^i_1 - \hat{G}z^i_0 - \hat{F}^i, \quad (18c)
\]
\[
h^i_{20} = z^i_1 + \frac{\tau}{2} h^i_1, \quad (18d)
\]
\[
h^i_{21} = z^i_2 + \frac{\tau}{2} h^i_2, \quad (18e)
\]
\[
h^i_{22} = -\hat{C}(z^i_2 + \frac{\tau}{2} h^i_2) - \hat{K}(z^i_1 + \frac{\tau}{2} h^i_1) - \hat{G}(z^i_0 + \frac{\tau}{2} h^i_0) - \hat{F}^{i+\frac{1}{2}}, \quad (18f)
\]
\[
h^i_{30} = z^i_1 + \frac{\tau}{2} h^i_{21}, \quad (18g)
\]
\[
h^i_{31} = z^i_2 + \frac{\tau}{2} h^i_{22}, \quad (18h)
\]
\[
h^i_{32} = -\hat{C}(z^i_2 + \frac{\tau}{2} h^i_{22}) - \hat{K}(z^i_1 + \frac{\tau}{2} h^i_{21}) - \hat{G}(z^i_0 + \frac{\tau}{2} h^i_{20}) - \hat{F}^{i+\frac{1}{2}}, \quad (18i)
\]
\[
h^i_{40} = z^i_1 + \tau h^i_1, \quad (18j)
\]
\[
h^i_{41} = z^i_2 + \tau h^i_2, \quad (18k)
\]
\[
h^i_{42} = -\hat{C}(z^i_2 + \tau h^i_2) - \hat{K}(z^i_1 + \tau h^i_1) - \hat{G}(z^i_0 + \tau h^i_0) - \hat{F}^{i+1}. \quad (18l)
\]

Thus, Equations (17) and (18) can be used to compute the displacement \((z_0)\), velocity \((z_1)\), and acceleration \((\dot{z}_2)\) vectors at the \((i + 1)\)-th timestep given their values at the \(i\)-th timestep and the
force vector \mathbf{F}. The step-by-step time marching scheme can be represented as a solution of linear system of equations given by

$$ Q \mathbf{u} = \mathbf{f}, $$

where

$$ \mathbf{u} = [y^0 | H_{11}^0 H_{12}^0 H_{13}^0 | y^1 | H_{11}^1 H_{12}^1 H_{13}^1 | y^2 | \cdots | H_{11}^{N-1} H_{12}^{N-1} H_{13}^{N-1} | y^N]^T, $$

$$ \mathbf{f} = [y^0 | \mathbf{R}^1 \mathbf{R}^2 \mathbf{R}^3 | 0 | \mathbf{R}^1 \mathbf{R}^2 | \mathbf{R}^2 | \cdots | \mathbf{R}^{N-1} \mathbf{R}^{N-2} \mathbf{R}^N | 0]^T, $$

and the matrix Q is given in Appendix A.

3. LOAD MODELING

In the inverse source problem, the source time signals and source locations are treated as unknowns. The spatio-temporal source characteristics that maximize a specified motion metric of the target formation are computed using an iterative procedure. This necessitates parameterization of the spatial and temporal load descriptors. Specifically, the tractions $\mathbf{f}(\mathbf{x}, t)$ applied on Γ_{load} consist of contributions, $\mathbf{f}_i(\mathbf{x}, t)$, from n_x sources. The i-th source is defined using a spatial ($\theta_i(\mathbf{x})$) and a temporal ($f_i(t)$) component. θ_i is further decomposed into x_p-directional components: $\theta_{ip}(x)$, $p = 1, 2, 3$. Thus,

$$ \mathbf{f}(\mathbf{x}, t) = \sum_{i=1}^{n_x} \mathbf{f}_i(\mathbf{x}, t) = \sum_{i=1}^{n_x} \begin{bmatrix} \theta_{i1}(\mathbf{x}) \\ \theta_{i2}(\mathbf{x}) \\ \theta_{i3}(\mathbf{x}) \end{bmatrix} f_i(t). $$

In our numerical experiments, we apply loads in either x_1, x_2, or x_3 direction; therefore, $\theta_{ip}(x) \neq 0$ for only a single value of p. The spatial variation of the i-th load on Γ_{load} is captured by θ_{ip}, for example, a constant pressure load applied on part of the surface ($x_3 = 0$) can be expressed as

$$ \theta_{ip}(x_1, x_2, 0) = \left[H \left(\eta_{i1} - \frac{b_{11}}{2} \right) - H \left(\eta_{i1} + \frac{b_{11}}{2} \right) \right] \cdot \left[H \left(\eta_{i2} - \frac{b_{12}}{2} \right) - H \left(\eta_{i2} + \frac{b_{12}}{2} \right) \right]. $$

where H is the Heaviside step function, η_{ik} ($k = 1, 2$) are the (unknown) x_k coordinates of the i-th load’s centerline, and b_{ik} is the width of the load along the x_k-direction. Similarly, a load varying like the Gaussian function is given by

$$ \theta_{ip}(x_1, x_2, 0) = \exp \left[-\frac{(x_1 - \eta_{i1})^2}{b_{11}} \right] \exp \left[-\frac{(x_2 - \eta_{i2})^2}{b_{12}} \right]. $$

We parameterize the time signals using quadratic Lagrange polynomials $\phi_j(t)$ whose temporal nodal values are denoted by ξ_{ij}. This allows us to express $f_i(t)$ as

$$ f_i(t) = \sum_{j=1}^{n_f} \xi_{ij} \phi_j(t). $$

where n_f is the number of Lagrange polynomials used to define the time signal. Next, we cast the inverse source problem aimed at focusing wave energy into the target formation.
4. THE INVERSE SOURCE PROBLEM

The inverse source problem aims at maximization of a motion metric of the target formation by seeking the optimal spatio-temporal source characteristics. The problem can be cast as a constrained minimization problem, wherein an objective functional is minimized while staying within the constraints imposed by the governing physics. The objective functional and the constraint conditions defined either in the continuous (strong or weak) form or in the spatio-temporally discretized form can be used to formulate the inverse source problem [41, 44, 45]. In this work, we favor the latter approach. We cast the discrete objective functional as

$$\mathcal{L}_d = \frac{1}{u^T B_{u_a} u} \left[\frac{1}{2} \hat{u}_a^0 \cdot \hat{u}_a^0 + \frac{1}{2} \hat{u}_a^N \cdot \hat{u}_a^N + \sum_{i=1}^{N-1} \hat{u}_a^i \cdot \hat{u}_a^i \right]^{-\frac{1}{2}}$$

where the vector of nodal velocities in the target inclusion, \(\hat{u}_a^i \), is formally defined in Equation (12) and \(B_{u_a} \) is a block diagonal matrix with \(r B_i \) on its diagonals. \(B_i \) are square matrices that are zero everywhere except on diagonals that correspond to the elements of \(\hat{u}_a^i \). Minimization of \(\mathcal{L}_d \) is tantamount to the maximization of the velocity field within the target inclusion. Next, we form the augmented functional and obtain the first-order optimality conditions.

4.1. The augmented functional

We side-impose the governing Equation (19), weighted by the discrete Lagrange multipliers \(p \), on the objective functional to obtain the discrete augmented functional which is to be minimized. Thus, the inverse problem can now be stated as

$$\min_f A(u, p, f) = \mathcal{L}_d - p^T (Q u - f),$$

where

$$p = [\lambda^0 | \pi_1^0 \pi_2^0 \pi_3^0 \pi_4^0 | \lambda^1 | \pi_1^1 \pi_2^1 \pi_3^1 \pi_4^1 | \lambda^2 | \cdots | \pi_1^{N-1} \pi_2^{N-1} \pi_3^{N-1} \pi_4^{N-1} | \lambda^N]^T,$$

$$\pi_k^i = \pi_k, \text{ at } t = i \tau, k = 1, 2, 3, 4,$$

$$\lambda = [\lambda_h \lambda_u \lambda_v]^T,$$

$$\lambda^i = \lambda, \text{ at } t = i \tau.$$

\(\lambda_h \) is the vector of nodal displacement-history-like adjoint variables. \(\lambda_u \) and \(\lambda_v \) are the vectors of nodal displacement-like and velocity-like adjoint variables, respectively. The first-order optimality conditions can now be obtained by taking derivatives of \(A \) with respect to \(u, p, \) and source parameters \(\xi \) or \(\eta \).

4.2. State problem

Differentiating \(A \) with respect to \(p \) results in

$$\frac{\partial A}{\partial p} = 0 \implies Q u = f,$$

which is the same as the forward problem given by Equation (19).
4.3. Adjoint problem

Similarly, differentiating A with respect to u yields

$$
\frac{\partial A}{\partial u} = 0 \implies Q^T p = \frac{-2B_{\alpha u} u}{(u^T B_{\alpha u} u)^2}.
$$

(33)

Equation (33) represents the adjoint problem associated with the inverse problem of interest. Because the adjoint problem involves Q^T, we solve it by marching backwards in time. The adjoint force vector at any timestep i is given by

$$
g^i = \frac{-2B_{\alpha u} u}{(u^T B_{\alpha u} u)^2} = \frac{-2\hat{u}^i_{\alpha}}{(u^T B_{\alpha u} u)^2} = -2L_{\alpha}^2 \hat{u}^i_{\alpha}.
$$

(34)

Thus, the adjoint force vector at any timestep is obtained by scaling the vector of nodal velocity values in the target inclusion. The backward time marching is initiated at the final timestep ($i = N$), for which we obtain

$$
\lambda^N = g^N.
$$

(35)

We continue the time marching for $i = N - 1, N - 2, \ldots, 0$, by computing

$$
\begin{align*}
\pi^i_4 &= \frac{\tau}{6} \lambda^{i+1}, \\
\pi^i_3 &= \frac{\tau}{3} \lambda^{i+1} + \tau L^T \pi^i_4, \\
\pi^i_2 &= \frac{\tau}{3} \lambda^{i+1} + \frac{\tau}{2} L^T \pi^i_3, \\
\pi^i_1 &= \frac{\tau}{6} \lambda^{i+1} + \frac{\tau}{2} L^T \pi^i_2, \\
\lambda^i &= \lambda^{i+1} + L^T (\pi^i_4 + \pi^i_2 + \pi^i_3) + g^i,
\end{align*}
$$

(36a-d)

at each timestep, and updating $i \leftarrow (i - 1)$ after each iteration.

4.4. Control problems

4.4.1. Time-signal optimization. We define a vector of temporal nodal force parameters as

$$
\xi = [\xi_{11} \xi_{12} \ldots \xi_{1n_f} \ldots \xi_{n_s(n_f - 1)} \xi_{n_s n_f}]^T.
$$

(37)

During the inversion process, each element of this vector (ξ_{mn}) is updated using the derivative of the augmented functional with respect to ξ_{mn}, given by

$$
\frac{\partial A}{\partial \xi_{mn}} = p^T \frac{\partial f}{\partial \xi_{mn}} = \lambda^0 \cdot y_0 + \sum_{i=0}^{N-1} \left[\pi^i_1 \cdot \frac{\partial R^i}{\partial \xi_{mn}} + \pi^i_2 \cdot \frac{\partial R^i + \frac{1}{2}}{\partial \xi_{mn}} + \pi^i_3 \cdot \frac{\partial R^i + \frac{1}{2}}{\partial \xi_{mn}} + \pi^i_4 \cdot \frac{\partial R^i + \frac{1}{2}}{\partial \xi_{mn}} \right]
$$

$$
= \lambda^0 \cdot y_0 + \sum_{i=0}^{N-1} \left[\phi_0(i \tau) \pi^i_4 + \phi_0(i \tau + \frac{\tau}{2}) \left[\pi^i_2 + \pi^i_3 + \pi^i_4 \right] + \phi_0(i \tau + \frac{\tau}{2}) \pi^i_4 \right] \cdot R^m_{sp}
$$

(38)

R^m_{sp} is the spatial component of the force vector for the m-th source. The definition of R^m_{sp} and the details of the derivation of the gradient ($\frac{\partial A}{\partial \xi_{mn}}$) are given in Appendix B.
We discretize the computational domain using a structured mesh of 27-noded, regular hexahedral elements of size 0.75 m. We employ the 4th-order Runge–Kutta method for time integration, and simulate the wave propagation in the computational domain for a total time of 0.6 s (i.e., $T = 0.6$ s).

4.4.2. Load location optimization

The vector of load location parameters is given by

$$\eta = [\eta_{11} \eta_{12} \ldots \eta_{n_1} \eta_{n_2}]^T.$$ \hspace{1cm} (39)

The derivative of the augmented functional with respect to a load location parameter η_{mn} is given by

$$\frac{\partial A}{\partial \eta_{mn}} = p^T \frac{\partial f}{\partial \eta_{mn}} = \lambda^0 \cdot y_0 + \sum_{i=0}^{N-1} \left[\pi_1^i \frac{\partial R^i}{\partial \eta_{mn}} + \pi_2^i \frac{\partial (R^{i+\frac{1}{2}})}{\partial \eta_{mn}} + \pi_3^i \frac{\partial (R^{i+\frac{1}{2}})}{\partial \eta_{mn}} + \pi_4^i \frac{\partial R^{i+1}}{\partial \eta_{mn}} \right],$$

$$= \lambda^0 \cdot y_0 + \sum_{i=0}^{N-1} \left[f_m(i \tau) \pi_1^i + f_m(i \tau + t) \left[\pi_2^i + \pi_3^i \right] + f_m(i \tau + t) \pi_4^i \right] \cdot \tilde{R}_{sp}^m,$$ \hspace{1cm} (40)

where \tilde{R}_{sp}^m is defined in Appendix B.

5. Numerical Experiments

We test the inverse source algorithm by performing numerical experiments on a synthetically created geological formation model (Figure 2(a)). The formation model contains two layers (L1 and L2) and a target inclusion (T). The material properties of the layers and the equations defining the geometries of the inter-layer boundaries are given in Table II. The target inclusion (T) is spherical in shape, and its diameter is 6 m. In order to reduce the computational effort required to resolve the inverse source problem, we select a subset of the geo-formation shown in Figure 2(a) as our computational domain. The dimensions of the selected computational domain are $24 \text{ m} \times 24 \text{ m} \times 39 \text{ m}$. We use 7.5-m-thick PML zones at the truncation boundaries of the computational domain to mimic the semi-infinite nature of the domain of interest. The computational domain and the PMLs are shown in Figure 2(b). We discretize the computational domain using a structured mesh of 27-noded, regular hexahedral, spectral elements of size $0.75 \text{ m} \times 0.75 \text{ m} \times 0.75 \text{ m}$. We employ the 4th-order Runge–Kutta method (discussed in Section 2.4), with timestep $\tau = 0.00025$ s, for time integration, and simulate the wave propagation in the computational domain for a total time of 0.6 s (i.e., $T = 0.6$ s).
In order to compare the performance of various spatio-temporal source characteristics, we define the following motion metrics. If \vec{u}_i is the vector of the x_1-directional, x_2-directional, and x_3-directional velocity components at a computational node at time $t = i\tau$, then we define the time-averaged kinetic energy at that node as

$$
K_{E_{TA}} = \frac{1}{2} \rho \left[\frac{\tau}{2} \vec{u}_i^0 \cdot \vec{u}_i^0 + \frac{\tau}{2} \vec{u}_i^N \cdot \vec{u}_i^N + \tau \sum_{i=1}^{N-1} \vec{u}_i^i \cdot \vec{u}_i^i \right] / T; \quad (41)
$$

where ρ is the mass density. Furthermore, we define the time-averaged kinetic energy of the target inclusion as

$$
K_{E_{inc}} = \frac{1}{2} \left[\frac{\tau}{2} (\vec{u}_a^0 \cdot M_{inc} \vec{u}_a^0 + \vec{u}_a^N \cdot M_{inc} \vec{u}_a^N) + \tau \sum_{i=1}^{N-1} \vec{u}_a^i \cdot M_{inc} \vec{u}_a^i \right] / T; \quad (42)
$$

where \vec{u}_a^i is defined in Equation (12) and M_{inc} is the mass matrix for the target inclusion. We remark that the time-averaged kinetic energy definitions (Equations (41) and (42)) are the spatio-temporally discretized versions of the continuous definitions given by

$$
K_{E_{TA}}^c = \int_0^T \frac{1}{2} \rho [\dot{\vec{u}}(t) \cdot \dot{\vec{u}}(t)] \, dt \, / \, T; \quad (43)
$$

$$
K_{E_{inc}}^c = \int_{\Omega_a} \int_0^T \frac{1}{2} \rho_a [\dot{\vec{u}}_a(t) \cdot \dot{\vec{u}}_a(t)] \, dt \, d\Omega \, / \, T; \quad (44)
$$

where \(\mathbf{u}(t) \) is the vector containing the \(x_1 \)-directional, \(x_2 \)-directional, and \(x_3 \)-directional components of velocity at a computational node and \(\mathbf{u}_s(t) \) is the velocity vector for a computational node within the target inclusion. The units of \(\text{KE}_{TA} \) are J/m\(^3\) and those of \(\text{KE}_{inc} \) are J. In our numerical experiments, we use plots of \(\text{KE}_{TA} \) and values of \(\text{KE}_{inc} \) to assess the degree of energy focusing. Next, we describe the numerical experiments and discuss their results.

5.1. Experiment 1 – frequency sweeps and source polarization effect

In this experiment, we use the frequency sweep approach to determine the source frequencies that could produce a strong wave energy focusing at the target. Accordingly, we apply a uniform (horizontally or vertically polarized) load of magnitude 50 kN/m\(^2\) on the free surface \((x_3 = 0) \) of the computational domain. We compute the objective functional \(\mathcal{L}_d \) and the time-averaged kinetic energy of the target inclusion \(\text{KE}_{inc} \) for a range of source frequencies driving the uniform load. The results are shown in Figure 3: it can be seen that for a uniform horizontal load, the minimum value of \(\mathcal{L}_d \) and the maximum value of \(\text{KE}_{inc} \) occur at a source frequency of, approximately, 72 Hz. Thus, the frequency sweep enables determination of the amplification frequencies of the target formation. In a field implementation of the wave-based EOR, if the locations of the finite-width sources are chosen arbitrarily, or decided solely based on practical considerations, then one could use the

Figure 3. Frequency sweep for horizontal and vertical loads.
Table III. The initial guess of source locations.

<table>
<thead>
<tr>
<th>Load number (i)</th>
<th>η/1 (m)</th>
<th>η/2 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.00</td>
<td>9.00</td>
</tr>
<tr>
<td>2</td>
<td>−9.00</td>
<td>7.00</td>
</tr>
<tr>
<td>3</td>
<td>−8.00</td>
<td>−7.00</td>
</tr>
<tr>
<td>4</td>
<td>8.00</td>
<td>−6.00</td>
</tr>
</tbody>
</table>

amplification frequency as the driving frequency for the sources. For example, if \(n_s \) horizontally polarized wave sources are to be applied on the free surface of the geo-formation in Figure 2(a), then one could use \(f_i(t) = (50 \text{ kN/m}^2) \sin[2\pi(72)t] \) for \(i = 1, 2, \ldots, n_s \).

The frequency sweep also gives insights into the effect of source polarization on the wave energy delivery to the target formation. In [46], Sánchez-Sesma et al. discussed the energy partitions for horizontal and vertical unit harmonic point loads acting on a homogeneous elastic halfspace. They reported that a vertical load radiates about 55% to 75% of the energy in the form of Rayleigh surface waves (depending on Poisson’s ratio). A horizontal load, on the other hand, expends only about 10% to 30% of the wave energy in the form of Rayleigh waves. Thus, horizontally polarized loads seem to be more efficient at delivering the wave energy to deeply situated target formations. Figure 3(b) shows that the value of KE\(_{\text{inc}}\) for the horizontal loads is greater than that for the vertical loads for most of the driving frequencies considered in this experiment. Furthermore, the maximum value of KE\(_{\text{inc}}\) for the horizontal loads is about five times that for the vertical loads. This experiment indicates that the efficiency of the wave energy delivery can be increased by using horizontally polarized surface sources instead of vertically polarized sources.

We remark that in our analysis we did not consider the effect of material or intrinsic attenuation. Material attenuation can be included either by adopting models based on Q-factors, or by incorporating an attenuation model in the analysis (this will amount to modifying the damping matrix \(\mathbf{C} \) in Equation (10)). The inverse source procedure can be used for computing the optimal spatio-temporal characteristics of horizontally, vertically, or obliquely polarized surface loads.

5.2. Experiment 2 – source time signal optimization

In this experiment, we compare the frequency sweep and the inverse source approaches for deciding the time signals driving the surface sources that maximize the wave energy delivery to the target inclusion. We use four, horizontally polarized surface loads (acting along the \(x_1 \) direction) to initiate the wave motion. The spatial variability of the surface sources is given by Equation (24). We set \(b_{i1} = b_{i2} = 1.25 \text{ m} \), and the locations of the centerlines of the loads (\(\eta/1 \) and \(\eta/2 \)) are given in Table III.

For the frequency sweep approach, we consult Figure 3 and decide to employ monochromatic source signals with a dominant frequency of 72Hz. Thus, we set \(f_i(t) = (50 \text{ kN/m}^2) \sin[2\pi(72)t] \) for \(i = 1, 2, \ldots, 4 \). When surface loads, described by the \(f_i(t) \) and (\(\eta/1, \eta/2 \)) locations given in Table III, are used to excite the wave motion in the computational domain, the value of KE\(_{\text{inc}}\) is about 0.73 J. Of interest is how the time signals computed using the inverse source approach compare in terms of the energy delivery to the target inclusion, against the monochromatic signals suggested by the frequency sweep. To this end, we start with an initial guess of the time signals, which is shown in Figure 4. Figure 4 shows that the spectrum of the initial guess contains a wide range of frequencies.

We, then, use the procedure outlined in Section 4.5 to maximize the wave energy delivery to the target formation by seeking the optimal time signals for the sources while keeping their locations fixed. The maximum amplitude of the loads is restricted to 50 kN/m\(^2\). The converged time signals and their frequency spectra are shown in Figure 5. The resulting distribution of the time-averaged kinetic energy in the computational domain is shown in Figure 7(a). It can be seen in Figure 5(b) that the converged signals have two dominant frequencies, approximately, 56 Hz and 72 Hz. The time-averaged kinetic energy (KE\(_{\text{inc}}\)) for the converged signals is 0.88 J. The fact that one of the dominant
frequencies of the converged signals (72 Hz) is equal to the amplification frequency suggested by the frequency sweep is a validation of the inverse source approach.

This experiment highlights the key differences between the frequency sweep and the inverse source approaches. For the geosstructure considered in this experiment, the optimal time signals suggested by the inverse source procedure were able to deliver about 20% more time-averaged kinetic energy to the target than that delivered by the best monochromatic signals selected using the frequency sweep method. We remark that a frequency sweep conducted using a uniform load applied on the entire surface of the computational domain can become blind to the complex interference patterns generated by the waves emitted by finite-width sources. To alleviate this drawback, a frequency sweep can be conducted using a number of finite-width sources. We remark that a combined frequency-and-location sweep becomes computationally prohibitive.
Table IV. Converged source locations after the source location optimization.

<table>
<thead>
<tr>
<th>Load number ((i))</th>
<th>(\eta_1) (m)</th>
<th>(\eta_2) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.21</td>
<td>-0.03</td>
</tr>
<tr>
<td>2</td>
<td>-1.06</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>-0.88</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>-0.25</td>
<td>0.05</td>
</tr>
</tbody>
</table>

5.3. Experiment 3 – source location optimization

In this experiment, we discuss computation of the optimal source locations while keeping the source time signals fixed. The source time signals can be chosen using the frequency sweep approach, the time-reversal approach, or the inverse source approach. Here, we illustrate the procedure using the optimal time signals obtained in experiment 2. The initial guess of the source locations is given in Table III and the (fixed) time signals are shown in Figure 5. We, now, seek the optimal source locations using the inverse source algorithm described in Section 4.5. The converged source locations are given in Table IV, and the plot of time-averaged kinetic energy after the source location optimization is shown in Figure 7(b). The time-averaged kinetic energy of the inclusion (KE\textsubscript{inc}) after the source location optimization is 1.68 J.

The results of this numerical experiment highlight the importance of source location optimization. The KE\textsubscript{inc} value after time signal optimization was 0.88 J. Placing the loads at the optimal locations resulted in a 90% increase in the value of KE\textsubscript{inc} (0.88 to 1.68 J). In a field implementation of the wave-based EOR, the stress wave stimulation will be applied for days. Thus, a 90% increase in the energy delivery could result in significant improvement in the efficiency of the sought mobilization process.

5.4. Experiment 4 – simultaneous optimization of spatio-temporal source characteristics

The simultaneous optimization process is initialized with a guess of source time signals and source locations. Both temporal and spatial source characteristics are updated during each inversion iteration to arrive at the optimal spatio-temporal source characteristics. We illustrate the simultaneous optimization procedure in this numerical experiment. We start the inversion process with the initial guess of source time signals and source locations given in Figure 4 and Table III, respectively. We, then, use the inverse source algorithm summarized in Section 4.5 to obtain optimal spatio-temporal source characteristics. The converged source locations are given in Table V, while the converged time signals and the associated frequency spectra are shown in Figure 6. The plot of the time-averaged kinetic energy for the optimal time signals and load locations is shown in Figure 7(c). The converged source time signals and locations are similar to those obtained by the sequential time-signal-location optimization process (Figure 5 and Table IV). The time-averaged kinetic energy of the inclusion after the simultaneous spatio-temporal optimization is about 1.88 J (as opposed to 1.68 J for the sequential optimization), which is about two times the value achieved after source time signal optimization. Thus, once again, the results highlight the importance of source location optimization. We remark that the simultaneous optimization process provides more freedom for fine-tuning the spatio-temporal source characteristics, and hence, it may perform better than the sequential optimization process, especially for geostructures exhibiting a high degree of heterogeneity.

5.5. Experiment 5 – uncertainty effects of the geostructure’s material properties

In the preceding sections, our inverse source formulation and numerical experimentation assumed a priori knowledge about the material properties of the geostructure of interest. In practice,
Figure 6. Converged time signals and the associated frequency spectra after simultaneous optimization.

(a) Time signals (b) Normalized Fourier amplitude

Figure 7. The plots of time-averaged kinetic energy (KE_{TA}).

(a) KE_{TA} after source time signal optimization, $KE_{inc} = 0.88J$ (Experiment 2)
(b) KE_{TA} after sequential source time signal and location optimization, $KE_{inc} = 1.68J$ (Experiment 3)
(c) KE_{TA} after simultaneous source time signal and location optimization, $KE_{inc} = 1.88J$ (Experiment 4)
Table V. Converged source locations after simultaneous optimization

<table>
<thead>
<tr>
<th>Load number ((i))</th>
<th>(i_1) ((\text{m}))</th>
<th>(i_2) ((\text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.81</td>
<td>-0.02</td>
</tr>
<tr>
<td>2</td>
<td>-0.88</td>
<td>-0.01</td>
</tr>
<tr>
<td>3</td>
<td>-0.76</td>
<td>-0.01</td>
</tr>
<tr>
<td>4</td>
<td>-0.83</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table VI. ‘True’ material properties for the layers and the inclusion shown in the geological formation model (Figure 2(a)).

<table>
<thead>
<tr>
<th>Layer(\text{tag})</th>
<th>Wave velocities(C_p)((\text{m/s}))</th>
<th>(C_s)((\text{m/s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>926</td>
<td>567</td>
</tr>
<tr>
<td>L2</td>
<td>1066</td>
<td>652</td>
</tr>
<tr>
<td>T</td>
<td>438</td>
<td>268</td>
</tr>
</tbody>
</table>

however, the material properties of the layered formations and the target are not precisely known. We illustrate the effect of uncertainty in our knowledge of the material properties by conducting the following numerical test: we assume that the material properties used in our computational model are ‘incorrect’, and that the ‘true’ material properties are those given in Table VI, reflecting a change of 10% to 30% in the values of the Lamé parameters. We, then, use the wave sources endowed with the ‘optimal’ spatio-temporal characteristics computed using the ‘incorrect’ material properties (in experiment 4, i.e., Table V and Figure 6) to excite the wave motion in the computational domain endowed with the ‘true’ material properties. The resulting value of \(KE_{\text{inc}}\) was reduced from 1.88 J (experiment 4) to 0.78 J – a reduction of about 58%. Thus, the simple numerical test shows how imperfect knowledge of the material properties can adversely affect wave energy focusing. This observation calls for a formal treatment of the uncertainties in the input data – either by formulating and resolving a Bayesian inverse source problem or by quantifying the effects of uncertainties in the input using sensitivity and/or reliability analyses. In [47], Karve et al. discussed a systematic framework for evaluating the uncertainty in the wave energy delivery to targeted geo-formations. They formulated the wave propagation problem for a two-dimensional, elastic geostructure, and performed sensitivity as well as first-order reliability analyses to compute the probabilities of failure to achieve threshold values of \(KE_{\text{inc}}\). In their work, the uncertainty in the knowledge of the material properties was modeled by assigning suitable probability distribution functions to the Lamé parameters. Similar analysis can be performed for a three-dimensional, elastic geostructure. We remark that the uncertainties in the knowledge of the material properties tend to reduce the amount of the kinetic energy delivered to the target, but the focusing appears to remain intact.

6. CONCLUSIONS

We discussed an inverse source approach for designing wave energy delivery systems used to apply stress wave stimulations to targeted subsurface formations. We provided evidence of the method’s ability to resolve the optimal spatio-temporal characteristics that focus the wave energy to the targeted formation by conducting numerical experiments on a prototype geological formation. Our numerical experiments indicate that optimal load locations play a key role in delivering vibrational energy to the targeted formation and that horizontally polarized loads are preferred for delivering wave energy to deeply situated geological formations than vertically polarized loads. The inverse
source and the associated reliability quantification [47] methodologies provide an analytical framework for designing field implementations in applications of interest to wave-based enhanced oil recovery.

ACKNOWLEDGEMENTS

The authors’ research was partially supported by an Academic Excellence Alliance grant between the King Abdullah University of Science and Technology in Saudi Arabia (KAUST) and the University of Texas at Austin. This support is gratefully acknowledged.

APPENDIX A: THE MATRIX Q

where the matrix L is defined in Equation (16b), I is the identity matrix, and τ is the timestep.

APPENDIX B: CONTROL PROBLEMS

We recall that the vector R at the k-th timestep is defined as

$$
R^k = M^{-1} \begin{bmatrix} 0 \\ F^k \end{bmatrix} = M^{-1} \begin{bmatrix} 0 \\ 0 \\ \sum_{j=1}^{n_s} F^j_{sp} \cdot f_j(k\tau) \end{bmatrix}, \tag{B.1}
$$

where F^j_{sp} is the vector of nodal values corresponding to the spatial variation of the j-th source and the function $f_j(t)$ defines the value of j-th source at time t. We remark that F^j_{sp} is assembled using element force vectors for the j-th load, given by

$$
F^j_{elem} = \begin{bmatrix} F^j_{elem,x_1} \\ F^j_{elem,x_2} \\ F^j_{elem,x_3} \end{bmatrix} = \int_{\Gamma^load} \begin{bmatrix} \theta_{j1}(x, \eta_{j1}, \eta_{j2}) \Phi \delta_{1p} \\ \theta_{j2}(x, \eta_{j1}, \eta_{j2}) \Phi \delta_{2p} \\ \theta_{j3}(x, \eta_{j1}, \eta_{j2}) \Phi \delta_{3p} \end{bmatrix} d\Gamma^j. \tag{B.2}
$$
where δ_{lp} ($l = 1, 2, 3$) is the Kronecker delta, $F_{\text{load}}^{\text{elem}}$ is the loaded boundary for the element, and x_p is the loading direction. We use Equations (B.1) and (B.2) to compute the derivatives of R^k with respect to temporal parameters ξ_{mn} and location parameters η_{mn}.

B.1. Time signal optimization

The control equation for time signal optimization (Equation 38) involves the derivative of R^k with respect to ξ_{mn}, or

\[
\frac{\partial R^k}{\partial \xi_{mn}} = M^1 \begin{bmatrix} 0 & 0 \\
F_{sp}^m (\frac{\partial f_m(k\tau)}{\partial \xi_{mn}}) & 0
\end{bmatrix} = M^1 \begin{bmatrix} 0 \\
F_{sp}^m
\end{bmatrix} \phi_n(k\tau).
\]

(B.3)

Thus, we update each element (ξ_{mn}) of the control parameter vector ξ, using

\[
\frac{\partial A}{\partial \xi_{mn}} = \lambda^0 \cdot y_0 + \sum_{i=0}^{N-1} \left[\phi_n(i\tau) \pi^i_1 + \phi_n(i\tau + \frac{\tau}{2})[\pi^i_2 + \pi^i_3] + \phi_n(i\tau + \tau) \pi^i_4 \right] \cdot R^m_{sp}.
\]

(B.4)

where

\[
R^m_{sp} = M^1 \begin{bmatrix} 0 \\
F_{sp}^m
\end{bmatrix}.
\]

(B.5)

B.2. Load location optimization

The derivative of R^k with respect a location parameter (η_{mn}) is given as

\[
\frac{\partial R^k}{\partial \eta_{mn}} = M^1 \begin{bmatrix} 0 & 0 \\
\frac{\partial F_{sp}^m}{\partial \eta_{mn}} f_m(k\tau) & 0
\end{bmatrix} = M^1 \begin{bmatrix} 0 \\
\frac{\partial F_{sp}^m}{\partial \eta_{mn}}
\end{bmatrix} f_m(k\tau).
\]

(B.6)

where $\frac{\partial F_{sp}^m}{\partial \eta_{mn}}$ is assembled using derivatives of element force vectors for m-th load, given by

\[
\frac{\partial F_{\text{load}}^{\text{elem}}}{\partial \eta_{mn}} = \int_{F_{\text{load}}^{\text{elem}}} \begin{bmatrix}
\frac{\partial \theta_{m1}(x, \eta_{mn}, \eta_{m2})}{\partial \eta_{mn}} \Phi \delta_{1p} \\
\frac{\partial \theta_{m2}(x, \eta_{mn}, \eta_{m2})}{\partial \eta_{mn}} \Phi \delta_{2p} \\
\frac{\partial \theta_{m3}(x, \eta_{mn}, \eta_{m2})}{\partial \eta_{mn}} \Phi \delta_{3p}
\end{bmatrix} d\Gamma.
\]

(B.7)

Thus, we update each element (η_{mn}) of the control parameter vector η, using

\[
\frac{\partial A}{\eta_{mn}} = \lambda^0 \cdot y_0 + \sum_{i=0}^{N-1} \left[f_m(i\tau) \pi^i_1 + f_m(i\tau + \frac{\tau}{2})[\pi^i_2 + \pi^i_3] + f_m(i\tau + \tau) \pi^i_4 \right] \cdot \tilde{R}^m_{sp}.
\]

(B.8)

where

\[
\tilde{R}^m_{sp} = M^1 \begin{bmatrix} 0 \\
\frac{\partial F_{sp}^m}{\partial \eta_{mn}}
\end{bmatrix}.
\]

(B.9)

REFERENCES

3. Smimova MN. Effect of earthquakes on the yield of Gudermes field (Northeastern Caucasus). Fizika Zemli (Physics of

24. Kostrov SA, Wooden BO. Mechanisms, field suitability, and case studies for enhancement of oil recovery and production using in-situ seismic stimulation. 16th International Symposium on Nonlinear Acoustics, Moscow, Russia, 2002.

