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ABSTRACT 

This paper explores the possible transportation and property value impacts of a new congestion 

management policy called credit-based congestion pricing (CBCP). Using destination, mode and 

departure time choice models sensitive to changes in travel times and costs, household travel 

demands were simulated in order to appreciate the transportation effects of a CBCP policy for 

Austin, Texas. Changes in home values as a result of CBCP also were simulated. The trip-based 

welfare impacts of such a policy were compared for three scenarios (full network pricing, major 

highway pricing only, and no pricing), in order to identify households and neighborhoods that 

will benefit most and least from such policies. The results corroborate prior results and 

hypotheses about the potential of a CBCP policy to alleviate congestion and generate benefits 

across the region and traveler types. 
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INTRODUCTION AND OBJECTIVES 
 
Users and planners of transportation systems alike have long been grappling with the problem of 
increasing road congestion. Road congestion is an externality that results in substantial time 
losses1; and it is no surprise that Americans consistently rank it among the top three regional 
policy issues, along with education and crime. (See, e.g., Scheibal, 2002, Knickerbocker, 2000 
and Fimrite, 2002.) During peak-periods of demand, drivers tend to over-utilize the common 
road resource without paying for or even noting the associated, marginal costs borne by fellow 
travelers.  As a result, a wide variety of demand management policies (intended to control 
congestion) have been proposed. Congestion pricing, a popular policy with researchers and 
economists, (e.g. Vickrey, 1963 and 1969, Arnott et al, 1993, Button and Verhoef, 1998, Small 
and Yan, 2001) has only recently garnered significant attention by the public and policy makers 
(e.g., Hyman and Mayhew, 2002, Litman, 2003). Various forms of congestion pricing have been 
implemented in places like Singapore, London (Litman, 2003), and California (SR-91 and IH-
15) (Sullivan et al., 2000), with different degrees of success. Following London’s example, many 
cities in Europe and the US have been willing to explore CP as a viable travel demand 
management strategy (see, for example, Zupan and Perrotta, 2003, Deloitte Research, 2003).  
 
Congestion pricing (CP) is based on the principle that if people pay the true marginal cost of 
road use, the congestion externality is internalized and lower but more efficient levels of road use 
result during peak periods. While there are many advantages to this approach (see, e.g., Vickrey, 
1963, and Arnott and Small, 1994), the major criticism has been the adverse equity impacts on 
low-income groups and others with special travel needs. Alternate pricing methodologies for 
addressing CP equity issues have been proposed. Dial (1999) made a case for minimum-revenue 
CP in place of marginal cost CP, Viegas (2001) argued for the creation of “mobility rights” for 
individuals, Rothengatter (2003) hinted at the possibility of viewing transportation as a club good 
(in place of a public good) and De Corla-Souza (2000) championed the creation of FAIR (Fast 
and Intertwined) Lanes. In addition, Daganzo (1995) and Nakamura and Kockelman (2002) 
explored the possibility of tolls-plus-roadspace rationing as a demand management strategy.  
 
To tackle the equity issue, Kockelman and Kalmanje (2003) proposed a revenue-neutral policy 
called credit-based congestion pricing (CBCP), where tolls generated from marginal cost pricing 
(MCP) are returned to all licensed drivers in a uniform fashion, as a sort of driving “allowance”. 
Under CBCP, the “average” driver pays nothing, the below-average driver makes some money, 
and frequent, long-distance and peak-period drivers pay something out of pocket, in effect 
paying others to stay off congested roads. As CP gains attention and application, CBCP may 
provide the most equitable and efficient implementation alternative. Hence, it could be of interest 
to transportation system planners, policy makers and the public to obtain reliable predictions of 
travel demand, land use, air quality, property value and welfare impacts of a CBCP policy. 
Models of these impacts help one appreciate and compare network-wide and corridor-specific 
alternatives, CBCP and standard marginal-cost CP strategies, and other scenarios. In the short 
term, there may not be substantial changes in many behaviors and conditions. Many travelers are 
at least temporarily “locked in” to their places of employment and education, as well as to their 
residences.  In the longer term, however, CBCP could have sizable impacts – and differential 
impacts, based on demographic and other factors.  Hence, it behooves us to predict, analyze and 



plan for short- and long-term changes in a variety of behaviors and responses that emerge 
following implementation of a CBCP policy.  
 
Texas’s capital city, Austin, makes a valuable case study for appraising policy impacts.  With an 
annual traffic delay of 61 hours per peak period road traveler, Austin ranks 5th among U.S. cities 
in terms of congestion cost per person (Schrank and Lomax, 2002). Together with an estimated 
annual fuel loss of 104 gallons per peak-period road user, year-2000 annual time and fuel costs 
are estimated to total $1190, per peak-period user2 (Schrank and Lomax, 2002).  A recent survey 
of Austin residents gauged traveler perceptions of and responses to congestion and a hypothetical 
CBCP policy (Kockelman and Kalmanje, 2003). Population-weighted results of the 580-person 
sample suggest that 25% of Austin’s driving population would support this new strategy; 
furthermore, support is strongly, and positively, related to familiarity with the concept of 
congestion pricing.  Thus, education may be key to marketing such policies.  While 58.1% of the 
survey respondents were very concerned with policy implementation issues (i.e., ease of use), 
56.2% attached a very high value to fairness or “equity” considerations. Currently, focus group 
studies are also underway at the University of Texas at Austin, in order to assess perceptions and 
needs of special groups, such as small business owners. 
 
This paper examines network-wide CBCP and major-corridors-only CBCP, and compares the 
transportation, welfare and property value impacts of these strategies using Austin-calibrated 
comprehensive models of household travel demand, it evaluates traffic and welfare impacts, 
based on changing costs to reach different destinations from one’s place of residence, across 
modes and times of day. Property values of Austin residences also were modeled, in order to 
anticipate changes in home prices due to CBCP policies, permitting a more holistic view of 
impacts on the Austin population.  
 
DATA SOURCES AND DETAILS 
 
The primary sources for calibrating the travel demand models are the 1998-1999 Austin 
(Household) Travel Survey (ATS 1998) conducted by the Capital Area Metropolitan Planning 
Organization (CAMPO 2000, 2001). Network travel time and background flow results from the 
CAMPO model (which were used for air quality conformity analysis of the region’s 2025 
Transportation Plan) also were used. Other data sources include the 2000 Census of Population, 
the 2000 CAMPO-maintained City of Austin land use data set, and 2003 home sales data from 
the Travis County Appraisal District (TCAD).  The Census data provided information on vehicle 
ownership and income, for calibrating the trip generation models.  The land use data facilitated 
calibration of the generation and attraction models.   
 
CAMPO’s network travel time data file has travel time and network distance information for 
each pair of the 1074 Traffic Assignment Zones (TAZ) in the three-county Austin metropolitan 
planning region. The data vary by time of day and travel mode3. For the automobile mode, the 
two-hour morning peak and 24-hour off-peak period travel times were available. For transit, 
travel times varied by service type (i.e., University of Texas shuttle buses, Capital Metro 
standard buses and express buses) and transit access (i.e., by walking or driving). Walk/bike 
travel times were obtained assuming 6 mi/hr travel speeds on the shortest paths between zones. 
These data were used to calibrate the destination, mode, and departure time choice models.  



 
 
MODELING FRAMEWORK 
 
Travel Demand Model (TDM) Calibration 
 
The travel demand models include a destination choice model that captures accessibilities across 
multiple modes and time periods, and a joint mode-departure time choice model.  
 
Trip generation (TG) models were developed for four trip purposes (home-based work, home-
based non-work, non-home-based work, and non- home-based non-work trips) in order to better 
appreciate changes in TG that may occur in the long term under CBCP. Trip productions for 
home-based trips were modeled at the household level (using the ATS data set) and then 
aggregated to the zonal level. Trip productions for non-home-based trips and trip attractions were 
all modeled at the zonal level. The models for TG internal to the region are shown in Table 1. 
External trip productions and attractions were computed from average daily traffic counts at the 
external stations. Joint multinomial logit models for mode and time of day were calibrated 
considering four modes (drive alone, shared ride, transit, and walk/bike) and five time periods 
(late night and early morning, morning peak, afternoon, evening peak, and evening off-peak 
periods). The resulting models (for each of the 4 trip purposes) are shown in Table 2.4 
 
The multinomial logit models of destination choice are shown in Table 3. Since the 
attractiveness of the destination zone varies across mode and time of day, this variability was 
captured using logsums of travel times, travel costs and alternative-specific constants obtained 
from the mode-departure time model calibrated earlier. By constraining the coefficient on 
ln(ATTRj) to equal one, the structure of the destination choice models mimics a gravity model, 
offering ease of application in TransCAD (Caliper, 2002).  
 
The (systematic) utility of a destination from a particular origin is given by equation (1).  
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where SIZEj is either the area or the employment at the destination zone “j”, ATTRj is the 
attraction at the destination zone “j”, and LOGSUMi,j is the “logsum” for the origin-destination 
pair (i, j), computed as shown in equation (2). The logsum is the negative of the expected 
maximum utility derived across all mode and departure time combinations for that particular 
destination, and it is a measure of accessibility of that destination from origin of interest (i). 
 

 ln -  
,

,,
,,,,,,









= ∑

++

tm

CostTime
pji

ptmjipcjipteLOGSUM βββ      (2) 

where βt , βc and βm,t are the joint mode-departure time model coefficients (on time, cost and the 
alternative-specific constants, respectively).  The joint mode-departure time model’s coefficients 
are shown in Table 3. 
 
All the multinomial logit models for destination and joint mode and time of day choice were 
calibrated using GAUSS’s maxlik module (Aptech, 1996).  



 
TDM Application 
 
Before applying the destination choice models on the generated trip estimates, external through 
trips had to be separated (via an external-external submatrix). By assuming a percentage of 
external through trips at external stations, the through-trip distribution was computed using 
standard methods (i.e., Fratar balancing) as outlined  by Martin and McGuckin (1998) in 
NCHRP Report 365.  Further, productions and attractions of trips in the remaining, internal zone 
matrix were balanced while holding productions and attractions at the external zones constant.  
 
The destination choice models were applied to estimate the production-attraction (P-A) matrices 
by trip purpose for all 1117 zones (including external zones) which were then converted into P-A 
matrices by mode and time-of-day (by applying the joint mode-departure time choice models). 
Return trip rates across times of days and by purpose were computed from the ATS data set to 
covert the P-A matrix for the home-based trips into the final Origin-Destination (O-D) matrices 
by mode and time of day. Using vehicle occupancies by trip purpose, the O-D matrix for auto 
trips for different time periods was generated.5 Finally, the traffic assignment module of 
TransCAD (Caliper, 2002) was used to arrive at the User Equilibrium (UE) assignment of traffic 
to the network, for each of the 5 different time periods.  
 
The Bureau of Public Roads (1964) formula (Equation 3) for travel times (as function of volume 
and “practical” roadway capacity) was used to arrive at the marginal costs of congested travel. In 
the first scenario studied, tolls equaling the marginal costs of travel were placed on all links in 
the network during traffic assignment. In another scenario, marginal cost tolls were placed on 
main roads/highways in Austin. 6  
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where tf is the free flow travel time, v is the volume flowing on the link, c is the practical link 
capacity, and α and β are the link performance parameters.  
 
TRANSPORTATION SYSTEM IMPACTS 
 
Based on the mode-departure time choice models (which involved travel time and cost 
variables), average Austinite values of travel time (VOTTs) were estimated to range from $2.35 
to $3.36, across each the four trip purposes. These values seem quite low, but they do represent 
an average for all travelers in the region.  (Choices by youths and non-working individuals 
certainly can bring down the estimates.) Moreover, the models were calibrated using off-peak 
travel time values obtained from a 24-hour assignment by CAMPO and an automobile operating 
cost assumption had to be made.7 Recognizing the low values from the mode-departure time 
models, an $8 per vehicle-hour toll was used to actually compute the MCP tolls. However, 
charging a value of $8 per vehicle for every hour of delay imposed on the link will be suboptimal 
(too high) in light of the low values of (personal) travel time estimated from the TDM’s mode 
and departure time choice models. This level of toll provides a valuable point of reference.  



However, welfare estimates are biased low as a result. And the resulting MCP tolls are likely to 
be more severe than optimal, reducing congestion more than necessary.  
 
From Table 4 one observes that total revenue generated from the MCP of all roads is around 
$372,000 per day. As expected, the revenues generated during the off-peak periods are quite 
small, compared to the peak periods. Under system-wide MCP, it is observed that average peak 
travel times decreased by roughly 1.6% (3.3% on main roads). The highest tolls arise along the 
highly congested Interstate 35 (I35) corridor, which carries a great many through (external zone-
to-external zone) trip-makers, who cannot be priced off the corridor under present assumptions.  
Given some assumptions about demand responsiveness on this corridor, the I35 (and average) 
tolls are likely to fall. 
There may be considerable implementation costs for CBCP since it requires Electronic Toll 
Collection (ETC) and other technologies for managing user accounts and enforcement. However, 
most of the technology and administration needed is similar to that used for CP implementation, 
and it is anticipated that the costs of implementing CBCP will be a relatively small portion of 
revenues collected, when undertaken in congested regions (such as Austin). In this paper, we 
have analyzed scenarios wherein all revenues are returned to the drivers. A certain portion of 
revenues could be earmarked for making system improvements, reducing gas and other taxes, 
and/or providing greater transit and parking services which will indirectly improve welfare once 
again (see, e.g., Parry and Bento, 2001). 
 
POLICY IMPACTS ON WELFARE AND PROPERTY VALUES 
 
Welfare Impacts of CBCP  
 
Those unable to afford the tolls under CP and therefore forced to change trip making 
substantially are generally perceived as “losers” under conventional CP. Compensation in the 
form of cash travel credit allowances under CBCP should substantially increase welfare for such 
people and also for the whole community. Using Schrank and Lomax’s (2002) estimate of 
730,000 road users in Austin, the revenue returned by CBCP per user per day comes to around 
50¢, if system wide pricing were to be applied, and around 20¢, if MCP applied only to the main 
roads.8 Under CBCP, this amount is given as a “rebate,” in the form of a monthly allowance. 
 
Consumer surplus at the destination choice level after the policy change has been used as the 
welfare measure in this paper since it provides an excellent holistic/comprehensive measure of 
impact, capturing impacts on destination, mode and departure time of day choices.9 Equation (4) 
gives the expression for consumer surplus under a policy change; it is the difference in the 
expected maximum utilities before and after the policy change.  It is based on a given origin, 
assumed to be one’s neighborhood of residence, and it is computed as a logsum of utilities of all 
destination choices from that origin with Vi,j,p denoting the utility of person at origin i choosing 
destination j (see equation 1) for trip purpose p, with C denoting the full choice set of all possible 
destinations.  
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where n and o denotes the new and old policies/environments (i.e., CBCP versus the status quo) 
and αp is the trip purpose specific destination choice model’s marginal utility of money, in this 
case equaling the multiple of the coefficients on cost (in the mode-departure time model) and 
generalized cost or logsum (in the destination choice model). 
 
Consumer surplus (CSi,p) under CBCP has been calculated for an average individual located in 
every zone i for each trip purpose p using the corresponding destination and mode-departure time 
choice models. The rebate per trip (R) was calculated by dividing the daily allowance by an 
individual’s daily average number of trips. Average daily trip making of 4.6 trips/individual 
(from the ATS survey) was assumed to calculate the average CBCP allowance for each trip, and 
a trip-weighted average of the trip-based welfare measures produced the final measure (CS) 
shown in equation (6).  
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where #p is the average number of trips by each purpose per individual. 
 
Results of the welfare analysis for both the CBCP policies tested are shown in Table 5. Figures 1 
and 2 illustrate the geographical variation in aggregate consumer surplus around Austin for 
system-wide CBCP and main-roads-only CBCP. Note that the potential “winners” under these 
two policies can be very different. While users near the central business district (CBD) are 
predicted to gain from pricing only the main roads, users living in northwest Austin (close to 
several major employers) gain the most under system-wide CBCP. Since tolls charged are based 
on a higher VOTT estimate than those obtained from our model estimates, welfare changes 
under CBCP for an average Austin resident may be largely (or exclusively) positive throughout 
the region.  
 
Home Sales Price Changes under CP 
 
The home sales price model was calibrated using the Travis County Appraisal District’s 
substantial records of recent home sales prices. The home sales price models recognize that a 
property’s value depends, in part, on locational accessibility ( see, e.g., Kockelman, 1997, Srour 
and Kockelman, 2002).  Locational accessibility derives from travel times and costs, which are 
affected by the policies under study.  Accessibility’s impact on home value was captured here 
using the trip generation-weighted average of destination logsums (Equation 5) from the travel 
demand models, thus effectively quantifying the overall accessibility of the residential location 
across trip purposes, modes and times of day (see, e.g., Waddell and Nourzad, 2002). The home 
sales price model estimates are provided in Table 6.  
 
The home sales price model was used to predict changes in average home values across Austin 
locations upon implementing standard CP. Based on predicted values for the median dwelling 
unit sold in year 2000 (i.e., one that is 1,958 square feet in size and 9 years old) located at zonal 



centroids, home values are predicted to fall slightly in almost all areas when all roads are priced 
(i.e., CP – All Roads). Home values are estimated to fall between 1.5% and 6.4% in southwest 
Austin, but other regions (including the CBD) are predicted to experience lesser drops. When 
pricing only major roads (i.e., CP-Main Roads Only), home values again dropped slightly in 
most areas, but home values in some CBD areas were predicted to actually increase marginally. 
Figures 3 and 4 show the distribution of price effects across Austin for both pricing scenarios. 
These predicted price changes are reasonably minor, yet more severe than what would occur 
under a credit-based CP policy, since credit budgets would offset much of the diminished access 
effects experienced by neighborhoods whose accessibility logsums fell under standard CP. 
 
CONCLUSIONS AND EXTENSIONS 
 
Credit-based congestion pricing (CBCP) has the potential to address a variety of redistributive 
impacts that are likely under congestion pricing policies.  This work investigates the travel 
demand and property value impacts of such a policy, under a variety of pricing scenarios for the 
Austin, Texas, region.  It uses a standard four-step travel demand modeling approach, calibrated 
on the basis of the most recent Austin Travel Survey (ATS, 1998), and relying on logit models of 
departure time, mode, and destination. It then applies the policy to the entire network and to 
main highways at different times of day and at different levels of charges, in order to appreciate 
the variety of applications and impacts that could arise in practice.  The work also examines the 
impacts of changes in access (due to pricing without credit redistribution) for effects on home 
property values. 
 
The results of the model application to various policy scenarios suggest that most Austin 
residents would be better off under policies that employ CBCP, whereas relatively few would 
benefit under a policy of congestion pricing, without beneficial revenue redistribution. 
Residential property prices are estimated to fall marginally, with some areas near the CBD 
gaining if CP were implemented on major highways only. Under a CBCP policy, the presence of 
travel rebates could cause property values to increase much more widely. Realistically, the most 
likely CBCP policies for Austin or any other region may be a CBCP policy with approximate, 
relatively stable MCP on all arterial links, thereby providing some price certainty and avoiding 
overuse of unpriced arterials.  Pricing of all network links provides further gains, but the costs 
(and other impacts) of providing roadside detection (and enforcement) along all such corridors 
may be prohibitive in the near term. This work may provide the insight that is needed for 
policymakers, engineers, and economists to take the next step toward application of this 
promising policy proposal. 
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ENDNOTES
                                                 
1 Schrank and Lomax (2002) estimated that congestion in 75 major U.S. urban areas in the year 2000 cost the 
traveling public $68 billion in fuel and time losses. This amounts to an estimated $1,160 average cost per peak-
period traveler in those areas. 
2 Peak-period users may comprise more than half of the Austin region’s population. Schrank and Lomax (2002) 
estimate that 60% of person-miles of freeway travel and 65% of arterial miles of  travel are made in peak–period, 
congested conditions. (Schrank and Lomax, 2002).   
3 Since the travel time data was not available for different times of day, a joint mode-departure time choice model 
was used and travel times were obtained based on the resulting traffic assignment. These travel times then fed back 
to the other models, thus offering more variation in automobile and transit travel times, being based on five (rather 
than two) times of day. The five times of day are Early morning/Late evening (before 7.15 a.m. and after 8.15 p.m), 
Morning peak (7.15 to 9.15 a.m.), Noon (9.15 a.m. to 4.15 p.m.), Evening peak (4.15 to 6.15 p.m), and Evening off-
peak (6.15 to 8.15 p.m.). 
4 Nested logit models of mode and time of day also were attempted, but these specifications refused to converge, 
regardless of nesting structure and trip type. 
5 Average automobile vehicle occupancy varies from 1.18 for home-based work trips to almost 2.0 for non-work 
auto trips. Vehicle occupancy for automobile “shared ride” trips, which comprise 39% of all person trips made in the 
Austin region, varies from 2.38 to 2.70. Transit trips were too few to be factored in while computing the automobile-
trip matrix . 
6 Values of α = 0.15 and β = 4.0 were used in cases where link-specific values were not provided. The final travel 
times compared favorably with the travel times provided by CAMPO with an average difference of -2% (and a 
normalized standard deviation of 0.06, or 6%) for off-peak values and -8% (s.d.=11.5%) for peak values. Marginal 
cost pricing scenarios were applied by altering the volume flow functions for the marginally priced links by 
replacing the α in the BPR formula with α+β. 
7 The travel cost by automobile was assumed to be 30¢/mile, which is probably high, in marginal terms (since most 
travelers already have access to an insured vehicle and therefore are only considering gasoline and some other 
variable costs).  A higher assumed travel cost, however, will result in a higher VOTT prediction for the model (since 
the parameter on cost will fall, and the ratio of the time and cost coefficients, the VOTT, will rise). 
8 The main roads subject to MCP are US-183 (Research Blvd.), IH-35, Loop 1 (Mopac), Loop 360 (Capital of Texas 
Highway), Highway 71 (Ben White) and US 290, as specified in Kockelman and Kalmanje’s (2003) surveys of 
Austinites. 
9 The changes in transit level of service under the policies also have been recognized. Transit travel times were 
adjusted for changes in peak and off-peak travel times under the various policies, according to the shift in the 
corresponding auto travel times.  
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Table 1. Regression Models for Trip Productions and Attractions (by Trip Purpose) 

Table 1.1. Household Level Regression Models for Home-Based Trip Productions  

Explanatory Variable HBW productions HBNW productions 

Constant 0.0495(0.567) -0.3569(0.086) 

Indicator variable for households with no vehicles  -0.7283(0.163) 

Indicator variable for households with 2 + vehicles 0.2277(0.007)  

# Workers in household 1.3316(0.000) -1.4413(0.000) 

Household size -0.0559(0.075) 2.9807(0.000) 

HH Annual Income between 25,000 and 60,000$ 0.1127(0.187)  

HH Annual Income between 60,000$ and 100,000$ 0.2194(0.045)  

HH Annual Income greater than 100,000$  -0.1454(0.289) 0.7692(0.015) 

HH Annual Income between 35,000$ and 100,000 $  0.2939(0.102) 

# children <5 years  -2.7910(0.000) 

Adjusted R-squared 0.4376 0.4433 

# Observations 1661 1661 

 
Table 1.2. Zonal Level Regression Models for Non-home-based Trip Productions and Trip Attractions  

 Production models Attraction models 
Explanatory Variable NHBW NHBNW HBW HBNW NHBW NHBNW 
Special Generator (Basic Empl.) 70.1676(0.000) 144.3245(0.000) 161.9448(0.000) 485.5708(0.000) 74.0889(0.000) 120.9247(0.000) 
Special Generator (Retail Empl.) -6.1571(0.000) -12.5282(0.000) -15.2055(0.000) -47.0838(0.000) -6.9890(0.000) -10.2123(0.000) 
Special Generator (Service Empl.) 1.0450(0.000) 1.0578(0.001) 1.2519(0.001) 4.1221(0.000) 0.9553(0.000) 1.1251(0.001) 
Basic Empl. (Non-special generator ) 0.3115(0.000)  0.8977(0.000)  0.2809(0.000)  
Retail Empl.(Non-special generator) 1.6606(0.000) 4.1750(0.000) 1.8227(0.000) 6.8534(0.000) 1.9083(0.000) 0.6247(0.000) 
Service Empl (Non special generator) 0.6829(0.000) 0.4345(0.000) 1.1994(0.000)  0.5804(0.000)  
# Households    1.8624(0.000)  3.7537(0.000) 

Adjusted R-squared measure 0.6080 0.4880 0.6410 0.5620 0.5710 0.4800 
# of observations 639 639 408 526 638 638 
Empl. Refers to employment 



Table 2. Joint Mode and Departure Time Choice Models (by Trip Purpose) 

Note: P-Values are in parentheses. Drive Alone during Late Evening/Early Morning is the base case. 

 
Table 3. Destination Choice Models (by trip purpose)  

Note: P-Values are in parentheses. Attractions refer to estimated trips attracted. 

Parameters HBW HBNW NHBW NHBNW 

Level of Service         

Time -0.0548(0.0000) -0.0755(0.0000) -0.1808(0.0000) -0.1067(0.0000) 

Cost -0.0098(0.0000) -0.0158(0.0000) -0.046(0.0000) -0.0273(0.0000) 

Constants         

Drive Alone Morning Peak 0.3347(0.0000) 0.0844(0.2224) 1.5704(0.0000) 1.0032(0.0000) 

Drive Alone Mid-noon -0.0685(0.2199) 0.894(0.0000) 3.0372(0.0000) 2.6575(0.0000) 

Drive Alone Evening Peak 0.2397(0.0001) 0.1872(0.0054) 2.1967(0.0000) 1.2343(0.0000) 

Drive Alone Evening  -1.3938(0.0000) -0.1143(0.0881) -0.1151(0.5921) 0.6419(0.0002) 

Shared Ride Late Evening/Early Morning -2.4832(0.0000) -0.6646(0.0000) -2.3973(0.0000) 0.1802(0.2706) 

Shared Ride Morning Peak -2.3515(0.0000) -0.5004(0.0000) -0.609(0.0116) 0.0949(0.5799) 

Shared Ride Mid-noon -2.3179(0.0000) -0.232(0.0001) 1.0072(0.0000) 1.5179(0.0000) 

Shared Ride Evening Peak -1.7653(0.0000) -0.3273(0.0000) -0.1476(0.4889) 0.9241(0.0000) 

Shared Ride Evening -3.5061(0.0000) -0.6731(0.0000) -1.6553(0.0000) 0.5019(0.0016) 

Transit Late Evening/Early Morning -5.156(0.0000) -4.4493(0.0000)    

Transit Morning Peak -5.3211(0.0000) -3.6438(0.0000)    

Transit Mid-noon -4.773(0.0000) -2.7827(0.0000)   -6.1271(0.0000) 

Transit Evening Peak -5.2257(0.0000) -4.0821(0.0000)    

Transit Evening  -5.0853(0.0000)    

Walk/Bike Evening/ Early Morning  -2.1292(0.0000)   -1.4941(0.0000) 

Walk/Bike Morning Peak -2.5062(0.0000) -1.5052(0.0000)   -1.8209(0.0000) 

Walk/Bike Mid-noon -3.0591(0.0000) -0.8871(0.0000) 0.9885(0.0000) 0.403(0.0430) 

Walk/Bike Evening Peak -2.7426(0.0000) -2.1272(0.0000) -1.0766(0.0046) -1.3354(0.0000) 

Walk/Bike Evening   -2.3116(0.0000)   -1.4941(0.0000) 

Log likelihood -6190.7479 -15998.2086 -2649.8172 -5271.8404 

Log-likelihood constants -8742.4662 -20296.0560 -4653.9277 -7627.1100 

Log-likelihood ratio index 0.2919 0.2118 0.4306 0.3088 

Number of cases 3196 7260 1877 2836 

Parameters HBW HBNW NHBW NHBNW 

Log(Attractions) 1 (constrained) 1 (constrained) 1 (constrained) 1 (constrained) 
Logsum of generalized costs (over all 
modes and time periods) -0.2884(0.000) -0.4681(0.000) -0.1181(0.000) -0.3027(0.000) 

Log(Employment) 0.0541(0.000)    

Log(Area)   0.1782(0.000) 0.1958(0.000) 0.2126(0.000) 

Log-likelihood -1115.0824 -3964.1085 -2274.7500 -3171.2460 

Log-likelihood constants -3927.0047 -8047.4988 -4315.6313 -6503.2648 

Log-likelihood ratio index 0.7160 0.5074 0.4729 0.5124 

# observations 1707 3498 1875 2834 



Table 4. Daily CBCP Revenue from Marginal Cost Pricing (MCP) on All Roads (VOTT = $8/hr. for toll computation) 

Time period Total Revenue in  $ 

T0 (Early morning/late night) $359.17 
T1 (morning peak) 92479.96 
T2 (noon) 1935.87 
T3 (evening peak) 277970.80 
T4 (evening off-peak) 102.00 

Total Revenue $372,847.79 
 
Table 5. Consumer Surplus ($) for the Average Individual, Located Across Austin: CBCP - All Roads and CBCP - Main Roads Only  

Trip Purpose HBW HBNW NHBW NHBNW Aggregate 
CBCP Policy  All Roads Main Roads All Roads Main Roads All Roads Main Roads All Roads Main Roads All Roads Main Roads 

Mean (S.D.) -$0.04(0.04) -0.01(0.04) 0.06(0.02) 0.02(0.01) 0.08(0.01) 0.03(0.03) 0.07(0.01) 0.03(0.01) 0.20(0.11) 0.09(0.08) 
Median -0.04 -0.01 0.05 0.03 0.08 0.03 0.07 0.03 0.19 0.09 
Minimum -0.32 -0.23 -0.15 -0.11 -0.01 0.00 0.00 -0.01 -0.60 -0.46 
1st Quartile -0.07 -0.03 0.04 0.02 0.07 0.03 0.06 0.02 0.13 0.05 
2nd Quartile -0.04 -0.01 0.05 0.03 0.08 0.03 0.07 0.03 0.19 0.09 
3rd Quartile -0.01 0.01 0.08 0.03 0.09 0.04 0.09 0.03 0.29 0.12 
Maximum 0.05 0.24 0.10 0.10 0.10 0.33 0.11 0.15 0.40 0.76 

Note: The Consumer surplus for the two scenarios have both been computed versus the “no pricing” status quo scenario 

Table 6. Home Value Regression Model 

Variable Coefficient P-Value 
Constant -630258 0.000 
Improved Sq. Ft. 27.3507 0.000 
Improved Sq. Ft.*Age 0.3722 0.023 
Improved Sq. Ft. *Age2 -0.0024 0.201 
Improved Sq. Ft.2 0.0248 0.000 
TDM Logsum 63.8038 0.000 
Adjusted R2 0.627   
# Observations 3093  



Figure 1. Welfare (by Origin) for a Typical Austin Resident under CBCP-All Roads – 
versus no pricing scenario (status quo) 

 
 



Figure 2. Welfare (by Origin) for a Typical Austin Resident under CBCP-Main Roads – 
versus no pricing scenario (status quo) 

 

 



Figure 3. Predicted Percentage Change in Home Value of an Average Dwelling Unit 
across Austin Locations upon Implementing CP-All Roads. 

 
 

 



Figure 4. Predicted Percentage Change in Home Value of an Average Dwelling Unit 
across Austin Locations upon Implementing CP-Main Roads. 
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