Ocean Engineering Group (OEG)/EWRE
(August 24, 2017)
Spyros A. Kinnas
Professor and Director of OTRC’s UT Office
(Offshore Technology Research Center)
(Google: Kinnas Home Page — check courses and
OE Theses/Dissertations)
Research in the area of computational hydrodynamics with
applications on the prediction of performance and design of high-
speed marine propulsors or turbines, modeling of cavitating or
separated flows, and wave/body interaction.

Teaching:

*CE358: Introductory Ocean Engineering

*CE319F: Elementary Fluid Mechanics

CE380P.4: Boundary Element Methods

*CE380T: Computational Environmental Fluid Mechanics (Spring’18 — tent.)
*CE397-32: Theory of Propellers and Turbines (Fall 18 — tent.)

Facilities:
*CHL (Computational Hydrodynamics Laboratory) in ECJ 8.502



Fuel-Efficient marine propulsors ...
Must comply with new EEDI (Energy Efficiency Design Index)
regulations on CO, emissions from newly built ships

Contra-rotating props Ducted prop
8/24/2017- OEG @ UT Austin



...and some water-turbines
(used to generate energy from ocean currents)

Twin turbines (each 0.6 MW)
pulled out of the sea for
maintenance

8/24/2017- OEG @ UT Austin


http://www.marineturbines.com/18/projects/19/seagen/

For high-speed propellers

cavitation i1s often inevitable

Sheet Tip vortex

-

Cavity

«Cavitation can accelerate erosion of blades, produce
noise, or result in sudden loss of thrust
However, allowing for some cavitation can increase

efficiency
8/24/2017- OEG @ UT Austin



Rotating components interacting with stationary ones
(propeller) (rudder)

Tip vortex

8/24/2017- OEG @ UT Austin



Two methods to model flow

Boundary Element (or Panel) Method Finite Volume Method
(addressed in CE380P.4) (addressed in CE380T)
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» BEM can only handle the inviscid part of the flow (i.e. NOT
very close to boundaries). The effects of viscosity are
Included via coupling with integral boundary layer methods

» FVM needs a very large number of cells to resolve the
whole domain (especially the boundary layer) within

acceptable accuracy
8/24/2017- OEG @ UT Austin
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PREDICTION OF PROPELLER PERFORMANCE AT HIGH
LOADING (TIAN & KINNAS, INT. JOURNAL OF ROTATING MACHINERY, 2012)
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Panel method : 5 mins on a Laptop
RANS: 8 hrs on 24 CPUs.
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A VIScous VORTICITY EQUATION (VISVE) MODEL FOR
PROPELLER AT OFF-DESIGN WITH LEADING EDGE VORTEX (LEV)

" Tian, PhD
| OEG/UT 2014

| Tian & Kinnas:
SMP’15

Leading edge vortex (LEV)

Ocean Eng. Group, CAEE
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NEW METHOD FOR EVALUATION OF LE SEPARATION
+ 2D hydrofoil at high angle of attack
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RESULTS
+ 2D hydrofoil at high angle of attack

t=0.3s

VISVE Navier-Stokes (RANS)
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RESULTS (VORTICITY STRENGTH IS SHOWN IN COLOR)
A Square Tip Propeller (left) and a Round Tip Propeller (right)

Ocean Eng. Group, CAEE
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APPLICATION ON DUCTED PROPELLERS
CORRELATION OF OUR METHODS WITH RANS SOLVERS
(STAR-cCM+ & FLUENT)

(Kinnas, Su, Du, Kim; SNH 2016)

Ocean Eng. Group, CAEE



University of Texas at Austin

» Mesh conditions in fully 3-D viscous simulation

*

Polyhedral cells and hexahedral cells are
respectively utilized in the rotating region
and static region.

Periodic interfaces are applied, making only
a quarter of the whole domain necessary for
the simulation.

mesh around duct

Ocean Eng. Group, CAEE
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» Comparison of running times

Method Full blowm EANS PANEL METHOD
I Less than 12K panels
Cell No. Ovwver 5 million cells (10 iterations for wake)

Table 4-2 Computation efficiency comparison between the panel method and the full
blow EANS simulation

Ocean Eng. Group, CAEE
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Ship Hull — Propeller — Rudder Interaction

(Su & Kinnas, Journal of Ship Research, 2017 — in press)
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New design method produces more efficient turbines
(Menendez, MS, OEG 13, Menendez & Kinnas JSR’14)
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OFFSHORE PLATFORMS

Deepwater Systems

Currents
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8/24/2017- OEG @ UT Source: Bureau of Ocean Energy Management
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Experiment and simulation of flow around cylinder subject to wave
(G. Wang; MS, OEG, 2015)

UT’s flume and Particle Image
Velocimetry (PIV) system

Simulation of viscous flow inside
flume (using ANSYS/Fluent)

 Reynolds-Averaged Navier-
Stokes (RANS)

« Large Eddy Simulation (LES)
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Figure 4.37 3D mesh including free surface



Measured vs. predicted
velocity over time

Direction of inflow

N

Figure 4.13 Time history of horizontal velocity of point 9




Measured vs. computed
time averaged velocities
(Reynolds stresses)

LES appears to do a much
better job than RANS iIn
simulating the viscous
flow

8/24/2017- OEG @ UT
Austin
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Figure 4.16 Time-averaged honizontal velocity at section 1
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Figure 4.17 Time-averaged vertical velocity at section 1



2017-18 Opportunities in OEG:

» 10 hour grader (for CE358 class - committed)

» MS Thesis in OE on the topics listed
(unfunded) — Requires strong background In
Fluid Mechanics, Advanced Calculus, and
Computational Methods



