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ABSTRACT 

 
Traffic crash risk assessments should incorporate appropriate exposure data. However, 

existing U.S. nationwide crash data sets, the NASS General Estimates System (GES) and the 

Fatality Analysis Reporting System (FARS), do not contain information on driver or vehicle 

exposure. In order to obtain appropriate exposure data, this work estimates vehicle miles driven 

(VMD) by different drivers using the Nationwide Personal Transportation Survey (NPTS). 

These results are combined with annual crash rates and injury severity information from the GES 

 
for a comprehensive assessment of overall risk to different drivers across vehicle classes. 

 
Data are distinguished by driver age, gender, vehicle type, crash type (rollover versus 

non-rollover), and injury severity. After correcting for crash exposure to drivers, results indicate 

that young drivers are far more crash prone than older drivers (per vehicle mile driven) and that 
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drivers of sports utility vehicles (SUVs) and pickups are more likely to be involved in rollover 

crashes than those driving passenger cars.  Although the results suggest that drivers of SUVs are 

generally much less crash prone than drivers of passenger cars, the rollover propensity of SUVs 

and the severity of that crash type offset the incident benefits for the younger drivers.  
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Crash risk, crash exposure, crash frequency, crash severity, sport utility vehicles, light-duty 

trucks 



INTRODUCTION 

Risk assessment of road users has been conducted in many ways, including estimation of 

crash rates by road type, injury severity by crash type, and frequency of speeding violations.  The 

focus of the assessment may be on facilities, vehicles or travelers.  Policy makers and roadway 

design engineers act to improve road safety by applying the knowledge gained in such studies. 

Estimating crash rates is one of the most common ways to assess the risk of road users or 

road facilities.  Rate calculation requires division of crash counts (i.e., crash frequency) by some 

measure of exposure (e.g., vehicle miles traveled [VMT]).  As Hauer (1995) has noted, such 

normalization equalizes for differences in intensity of use, making safety comparisons more 

meaningful, and it helps identify differences between different populations’ characteristic crash 

rates as a clue to causal factors. 

As Evans (1991) and others have noted, one cannot draw reliable conclusions on safety 

issues without exposure information.  Unfortunately, very few data sets provide adequate 

exposure information.  However, several researchers have obtained surveys and/or estimates of 

such exposure.  These are discussed here now. 

Lourens et al. (1999) categorized the car drivers into five subgroups by annual mileage 

driven. They estimated crashes as a function of annual mileage interacted with gender, age, 

education level, and frequency of fines (or violations).  After this implicit correction for annual 

mileage, the effects of gender and education level were found to not be statistically significant 

predictors of crash involvement.  Young drivers exhibited the highest crash rates, and traffic 

violations were important predictors.  Hu et al. (1998) also controlled for driving distance, but 

they focused on the medical condition of older drivers.  They estimated that a gender effect for 



this age group of drivers was statistically insignificant.  Such results would have been hidden 

from the modelers had driving exposure not be recognized. 

Using a survey data of Ontario licensed drivers, Chipman et al. (1992) estimated driving 

time exposure and driving distance exposure, and they took the ratio of these to produce an 

average driving speed measure.  All data were stratified by age (six levels), gender, and region 

(three levels); and three exposure measures were compared among the stratified subgroups.  

They argued that the fatal crashes should be analyzed separately from other crash types since 

their rates and involved factors are so distinctive, and they recognized that average driving speed 

probably relates to crash severity.  The men in their data set drove 56% more distance than the 

women, but they only spent 35% more time driving than the women (suggesting higher speeds 

for men, and thus more dangerous exposure for men).  As expected, teenage drivers (i.e., those 

under the age of 20) were found to be less exposed (about 23% less, in distance and in time) than 

the data set’s “middle-aged” drivers (ages 25-59).  And older drivers (age 60-69) drove about 

33% less distance and 19% less time than the middle-aged drivers.  

Davis and Gao (1993) tried to verify the assumption of random selection of crash victims, 

using induced exposure methods (where one examines ratios of cross-classified counts for high-

risk populations and roadways).  They parameterized relationships between induced exposure 

and contingency tables/cross-tabulations and then estimated the ratios of crash rates for different 

driver cohorts (e.g., male versus female, and middle-aged versus older drivers), based on an 

assumption of asymptotically normally distributed crash counts.  An empirical Bayes method 

was used to spot the difference between crash rates of driver cohorts between two roadways. 

Through the contingency tables, they found that older drivers (aged 56 and over) were more 

likely to be involved in crashes when traversing certain roadways.  Using Lyles et al.’s data 



(1991) for crash rates, they found male drivers to be 40% more crash prone than female drivers.  

DeYoung et al. (1997) used a quasi-induced exposure method (which is similar to the induced 

method but does not correct for population representation) to estimate the exposure and fatal 

crash rates of suspended/unlicensed (S/R) drivers using data on two-vehicle crashes in the 1987-

1992 Fatality Analysis Reporting System (FARS) data set.  As it turned out, the quasi-induced 

exposure method did not predict the number of S/R and unlicensed drivers very well, in part 

because the purpose of this method is to estimate crash involvement rates, rather than the number 

of specific road users. 

 Using police reports from in Western Australia, Ryan et al. (1998) studied the 

relationship between crash risk and driver age.  Their findings suggested that females exhibit 

higher crash involvement rates, across all age groups, a result often inconsistent with common 

perceptions, largely due to the neglect of driving exposure across genders in popular statistics.  

Drivers under the age of 20 were the most likely to be crash-involved, and drivers under age 25 

exhibited very high rates as well.  Age also exhibited a positive statistically significant relation to 

driver injury severity.  Doherty et al. (1998) also found that drivers under age 20 were more 

likely to be crash-involved than all other age groups.  Abdel-Aty et al. (1998) used a categorical 

method with 1994 and 1995 Florida accident databases to analyze the relationship between age 

and crash risk.  Their results indicated that young drivers (aged 25 and under) and older drivers 

(over age 64) were more likely to be crash-involved, overall, but middle-aged drivers were more 

likely to be involved in crashes which involve alcohol or occur during rush hours.  They also 

noted that older drivers are more likely to die in crashes, since they are relatively physically 

weak. 



While the literature has uncovered a number of exposure differences across driver types, 

essentially no such research has considered the type of passenger vehicles being driven.  Yet one 

may expect that passenger cars, vans, pickups, and sport utility vehicles (SUVs) perform very 

differently, in addition to having varying crash exposures.  One particularly severe crash type is 

that involving a rollover.  The National Highway Traffic Safety Administration (NHTSA) has 

found that the relationship between rollover risk and Static Stability Factor (SSF) (defined as a 

half the width of a vehicle divided by the height of its center of gravity) is negative.  This is as 

expected: less stable vehicles (i.e., those with a lower SSF) include SUVs and pickups, and these 

are often perceived as more likely to roll over in single-vehicle crashes.  The average SSF of the 

100 vehicle models studied by NHTSA (2000) were 1.400 for passenger cars, 1.153 for vans, 

1.087 for SUVs, and 1.170 for pickups.  In controlling for exposure differences, this work is able 

to rigorously examine whether rollover crash rate differences exist across vehicle (and driver) 

types. 

This research has made use of large U.S. data sets to provide robust estimates of crash rates by 

crash category, driver characteristics, and vehicle type.  It also merges these results with crash-

severity model estimates (as provided by Kockelman and Kweon [2001]) to estimate the 

probability of severe injuries and death to the different driver-vehicle cohorts, over 50,000 miles 

of driving.  Such estimates are very valuable for public policy and driver assessments of driving 

risks. 

THE DATA SETS 

The 1995 Nationwide Personal Travel Survey (NPTS) and the General Estimates System 

(GES) data sets were used for this study.  The NPTS data have been collected roughly every five 

years, but the 1995 NPTS data are the most recently available at this time.1  And, although the 



GES data is collected annually (the most recently available one in 1999), the 1995 data were 

used here, in order to correspond to the NPTS data. 

1995 NPTS Data 

The NPTS data set is the nation’s best single course of a daily trips inventory.  The 1995 

dataset includes 42,033 households, 95,360 persons, and 75,217 vehicles.  There are six 

physically separate files associated in the 1995 NPTS dataset, and four conceptually different 

levels (household, person, vehicle, and travel day) in the dataset. These separate files were 

appropriately combined with weighting factors to match this study’s purposes.  

Applying appropriate weighting factors is requisite for all analysts who intend to use 

survey data correctly.  In the NPTS 1995 data set, households were over-sampled in add-on areas 

such as New York, Massachusetts and Oklahoma.  There are four different weights for the 

different levels of analysis; these are household weights, person weights, travel day weights, and 

travel period weights.  Since the purpose of using the NPTS data in this work was acquisition of 

drivers’ travel distances, travel day weights were used when combining the files. 

1995 GES Data 

The National Automotive Sampling System (NASS) General Estimates System (GES) 

dataset, briefly the GES data, has been collected every year from 1988.  The GES data are 

intended to be a nationally representative probability sample from the annual estimated 6.4 

million police accident reports in the United States.  The GES includes all types of crashes, 

including fatal crashes, injury crashes, and property-damage-only crashes.  The 1995 GES data 

include 53,749 crashes, 95,803 vehicles, 140,512 persons, and 95,477 drivers.  While these 

53,749 crashes are .8% of the (estimated) U.S. total in 1995, and each GES crash observation 



comes with a national weighting factor.  These were used to scale up the GES crash counts to a 

U.S. total (as shown in Table 2).  

Extracting Necessary Information from the 1995 NPTS and GES 

Since both the NPTS and GES datasets have several separate files, there was some work 

involved in merging and aggregating their data files.  The person-level, vehicle-level, and travel-

day-level files in the 1995 NPTS dataset were merged using travel-day weight factors (since 

VMT estimates were needed).  

The merged data file was initially categorized across 48 cohorts (by age, gender, and 

vehicle type).  Unfortunately, sufficient information on observations involving “unknown” and 

“other” vehicle types was not available, necessitating the removal of 12 cohorts.  And the NPTS 

data set does not cover commercial vehicle operations, so the 6 cohorts involving heavy- and 

medium-duty trucks were removed.  The remaining 30 cohort categories are defined by vehicle 

type, gender, and age.  The 5 available vehicle types are those of passenger car, SUV, minivan 

(MVAN)2, pickup (PU), and motorcycle (MC).  SUVs are conventionally defined as light-duty 

vehicles that meet several clearance requirements (for off-road use)3.  In the NPTS and GES data 

sets, pickup trucks are defined as a light conventional truck of pickup style cab weighing less 

than 10,000 lbs (with maximum payload).  The three age divisions are comprised of young 

drivers (i.e., those less than 20 years of age), “middle-aged” drivers (i.e., those from 20 through 

60 years of age), and older drivers (i.e., those over age 60). 

Since this investigation’s focus is on driver exposure and involvement, only trips records 

cases where the traveler was driving were extracted.  The travel miles were then aggregated in 

these same categories, to provide an estimate of annual vehicle miles driven (VMD) for the 

national cohort.  These numbers are provided in Table 1. 



Three files in the 1995 GES data were merged into a single driver-level files; these are 

the vehicle, crash, and person files.  And the national weight factors were applied to each, to 

reflect sampling biases.   Imputed variables were used for all three factors where data were 

missing, which occurred in 4.5% of records for the case of age, 2.9% for the case of gender, and 

2.2% for the case of vehicle body type.  (All records were retained to permit a better estimate of 

the total, population counts.)  The categorization and aggregation of the weighted number of 

crashes produced the final crash frequency data for the 30 cohorts; these counts are provided in 

Table 2.  Crash counts were divided by VMDs in each of the cohorts for all crash types and 

rollover crashes; these crash rate values are provided in Tables 3 and 4. 

Before presenting the results of this work, it should be noted that, if the weighted NPTS 

records do not capture total use of passenger cars, SUVs, pickups, minivans, and motorcycles in 

the U.S., Table 3 and 4’s crash rate estimates are expected to be biased high.  For example, the 

NPTS asks its sampled households’ members to report any type of driving they do (even that 

driving which is part of their work), but the amount of commercial/heavy-duty-vehicle driving is 

clearly biased low in the NPTS data set.  This work’s focus is on vehicles driven by households; 

however, the NPTS’s undersampling of VMD may occur here, to some extent. 

RESULTS AND DISCUSSION 

Crash rates of driver-vehicle cohorts are presented and discussed in this section.  Crash 

rates for all types of crashes are discussed first; these are followed by an examination of rollover 

and non-rollover crash rates.  

Vehicle Miles Driven (VMD) and Annual Crash Counts 

Estimates of vehicle miles driven (for the year 1995, using the NPTS data set) are 

presented in Table 1, and estimates of annual crash counts (for the year 1995, using the GES data 



set) are provided in Table 2.  No observations of motorcycle (MC) driving were made in the 

NPTS data set for two of the gender-age cohorts (though these were observed in crashes); thus, 

there are some missing cells in Table 1 (and in the resulting crash-rate tables). 

As evidenced in Table 1, the total number of miles driven by young males is 46% more 

than that driven by young females.  The same gap, in percentage terms, is visible for middle-age 

males and females, but widens to 94% for older persons. This widening may be attributed to 

cultural norms of the past, when such persons came of driving age. 

In the category of pickup trucks (PU), men drive much more than women, logging 6 to 13 

times more miles across the three age categories.  In the middle-age driver cohorts, there is not 

much difference in total vehicle miles driven between men and women of passenger cars (PCs) 

or minivans (MVANs).  However, this does not mean that women and men owning such vehicles 

drive similar distances: men, on average, drive more – because many of them are driving other 

vehicle types.  Claiming almost 50% of the total VMD, the middle-age male cohort clearly 

drives the most.  

Table 2 provides the annual crash counts (using 1995 data) for 30 age-gender-vehicle 

cohorts.  Young and middle-aged male drivers experience almost 60% more vehicle crashes than 

female drivers.  In the case of older drivers, the relative difference in the number of crashes rises 

to 70% – but this is against a 100% increase in exposure, as evidenced in Table 1. 

In terms of the numbers of SUV-involved crashes, there are considerable differences 

between male and female drivers for each age cohort; and these differences become larger in 

crashes of pickup (PU) trucks.  But the absolute numbers of vehicle crashes cannot provide solid 

evidence of safety problems associated with road users.  An appreciation of relative crash 

frequencies requires recognition of exposure (VMD) data.  This is done in the following section.  



Crash Rates, All Crash Types 

Dividing Table 2’s cell values by those of Table 1 yields Table 3’s estimates of crash 

rates.  Using Table 3, an exposure-adjusted comparison of crash frequency or risk is now 

possible, between cohorts of interest. 

Over all vehicle types, there are no substantial differences between the general crash rates 

for male and female drivers in the same age cohort.  Young and middle-aged men are slightly 

more involved than their female counterparts, but older women are slightly more involved than 

older men.  The additional driving experience (as evident in VMD) does not make male drivers 

less crash-involved; however, male drivers may be driving in more dangerous environments 

(e.g., when dark and rainy or at high speeds).  And women may recognize their relative lack of 

driving experience, taking extra precautions.  This may be true across vehicle types as well, 

resulting in a degree of incomparability across cohorts and cases. 

Differences of interest also can be found across vehicle types in Table 3.  Males are more 

crash-involved than females when driving passenger cars, but not when driving light-duty trucks 

(i.e., SUVs, pickups, and minivans).  And drivers of passenger cars are more crash-involved than 

those driving light-duty trucks.  They are more than twice as crash-involved as drivers of SUVs!  

Possible explanations for part of such striking distinctions include the following: light-duty truck 

(LDT) drivers may drive differently (e.g., more slowly) and/or be more risk averse; LDT drivers 

may be less likely to report crashes (e.g., in rural areas or with minor property damage); they 

may drive on less congested and/or safer roads during better conditions; they also may have 

better sight distances or more stable vehicles.  Such data distinctions are generally not available 

in both the NPTS and GES data sets, but they are of interest to policy makers and drivers.  (As an 

example of such work, Kockelman and Yong’s [2001] multivariate models found that, ceteris 



paribus, larger, wealthier households in lower-density areas purchased more SUVs than other 

households.  Smaller, less wealthy households in low-density areas were more likely to purchase 

pickups.) 

Table 3 clearly also suggests that younger drivers are extremely involved in crashes 

(relative to their driving distances).  This relative distinction between age groups (computed as 

the ratio of rates) is most acute for young drivers of SUVs and minivans.  Motorcycle driving is a 

class of its own: its drivers’ overall crash-rate estimates exceed those of other cohorts by four to 

fifteen times.  While limited sample sizes make this cohort’s estimates relatively variable, the 

trends are not inconsistent with expectations. 

It should be noted that Table 2’s counts and Table 3’s rates include all crash types (e.g., 

head-on, rear-end, and rollover).  Thus, they provide a rather general estimate of crash 

involvement and risks.  Different crash types are more serious than others, as are the actions and 

responses of different driver types and their vehicles.  The following examinations and their 

associated tables make such distinctions. 

Rollover and Non-rollover Crash Rates 

A common perception of light-duty trucks is that they are more likely to roll over.  And 

rollovers are extremely high-risk crashes for death and severe injury (see, e.g., Kockelman and 

Kweon [2001]).  As addressed in this paper’s literature review, the static stability factors (SSFs) 

of LDTs are estimated to average 16.5 to 22.4 percent lower than those of passenger cars 

(NHTSA 2000).  And SSFs tend to relate negatively to rollover risk. For these reasons, rollover 

and non-rollover crash rates are examined here, separately.  

Table 4 provides estimates of rollover crash rates.  As expected, SUV and pickup drivers 

are more likely to experience a rollover crash than their passenger-car- and minivan-driving 



counterparts.  As one would also expect (given Table 2’s results), younger drivers are the most 

involved in such crashes, and the magnitudes of difference are heightened – relative to their 

over-involvement in crashes of all types (shown in Table 3).  Their rollover crash rates are over 

six times those of middle-aged drivers; in contrast, when considering all crash types, this 

difference was less than a factor of four.  SUV driving offers the highest rollover rates for young 

males, but pickup driving offers the highest rates for young females. 

While crash rates are an excellent indicator of crash involvement, they do not provide a 

very strong appreciation of crash severity.  The probabilities of driver injury and death in such 

crashes are examined now, providing a better sense of crash “costs” to drivers. 

Overall Injury Severity Probabilities 

 When assessing the driving risks of different drivers and vehicles, one may be most 

interested in the severity of the crash.  If a type of vehicle performs very poorly in crashes, it 

may not matter much if it is not highly crash-involved (per mile driven); many people will not 

care to buy it and regulators may choose to restrict its sale.  If a particular driver type survives 

crashes very well, such drivers are less likely to worry about having higher crash involvement 

rates.  The provision of probability estimates for different drivers and vehicle types offers useful 

comparisons in this regard; such values encapsulate a variety of factors, giving a more 

comprehensive value to crash risks. 

The results in this section are based on the crash rates estimated above and the driver-

injury-severity models estimated by Kockelman and Kweon (2001) using ordered-probit models 

to predict four crash-severity levels – (i.e., no injury to driver, not-severe injury, severe injury, 

and fatality).4  



Crash involvement rates and severe-injury and fatal-crash probabilities for each cohort 

are estimated assuming 50,000 miles of driving.  This amount of driving represents on the order 

of five years driving for many drivers, but many more years driving for most young and older 

drivers.  The calculations also assume that crash counts for individual drivers follow a Poisson 

distribution, with rates equal to those shown in Tables 3 and 4.  The Poisson distribution can 

arise from a memoryless property of durations between crashes; such an assumption effectively 

implies that a driver’s crash risk is uniform at all times.  The Poisson distribution is quite 

common for crash-rate analysis (Evans 1991; Hauer 1997).  However, it does imply that the 

variance of crash-involvement counts (from the sum of independent Poisson variables) equals 

their mean (within a specific cohort, as applied here).  Since data on specific drivers’ crash 

histories are not generally available (and are not in the GES data set), this assumption is not 

tested here. 

The overall crash injury severity probability for each cohort is obtained by multiplying 

total Poisson-based crash involvement probabilities with the probabilities of various injury 

severity levels.  All probabilities are calculated for the case of rollover and non-rollover crash 

types across 24 cohorts.  Motorcycle (MC) crash probabilities are excluded here, since these 

were not estimated separately in Kockelman and Kweon’s models (2001).  However, it is 

expected that severe injury and fatal crash probabilities would be very high for this class of 

driver. 

Overall severity crash rates are provided in Table 5 through 12, based on the following 

equation: 

( )iiic CrashcCrashTypeTotalRateRate |Pr×=       (1) 



where i is an age-gender-vehicle cohort and c is the crash type. The probability of injury severity 

conditioned on a crash occurred is calculated using the ordered-probit model results and its 

formula is shown in Eq. (3). The figures provide crash rates for four different injury severity – no 

injury, non-severe injury, severe injury, and fatal injury – in rollover and non-rollover cases. 

To acknowledge the fact that drivers may be involved in more than one crash of certain 

types, probabilities include the possibility of two and three crash events of each type, rather than 

just the probability of exactly one event.  The following set of equations illustrate the type of 

equations used to calculate overall injury probabilities of the driver cohorts: 
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where x is the number of crashes experienced, and λi is the rate of crash involvement (for every 

50,000 miles driven).  Eq. (2) assumes a Poisson process for crash involvement. 
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where Ti is the observed, discrete injury level for driver/vehicle cohort i, *
iT  is the latent injury 

severity level, and nψ is an ordered probit’s (latent) threshold between injury severity levels n 

and n+1. (For example, 2ψ  indicates a shift from severe injury to fatality.)  



 Drivers can experience more than one crash of a given type (except fatal crashes, sans 

reincarnation).  Computation of overall rates of crash involvement that a driver experiences on 

average during a 50,000 miles driving period are relatively simple, as illustrated by Eq. (1).  For 

probabilities, however, various equations combining multinomial outcomes with Poisson rates 

must be applied. 

The overall injury severity probabilities are presented for severe injury and fatal crashes 

in more than one crash cases.  In order to permit the possibility of different levels of injury 

severities in each crash, the multinomial (MN) probability conditioned on Poisson is used.  The 

MN probability is associated with combo occurrences and can be written as: 
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where j is the crash type (such as one causing severe driver injury), C is a set of incidences of 

different types, X is the total number of occurrences experienced by the driver during that driving 

period (of 50,000 miles), jX is the number of crash-type j occurrences, and jp is the probability of 

crash type j’s occurrence.  As an example of this approach, if a driver experiences a total of three 

crashes, where one is severe and two are no injury, the probability of this example is the 

following: 
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The probability that a driver sustains a severe injury during the driving period of interest is the 

summation of all non-fatal crash combinations in a series of crashes.  This probability is 

presented in Table 13.  The combinations include: one crash with severe injury; two crashes, one 

with severe injury and the other with no or not-severe injury; two crashes, both with severe 



injury; three crashes, with severe injury in one and less-then-severe injury in the other two 

crashes; three crashes, with severe injury in two and less-than-severe in the other; three crashes, 

with severe injury in all three crashes; and so on.  The resulting probability can be expressed as 

the following: 
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A geometric distribution, rather than a multinomial, is applied in the case of a driver’s 

experiencing a fatal crash since this type of crash must occur last in any sequence of possible 

crashes.  These probabilities are provided in Table 14.  The fatal injury severity probability 

during any period (e.g., the driver’s lifetime) can be written as:  
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Thus, the above set of equations brings together crash involvement and crash severity 

probabilities. 

Tables 5 and 6 provide estimates of rollover and non-rollover crash rates where the driver 

is not injured.  These suggest that non-rollover, non-injury driver experiences are roughly 134 

times more probable (using the average ratio of probabilities) than rollover, non-injury 



experiences.  For purposes of comparison (and using results in subsequent tables), the average 

ratio of rates drops to 40, 15, and 6 when non-severe injury, severe injury, and fatal crashes are 

considered.  Clearly, non-rollover crashes are much more likely than rollover crashes, but the 

probability of severe injury and death in a rollover crash is much higher. 

As anticipated, Tables 5 and 6 confirm that young drivers are at relatively high risk for 

crashes.  Females are estimated to be at lower risk for these two types of non-injury crash than 

males, for most vehicle types (and assuming 50,000 miles of driving).  Females are at greatest 

risk for non-injury rollover crashes when driving SUVs and pickups, and for non-rollovers when 

driving passenger cars.  In general, a female’s probability of experiencing a non-injury rollover 

crash is less than that of males, but not when driving a pickup or minivan. 

While crashes of all types are costly and emotionally, if not physically, painful, policy 

makers and drivers maybe often most interested in the probabilities of crashing and sustaining 

some sort of injury.  Tables 7 and 8 present the rate estimates for non-severe injury crashes for 

drivers (per 50,000 miles driven); Tables 9 and 10 correspond to severe driver injuries, and 

Tables 11 and 12 present driver death rates.  In all cases non-rollover crashes are more likely 

than rollover crashes, and, in most cases, this difference is by an order of magnitude.  Yet the 

probabilities of such crashes are generally low.  For example, a middle-aged woman exhibits a 

deadly crash rate of 0.048, per 50,000 miles of driving a passenger car.  This is even lower if she 

is driving a light-duty truck.  Of course, if she often also is a passenger, her risk of injury while 

traveling will rise (per time period). 

According to Table 7, rollover crashes are more prevalent when driving an SUV than a 

passenger car.  Female drivers are more likely to receive non-severe injuries than males in a 



pickup or minivan.  In case of a rollover crash, female drivers are more apt to experience this 

type of crash in an SUV by all ages, and a passenger car by mid-aged or old drivers. 

Table 8 suggests that passenger car drivers experience non-rollover crashes and sustain a 

non-severe injury more often than other vehicle drivers, except for young female (for her, a 

pickup is the most).  And females are more likely to experience this type of crash than males in 

mid- or old age.  This result is in general contrast to the results of Table 6, where men were at 

greater risk (of non-injury crashes).  It may be that women are more likely to report to police 

officers that they have sustained a (non-severe) injury, or it may be that they injure more easily.  

It may also be that the types of crash in which they are involved differ; these details are not 

present in aggregate data like those presented here. 

 Tables 9 and 10 describe risks for sustaining severe injuries during 50,000 miles of 

driving. Young and older men appear to be at lower risk for this than women are except while 

driving a passenger car.  It may be that females are less often wearing seatbelts or more likely to 

sustain a severe injury, for the same intensity of crash.  However, in general, females are 

somewhat more crash-involved, for the same travel distance; their crash rates are higher than 

those of males in 11 of the 13 available cohort comparisons shown in Table 3. 

To get a sense of the magnitudes of risk, one may observe that the severe-injury crash 

rate that a middle-aged woman driving a passenger car 50,000 miles will experience is about 

0.613.  Fortunately, the rates for death are roughly an order of magnitude lower, particularly for 

non-rollover crashes, as shown in Tables 11 and 12. 

The differences in rates between rollover and non-rollover are reduced as the severity 

level is increased, since rollovers are very severe crashes (see, e.g., Kockelman and Kweon 



[2001]).  Unfortunately, young drivers are at relatively high risk of rolling over (Table 4). The 

resulting high risk to young drivers is an unfortunate reality. 

Tables 11 and 12 suggest that female drivers (of all ages), young males, and older male 

drivers are more likely to die from a rollover while driving an SUV than a passenger car.  But 

passenger car drivers are predicted to be at higher risk of death in non-rollover crashes than those 

in other vehicles.  Summing the two tables’ rates, the most death-prone driver cohort, for 50,000 

miles of driving, involves young women driving SUVs, with a rate of 0.316 (0.190+0.126).  The 

next more likely cohorts are young women in passenger cars (at 0.276) and in SUVs (0.252). 

Why are women are at somewhat greater risk of dying (for the same distance driven)? As 

suggested before, it may be that women injure more easily for the same intensity crash; their 

somewhat higher crash involvements (as shown in Table 3) do not justify the increases in rates 

found in Tables 11 and 12, which typically are often on the order of two or three times more.  It 

also may be that less experience driving (e.g., young and middle-aged men drive roughly 50% 

more than women, as shown in Table 1) translates to poorer response under crash circumstances.  

Higher death rates may also mean that such drivers pay less attention to driving or understand 

vehicle operations less.  Unfortunately, the GES and NPTS data cannot really address these 

issues.  Driving simulators or other data sets are necessary. 

As previously mentioned, probabilities are provided for severe and fatal injury cases.  

Table 13 offers estimates of the probability that drivers receive at least one severe injury during 

the course of 50,000 miles of driving, and Table 14 provides estimates of the probability that 

drivers die during this period (in the last crash, of course).  Both cases involve crashes of 

different severity, and all levels need to be added to get the probability, which may include an 

infinite number of crashes.  Recognizing that the probability of experiencing five or more 



crashes (in the course of 50,000 miles) is negligible (for the average driver), the probabilities for 

multiple crashes in Tables 13 and 14 only have been computed for up to four crashes (and all 

their valid combinations). 

 Table 13 indicates that young drivers are at higher risk of receiving severe injuries than 

old or middle-aged drivers.  Female drivers are more likely to suffer severe injury in crashes than 

are males (when driving all vehicle types except for passenger cars).  Young and middle-aged 

males are more crash-prone when driving passenger cars than are their female counterparts.  

According to these results, a pickup places young female drivers at higher risk than a passenger 

car, and a minivan is the safest vehicle for a young driver. However, it’s relatively rare for 

youths to drive minivan. However, neither of these two driver-vehicle combinations is very 

likely, in practice. 

Table 14 provides estimates of the probability that drivers will die in the last of a series of 

(one or more) crashes that they may experience.  Female drivers are at greater risk than males in 

SUVs, pickups, and minivans; but young and middle-aged males are more vulnerable in 

passenger cars.  Note that these probabilities obscure the nature of the crash; rollover crashes are 

often fatal, and SUVs and pickups are more likely to roll than passenger cars.  

CONCLUSIONS 

Risk assessment of road users is an important area for investigation.  The results of such 

work permit peoples’ assessments of their own and others’ driving safety.  They are likely to 

impact vehicle ownership choices and driving behaviors.  And they should be present in state and 

federal discussions of driving regulation – of both drivers and their vehicles.  The work presented 

here illuminates many risk patterns across driver gender, driver age group, and vehicle type.  

Here, the computation of crash rates – through pairing of NPTS exposure data with GES crash 



data – offered valuable information.  And the separate considerations of rollover and non-

rollover crashes, as well as crash severity (as related to driver injury), provided additional 

conclusions. 

These results suggest that policy makers may find it best to limit the driving of young 

persons, through raising the legal driving age, applying driving curfews, prohibiting freeway 

driving, and/or restricting such drivers to passenger cars.  They also indicated that women are at 

greater risk of death from crashes than are men, for every mile driven; this result suggests that 

more attention to female driver education and/or female physical response under crash 

conditions.  And automobile manufacturers may want to improve vehicle design features for 

higher-risk drivers.  In contrast, older drivers appear to face relatively low risk of crash, for every 

mile driven.  This may be due to personal compensation mechanisms, including use of slower 

speeds, avoidance of high-speed roadways, and/or avoidance of night-time driving conditions. 

The results also highlight the need to control for driver exposure.  Without pairing the 

GES crash data to exposure data, one might conclude that male drivers are over-involved in 

crashes and young drivers are under-involved.  In reality, the differences are much lower 

between genders, but severe across age groups.  The differences across vehicle types are also 

striking; light-duty trucks are more often involved in rollovers than are passenger cars, 

particularly for younger drivers, older drivers, and female drivers.  However, they are 

substantially less involved in other crash types (except, in many cases, when driven by younger 

drivers). 

As much as this work was able to conclude, important questions remain unanswered.  For 

example, do driving conditions differ across vehicle and driver categories?  Do some drivers 

drive more miles under dangerous (e.g., high-speed, rainy, or dark) conditions than others?  And 



are high-risk drivers driving differently because they should (obscuring vehicle-related and other 

risk distinctions)?  More extensive surveys of driver behavior and crash history would illuminate 

such information, providing more equitable comparisons and stronger conclusions.  If, for 

example, middle-aged SUV drivers are highly risk averse and/or drive under uncongested but 

slow-speed conditions, their relatively low crash rates may not make for fair comparisons with 

the more common cohort of middle-aged passenger-car drivers.  We hope that future work will 

illuminate any distinctions that exist. 
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ENDNOTES

1 The 2001 National Household Travel Survey (NHTS), which is the combined data set of the NPTS and American 
Travel Survey (ATS), will be available in late 2002. 
2 The NPTS survey question of basic vehicle “type” does not discriminate between minivans and cargo vans.  Thus, 
vehicle make and model information had to be matched to minivan codes to ensure consistency between the crash 
and use data sets. 
3 The “special features” enabling off-road use are four-wheel drive and at least four of the following five clearance 
characteristics: an approach angle of not less than 28 degrees, a breakover angle of not less than 14 degrees; a 
departure angle of not less than 20 degrees, a running clearance of not less than 8 inches, and front and rear axle 
clearances of not less than 7 inches each. (CFR 40CFR86.084-2) 
4 Kockelman and Kweon’s (2001) injury severity models were obtained using the then most recently available crash 
data, from the 1998 GES.  Vehicles and crash characteristics may have changed somewhat, between 1995 and 1998, 
affecting the parameter estimates of the severity models, but it makes good sense to use the more recent estimates 
since these are more applicable to today’s crashes. 
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Table 1. Annual Vehicle Miles Driven (106 miles, 1995) 
Age Gender PC SUV PU MVAN MC Overall 

  Young  31,506 3,467 11,422 1,034 97 48,426
  Mid Male 504,795 90,401 230,551 60,032 2,133 917,284
  Old  102,513 7,786 28,895 8,243 12 152,917
  Young  29,370 1,204 1,650 681 NA 33,119
  Mid Female 465,469 49,621 40,631 59,370 53 627,506
  Old   72,278 1,258 2,253 1,839 NA 78,677
  Overall   1,205,931 153,736 315,401 131,199 2,294 1,857,930

Young = Age < 20, Mid  = Ages from 20 to 60, and Old = Ages > 60 years. PC = Passenger car, SUV = 
Sport utility vehicle, PU = Pickup truck, MVAN = Minivan, and MC = Motorcycle. 
 

Table 2. Annual Crash Counts (All Crash Types, 1995) 
Age Gender PC SUV PU MVAN MC Total 

  Young   719,046 49,404 193,547 12,876 9,431 1,055,020
  Mid Male 3,165,487 251,589 1,183,520 95,469 49,875 5,502,690
  Old  504,866 15,810 128,722 13,296 3,173 724,237
  Young  569,590 25,489 44,597 9,200 605 670,192
  Mid Female 2,846,540 147,951 211,846 111,731 2,540 3,509,659
  Old   405,649 4,413 10,373 4,885 24 434,257
Total   8,211,178 494,656 1,772,605 247,458 65,648 11,896,055

 
Table 3. Crash Rates of Drivers (per 106 miles driven, 1995) 

Age Gender PC SUV PU MVAN MC Overall 
  Young  22.82 14.25 16.95 12.46 97.66 21.79
  Mid Male 6.27 2.78 5.13 1.59 23.39 6.00
  Old  4.92 2.03 4.45 1.61 260.06 4.74
  Young  19.39 21.18 27.04 13.51 NA 20.24
  Mid Female 6.12 2.98 5.21 1.88 48.38 5.59
  Old   5.61 3.51 4.60 2.66 NA 5.52
Overall   6.81 3.22 5.62 1.89 28.62 6.40

 
Table 4. Rollover Crash Rates of Drivers (per 106 mile driven, 1995) 

Age Gender PC SUV PU MVAN MC Overall 
  Young  0.661 1.449 1.028 0.389 72.2 0.987
  Mid Male 0.105 0.124 0.157 0.024 22.5 0.184
  Old  0.029 0.049 0.062 0.028 213.2 0.059
  Young  0.516 1.322 1.769 0.577 NA 0.627
  Mid Female 0.068 0.111 0.224 0.037 39.3 0.084
  Old   0.026 0.052 0.087 NA NA 0.030

Total   0.104 0.155 0.196 0.036 26.2 0.162
 



Table 5. Rate of Rolling Over and Sustaining No Injury (per 50,000 miles driven) 
Age Gender PC SUV PU MVAN 

Young  0.1657 0.4401 0.3170 0.1131 
Mid Male 0.0257 0.0369 0.0475 0.0069 
Old  0.0073 0.0149 0.0190 0.0082 
Young  0.0944 0.3011 0.4103 0.1249 
Mid Female 0.0120 0.0248 0.0506 0.0078 
Old   0.0047 0.0118 0.0201 NA 

 
Table 6. Rate of Non-Rollover Crash Involvement and Sustaining No Injury (per 50,000 
miles driven) 

Age Gender PC SUV PU MVAN 
Young   13.62 8.62 10.80 7.96 
Mid Male 3.74 1.77 3.34 1.02 
Old  3.00 1.33 2.97 1.04 
Young  9.88 11.63 14.94 7.39 
Mid Female 3.12 1.66 2.92 1.04 
Old   2.91 2.02 2.66 1.51 

 
Table 7.  Rate of Rolling Over and Sustaining Non-Severe Injury (per 50,000 miles driven)  

Age Gender PC SUV PU MVAN 
Young  0.2935 0.6439 0.4563 0.1733 
Mid Male 0.0465 0.0551 0.0699 0.0108 
Old  0.0130 0.0219 0.0275 0.0127 
Young  0.2202 0.5828 0.7813 0.2528 
Mid Female 0.0287 0.0490 0.0985 0.0160 
Old  0.0111 0.0229 0.0385 NA 

 
Table 8. Rate of Non-rollover Crash Involvement and Sustaining Non-Severe Injury (per 
50,000 miles driven)  

Age Gender PC SUV PU MVAN 
Young  6.984 3.522 4.325 3.438 
Mid Male 1.970 0.744 1.375 0.453 
Old  1.549 0.548 1.200 0.454 
Young  6.971 6.615 8.336 4.426 
Mid Female 2.256 0.969 1.668 0.639 
Old  2.069 1.156 1.496 0.912 

 



Table 9.  Rate of Rolling Over and Sustaining Severe Injuries (per 50,000 miles driven)  
Age Gender PC SUV PU MVAN 

Young  0.1597 0.2985 0.2087 0.0835 
Mid Male 0.0257 0.0260 0.0325 0.0053 
Old  0.0071 0.0102 0.0127 0.0061 
Young  0.1513 0.3415 0.4517 0.1540 
Mid Female 0.0201 0.0292 0.0580 0.0099 
Old  0.0077 0.0135 0.0224 NA 

 
Table 10.  Rate of Non-Rollover Crash Involvement and Sustaining Severe Injuries (per 
50,000 miles driven) 

Age Gender PC SUV PU MVAN 
Young  1.4172 0.6058 0.7334 0.6153 
Mid Male 0.4074 0.1304 0.2376 0.0827 
Old  0.3162 0.0948 0.2046 0.0816 
Young  1.7996 1.4494 1.8012 1.0089 
Mid Female 0.5934 0.2162 0.3672 0.1485 
Old  0.5372 0.2547 0.3251 0.2091 

 
Table 11. Rate of Rolling Over and Sustaining a Fatal Injury (per 50,000 miles driven)  

Age Gender PC SUV PU MVAN 
Young  0.0418 0.0664 0.0458 0.0193 
Mid Male 0.0069 0.0059 0.0073 0.0013 
Old  0.0019 0.0023 0.0028 0.0014 
Young  0.0503 0.0964 0.1258 0.0452 
Mid Female 0.0068 0.0084 0.0164 0.0030 
Old  0.0026 0.0038 0.0063 NA 

  
Table 12. Rate of Non-Rollover Crash Involvement and Sustaining a Fatal Injury (per 
50,000 miles driven) 

Age Gender PC SUV PU MVAN 
Young  0.1410 0.0515 0.0616 0.0544 
Mid Male 0.0413 0.0113 0.0203 0.0074 
Old  0.0316 0.0081 0.0173 0.0073 
Young  0.2253 0.1551 0.1902 0.1121 
Mid Female 0.0756 0.0236 0.0395 0.0168 
Old  0.0676 0.0274 0.0345 0.0234 

 



Table 13.  Probability of Sustaining at Least One Severe Injury (in One or More Crashes, 
while driving 50,000 miles) 

Age Gender PC SUV PU MVAN 
Young  7.144E-02 3.954E-02 4.224E-02 3.288E-02 
Mid Male 2.105E-02 7.380E-03 1.288E-02 4.558E-03 
Old  1.591E-02 5.068E-03 1.059E-02 4.530E-03 
Young  6.154E-02 5.336E-02 6.462E-02 3.832E-02 
Mid Female 2.034E-02 7.801E-03 1.338E-02 5.323E-03 
Old  1.807E-02 8.584E-03 1.104E-02 8.056E-03 

 
Table 14.  Probability of Sustaining a Fatal Injury (while driving 50,000 miles) 

Age Gender PC SUV PU MVAN 
Young  4.617E-03 2.719E-03 2.612E-03 2.273E-03 
Mid Male 1.881E-03 6.249E-04 1.007E-03 4.128E-04 
Old  1.431E-03 4.230E-04 8.164E-04 4.057E-04 
Young  4.206E-03 3.105E-03 3.382E-03 2.705E-03 
Mid Female 1.814E-03 6.531E-04 1.056E-03 4.756E-04 
Old  1.599E-03 6.862E-04 8.529E-04 7.346E-04 
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