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ABSTRACT 
 

Household vehicle ownership is a critical demographic characteristic influencing many aspects of travel 

demand. Using the 1995 NPTS data set, this research proposes a multivariate negative binomial model to 

investigate households’ distinctions in vehicle purchases among passenger cars, SUVs, pickups, and minivans. 

This model structure is capable of capturing unobserved heterogeneity across the vehicle ownership levels and 

is equivalent to a multinomial distribution of the combinations of vehicles owned, conditioned on a negative 

binomial of the total vehicles owned. The results suggest that vehicle ownership decisions are firmly related to 

household size, income, population density (of zone of residence), and vehicle prices. For example, larger 

households exhibit a preference for minivans over SUVs, while SUVs are preferred to passenger cars, which are 

preferred to pickups. Higher-incomes households prefer SUVs most, and pickups least. In contrast, households 

living areas of lower population density favor pickups the most. The results of this work inform various vehicle- 

class-specific policy applications while providing a new statistical approach for the simultaneous vehicle-choice 

decision that households make. 
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INTRODUCTION

Household vehicle ownership influences many aspects of travel demand. It often is used to categorize
households for purposes of trip generation, and it is central to mode choices. It also affects location choices and
urban form (– and is affected by these decisions as well). Vehicle ownership has a tremendous impact on
personal trip-making, and, since driving generates external costs such as air pollution, crash fatalities, and
congestion; vehicle ownership is a critical variable in policy analysis. It is well understood that different
vehicle types impose different costs (e.g., emissions and crash distinctions(1),(2)). Through a better
understanding of household vehicle ownership decisions, planners can improve model forecasts and more
effective policymaking in the areas of automobile purchase and use may occur, thus easing some of the negative
impacts of automobile dependence. This paper investigates a new model of vehicle ownership, emphasizing
household choices across major vehicle classes.

A large effort has been made to produce models of vehicle demand in the past twenty years, partly because of
the oil crises in the late 1970’s and early 1980’s. Continual improvements in computation power permit more
rigorous statistical estimation of more detailed and flexible models. Interest in vehicle ownership modeling
appears to have slowed, perhaps because many modeling techniques have matured and improvements that can
be made to existing techniques are generally marginal. Due to the relatively recent shifts in household vehicle
ownership and use, towards light-duty trucks (i.e., pickups, minivans, and sport utility vehicles), and due to new
energy issues and a focus on global warming policies, renewed consideration should be given to this important
aspect of travel demand. Kockelman and Zhao(3) have investigated several dimensions of vehicle ownership
and use, aiming to illuminate and identify the household and vehicle distinctions. However, their vehicle
ownership model relied on a system of independent Poisson equations, across vehicle classes. The work
presented in this paper moves beyond that model, to accommodate unobserved heterogeneity and intra-
household ownership correlations.

The earliest research on automobile demand was performed at an aggregate level, usually from national time-
series data (see, for example,(4), (5), and(6)). Almost all prior studies have examined the total number of auto
purchases, ignoring consumers’ choices of vehicle type. And an aggregate demand framework does not
illuminate buyer distinctions. For example, Chamberlain’s model of vehicle purchases(7) only examined the
aggregate vehicle shares, by type.

or analysis of vehicle demand, discrete-choice models, such as multinomial and nested logit models, permit a
disaggregate level of analysis. These models are generally more behavioral in nature and may be more policy-
sensitive. Most research of this kind has used multinomial logit (MNL) models, ordered response models, or
nested logit (NL) models to study individual households’ choices by vehicle type and/or vehicle number (see,
e.g.,(8), (9), (10), and (11)). Bhat and Pulugurta(12) compared a multinomial logit model to an ordered-
response logit model when estimating a household’s total number of vehicles owned. In their case, the MNL
model performed somewhat better.

The application of combined discrete-continuous choice models further advanced vehicle ownership studies.
(See, for example,(13) and(14)) These choice models assume that the households choosejointly the number of
vehicles to own, the type of each vehicle (via an MNL model), and the amount each vehicle is driven. A
vehicle’s mileage (VMT) is clearly a key variable, acting as an output of interest and affecting vehicle operation
costs and thus vehicle selection. These two types of decisions, the discrete choices of vehicle number and type
and the continuous choice of VMT, are clearly interrelated and can not be considered one is madebeforethe
other. To accommodate this choice nature, ideally, unbiased estimation of these joint choice models would
occur simultaneously, using full-information maximum likelihood methods(15); but, generally, this approach is
difficult so the research in this area has relied on sequential estimation. The joint choice model is usually
separated into a set of sub-models and estimated sequentially; thus, the estimations lose efficiency in many
cases. To reduce the complexity, their models are run separately for households owning one or two vehicles,
and they neglect those households owning three or more vehicles. However, they split the major types of
vehicles (i.e., passenger car, SUV, pickup, and minivan) into detailed classes (e.g., subcompact domestic
passenger car).

More recently, Kockelman and Zhao(3) proposed an integer model of vehicle ownership across vehicle classes
based on a set of simultaneous Poisson regression equations for the various numbers of different vehicle types
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owned, conditioned on the total. This model structure is equivalent to a multinomial distribution of the
combinations of vehicles owned, with a Poisson distribution characterizing the total number of vehicles owned.
In the presence of latent heterogeneity across households characterized by the same explanatory information, a
more flexible model is desirable. For example, interaction of each rate parameters with a random
component/error term provides a more flexible stochastic specification. If such terms were all gamma
distributed and interacted multiplicatively, the result can be called a multivariate negative binomial (as used by
Kockelman(16)).

This work relies on such a multivariate negative binomial specification to examine vehicle ownership. It also
extends to a more general specification in which the interacted random components are normally distributed,
and it discusses the maximum simulated likelihood (MSL) estimation method for such applications (where the
likelihoods are intractable for integration but can be simulated). It employs the 1995 National Personal Travel
Survey (NPTS) data in order to identify purchase distinctions across households and among vehicle types. The
model structure and estimation methods are described in the following section. These are followed by a
presentation of empirical results and conclusions.

MODEL FORMULATION

Based on a microeconomic theory of consumer behavior, the vehicle ownership problem may be posed as a
household maximizing its utility function with respect to vehicle quantities and other consumption, subject to its
income, or budget constraint. The vehicle prices are key variables.

In a particular period, the observed household vehicle ownership levels (ijY ) of householdi are a set of non-

negative integer counts of different vehicle typesj (e.g., passenger car, SUV, pickup, and minivan). Since the
response values are in fact count data, the Poisson distributions are key contenders for stochastic specification
of such behavior. One may expect that the mean of this distribution is represented by the optimal demand level

( *
ijY ), since over relatively long periods of time households can better achieve their average optimal demands.

And these optima should be parameterized as functions of the explanatory variablesiX
ÿ

, including vehicle

prices, household income, and other attributes of the choice context. Virtually all vehicle ownership data sets
provide information on the vehicle numbers that the households “currently” hold, rather than the numbers of
vehicles that each household purchases during a window of time (e.g., five years). However, by assuming that
the time window is rather long, one might still apply a rate model to present-ownership data.

Given an assumption of Poisson-distributed demands, the number of each vehicle typej that householdi

purchases, ijY , is drawn from a Poisson distribution with parameterijλ , as shown in Equation 1. Here, the

exponential transformation ensures positive ownership levels. As Kockelman and Zhao(3) suggested, this set
of Poisson random variables becomes simultaneous in nature if all optimal/mean demands are derived from a
single indirect utility specification and thus share common parameters across their specifications.

)'exp(

....2,1,0,
!

)Pr(

*
ijijij

ij
ij

y
ij

ijij

Yand

y
y

e
yY

ijij

Xβλ

λλ

==

===
−

(1)

where jβ is a vector of parameters to be estimated.

In the case of Kockelman and Zhao(3), the price-over-income variable was theoretically confined to share the
same parameter, making the estimation simultaneous. Other explanatory variables were household-specific and
thus suggested preference differences across vehicle classes; there were no behavioral restrictions imposed on
these other parameter values (e.g., monotonicity in consumption). The parameter values indicate the magnitudes
of the household-specific explanatory variables (e.g., household size) determining the optimal demands across
vehicle types, which makes it easy to interpreter the estimation results, just like any linear regression model
results.
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A typical Poisson regression model suffers from the fact that its variance is constrained to equal its mean. In
empirical research, one often encounters situations where this restriction will be violated and overdispersion in
fact exists (i.e., variance exceeds mean(17)). Generally, one can introduce an individual, unobserved effect into
the Poisson mean to produce the following example:

iijiijiijij µλελεβλ ==+=′ )exp()'exp( X (2)

where the disturbanceiε reflects the heterogeneity that exists across households and their demand for vehicles.

Then the unconditional probability distribution is:
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where )( ig µ is the density function of iµ . Usually a gamma distribution is assumed foriµ , which produces a

negative binomial distribution, featuring overdispersion. As shown in Equation 2, the disturbanceiε could be

assumed to have zero mean if the model contains a constant term. In this case, the gamma termiµ would have a

mean of 1. With this normalization,
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whereθ is the gamma’s parameter. (Generally, a gamma distribution has two parameters,α and β , with

meanαβ and variance 2αβ ; given the normalization of mean equal to one, here βαθ /1== ).

This leads to the following probability function:
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which is a negative binomial distribution with meanijλ and variance ])/1(1[ ijij λθλ + . The overdispersion can

be measured by θ/1 . As illustrated via Equations 2 through 5, the negative binomial distribution assumption
accommodates the effects of unobserved factors on each household’s average demand levels (assuming one has
begun with a Poisson assumption, for any specific household).

Using Equation 5’s density function, a set of negative binomial models (one for each vehicle type) can be
estimated simultaneously. This ownership model system can be considered as a multivariate negative binomial,
while the marginal distribution for each vehicle type is a negative binomial. That is:
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However, as Kockelman(16) showed, the use of thesamegamma error term in all of a single household’s
demand functions allows for a cancellation of these terms in the probabilities of a multinomial (which is
conditioned on a negative binomial for total demand). This feature is found by obtaining the joint distribution
of ( iJi yy ,...,1 ) conditional on their sum.
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Equations 7 and 8 produce a formulation similar to a logit model. Since demand for each vehicle type in a
household takes a Poisson with mean iij µλ (conditioned on iµ ), the total demand should also take a Poisson

with mean i
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, conditioned on the gamma termiµ (with mean 1 and parameterθ ).

Then, the unconditional distribution leads to the following:
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The above negative binomial assumption has been used before. Raoet al. (18)modeled the number of children
of each gender born to a pair of parents as symmetric binomials, where the total is a negative binomial. And
Hausman, Leonard, and McFadden(19) sequentially estimated fishermen’s recreational site choices as a
multinomial conditioned on a fixed-effects Poisson (for the total number of trips).

Similarly, the vehicle demand model can be formulated as a multivariate negative binomial. Furthermore, under
the special, same-gamma-term assumption, this multivariate negative binomial model is equivalent to a
multinomial for the different vehicle types, conditioned on a negative binomial for the total number of vehicles
owned.

In terms of estimating the model parameters, maximum likelihood estimation (MLE) of the various
specifications proceeds in the usual manner. Clearly, the likelihood function derived from Equation 6 is
relatively easier than that from Equations 9, given the fact that the two are equivalent as shown above. The
likelihood function corresponding to Equation 6 is as follows:
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and the log-likelihood function is:
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The log-likelihood function is maximized using standard techniques. All estimations and computations
are completed using GAUSS programming language(20). The analytical gradients of the log-likelihood
function with respect to the parameters are coded. The standard errors of the parameters are obtained from the
inverse of the Hessian matrix of the log-likelihood function. The results are presented next.

DATA AND RESULTS

The models are estimated on the sample of households that constituted the 1995 National Personal
Transportation Survey (NPTS). This NPTS consists of over 42,000 households contacted between May 1995
and July 1996. The survey collected data on demographic and trip characteristics of the households. The
specific NPTS data incorporated here as explanatory and response variables are shown in Table 1. After
removing households with inconsistent and missing values on relevant variables, 32,596 households remained
as the validation sample. The comparisons of variable distributions before and after record removal suggests
that there are no significant distinctions in the full and culled samples. Thus, only complete records were used
in the analysis of the various models presented here.

The NPTS households reported on over 75,200 vehicles across more than 200 makes and models. Using
Ward’s Automotive Yearbook 1997(21)andAutomotive News - 1997 Market Data Book (22),four vehicle types
were identified in the data set: passenger car, SUV, pickup, and minivan. Station wagons are considered as
passenger cars and the SUV category includes all types of sport utility vehicle, from compact to full size. These
are shown in Table 2. After removing missing values on relevant variables, 55,974 vehicles remain as the
validation sample, associated with the 32,596 households.

In the multivariate negative binomial models developed here, the final demand specifications contain constants
and household socio-economic parameters specific to each vehicle type. All specifications share a relative price
parameter (i.e., the coefficient interacted with the variable “Vehicle Price/Income”), and they share the gamma
parameterθ. The empirical results of this model are presented in Table 3.

The sign of the income-normalized price parameter is consistent witha priori expectations of the model. As the
ratio of vehicle price to household income increases, households are less likely to purchase any kind of vehicle.

The relative magnitudes of household size parameters suggest that, households with larger sizes are more likely
to purchase minivans and SUVs than passenger cars, while slightly less likely to buy pickups. This is consistent
with expectations, since minivans and SUVs usually feature more seats and larger space than cars, and pickups
have fewer seats. SUVs also are more likely, minivans slightly more likely, and pickups less likely than a
passenger car to be owned as incomes (per household member) increase,ceteris paribus. Finally, pickups are
more popular in lower-density environments, reflecting greater use of such vehicles for heavy work purposes,
which are expected to be more common in relatively rural locations. All three light-duty truck (LDT) types
examined here (i.e., minivan, pickup, and SUV) are more popular than passenger cars in lower-density areas;
this may be related to a relative lack of parking issues for these larger vehicles in such areas.

The gamma parameterθ is relatively large. So the overdispersion measure,θ/1 , is rather small (0.0064). That
suggests there is little unobserved heterogeneity within the vehicle ownership levels. Thus, the presented results
are quite similar to those found in Kockelman and Zhao’s simultaneous-Poisson model(3). But the likelihood
has improved, in a statistically significant way. A likelihood ratio test results in rejection of the hypothesis that
there are no shared unobserved attributes among the vehicle-type decisions (the likelihood ratio test statistic in
the comparison of the Poisson model and the negative binomial model is 5.76, which is larger than the chi-
squared distribution with one degree of freedom at 97.5% level of significance). Thus, the addition of latent
heterogeneity through inclusion of a gamma-error assumption and estimation of the parameterθ has allowed
some valuable flexibility that should improve interpretation and application of this model. Yet the likelihood
remains tractable.
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MODEL EXTENTIONS

Note the gamma distribution assumption is for mathematical convenience and leads the Poisson mixture model
to a negative binomial model, allowing straightforward estimation. Alternative distributional assumptions make
the random effects Poisson model more flexible, but generally (and perhaps always) there is no closed form for
the probability density function in Equation 3. For example, in assuming the random disturbance termiε is

normally distributed with meanu and variance 2σ , iµ will have a lognormal distribution with parametersu

and σ . Normalizingu (the mean of iε ) to equal zero produces the following density function:
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In this case, the log-likelihood function of the estimation does not have a closed-form solution because of the
integral in Equation 3; hence, it cannot be evaluated analytically. Thus, simulation techniques are needed to
approximate the probabilities in the log-likelihood function and maximize the resulting simulated log-likelihood
function. The underlying concept in such methods is to approximate the integration by computing the integrand
at various values drawn from the appropriate distribution of the variable vector over which the integration is
being carried out – and then taking the mean of the simulated integrands. This model was evaluated here, using
such an approach.

The simulation approximations of the probabilities are the averages over the realizations fromR random draws.
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and twice differentiable, implying that conventional gradient-based optimization methods can apply to the
simulated log-likelihood function. The simulated log-likelihood function is:
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Generally, the maximum simulated log-likelihood (MSL) estimator is consistent, asymptotically efficient, and
asymptotically normal (e.g.,(23) and(24)). However, the logarithmic transformation of the choice probability
in the likelihood function biased the MSL estimator away from the maximum likelihood estimator. As the
number of simulations/repetitions increases, the bias decreases. For example, Brownstone and Train(25)
suggested 250 repetitions would produce a rather negligible bias, in their context of a mixed logit model.

Using the lognormal specification, the relative lack of dispersion or unobserved heterogeneity in the data set
ultimately meant that application of MSL estimation methods did not prove practical here: the simulations
(involving 500 draws of iµ , or equivalently 500 standard normal draws, multiplying the parameterσ and

taking the exponential function, for each likelihood’s estimate, over more than 32,000 observations) failed to
converge. An even higher level of likelihood accuracy may be necessary for such cases. And this would be
true in most any situation where one or more parameter values are so close to boundary values, yielding
untenable distributions. (For example, in the vehicle-ownership case examined here, a negative dispersion factor
is not permitted; a negative binomial’s variance must exceed its mean.)

CONCLUSIONS

Household vehicle ownership is a key demographic characteristic that relates to and influences virtually all
aspects of travel demand. This study proposed a particular multivariate negative binomial structure able to
capture heterogeneity across the vehicle ownership levels. And, as shown, this structure is equivalent to a
multinomial distribution of the combinations of vehicles owned conditioned on a negative binomial of the total
vehicles owned.
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By accommodating the correlation across different vehicle types, the multivariate negative binomial model
structure used here provides a way to capture the underlying preference of vehicle types. The model structure is
capable of handling panel data to study vehicle ownership decisions over time, though the data set used here
provided only a cross-section.

The empirical application was based on the 1995 Nationwide Personal Transportation Survey data, and it
produced evidence of household purchase differences across various vehicle types. Vehicle ownership decisions
were found to be strongly influenced by household size, income, area population density, and vehicle prices.
For example, SUVs and minivans were more likely to be purchased by higher income, larger households living
in low-density environments. And pickups were more likely to be owned by lower-income households, living
in low-density areas.

The results of this work inform various vehicle-class-specific policy applications. For instance, if a policy
objective is reduction in SUV purchases (e.g., in congested and/or polluted regions), taxes on SUVs are
expected to primarily affect the wealthy and are thus not generally regressive. And more stringent regulation of
pickups will impact lower-income, smaller, less urban households more than other households.

Models based on stated-preference data and/or new-vehicle purchase data would be helpful for identifying more
specific features of household preferences across vehicle types and more specific impacts of different policy
instruments. And different statistical specifications may prove more valuable. One such option was tried here,
using a lognormal random error term multiplicatively interacted with the Poisson rate parameter; however, the
relative lack of dispersion in the data set stalled this effort. Another option is a two-way regression model of
panel data, incorporating household-specific and period-specific random effects. In estimating such
specifications, however, MSL will be necessary (as will a proper panel data set). In the interim, this work
provides a new method for analyzing such data and suggests some behavioral tendencies that inform national
and local transportation policy.
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Table 1. Description of variables used

Dependent variables

Mean SD
Total number of vehicles Total number of vehicles owned by household 1.72 0.93

Number of cars Total number of passenger cars owned by household 1.16 0.81

Number of SUVs
Total number of sport utility vehicles owned by
household

0.13 0.36

Number of pickups Total number of pickup trucks owned by household 0.30 0.53

Number of minivans Total number of minivans owned by household 0.13 0.35
Explanatory variables

Household size Number of household members 2.83 1.31

Population density
Population density of Census tract (persons per square
mile)

3,858 5,306

Income per household
member

Annual household income (1995 US$) divided by
household size (where income is taken to be middle of
class range)

$19,075 $13,561

Vehicle price/income
Average purchase price of new vehicle (based on 1997
sales data) divided by annual household income

0.74 0.14
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Table 2. Shares of vehicle types

Vehicle Type No. of cases Shares
Passenger car 37885 67.7%
SUV 4120 7.4%
Pickup 9845 17.6%
Minivan 4124 7.4%
Total 55974 100%

Table 3. Results of simultaneous multivariate negative binomial model estimation

Variable Beta SE T-Stat P-Value
Vehicle Price/Income -0.2307 0.0076 -30.26 0.000
Car:

Constant 0.1793 0.0214 8.36 0.000
Household Size 0.0651 0.0044 14.90 0.000
Population Density -0.1557 0.0082 -18.96 0.000
Income per HH Member 0.0153 0.0042 3.61 0.000

SUV:
Constant -2.7271 0.0557 -48.99 0.000
Household Size 0.2536 0.0119 21.25 0.000
Population Density -0.4893 0.0319 -15.35 0.000
Income per HH Member 0.1761 0.0097 18.11 0.000

Pickup:
Constant -0.6368 0.0386 -16.48 0.000
Household Size 0.0657 0.0081 8.07 0.000
Population Density -0.9517 0.0279 -34.09 0.000
Income per HH Member -0.1172 0.0094 -12.53 0.000

Minivan:
Constant -3.1584 0.0556 -56.78 0.000
Household Size 0.4474 0.0102 43.96 0.000
Population Density -0.4079 0.0305 -13.36 0.000
Income per HH Member 0.0284 0.0129 2.20 0.014

Gamma parameterθ 156.9 12.1093 12.96 0.000
Log Likelihood Function

Constant only -89028.26
Convergence -84396.92

Pseudo R2 0.052
Dependent variables: Total vehicles owned by type
Number of observations: 32,596 households
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