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ABSTRACT 

This paper describes the use of ordered probit models to examine the risk of different 

injury levels sustained under all crash types, two-vehicle crashes, and single-vehicle crashes.  

The results suggest that pickups and sport utility vehicles are less safe than passenger cars under 

single-vehicle crash conditions.  In two-vehicle crashes, however, these vehicle types are 

associated with less severe injuries for their drivers – and more severe injuries for occupants of 

their collision partners.  Other conclusions also are presented; for example, the results indicate 

that males and younger drivers in newer vehicles at lower speeds sustain less severe injuries. 
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INTRODUCTION 

Traffic crash modeling is helpful for assessing risk factors and design issues in roadway 

travel. To this end, logit and other discrete specifications have been used to model injury severity 

and ratios of crash counts, while least squares, Poisson, negative binomial, and other models 

have been applied to total crash counts. 

The severity of injuries sustained by drivers involved in crashes is of considerable 

interest to policy makers and safety specialists.  The General Estimates System (GES), a sample 

of U.S. crashes collected by The National Highway Traffic Safety Administration (NHTSA), 

classifies injuries according to four levels: no injury, non-severe injury, severe injury, and fatal 

injury.  In this paper, the probability of these levels of injury severity is examined by applying an 

ordered probit regression model, thereby recognizing the ordinality of injury level, the dependent 

variable.  This model is discussed in detail in the section titled Model Specification. 

The regression models control for various driver, vehicle, and crash characteristics, and 

the data come from the 1998 GES data set.  Before detailing the data sets, describing the model, 

and presenting the results, a brief review of the extensive crash-modeling literature is provided 

here.  

LITERATURE REVIEW 

In the most recent and sophisticated modeling of crash-count totals, the Poisson and 

negative binomial are rather common model specifications.  And logit-based models (e.g., a log-

linear specification of count ratios) have been used to model counts across injury severity 

classes.  A variety of explanatory variables are typically available in crash records, but many 

models aggregate their data and examine the effects of only a few such variables (e.g., gender 

and age). 
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There is an extensive literature devoted to crash modeling, and this review attempts to 

present the most relevant and rigorous work.  For example, Shankar et al. (1997) have 

investigated zero-inflated Poisson and negative binomial models of crash counts in Washington.  

The added flexibility of such specifications for crash-count totals may assist crash prediction, 

and their results suggest many specific relations between geometric design and crash rates. 

Combining different databases, Ivan et al. (1999) estimated annual crash rates as a 

function of site and traffic characteristics for single- and multi-vehicle crashes.  Their basic 

specification relied on a Poisson distribution, but they then permitted the variance to vary as a 

proportion of the mean crash rate.  For single-vehicle crashes, they found that traffic conditions 

(as measured by level of service, LOS) and site characteristics (such as shoulder width and speed 

limit) were statistically significant, but light conditions (e.g., day or night) were not.  For multi-

vehicle crashes, only site characteristics were statistically significant in their final models. 

Aljanahi et al. (1999) have applied a Poisson specification to characterize the relationship 

between traffic speeds and crash rates under free-flow conditions in two different areas.  Their 

results suggest that the proportion of heavy vehicles is inversely associated with the crash rate, 

and mean speed contributes to crash rates. 

In terms of driver effects, Lourens et al. (1999) have concluded that there is no difference 

between men and women in terms of their crash involvement – after controlling for annual miles 

driven. They found younger drivers have the highest crash involvement rate per mile-driven 

among all age groups and a recent history of drinking violations has a positive effect on fatal 

crash rates.  Rather interestingly, they also concluded that education level is irrelevant to crash 

involvement.  
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In terms of age effects, Dobson et al. (1999) applied a negative binomial model to self-

reported crash rates for two sets of female drivers (those aged 18-23 and those aged 45-50); they 

found the younger female drivers to be three times more crash-involved than the middle-age 

women. Zhang et al. (2000) find the elderly to be at increased risk for fatal injury, and Li and 

Kim (2000) find the elderly to be more often at fault.  In terms of health effects on crash rates, 

Hu et al. (1998) have looked critically at medical conditions of drivers and their physical 

disabilities. 

Using records of licensed California drivers, Gebers (1998) compared several statistical 

specifications.  He analyzed crash-rate frequency data by applying ordinary least squares (OLS), 

weighted least squares (WLS), Poisson, and negative binomial regression models. He also 

compared categorical data results using a standard OLS model and a logistic regression model. 

He found that his models’ coefficients were of the same sign and generally quite similar in 

magnitude and statistical significance.  A driver’s crash involvement rate was positively related 

to his/her crash history and traffic-citations record, as well as male gender and youth.  However, 

Gebers work did not control for vehicle miles driven, which can differ dramatically across 

gender and age classes. 

Using ratios of counts to miles driven, Doherty et al. (1998) produced crash involvement 

rates for drivers of different ages across three situational risk factors: time of day, day of week 

and number of passengers.  Crash rates on Friday and Saturday for all three-injury severity levels 

(property damage only, injury and fatality) were significantly higher than those during weekdays, 

and nighttime crash rates were higher than daytime rates (across all driver groups). For younger 

drivers, the presence of passengers positively influenced the crash rate, and this effect varied 

across age groups and gender.  
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Chipman et al. (1992) created an exposure index incorporating both travel time and 

distance.  They then stratified their Ontario licensed-drivers sample on the basis of age (six 

levels), gender, and region (three levels) and compared exposure-normalized accident and 

fatality rates.  They found that older drivers generally drive at lower speeds, which may mean 

less injurious crashes, ceteris paribus.  They also noted that those traveling at higher speeds are 

more exposed in terms of total distance covered, assuming the same travel times; men were 

found to drive 50% longer distances than women (and 30% more time). 

The above-referenced works deal primarily with crash involvement and crash totals, 

whereas the work presented in this paper investigates accident severity.  In cases like this – 

where the dependent variable carries a highly discrete value, other model specifications should 

be used, such as a multinomial logit or ordered probit.  In much of the literature, researchers have 

aggregated counts by category (e.g., across a range of ages) and examined odds ratios through 

log-linear models.  For example, using 1994 and 1995 crash data from Florida, Abdel-aty et al. 

(1998) used this technique to examine relationships between driver age and crash characteristics.  

The three injury severities in their study were no injury, injury and fatality, and their results 

suggest that injury severity is positively associated with age; they also concluded that middle-age 

drivers are more likely to be involved in some crashes, but older drivers are more likely to be 

involved in fatal crashes. 

Farmer et al. (1997) used a binomial regression model to investigate the impact of vehicle 

and crash characteristics on injury severity in two-vehicle side-impact crashes. They found that 

rollover or ejection from the vehicle increases the likelihood of a serious injury or death (i.e., 

injuries with an Abbreviated Injury Scale of at least 3) and that light-duty trucks (which they 

defined as pickups and utility vehicles – not vans – under 10,000 pounds of gross-vehicle weight 
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[GVW]) were fourteen times more likely to roll than cars, when struck in the side.  While gender 

was not a statistically significant factor in their results, the oldest drivers (aged 65 and over) were 

estimated to be more at risk for serious injury. 

Among all the existing literature, the most relevant paper for the work presented in this 

paper is that of O’Donnell and Connor (1996).  In assessing the probabilities of four levels of 

injury severity as a function of driver attributes, they compared ordered logit and ordered probit 

specifications.  Their results suggest that injury severity rises with speed, vehicle age, occupant 

age (squared), female gender, blood alcohol levels over 0.08 percent, non-use of a seatbelt, 

manner of collision (e.g., head-on crashes), and travel in a light-duty truck.  And, according to 

their comparison of effects, seating position of crash victims was most relevant (e.g., the left-rear 

seat of the vehicle was found to be most dangerous) and gender least relevant. Many of their 

results are echoed in the models presented here; the key distinction is that here collision partners 

and crash-type are examined and emphasized. 

DATA SET 

This study investigates the injury severity for all crashes, two-vehicle crashes and single-

vehicle crashes. Therefore, three data sets were prepared for estimation. These all derive from 

the 1998 National Automotive Sampling System General Estimates System (GES) which covers 

0.85% of all police-reported crashes in the U.S. This data set is intended to be nationally 

representative and comes from a sample of all police-reported crash records. Such crashes 

include property damaging crashes, injury crashes, and fatal crashes. 

The GES data set consists of three separate files: crash, vehicle and person. These were 

combined on the basis of the person-level data set’s sample of drivers, and Table 1 describes the 

variables used here.  Note that the collision-partner variables were used only in the analysis of 
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two-vehicle crash records.  But all other variables shown in Table 1 can be found in all three 

model types discussed under Model Results (i.e., the all-crash, single-vehicle-crash, and two-

vehicle-crash analyses).  Also, the imputed values for several missing variable values were used 

here.  In total, 11.5% of the all-crash data set records had at least one imputed variable.  Their 

values were imputed (by NHTSA) using either a “hot-deck” or a simpler, univariate method.  In 

the hot-deck method, another record with a similar set of correlated variables is found and its 

value used; in the univariate method, values are used in proportion to their appearance in the data 

set for the missing variable.  Imputed values of “SPEED” and “SPEEDOTHER” are not 

provided in the GES; this is probably because over half of the crash records lack this variable (so 

there would not be much confidence in imputed values). Recognizing this defect in the data, two 

regressions were performed here, for each of the three data sets – one without and one with speed 

variables.  The latter are much smaller data sets and may over-represent certain crash types (e.g., 

non-fatal crashes and those with non-occupant witnesses during the daytime). 

Before moving into a discussion of results, it warrants mention many general issues 

concern crash data sets.  For example, there is the issue of geographic heterogeneity.  Different 

regions may possess systematically different reporting styles or different road geometries – and 

different relationships between variables of interest.  Matthew and Andrzej (1998) emphasized 

this issue in their work and clustered their crash data by counties. In comparing their negative 

binomial models of pooled data with models for distinct clusters, there were statistically 

significant differences, and the latter performed best. 

Hauer and Hakkert (1988) stressed the importance of crash underreporting and compute 

its impact on estimator consistency. Their work suggested that the accuracy of the safety 

estimates is inversely proportional to the square of the average proportion of crashes reported.  
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McCarthy and Madanat (1994) emphasized the continuous nature of crash severity and stress the 

importance of unconditioning samples (via, e.g., a Tobit specification) to accommodate all 

degrees of crash severity.  Thus, if underreporting is present and/or data are pre-conditioned 

(e.g., only fatal crashes are examined), parameter estimates may be structurally biased away 

from the relations of true interest.  Research that recognizes the probabilities of crash 

involvement and crash reporting will allow for an unconditioning away from crash-prone 

populations and high-reporting situations; unfortunately, such work is largely missing from this 

field and its literature (for an example emphasizing crash involvement of unlicensed drivers, see 

DeYoung et al. [1997]). 

MODEL SPECIFICATION 

Ordered-response models recognize the indexed nature of various response variables; in 

this application, driver injury severities are the ordered response.  Underlying the indexing in 

such models is a latent but continuous descriptor of the response.  In an ordered probit model, the 

random error associated with this continuous descriptor is assumed to follow a normal 

distribution. 

In contrast to ordered-response models, multinomial logit and probit models neglect the 

data’s ordinality, require estimation of more parameters (in the case of three or more alternatives, 

thus reducing the degrees of freedom available for estimation), and are associated with 

undesirable properties, such as the independence of irrelevant alternatives (IIA, in the case of a 

multinomial logit [see, e.g., Ben-Akiva and Lerman 1985]) or lack of a closed-form likelihood 

(in the case of a multinomial probit [see, e.g., Greene 2000]).   
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The ordered probit can be estimated via several commercially available software 

packages and is theoretically superior to most other models for the data analyzed in this work.  

The following specification was used here: 

nnn zT εβ +′=*  

  where *
nT = latent and continuous measure of injury severity faced by driver n in a crash, 

   nz  = a vector of explanatory variables describing the driver, vehicle, and crash, 

 β  = a vector of parameters to be estimated, and 

 n  = a random error term (assumed to follow a standard normal distribution). 

The observed and coded discrete injury severity variable, nT , is determined from the 

model as follows: 
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where the iµ ’s represent thresholds to be estimated (along with the parameter vector β ). 

Figure 1 illustrates the correspondence between the latent, continuous underlying injury 

variable, *
nT , and the observed injury severity class,nT . 

Figure 1. Relationship Between Latent and Coded Injury Variables. 
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The probabilities associated with the coded responses of an ordered probit model are as 

follows: 
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where n is an individual, k is a response alternative, P(Tn=k) is the probability that 

individual n responds in manner k, and Φ( ) is the standard normal cumulative distribution 

function. 

Thanks to the increasing nature of the ordered classes, the interpretation of this model’s 

primary parameter set, β , is as follows: positive signs indicate higher driver injury severity as 

the value of the associated variables increase, while negative signs suggest the converse.  These 

interactions must be compared to the ranges between the various thresholds, iµ , in order to 

determine the most likely injury classification for a particular driver, vehicle, and crash situation.  

For more information on this model specification, please see, for example, Greene (2000). 

MODEL RESULTS 

Ordered probit regression models were estimated for driver injury status in all crashes, 

two-vehicle crashes and single-vehicle crashes, with and without speed variables.  The six 

separate sets of results are shown in Tables 2 through 4 and are discussed below.  Note that no 

variables were removed from the model on the basis of low statistical significance; since all 

variables are of interest and expected to have some effect on injury severity, all were maintained 

in the final models.1 
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In assessing the results, one should recognize that the reference driver/crash type involves 

a female driving a passenger car during the nighttime (and colliding with another passenger car, 

in the case of two-vehicle crashes).  The reference manner of collision is neither a rollover, head-

on, rear-end, left-side, or right-side crash; thus, by far the most common reference collision is an 

angle crash (with another vehicle or other object), without rollover. 

Along with each set of results, likelihood ratio indices (LRIs) are provided.  These 

represent ratios of maximum likelihoods for each model estimated with and without the 

explanatory variable sets.  Thus, they gauge the value of the variables available to predict injury 

severity and they indicate model fit; in effect, they function much like coefficients of 

determination, or 2R ’s (which result from least-squares regression models). (Greene 2000) 

Models of All Crash Records 

Table 2 provides the estimation results of two ordered probit models of driver injury 

severity, as applied to drivers across all crashes found in the 1998 GES dataset, but with and 

without the variable of vehicle speed.  Since the dependent variable, or injury index, increases 

with injury severity, positive coefficients suggest the likelihood of more severe injuries.  Thus, 

increased driver age, vehicle age, and alcohol use are associated with more severe injuries, while 

male gender and a prior citation history are associated with decreased injury levels.  Note, 

however, that these results are based on a sample of actual crashes.  Males and those drivers with 

prior citation histories may be more at risk for crashes – and severe crash injury – overall, but 

they also may be over-involved in non-severe crashes, producing the negative coefficients 

estimated in all of the models estimated here.  Since these models are conditioned on the 

distribution of crashes already occurring, one cannot determine whether being male or a prior 

citation history puts a driver at greater risk of crashes and severe injury overall. 
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Light-duty trucks (i.e., minivans, SUVs, and pickups) appear to somewhat better protect 

their drivers, across this general set of crash types.  However, only a heavy-duty truck is 

associated with a very large shift in injury severity; this indicator variable has coefficients of –

0.577 and –0.601 – versus threshold differences of roughly 1.1.  According to these results, 

simply being male offers more protection to a driver than driving a light-duty truck.  Note also 

that driving a passenger car appears safer than driving the “other vehicle” type, which includes 

motorcycles, full-sized vans, and buses.  But the same word of caution regarding results 

interpretation – due to a crash sample’s overrepresentation of more crash-involved populations 

(who may experience less severe crashes more often) – still holds here. 

As one might guess, head-on crashes are likely to be more dangerous than read-end, left-

side, right-side, and angle-crashes, and a left-side impact is more injurious than a right-side 

impact (for the driver).  However, a rollover-type crash is more severe than all of these, pushing 

the average injury index level up almost an entire threshold (its coefficients are 0.963 and 0.857).  

And light-duty trucks are very commonly involved in such accidents, due to their higher centers 

of gravity. 7.7% of SUV drivers in this sample were in vehicles that rolled, and 4.7% of pickup 

drivers rolled their vehicles; in contrast, only 2.3% of passenger car drivers rolled.  More than 60 

percent of SUV occupants killed in 1998 died in rollovers, and SUVs rolled in 36% of the fatal 

crashes in which they were involved; their rollover rate more than doubles that for passenger cars. 

(AP 2000)  And it has been estimated that light-duty trucks are fourteen times more likely to 

rollover when struck in the side than are passenger cars. (Farmer et al. 1997) 

Inclusion of a speed variable changed the signs on the left-side impact and late Saturday 

night variables, but these were not statistically significant.  Only Friday late-night driving was 

statistically significant among the three late-night driving indicators; however, it loses its 
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significance in the two-vehicle-crash models.  Daylight conditions and the presence of other 

vehicle occupants seem to lessen injury severity, but generally these are not very statistically 

significant. 

Models of Two-Vehicle Crash Records 

In the ordered probit models of two-vehicle crashes, the data set includes information on 

the body type and speed of the other vehicle or “conflict partner.”  The results are shown in 

Table 3, and these largely coincide with those of Table 2 (all crashes), from the perspective of 

drivers.  For example, female gender, nighttime driving, and age are all associated with increased 

injury severity.  And driving light-duty trucks appears to offer additional protection to the drivers 

of these vehicles. 

After controlling for speed variables (but losing over two-thirds of the observations), 

driving a minivan or heavy-duty truck appears to offer more protection than being male.  A 

heavy-duty-truck’s protection factor is more significant under the two-vehicle crash type than it 

was across all crash types; it’s coefficients are roughly –0.8 (and the threshold shifts remain at 

roughly 1.1), whereas they were –0.6 in the previous set of models (Table 2).  Note, however, 

that use of a heavy-duty truck means more severe injury for the driver of the partner vehicle; 

collision with an HDT adds 0.544 and 0.344 to the latent injury variable (in the models without 

and with speed variables, respectively), or about one-half to one-third a threshold level.  Light-

duty trucks appear to slightly worsen injury to a collision partner’s driver, in the first model; 

however, their statistical significance is lost (and the coefficients on minivan and pickup change 

sign) when speed is controlled for, in the smaller sample (which includes a speed variable). 

Coefficients of late-night driving on the weekend exhibit consistently positive signs for 

two-vehicle crashes, but only one of the six is statistically significant (late-night Sunday, in the 
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model without speed variables).  Daylight conditions may be a bit safer, but the presence of 

occupants appears to have no effect on two-vehicle-crash driver injury. 

Models of Single-Vehicle Crash Records 

Certain estimates change sign in the models of single-vehicle crashes (shown in Table 4).  

For example, a strongly convex response to driver age increases is visible, rather than a close-to-

linear (though slightly concave) response, which was evident in the models of all crash records 

and two-vehicle-crash records.  Table 4’s results suggest that a driver age of close to 50 

minimizes injury severity in single-vehicle crashes.  It may be that young drivers involved in 

single-vehicle crashes are driving much more recklessly than middle-age drivers, leading to 

sufficiently more severe crashes that the benefits of youth are outweighed by crash severity.  

Also, daylight is associated with more severe injury (however, its effect is not statistically 

significant in all but one of the six crash models).  In general, however, the results are consistent 

with those of Tables 2 and 3; for example, male gender and prior violations remain negatively 

associated – and vehicle age and driver alcohol use positively associated – with injury level. 

At a statistically significant level, only driving a minivan appears to offer better 

protection than a passenger car, in a single-vehicle crash – and this is only when one neglects the 

speed variable and relies on the full sample.  The effect of driving an “other vehicle” (e.g., a 

motorcycle or full-sized van) is significantly positive (producing more severe injury), and the 

effects of driving SUVs and heavy-duty trucks are quite small – often statistically insignificant 

and positive.  After controlling for speed, only driving a pickup or “other vehicle” is estimated to 

have a statistically significant effect, with coefficients of +0.132 and +0.728, respectively; 

neither exceeds the threshold shifts, however (which are about 1.1).  Vehicle rollover has very 

sizable coefficients (0.784 and 0.662), and, as previously mentioned, rollover is much more 
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common among light-duty trucks. In fact, in the 1998 GES sample of all single-vehicle-crash-

involved drivers, 30.0% of SUV drivers were in vehicles that rolled and 20.5% of pickup drivers 

rolled their vehicles; in contrast, only 11.4% of passenger car drivers rolled. 

Additionally, the speed effect for this crash type is highly statistically significant, and 

more practically significant than it was in the other models.  With a coefficient of +0.015, a 35 

mph increase in speed shifts the latent injury value by roughly half a threshold level.  In the all-

crash model results, this speed increase was associated with a quarter-threshold shift; in the two-

vehicle crash model, this increase was associated with a fifth-threshold shift. 

CONCLUSION 

A variety of factors can come into play when vehicles crash on the road.  In terms of the 

severity of injuries sustained by drivers, this work suggests that the manner of collision, number 

of involved vehicles, driver gender, vehicle type, and driver alcohol use play major roles.  

Rollover and head-on collisions are particularly serious, contributing to more severe injury levels 

than speed increases of 50 mph and more.  And males tend to fare significantly better than 

females.  In contrast, the effects of late-night driving on weekends and daylight conditions had 

rather negligible effects on injuries sustained by drivers, after controlling for the other variables.  

These results are highly consistent with the existing literature (see, e.g., O’Donnell and Connor 

1996), but this work incorporates more variables and closely examines the effects of vehicle type 

on both drivers and collision partners. 

Using a sample of two-vehicle crashes and controlling for manner of collisions (including 

rollovers), the results indicate that light-duty trucks protect their drivers better – conditioned on 

the fact that the crash has occurred.  Pickups and SUVs, however, inflict more damage on the 

driver’s of other vehicles, and they are more prone to rollovers (Farmer et al. 1997, AP 2000), 
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which, as mentioned, result in very severe injuries.  In fact, passenger cars roll about one-half as 

often as pickups and one-third as often as SUVs. A more comprehensive model, which 

simultaneously examine exposure and crash involvement, could assess whether drivers of light-

duty trucks are more at risk overall, by virtue of being more crash involved – and more likely to 

rollover.  Research should continue in this important area. 
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Table 1. Description of Variables 
 

Variable 
Type 

Variable 
Title Description  Mean SD 

Dependent  
Variable 

INJURYLEVEL 4 Crash categories: No injury (0), minor injury (1),  
severe injury (2), and fatal injury sustained  
by driver (3) 

0.3108 0.5564 

Driver Info. AGE Age of driver (years) 37.34 16.08 

 AGE2 Age squared 1433 1335 

 MALE Gender (1=Male, 0=Female) 0.6333 0.4819 

 ALCOHOL Police-reported alcohol involvement (1=Yes) 0.0430 0.2028 

 VIOLATOR Driver has a past traffic violation on record (1=Yes) 0.2954 0.4562 

Vehicle Info. VEHAGE Vehicle age (1999 – model year) 7.9471 5.4595 

 PICKUP Driver driving a pick-up truck (1=Yes) 0.1323 0.3388 

 MINIVAN Driver driving a minivan (1=Yes) 0.0240 0.1531 

 SUV Driver driving a sport utility vehicle (1=Yes) 0.0558 0.2295 

 HDT Driver driving a heavy or medium-duty truck (1=Yes) 0.1029 0.3039 

 OTHER Driver driving some other type of vehicle (but not  
a passenger car) – e.g., motorcycles, full-sized vans,  
and buses (1=Yes) 

0.0778 0.2679 

 OTHERPICKUP Collision partner (in two-vehicle crashes) is a pickup 
(1=Yes) 

0.1341 0.3408 

 OTHERMINIVAN Collision partner is a minivan (1=Yes) 0.0209 0.1431 

 OTHERSUV Collision partner is an SUV (1=Yes) 0.0454 0.2081 

 OTHERHDT Collision partner is an HDT (1=Yes) 0.1049 0.3064 

 OTHEROTHER Collision partner is any other type of vehicle (but not  
a passenger car) (1=Yes) 

0.0918 0.2888 

Crash Info. HEADON 
   (FRONT) 

Head-on crash type (front-end impact for  
single-vehicle crashes) (1=Yes) 

0.0190 
(0.4556) 

0.1365 
(0.4980) 

 REAREND 
   (BACK) 

Rear-end crash type (back-end impact for  
single-vehicle crashes) (1=Yes) 

0.3294 
(0.1893) 

0.4700 
(0.3917) 

 ROLLOVER Rollover  (1=Yes) 0.0343 0.1820 

 LEFTSIDE Left-side impact (1=Yes) 0.1666 0.3727 

 RIGHTSIDE Right-side impact (1=Yes) 0.1601 0.3667 

 SPEED Actual travel speed (mph) (as estimated in police 
 record) 

23.46 18.98 

 SPEEDOTHER Collision partner’s actual travel speed (mph) 23.46 18.98 

Other Info. OCCUPANTS Number of occupants in driver’s vehicle (1=Yes) 1.424 0.8608 

 DAYLIGHT Daylight – including dusk and dawn (1=Yes) 0.7301 0.4439 

 FRIDAYLATE Friday late night (between Friday midnight  
& 4 am of next day) (1=Yes) 

0.0085 0.0918 

 SATLATE Saturday late night (midnight to 4 am) (1=Yes) 0.0076 0.0870 

 SUNLATE Sunday late night (midnight to 4 am) (1=Yes) 0.0032 0.0562 
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Table 2. Model Results for All Crashes  
 

Variables W/o Speed Variable With Speed Variable 
 Coefficient p-value Coefficient p-value 
Constant -0.4364 0.0000 -0.7240 0.0000 
Driver     
     AGE 4.046E-04 0.7412 6.485E-03 0.0006 
     AGE2 8.100E-06 0.5473 -3.947E-05 0.0572 
     MALE -0.2323 0.0000 -0.2640 0.0000 
     VIOLATOR -0.1024 0.0000 -0.0722 0.0000 
     ALCOHOL 0.3210 0.0000 0.2978 0.0000 
Vehicle     
     VEHAGE 7.101E-03 0.0000 7.226E-03 0.0000 
     SUV -0.1584 0.0000 -0.2220 0.0000 
     MINIVAN -0.1203 0.0000 -0.1318 0.0030 
     PICKUP -0.1719 0.0000 -0.1751 0.0000 
     HDT -0.5773 0.0000 -0.6005 0.0000 
     OTHER 0.1832 0.0000 0.1640 0.0000 
Crash     
     HEADON 0.5415 0.0000 0.6483 0.0000 
     REAREND -0.1598 0.0000 -0.0201 0.2666 
     ROLLOVER 0.9633 0.0000 0.8566 0.0000 
     LEFTSIDE -0.0153 0.2206 1.132E-03 0.9564 
     RIGHTSIDE -0.1866 0.0000 -0.1782 0.0000 
     SPEED   6.726E-03 0.0000 
Others     
     OCCUPANTS -8.397E-03 0.0862 -0.0101 0.1569 
     DAYLIGHT -0.0135 0.1767 -0.0199 0.2071 
     FRILATE 0.1088 0.0121 0.1729 0.0203 
     SATLATE 0.0596 0.2159 -0.0141 0.8610 
     SUNLATE 0.2369 0.0003 0.1379 0.2392 
Thresholds     

µ1 0.0000 - 0.0000 - 
µ2 1.1823 0.0000 1.1245 0.0000 
µ3 2.2003 0.0000 2.2950 0.0000 

Num. of observations 97,074  40,251  
LRI 0.0451  0.0496  
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Table 3.  Model Results for Two-Vehicle Crashes  
 

Variables W/o Speed Variable With Speed Variable 
 Coefficient p-value Coefficient p-value 
Constant -0.5397 0.0000 -0.8624 0.0000 
Driver     
     AGE 3.171E-03 0.0352 7.030E-03 0.0071 
     AGE2 -1.411E-05 0.3877 -4.237E-05 0.1314 
     MALE -0.2665 0.0000 -0.2786 0.0000 
     VIOLATOR -0.0877 0.0000 -0.0394 0.0650 
     ALCOHOL 0.2435 0.0000 0.2399 0.0000 
Vehicle     
     VEHAGE 7.045E-03 0.0000 7.367E-03 0.0000 
     SUV -0.1915 0.0000 -0.2764 0.0000 
     MINIVAN -0.1549 0.0000 -0.2971 0.0000 
     PICKUP -0.2171 0.0000 -0.2667 0.0000 
     HDT -0.7743 0.0000 -0.8247 0.0000 
     OTHER 0.1103 0.0000 0.0916 0.0047 
     OTHERSUV 0.1458 0.0000 0.0340 0.4676 
     OTHERMINIVAN 0.0598 0.0893 -0.0685 0.3291 
     OTHERPICKUP 0.0935 0.0000 -1.584E-03 0.9563 
     OTHERHDT 0.5444 0.0000 0.3438 0.0000 
     OTHEROTHER 0.1439 0.0000 0.1681 0.0000 
Crash     
     HEADON 0.5870 0.0000 0.6819 0.0000 
     REAREND -0.1935 0.0000 -0.1480 0.0000 
     ROLLOVER 1.0908 0.0000 0.9046 0.0000 
     LEFTSIDE -0.0451 0.0032 -0.0635 0.0259 
     RIGHTSIDE -0.1933 0.0000 -0.2475 0.0000 
     SPEED   5.875E-03 0.0000 
     SPEEDOTHER   6.176E-03 0.0000 
Others     
     OCCUPANTS 2.268E-03 0.7061 -6.545E-03 0.5190 
     DAYLIGHT -0.0582 0.0000 -0.0338 0.1525 
     FRILATE 0.0414 0.5455 0.1250 0.4133 
     SATLATE 0.0776 0.2898 0.0539 0.7241 
     SUNLATE 0.3465 0.0010 0.0235 0.9268 
Thresholds     

µ1 0.0000 - 0.0000 - 
µ2 1.2290 0.0000 1.0834 0.0000 
µ3 2.3272 0.0000 2.3522 0.0000 

Num. of observations 65,510  20,382  
LRI 0.0588  0.0682  
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Table 4.  Model Results for Single-Vehicle Crashes 
 

Variables W/o Speed Variable With Speed Variable 

 Coefficient p-value Coefficient p-value 

Constant -0.2009 0.0061 -0.9059 0.0000 

Driver     

   AGE -0.0181 0.0000 -0.0163 0.0012 

   AGE2 1.510E-04 0.0000 1.824E-04 0.0016 

   MALE -0.1009 0.0000 -0.1530 0.0001 

   VIOLATOR -0.1331 0.0000 -8.283E-03 0.8282 

   ALCOHOL 0.4174 0.0000 0.3504 0.0000 

Vehicle     

   VEHAGE 8.665E-03 0.0000 9.349E-03 0.0008 

   SUV 0.0322 0.4427 0.0126 0.8622 

   MINIVAN -0.1525 0.0390 -0.0690 0.5940 

   PICKUP 0.0217 0.4624 0.1321 0.0060 

   HDT 0.0398 0.3447 0.0588 0.3952 

   OTHER 0.5891 0.0000 0.7279 0.0000 

Crash     

   ROLLOVER 0.7837 0.0000 0.6622 0.0000 

   FRONT 0.0337 0.3171 0.0794 0.1246 

   BACK -0.5647 0.0000 -0.2825 0.0190 

   LEFTSIDE -0.0356 0.4035 0.0112 0.8681 

   RIGHTSIDE -0.2406 0.0000 -0.1441 0.0233 

   SPEED   0.0152 0.0000 

Others     

   OCCUPANTS -0.0433 0.0003 -0.0852 0.0000 

   DAYLIGHT 0.0243 0.2588 0.0548 0.1244 

   FRILATE 0.1354 0.0310 0.2426 0.0246 

   SATLATE 0.0541 0.4355 -0.0980 0.3780 

   SUNLATE 0.0993 0.2903 0.0923 0.5621 

Thresholds     

µ1 0.0000 - 0.0000 - 

µ2 1.0908 0.0000 1.0309 0.0000 

µ3 2.0908 0.0000 2.1859 0.0000 

Num. of observations 16,420  5,715  

LRI 0.0659  0.0868  
 

age effect vs. age
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1 It should be noted that multinomial models were also run, allowing for additional flexibility in terms of a 
parameter space (so, for example, higher ages could contribute to a higher likelihood of fatal injuries and no injuries 
but lower likelihoods of severe and non-severe injury).  Their results are quite consistent with the ordered-probit 
model results presented here (in terms of coefficient signs and magnitudes).  A multinomial specification, however, 
does not recognize the clearly ordinal nature of the injury levels.  So only the ordered probit results are provided 
below.  
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