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Abstract  
The spatial distribution of regional employment and households are essential inputs to predicting 
transportation system performance. In this paper we compare relatively common gravity-based 
Integrated Transportation Land Use Planning (ITLUP)-type models to the highly disaggregate 
and more recent approach enshrined in UrbanSim. Land use and transportation system data from 
Austin, Texas provide the test-beds.  The goal of this research is to find the best fit model 
systems for MPOs of differing resources and needs.  This paper highlights the strengths and 
limitations of these models in the context of data requirements, calibration and presentation of 
results.  
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1. Introduction 
The interaction between land use patterns and travel behavior has been recognized in the 
literature for decades, but is largely neglected in practice, with the exception of a few of the 
nation’s largest metropolitan planning organizations (MPOs), enjoying adequate resources, a 
particularly savvy modeling staff, or the threat of a lawsuit (see, e.g., Garrett and Wachs, 1996).  
The passage of two U.S. federal policies in the early 1990s, the Clean Air Act Amendments of 
1990 and the Intermodal Surface Transportation Efficiency Act of 1991, brought integrated 
transport and land use models (ITLUMs) from academic circles into practice (Garrett and 
Wachs, 1996).  Passage of the most recent federal transportation bill, The Safe, Accountable, 
Flexible, and Efficient Transportation Equity Act of 2003 (SAFETEA), weakened incentives to 
integrate planning by barring judicial review of transportation plans under the National 
Environmental Policy Act of 1969. However, the incorporation of detailed planning metrics such 
as land use impacts is still seen as practically obligatory by the Department of Transportation 
(Gribbon and Kaleta, 2005).   

Several integrated transport land use models (ITLUMs) have been applied to date and a 
few are publicly available at this time.  This research focuses on two such models: ITLUP and 
UrbanSim.1 The most widely applied land use model in the U.S. in the early 1990s 
(Timmermans, 2003), Putman’s ITLUP relies on a gravity formulation with data aggregated to 
the zonal level. Regional accessibility is core to the spatial allocation of jobs and households. In 
contrast, UrbanSim is an open-source software developed by an interdisciplinary team at the 
University of Washington which seeks to simulate the development of individual parcels and the 
decisions of individual households and firms, or “agents,” over multiple years (Waddell, 2002).  
It is highly disaggregate in terms of space, time, and agents, and is dynamic with constrained 
lags in household and business response to changes in supply of land and built space. The two 
ITLUMs represent the near-extreme points of the continuum between simple models with less 
flexibility (ITLUP) and complex models with more flexibility (UrbanSim).  Miller et al. (1998) 
graphically depict the paths that MPOs can take to get from one end of the ITLUM spectrum (no 
land use model, no mode split model) to the other (fully integrated market-based model, activity-
based travel model); ITLUP is described as a non-market-based land allocation model, and 
UrbanSim as a fully integrated market-based model (Miller et al., 1998). 

The research compares ITLUP and UrbanSim and seeks to determine a best fit for MPOs 
with differing needs and access to resources. The two models were selected because they are 
relatively well documented and freely available. Several versions of ITLUP exist and the one 
used in this research is The Transportation Economics Land Use Model (TELUM).  TELUM is 
the freely available counterpart to METROPILUS, a scaled-down GIS-embedded version of 
ITLUP (Putnam, 1983).  

The remainder of this paper covers a summary of a survey of MPO current land use 
modeling practices and needs, background of the TELUM and UrbanSim models, and 
                                                            

1 For a review of most other tested ITLUMs, and their software, readers can turn to Timmermans (2003), Waddell 
and Ulfarsson (2004), and Klosterman and Pettit (2005).   



comparison of the two models according to their data requirements, calibration techniques, and 
presentation of results. 

2. Survey of MPOs 
Staff members from 13 of Texas’ 25 MPOs and five non-Texas MPOs were interviewed, in order 
to determine what methods currently are used to predict population and employment, and what 
methods are sought for future use. The responses varied widely, but demonstrated a clear 
correlation between MPO size and sophistication of forecasting methods. The state’s three 
largest MPOs (Dallas-Fort Worth, Houston-Galveston, and San Antonio-Bexar County) already 
use land use models to allocate forecasted regional growth to smaller areas, such as traffic 
analysis zones (TAZs). The other ten Texas MPOs surveyed use simpler methods, combining 
Delphi process results with State Data Center control totals, Census information, Texas 
Workforce Commission data, and aerial photographs, in order to predict population and 
employment at the level of TAZs.  

Most of the small MPOs have very limited staff, often only two people, and they do not 
feel equipped to conduct time-intensive analyses.  These smaller MPOs were more likely to 
comment that land use modeling is unnecessary for their situation, and a few of the interviewees 
were not aware that such models exist.  Despite small staff sizes, many of these MPOs do have 
Geographic Information System (GIS)-encoded data sets, particularly parcel level information 
(e.g., lot value, land use type) used for tax assessment purposes, available to them, although 
these may need major adjustment and cleaning before being used in a mathematical model such 
as UrbanSim. 

Figures 1 through 3 offer a summary of survey results. Figure 1 shows the positive 
correlation between the region population and staff size. (A logarithmic scale is used here, to 
temper the great range in populations).  Figures 2 and 3 illustrate the positive relationship 
between modeling method sophistication (current and future) and population and staff size.  In 
Figures 2 and 3, “simple” refers to a Delphi process approach; “scenario” refers to the use of a 
visioning process or a suitability (non-forecasting) model; and “advanced” refers to a tool that 
forecasts and allocates population and employment to small areas/zones in a way that is well 
suited for input into a travel demand model (TDM). 
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Figure 1. MPO Staff Size v. Population 



0

1

2

3

4

5

0 1 2 3

1= Simple,           2=Scenario,          3=Advanced

ln
[S

ta
ff] Future Modeling

Current Modeling

 
Figure 2. Staff Size v. Choice of Current and Future Modeling Method 
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Figure 3. Population versus Choice of Current and Future Modeling Method 

 
.These data points shown in Figures 1-3 are intuitive, since MPOs with greater resources 

are more able to devote staff time to implementing complex models and methods.  It is clear 
from the synthesis presented here that, while advanced land-use models can provide detailed 
analysis and test the implications of policy decisions, the effort needed to implement such 
models may exceed the abilities of most MPOs. 

3. Model Background 
Before proceeding with a comparison of TELUM and UrbanSim, each model will be concisely 
described in this section to provide the reader with background. 

3.1. TELUM  

ITLUP was developed by Professor Stephen H. Putman in the early 1970s. As of 1998, ITLUP 
had been calibrated for over 40 regions across the world and had at least 12 active applications in 



the United States (Miller et al., 1998).  TELUM uses the ITLUP equations to predict the location 
and growth of residential and nonresidential development for up to thirty years.  Predictions are 
based on the analysis of current year and a lag year residential and nonresidential development, 
the locations of transportation improvements, and changes in land use conditions and interzonal 
travel cost over time.  TELUM consists of three sub-models, namely TELUM-EMP, TELUM-
RES and LANCON. The three models are explained in detail below and interact as shown in 
Figure 4. 
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Figure 4. Block Diagram of TELUM 

 
TELUM-EMP forecasts the future distribution of employment and was developed based 

on the EMPAL model of ITLUP.  The number of employment sectors that TELUM-EMP can 
incorporate ranges from four to eight. Forecasting employment distribution is based on four 
factors (Putman S.H, 2007): (1) the zonal employment of a specific in the previous time period; 
(2) zonal households of all types in the previous time period; (3) zone size; and (4) zone to zone 
travel cost. TELUM-EMP also requires the total projected number of jobs in each sector in each 
forecast year. These control totals are used to normalize the output produced by TELUM-EMP.  

TELUM-RES, developed based on the DRAM model of ITLUP, predicts the distribution 
of households and population in each forecast year.  Households are classified into 4 or 5 groups, 
usually based on income. The projected spatial distribution of households is based on the current 
interzonal travel costs and employment distribution, as well as the following current 
characteristics of each zone:  number of households of each type; area of land used for residential 
purposes; percentage of developable land that has already been developed; and vacant 
developable land (Putman S.H, 2007).   



LANCON computes the amount of land consumed in each zone based on the assigned 
residential and employment distribution and the developable (supply) land in that zone2.  The 
user must input the amount of land area in each zone that falls in each of the following 
categories: total; usable; unusable; used for basic employment; used for commercial 
employment; residential; used for streets and highways; and vacant developable. 

TELUM has several restrictions that cannot be overcome due to its “black box” nature.  
Fist, the model is limited in the geographies it can consider by restrictions on the average 
population per zone, which must lie above 3000 (and is recommended to be below 10000).  
Second, the documentation is incomplete, neglecting to cover the details of the LANCON model 
and the calibration process.  This makes tracking potential problems in predictions difficult.  To 
overcome these restrictions, the research team developed a code following the ITLUP equations 
outlined in the User’s Manual (2005).  This code will not be detailed here due to space 
constraints, but it will be made publicly available in the near future. 

3.2.UrbanSim 
UrbanSim, open-source software developed at the University of Washington by a team led by 
Dr. Paul Waddell, is perhaps the most comprehensive land use modeling package available.  
Eight models are used within the UrbanSim package to predict the household, employment, and 
land characteristics for each 150 square meter grid cell covering a region.  While its 
comprehensiveness is attractive to many land use modelers, others are deterred by the numerous 
data requirements.   

UrbanSim uses Census data, specifically household data from the Public Use Microdata 
Sample and the Summary Tape File 3A, to synthesize a base year household database with 
characteristics including household size, income, number of vehicles, and number of workers.  
Base year employment must be geocoded and assigned to grid cells with characteristics such as 
employment sector and number of employees.  A base year parcel-level map of land cover with 
data on lot price, building price, land use code, and zoning must be available in GIS. 

The models used in UrbanSim can be categorized into accounting models, probabilistic 
choice models, and regression models.  Accounting models include the household and 
employment transition model.  The household transition model simulates births and deaths using 
factors such as household income, age, household size, and the presence or absence of children.  
Created households are not assigned to a specific location until the implementation of the 
household location model.  The employment transition model uses a similar methodology to 
model job creation and loss (Waddell, 2002).   

Probabilistic choice models can be further broken down into rate-based models for use in 
relocation and logit models for use in location.  The household relocation model uses historical 
data to simulate whether or not a household decides to move.  Each household that has made the 
decision to move is then assigned using the household location model and the status of its 

                                                            

2 It is not clear how LANCON works in terms of calibration and projection because the TELUM manual does not 
provide LANCON’s formulation. 



previous location is updated to vacant.  The multinomial logit household location model is a 
function of the characteristics of the location (i.e., housing price, density, and age), neighborhood 
characteristics (i.e., land use mix, density, average property values, and accessibility to stores), 
and accessibility to jobs.  The employment relocation and location models use a similar 
methodology to simulate the movement of jobs. (Waddell, 2002) 

The land price model is a linear regression model for determining the price of each grid 
cell over time.  It is based on urban economic theory, which states that the more valuable a piece 
of land is, the more expensive it will be to purchase.  The value of the land is determined by 
neighborhood characteristics, accessibility measures, and policies.   

One advantage of UrbanSim is that it allows users to create and test different scenarios 
based on alternative policies by changing modeling constraints.  The outputs of UrbanSim can be 
summarized at any level of aggregation including grid cells, TAZ, or the entire region.  While 
several metropolitan areas are experimenting with UrbanSim, it has yet to be fully implemented 
anywhere for official forecasting purposes.  

4. Comparing TELUM and UrbanSim 
TELUM and UrbanSim were selected for comparison because they are freely available, 
documented, and represent the near-extreme points of a tradeoff between simple models with 
less flexibility (TELUM) and complex models with more flexibility (UrbanSim).  The two 
models are compared based on three criteria: data requirements, calibration, and presentation of 
results.  

4.1. Data Requirements 
The data requirements of TELUM and UrbanSim are shown in Tables 1 and 2, respectively, 
along with the sources from which the data was gathered for the Austin application.  The data 
required for TELUM is typically readily available from MPO travel models and forecasts, the 
U.S. Census, and county appraisal districts or other sources for land area by type.  Travis County 
appraisal district (TCAD) data does not include tax-exempt properties, so land area and type 
information for outside the City of Austin may incorrectly list government land and other non-
taxable parcels as vacant land or another incorrect type.  The City of Austin keeps a GIS layer 
that builds on the TCAD data and includes parcels used for all purposes. 



Table 1. TELUM Data and Data Sources 

TELUM
Data Source 
Population Control Totals MPO
Employment Control Totals  [by sector] MPO
Households [by income, zone] MPO, U.S. Census
Employment  [by sector, zone] MPO
Interzonal Travel Cost MPO travel model
Average # employees [by household type] Assume uniform distribution of 

employees across household types
Zonal Land Area - Total, Usable, Unusable, Basic 
employment, Commercial employment, Residential, 
Streets/highways, Vacant developable

Appraisal district, City land use 
GIS data

Regional Rate of Employee Commutation TELUM default
Households  [by income] per Employees  [by sector] Assume uniform distribution of 

employees across household types  

The data needed to run UrbanSim (version 4.0) is much more extensive than that required 
for TELUM.  Base year data is required for each job, building, and household in the region.  
Disaggregate data is typically available for jobs; however in many regions it may not be 
geocoded and may contain many errors.  The Austin area MPO provided the research team with 
a geocoded employment dataset that was cleaned using address locating techniques.  Most MPOs 
collect some level of employment data for use in trip generation but, as discussed by Waddell et 
al. (1998), this data is often insufficient and only covers categories such as warehouse, office, 
and industrial, at an aggregate level.   

Building data is not explicitly available for Austin, so any parcel with a positive 
improvement value was considered to have a building on it with the type determined from the 
parcel’s land use code.  The square footage of each building was calculated based on an assumed 
cost of construction and the improvement value; however improved estimates could likely be 
made based on neighborhood specific costs.  

The region analyzed was broken up into 150 meter by 150 meter grid cells, and GIS was 
used to translate the parcel level data into grid cell data.  To alleviate the difficulties associated 
with this translation, UrbanSim version 4.0 allows for parcels to be used as the major unit of 
analysis or any other desired geography.  The advantage of grid cells is that they do not change 
over time, while parcels may be subdivided or combined. 



Table 2. UrbanSim Data and Data Sources 

Data Table Name Data Source 
Target Vacancy Rates by Year                        Residential and non-residential Borrowed
Annual Employment Control Totals Total MPO

Proportion home-based U.S. Census
Annual Relocation Rates for Jobs          [by sector] Borrowed
Jobs                                                                 Location, sector Texas Workforce Commission 

(address matching and other 
checks done by MPO)

Building type Appraisal District
Home-based Assumed to be home-based if 

located in a residence
Buildings                                                        Type, Location, Improvement value Appraisal District

Area Divide improvement value by 
an assumed cost of construction 
per unit area

Residential units, Year built U.S. Census
Gridcells Distance to arterial/highway Transportation network 

obtained from MPO, Distance 
calculated in GIS

Residential land value Appraisal District
Residential units Tract level data obtained from 

U.S. Census
Annual Household Control Totals [by age of head of household and income] MPO
Annual Relocation Rates for Households Borrowed
Households                                                     Persons, Workers, Age of head, Income, 

Children, Race, Cars
Household synthesis using U.S. 
Census data

Location Randomly assigned to 
residential space within TAZ

Race Names U.S. Census
Constants                                                       Walking distance, Young age, Ratio of total 

property value to annual rent, Line distance 
from a cell centroid to an arterial/highway 
for it to be considered nearby

Borrowed

Fraction of low/mid income households U.S. Census
Travel Data                                                     Interzonal transit logsum, Travel time in 

AM peak
MPO travel model

Zones                                                               Travel time to airport, Travel time to CBD MPO travel model  

 As shown in Tables 1 and 2, the data needed to run UrbanSim is much more extensive 
and less readily available than the data needed for TELUM.  UrbanSim data can be retrieved, but 
requires a much more consistent and deliberate effort on the part of the MPO and any other 
agency involved in the relevant data collection.  If multiple agencies are involved, collaboration 
is critical to synchronize the time periods during which data is collected.  For instance, in the 
Austin application, adjustments had to be made to combine data from the 2000 U.S. Census with 
parcel land use data that was collected in 2005.  Smaller MPOs with not enough resources to 
keep an updated parcel level database may be more inclined to use a simpler model such as 
TELUM. 



4.2. Model Calibration 
The three terms - estimation, calibration, and validation - are sometimes used somewhat casually 
and interchangeably, but here they convey distinctive meanings.  Estimation is the process of 
finding model parameters that best fit the observed data.  For example, household surveys and 
transit on-board surveys typically are used to estimate the coefficients in a mode choice model, 
using a multinomial logit (MNL) specification and maximum likelihood estimation techniques.  
When surveys are not available and estimation is not possible, such coefficients may be 
borrowed from other regions.  The distinction between model estimation and model calibration is 
not always so clear, and TELUM actually refers to its estimation process as a calibration process.  
In practice, most modelers refer to calibration as the process of adjusting the estimated model 
parameters until model outputs match a second set of observed base year travel data, such as link 
flows, regional vehicle-miles-traveled, and total transit system ridership (Wegmann and Everett, 
2004). 

The third process, validation, examines a model’s ability to predict future patterns of 
observed behavior. It thereby relies on at least two time periods worth of data. For example, land 
use conditions in 2000 and 2005 are given, so that 2000 can be used as the base year, in order to 
predict year 2005 conditions – and then compare these to actual year-2005 conditions.   

Calibration and validation rely on distinct data sets – past or “lag year” data, in the case 
of original model calibration, versus the most recent data available to the planning agency, for 
model validation, which is ideally followed by further model calibration.  Calibration emphasizes 
adjustment of model parameters, while validation emphasizes evaluation of a model’s predictive 
capabilities.  They can occur in concert (iteratively), as differences between observed and 
predicted values during the process of validation signal the need for further calibration 
(Wegmann and Everett, 2004). 

The Federal Highway Administration’s Travel Model Improvement Program (TMIP) has 
produced valuable documentation on validation (Barton-Aschman, 1997) that recommends 
validating model results after each step or stage of the model (e.g., a parcel subdivision model, 
followed by a land use change model, followed by a model of parcel intensity [jobs and housing, 
for example]).  Comparing results after each model step facilitates the discovery of any 
discrepancies, along with sub-model calibration.  TMIP documentation describes four common 
measures for quantifying such discrepancies: absolute difference (estimated minus observed 
values), relative difference (normalized absolute differences [such as average percentage mis-
prediction]), correlation (i.e., r-squared between actual and predicted values [such as population 
across all zones]), and variance or standard deviation in residual errors (i.e., percent root mean 
squared error [RMSE] between actual and predicted values).   

Estimation, calibration, and validation can be time-consuming and expertise-requiring 
processes, making them critical to consider when determining the best fit ITLUP for a MPO.  
Both TELUM and UrbanSim have built in estimation techniques that will be discussed in this 
section. 



4.2.1. TELUM 

TELUM uses a gradient search technique referred to as ‘CALIBTEL’ to determine the optimal 
parametric values in the TELUM-EMP and TELUM-RES sub-models.  Linear regression is used 
to determine the parameters in LANCON sub-model.  TELUM does not allow users to fine-tune 
its parameters, so further calibration simply is not feasible.  Essentially, TELUM-EMP and 
TELUM-RES solve the following entropy maximization formulation to determine the parametric 
values.  This formulation is consistent with the theory given in Putman (1992).  
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where I is the set of all zones, iN is the count (of jobs or households) in zone i, and iN̂ is the 

estimated value (of jobs or households) in zone i.  The vector N̂  is defined by a set of equations 
as described in Appendix A of the TELUM User’s Manual (TELUM, 2005).  Equation 3 ensures 
that the sum of the projected values is the sum of actual values.   

The ITLUP equations are non-linear, so a global optimal solution cannot be guaranteed.  
TELUM’s user manual does not explicitly state this instability, but a Matlab code developed by 
the research team, essentially replicating the ITLUP process, suggests the instability could be 
significant.  The Matlab code converted the formulation above to an unconstrained problem by 
normalizing all the predicted values by the ratio of sum of actual value to the sum of the 
predicted values.  Converting the formulation in this way, allows it to be solved with the 
“Nelder-Mead” method (Nelder and Mead, 1965).  Several starting points are used to increase 
the possibility of achieving a global optimal solution.  TELUM’s user manual does not describe 
CALIBTEL in detail, but it is likely that a single starting point is used. 

4.2.2. UrbanSim 
UrbanSim version 4.0 is designed to estimate the coefficients of nearly all necessary choice 
functions and regression models.  Calibration (outside the model software) then consists of using 
longitudinal data to check prediction reasonableness.  A subset of the base year household and 
employment data is used for estimation of UrbanSim’s over-1000 parameters.  The number of 
parameters to be estimated will differ by region, and depends on such factors as the number of 
development types and employment sectors.  For example, the Eugene, Oregon application for 
the 1980 base year has 1865 estimated parameters.  The estimation routines output meaningful 
information on R2 and log-likelihood values, standard errors, and p-values, along with the 
coefficient estimates (UrbanSim, 2007).   

Four of UrbanSim’s sub-models contain parameters that are not covered in the built-in 
estimation procedures.  These models are shown in Table 3, along with suggestions of simple 
procedures for calibrating the parameters listed in the “Alter” column. To calibrate each entry in 
the “Alter” column, one can calculate the corresponding variables in the “Calculate” column and 



alter the appropriate “Alter” variable until the calculated quantity is considered reasonable and/or 
matches available data.  These ideas are discussed in more detail below. 

Table 3. Calibration of UrbanSim: 4 Key Models 

Sub-model Calculate Alter
Household Location Choice population densities by zone household relocation probabilities, P(h,t )
Employment Location Choice employment densities by zone employment relocation probabilities, P(j,t )
Real Estate Development densities of new development construction costs, H , S

demolition costs, D
Land Price average price per zone vacancy rates, V

α
δ
β  

The household and employment relocation probabilities, P(h,t) and P(j,t), represent the 
probability that a household of type h or a job of type j will transition in time period t.  These 
probabilities are initially used in the demographic and economic transition models, respectively, 
to ensure that control totals are met.  Hard construction costs (H), soft construction costs (S), and 
demolition costs (D) are parameters used in the real estate development sub-model to determine 
the utility of each zone for each type of development.  Current and long-term structural vacancy 
rates (V), as well as three parameters (α,δ,β) are used within the land price sub-model to 
determine the price of development type i in location l at time t.  For more details on UrbanSim’s 
sub-models, see (UrbanSim, 2007).  

The UrbanSim development team is presently developing an alternative model calibration 
method, called Bayesian Melding (BM).  BM begins with prior probability distributions for the 
base year (y1) input parameters based on historical data, and also a subsequent year (y2) of data 
for comparison with model outputs (Sevcikova et al., 2007).  Monte Carlo simulation produces 
model outputs in y2 for numerous realizations of the y1 input parameters and random number 
seeds.  Weights are assigned to each model run based on the likelihood of the outputs given the 
actual y2 data.  For each parameter realization and random number seed, the model is then run 
until a third and future year, y3, is reached; and the weights are used to form a probability 
distribution for each output measure.  The model is considered to be “calibrated” if the actual 
data for y3 consistently falls within a confidence interval (e.g., 90%) of the output probability 
distribution (Sevcikova et al., 2007).  

UrbanSim 4.0’s built-in estimation tools provide a great convenience to users who would 
otherwise have to rely on statistical software and would need to have expert knowledge of the 
estimation process.  Although the BM process is not yet ready for public use, its development is 
a step in the right direction for the LUM community; treatment of uncertainty in model inputs is 
critical to determining the range of feasible futures that a region may experience.  A coherent 
expression of model uncertainty can better inform planning and policy making, and lead to 
decisions that work well under a host of potential future outcomes.   

4.3. Presentation of Results 
Both TELUM and UrbanSim have the capability to display results graphically.  TELUM is tied 
to a GIS program called MAP-IT, which will provide the user with figures displaying the 



intensity and density of employment, households, or population by type for a given base, lag, or 
forecast year.  Figure 5 illustrates this capability, and shows the intensity of basic employment in 
the three county Austin metropolitan area for each of the forecast years (every five years from 
2010 to 2030). 

 

Figure 5. TELUM Forecast by District of Basic Employment 

 TELUM predicts that the basic employment will increase in almost all the zones in the 
three-county region. The basic employment is predicted to be high in the region’s outskirts, 
particularly in the zones west of the city by 2030.  

UrbanSim offers much more flexibility in presenting model results.  Users can develop 
numerous indicators at any defined level of aggregation. Options are available to create maps, 
charts, tables, and Lorenz Curves to depict equity (e.g., income equity across households).  
Figure 6 is a map of vacant commercial job space for a 3mile by 3mile section of Austin, chosen 
for its proximity to highways and diversity of development types.  While some confidence with 
coding in Python is desired for developing an indicator, the UrbanSim user community shares 
indicators via its website.  A small area was used for the UrbanSim application presented in this 
paper because it makes model testing and results analysis easier.  The research team is currently 
preparing for a region-wide application so that the results of UrbanSim and TELUM can be 
directly compared. 



 

Figure 6. UrbanSim Display of Vacant Commercial Job Space for Austin Sub-area in 2007 

 

5. Conclusions 
Two land use models, TELUM and UrbanSim, were compared in this research based on three 
criteria: data requirements, calibration, and presentation of results.  These models represent the 
near-extreme points of a tradeoff between simple models with less flexibility (TELUM) and 
complex models with more flexibility (UrbanSim).  A direct comparison of results is not possible 
because the analysis regions differed for the two models, in part due to the complexity of 
UrbanSim.  The goal of this research is to find the best fit model systems for MPOs of differing 
resources and needs. 

 The highly aggregate data required for TELUM is relatively easy to gather and should be 
readily available at most MPOs.  The disaggregate data required for UrbanSim may take months 
or even a few years to refine to an acceptable level of reliability.  It could be argued that the 
disaggregate model with imperfect data may still perform better than the aggregate model with 
perfect data; however it is difficult to test such a hypothesis unless cross-sectional data is 
available for both model types.   

 The difficulties in finding and refining data for UrbanSim for one year mean that full 
calibration may not be possible, since such a process typically requires two years of data.  The 
Bayesian Melding calibration method under development by the UrbanSim team requires two or 
more years of data.  However, as disaggregate models become more popular and the techniques 
for gathering and cleaning the required data are refined, cross-sectional data may become more 



abundant.  The data required for TELUM calibration is more readily available, but the process 
that is used is not fully documented and the researchers suspect that CALIBTEL will rarely find 
a global optimal solution. 

 Despite the difficulties that UrbanSim’s data requirements pose on building a model and 
calibrating it, once the data is ready and the model is run there are numerous options available 
for presenting the results.  Modelers can develop indicators to present results that are specific to 
the audience and the project.  Indicators developed by individual MPOs or research teams can be 
easily shared with the UrbanSim community, providing great benefits.  TELUM, on the other 
hand, is very limited in its presentation capabilities.  It is tied to a GIS mapping tool, but can only 
present results at an aggregate level, making policy decisions based on the results difficult or 
impossible. 

 Overall, UrbanSim is recommended for MPOs that have sufficient resources and time to 
devote to data gathering and cleaning, and that need to answer policy questions that simply 
cannot be answered using an aggregate land use model.  An aggregate model similar to TELUM 
is recommended for small MPOs that are new to land use modeling and need land use forecasts 
to input into a travel model.  In the near future, the research team will make an open ITLUP code 
available to the public that uses the equations in the TELUM documentation with a refined 
calibration procedure and relaxed data input constraints. 
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