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Abstract 

This paper discusses an on-line, trail-and-error implementation of marginal-cost pricing 
for networks with users whose values of travel time vary, whose demand functions are unknown, 
and whose route choices conform to random-utility maximization. It is an extension of Yang et 
al’s (2004) calculations of optimal congestion tolls with homogenous travelers and shortest-path 
choices. The numerical example on an actual, large-scale network suggests the heuristic iterative 
procedure does converge in searching for optimal tolls. 
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1. INTRODUCTION 

Road tolls based on marginal social delay costs have long been considered an 
economically efficient solution to highway congestion (Vickrey 1969). In most markets, goods 
should not be allocated beyond the point where marginal gains equal the marginal cost (MC) to 
furnish the good.  And in certain, imperfect markets, the presence of unpriced externalities 
stymies this relationship.  Such is the case of road use, where travelers are generally oblivious to 
the delays imposed on those following them during dense traffic conditions, and consider only 
the average travel time, or average cost (AC), they experience directly. A marginal-cost-pricing 
(MCP) strategy charges the user any difference between average cost and marginal costs, 
theoretically driving the market to a level of flow where marginal costs and benefits equate.  

Knowing demand for travel across a network, one can iteratively solve for the set of 
prices that equate MC and marginal benefits (MB) on all links.  In practice, however, demand 
functions are unknown. Li (2002) initiated and Yang et al (2004) expanded a trail-and-error 
implementation of MCP on a network without knowledge of demand functions but with known 
link performance functions, observed flows, and observed responses to pricing decisions. The 
procedure they propose assumes a single value of time for all users and computes the optimal 
prices at any demonstrated flow levels.  It then relies on a diminishing fraction of the difference 
in optimal and current toll values, in order to adjust current tolls. 

Yang et al’s calculations are based on some important assumptions, including user 
equilibrium (UE) or shortest-path route choices and a single, known value of travel time (VOTT) 
for all vehicles.  The UE assumption requires full information of roadway conditions (and prices) 
on the part of all drivers and a focus on travel time (rather than other elements of travel, such as 
number of stops, reliability, and route aesthetics). A more realistic network assignment 
assumption is believed to be stochastic user equilibrium (SUE), where each user may perceive 
different path costs or benefits, and random variation in route and/or traveler characteristics 
results in a distribution of route choices, for the same origin-destination (O-D) pair at the same 
time of day. In addition, travelers value their time differently, depending on the purpose of their 
trip and their willingness and/or ability to pay. To relax this restriction, one can segment the 
entire population of users into a number of groups or classes, according to their incomes and 
other demographic characteristics related to VOTT. For each traveler group, the users share the 
same the VOTT probability distributions. The distributions can be modeled as either continuous 
or discrete (see, for example, Cantarella and Binetti, 1998).  

This paper extends Yang et al’s model, algorithm and application by (1) allowing SUE 
network assignment, (2) recognizing group-based variations in VOTT, and (3) applying the 
model to a realistic, regional network. As in virtually all MCP network applications, this work 
assumes that MC and MB are based on travelers’ own VOTTs, as evidenced through their 
willingness to pay (to save time).  However, one can argue that some other, social VOTT applies 
for definition of MCs and MBs, and for selection of optimal tolls. In such situations, the 
optimizing-toll equations used here can be altered, to reflect the MC and MB definitions; the 
solution algorithms would remain the same. 

The following section presents some notation and assumptions commonly adopted in 
SUE analysis and introduces the model for determining MCP tolls.  Section 3 describes the trial-
and-error implementation algorithm used to calculate the optimal tolls, and Section 4 reports the 
results of the heuristic algorithm’s application to a real, large-scale network. Conclusions and 
future research directions are provided in Section 5.   
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2. MCP MODEL: SUE WITH MULTIPLE USER CLASSES 

Network flow equilibria represent an interaction between congestion and travel decisions. 
The situation is characterized by two sets of functions: (1) performance functions for all network 
links, describing how travel times rise with demand; and (2) demand functions, illustrating how 
travel demand responds to travel-time increases (Sheffi, 1985).  These demand functions are a 
combination of trip-making, mode choice, destination choice, route choice, and departure-time 
decisions. 

In the stable, equilibrium condition, individual travelers cannot improve their travel times 
by unilaterally changing routes.  This is known as Wardrop’s first principle (Wardrop, 1952), 
and the result is a UE. Since it is unlikely that all travelers have full information about minimum 
travel times on every possible route and always make shortest-time route choices, the SUE 
equilibrium condition is a more popular principle.  It is described as a network condition where 
no traveler can improve his/her perceived travel time by unilaterally changing routes. (Daganzo 
and Sheffi, 1977).  

SUE assignment has been formulated as optimization (Daganzo and Sheffi, 1977), 
variational inequality (Bell and Iida, 1993), and fixed-point problems (Daganzo, 1983; and 
Cantarella, 1997).  Here, the optimization formulation is followed.  Daganzo (1983) proposed an 
SUE framework with multiple user classes, and Maher and Zhang (2000) provided a formulation 
and algorithms for SUE with elastic demand.  Rosa and Maher (2002) extended these 
formulations to develop SUE with both multiple user classes and elastic demand. This paper’s 
formulation is built on the latter three works.    

Let ),( ANG be a transportation network with the node set N and the link set A, with 
positive monotonically increasing link performance (travel time) functions )( aa xt  of flows1 ax  
for each link Aa∈ . The link performance function is assumed to be differentiable (with respect 
to flow ax ). Network users are segmented into M classes and each class shares the same socio-
economic characteristics. Class m’s demand for travel between O-D pair r and s at a particular 
time of day is denoted by rs

mq , and it is assumed to be a continuously decreasing function of 
travel cost between that O-D pair2.  The multi-user class SUE problem has an equivalent 
minimization formulation, which can be written as follows: 

∑∫∑∑ −+−=
a

x

a
a

aaa
rs
m

rsm

rs
mx

a dwwtxxtxSqxZ
0

)()()()(min vv
v    (1) 

s.t. afx
rskm

rs
kma

rs
kma ∀= ∑ ,,δ         (2) 

srqf
rsKk

rs
m

rs
km ,, ∀=∑

∈

; and       (3) 

 0≥rs
kmf .         (4)  

where: 
 rsK  is the set of paths between O-D pair r and s; 
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kmf is the flow of (demand by) class m users on path k between O-D pair r and s; 
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Note that equation (5) is the expected value of the perceived minimum travel cost. It is 
concave with respect to )(xC rs v  (permitting the minimization problem to have a unique solution), 
and its first derivative is the following: 

rs
kmrs

km

rsrs
m P
C

CS
=

∂
∂ )(

v

 ,        (6) 

where rs
kmP is the probability of class m users choosing path k between r and s. 

   
The path choice probability, rs

kmP , is assumed to depend on the utility function: 
rs
km

rs
km

rs
km CU εθ +−= ,        (7) 

where θ  is a behavioral parameter and rs
kmε  is a random term. If rs

kmε  follows a Gumbel 
distribution and is iid for all routes of interest3 (in each individual traveler’s path choice 
decision), route choice follows a logit model.  If rs

kmε  follows a normal distribution, choice 
confirms to a probit model.  Both are valid, and, in fact, the result should hold for any concave 
behavioral model of route choice.  In any specification, the following should hold: 
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The VOTT dispersion among users can be modeled using continuous random variables 
(with a known mean value) within each class, or a fixed value per class. Without loss of 
generality, a single fixed-value approach (per class) is used here4.     

Assuming travel cost additivity, path cost is: 
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where aτ  is the toll charged on link a; and mVOTT  is the VOTT of class m users.  
The first derivative of the objective function with respect to the path flow yields:  
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which must be zero at a stationary equilibrium point, and thus rs
km
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m
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km Pqf = , which is the SUE 

condition.  
This SUE model can be extended to cases of variable demand between O-D pairs. If 

demand functions rsmD  are nonnegative and strictly decreasing in own-path cost, then 
)( rs

mrsm
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rs
m qDS −= .  

Rosa and Maher (2002) proposed an SUE model with elastic demand that can be 
formulated as the following unconstrained optimization problem: 
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where all variables are as defined earlier. Additionally,  
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Yang (1999) demonstrated, based on economic benefit maximization, that the MCP 
principle is still applicable in a network under SUE. As in Yang et al. (2004) and other works, 
the optimal tolls, *

aτ , for homogenous users, are set equal to total marginal costs as follows 
(assuming a single, unitary VOTT): 

* * ' *( )a a a ax t xτ = ,         (13) 
where *

ax  is the optimal flow level (such that marginal cost equals marginal benefits) and '
at  is 

the derivative of travel time with respect to flow on that link.  
   

Of course, equation (13) is not applicable when considering heterogeneous users with 
different VOTTs.  Instead, the optimal toll is the demand (flow)-weighted average, representing 
the true marginal cost of an additional road user: 
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Yang and Huang (2004) suggested that when link flow-weighted VOTTs are used in determining 
an MCP link toll pattern to support a system optimum as a UE flow pattern, the results will differ 
when the optimum is measured in units of cost versus time. Here the cost (monetary) unit is 
used.  The objective function in equation (11) is measured in time units and needs to be 
rewritten. After substituting (14) into (9) to get rs

kmC  and then )(xS rs
m
v for the heterogeneous users 

conditions, the resulting multi-user SUE link flows with different VOTTs and demand patterns 
can be identified by solving the following unconstrained optimization problem: 
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Essentially, the flow solution to optimization problem (15) results in the theoretically 

optimal tolling situation provided by equation (14)’s tolls.  This is the MCP model objective 
under SUE and with heterogeneous users.  However, the demand functions D(q) are not known 
in practice, complicating the solution for tolls and flows.  A trial-and-error procedure for 
computing these given observed flows and flow responses to toll choices, based on Li (2002) and 
Yang et al. (2003), provides the remedy. 
 
3. TRIAL-AND-ERROR PROCEDURE  

One algorithm for solving SUE problems is the method of successive averages (MSA), 
which creates a weighted combination of the flow values of the current iteration and the previous 

iteration.  The weighting factor, or step size, at each iteration n is 
n
1

=α  (Sheffi, 1985); and the 

MSA solution method has been proven to converge to the unique solution (Sheffi and Powell, 
1982). Rosa and Maher (2002) showed that the MSA applies to equation (11)’s problem and is 
guaranteed to converge in that application.  

In the absence of demand functions rsmD , Li (2002) proposed an iterative, trial-and-error 
procedure. First, an initial known/observed or desired/targeted demand 1qv  is loaded onto the 
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network with a resulting flow pattern 1xv  and tolls are set to )()( 111 qCAqCM vvvvv −=τ , where 
average travel cost is the sum of time and toll costs: 
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demand becomes 1'1 qq vv < 5, suggesting that the initial tolls are too high. By adjusting the demand 
to a new level, for example, 12'1 qqq vvv << , the target toll is recalculated and the resulting demand 
level '2qv  is compared with 2qv . This generates an iterative procedure for optimal toll 
calculations. 

Of course, network flows increase when demands rise, and these flows can be used as 
indicators of the unknown demands.  Through electronic identification of road users (e.g., via 
simple transponders), road managers can ascertain who is using a particular link at any time and 
estimate their VOTTs, based on prior responses to pricing modifications.  This is always done 
with some uncertainty, of course6.  But, assuming that managers know the VOTT of those on 
each link at any moment in time, optimal tolls can be calculated using equation (14). Therefore, 
the iterative calculation can be implemented without knowing the demand function.  

To solve the optimization problem (15), one needs to know the demand function and its 
inverse. Here, a similar approach as Li’s (2002) and Yang et al’s (2004) trial-and-error procedure 
is developed to find the optimal link flows and tolls defined by equation (14). One must solve for 
the SUE assignment with multiple user groups after imposing a trial set of link tolls.  
Step 0. (Initialization) Set an initial set of feasible link flows{ }Aaxa ∈,0 . Let n=1. 
Step 1. (Calculation of Toll) For each link a, calculate a link toll using: 
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Step 2. (Observing flows) Observe the revealed link flows { }Aax n
a ∈,)'( after imposing the tolls.  

Step 3 (Convergence check). If φ≤
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 (where φ  is a pre-defined small value), then 

stop. Otherwise, proceed to the next step.  
 
Step 4 (Link flow updates) Update link flows as follows: 
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and set n=n+1.  Go to Step 1. 

 
Yang et al (2004) proved that this trial-and-error procedure does converge and converges 

to the optimal solution, if the demand functions is a monotonically decreasing function of travel 
cost and are differentiable. A proof that the MCP model with SUE and heterogeneous users 
converges will be similar.  While a fully, formal proof is not presented here, a brief discussion of 
three of Yang et al’s (2004) propositions is helpful to understanding the similarity and sequence. 
First, it is easy to see that at the convergent solution to the MCP model with SUE and 
heterogeneous users, the corresponding flow and toll patterns are the optimal solution to the 
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optimization problem (15). A multi-class SUE with elastic demand (15) and without constraints 
is a strictly convex problem, so its minimum is unique (Rosa and Maher, 2002). Second, by 
assuming that (1) demand functions are nonnegative and strictly decreasing in own-path costs 
and (2) link cost functions are positive and monotonically increasing with link flows, one can 
prove that a trial-and-error’s updating procedure generates a feasible descent direction for the 
objective function. Finally, given these two prior prepositions and the fact that (1) the flow 
pattern is bounded and (2) the initial demand and flow pattern are feasible and not at the 
boundary, the MSA method does converge for link flows (Sheffi and Powell, 1982). Therefore, 
the trial-and-error iterations will converge to the optimal flow and tolling solution.  

A practical explanation for the success of this rather simple trial-and-error procedure 
seeking optimal tolls can be summarized as follows. Assuming that there is a transportation 
facility operator who seeks to charge marginal-cost tolls on all road sections (i.e., links) in the 
network, he/she will first obtain (via observation and/or estimation) flow volumes and link users’ 
information, including VOTTs. Then he/she charges equation (14)’s tolls, which result in higher 
tolls for higher flows.  Since different users have different VOTTs, the overall marginal cost of 
additional users is a function of all current users’ VOTTs, and their representation on the link.  
Therefore, the MCP toll is a flow-weighted average of VOTTs.  After the tolls are applied, some 
users will shift route choices and forego trips. Overall, flows are likely to fall. The operator 
observes the new flow levels and users and computes a new set of “optimal” tolls, using equation 
(14). After a number of iterations applying and observing the results of these tolls, the operator 
finds that flows have stabilized, and optimal tolls are in effect. This procedure is based on several 
assumptions, of course. It will be hard to know the link users’ different VOTTs with significant 
certainty, especially in the short run.  Moreover, users cannot make optimal decisions without 
sufficient forewarning of link tolls, and travel demand is constantly shifting and always 
somewhat unknown, even for the same time of day on the same day of the week one week apart.  
Thus, this practical approach to optimal tolling may never achieve a true optimum.  However, 
this is the situation operators are likely to be in, and recognition of heterogenous users and SUE 
route choice behavior certainly adds realism to Yang et al’s (2004) pricing proposal.   
 
4. NUMERICAL EXAMPLE 

To illustrate the results of this MCP method, the approach is applied to Austin, Texas’s 
road network (see Figure 1) with 14,491 nodes, 31,340 links, 1,074 traffic analysis zones, and 
two user classes. All links are subject to MCP tolls. The link performance function is based on 
the standard Bureau of Public Roads formula (BPR, 1964): 
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where 0
at  is the free-flow travel time on link a and aG  is the “capacity” (which may be a level-

of-service flow rate, rather than a true capacity). 
Then the link tolls are calculated by: 
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The initial O-D demand matrices, for network assignment, are borrowed from the 
region’s planning model for morning peak hour passenger trips.  70% of the demand elements 
are assigned to the first user class and 30% to the second user class. The VOTT of the two user 
classes (m = 1, 2) is assumed to be $0.15 and $0.25 per minute (or $9 and $12 per hour), 
respectively.  

In order to predict the resulting link flows, Yang et al (2004) solved an elastic demand 
assignment example (as in equation (15)); and, of course, this required knowledge of the demand 
functions. Similarly, an example application is pursued here. The demand functions are specified 
as the following: 

,,,),03.0exp(0)( msrallforCDD rsrsm
n

rsm −=       (19) 
where 0

rsmD  is the initial demand element for user class m between r and s. 
Yang et al (1994) pointed out that O-D matrix estimation from a UE (or SUE) solution is 

not unique. However, as long as the estimated O-D flows yield the current link flows (which are 
critical to toll calculations), the uniqueness of the O-D matrix is not a concern in this paper. 

TransCAD (Caliper Co., 1996) was used here for the multi-class SUE trip assignment 
with different VOTTs. In the multi-class SUE assignment, a logit model of route choice is used 
(see Dial, 1971).  Average perceived link costs are assumed to equal travel times multiplied by 
VOTTs, for each of the two user groups; and their iid Gumbel error terms are assumed to have a 
location parameter of 0 and scale parameter of 1. By simulation, the link choice probabilities 
were calculated, then the flow assigned to the network, one user class at a time. Once the flow 
solution was obtained, the tolls were calculated and the O-D matrix for each use class was re-
computed and re-assigned to the network, with new/updated tolls on all links.  

The convergence threshold was set at 01.0=φ , and two different initial-demand 
assumptions were tested, one with an actual demand matrix and another with half of the actual 
demand matrix. Both cases converge using the MSA algorithm after about 50 iterations. The 
resulting tolls on the four selected links are shown in Table 1, and they are virtually identical 
(differing due to rounding errors). This suggests that the calculated MCP tolls are independent of 
the initial demand values. 

Using the original actual demand matrix, two step sizes (α ) were tested. The choice of 

n
n 1)( =α  is equivalent to a standard MSA algorithm, while a value 

2
1

=α  serves as a check on 

Li’s (2002) bisection algorithm. The convergence patterns are shown in Figure 2. As one can see, 
with 01.0=φ , the MSA converged at the 51st iteration. The bisection algorithm did not 
converge, even after 100 iterations. This confirms the numerical results of Yang et al (2004).  
 
5. CONCLUSIONS 

This paper expands upon Yang et al’s  (2004) model and algorithms to calculate optimal 
tolls with SUE and heterogeneous users without knowing network demand functions, but 
knowing VOTTs of all users. Essentially, the same trial-and-error procedure was shown to be 
applicable in implementing this more realistic MCP model, and a numerical example with an 
actual, large-scale network suggests that the trial-and-error procedure does converge when using 
the MSA algorithm but does not when using the bisection algorithm.  This is consistent with 
Yang et al’s (2004) results for a case of UE and homogeneous users. 

This paper also discusses a proof of convergence of the heuristic, trial-and-error 
procedure, for an SUE application with heterogeneous users. Making standard assumptions of 
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nonnegative, monotonic cost and demand functions, and uniqueness in SUE solution with elastic 
demand, the proof should be very similar to Yang et al’s (2004). To extend both these works, it 
would be useful to have link costs interact with other links’ flows (recognizing flow interactions 
at intersections, for example) and to be able to impose tolls only on selected links. In addition, 
the assumption of known VOTTs may not be realistic. While information linked to transponders 
or vehicle identification tags will make such estimates possible (based on vehicle type, route 
selection, time of day, and past travel choices, for example), it would be interesting to estimate 
such VOTTs within the context of the toll-setting algorithm, based on route choice decisions, in 
the presence of tolls and in real time, and it would be helpful to evaluate the suitability of 
solution search algorithms other than the MSA. 

The MCP model with SUE and heterogeneous users provides a relatively realistic 
framework for studying optimal tolls, even when O-D demand functions are unknown. The trial-
and-error method proposed here is straightforward and likely to be of immediate use in places 
like Singapore and elsewhere, if the objective of roadway operators is true marginal cost pricing. 
This work also demonstrates the applicability of a commercially available transportation 
software (TransCAD) for implementing the model algorithms to a large-scale network. The 
results point to an attractive future for practical applications of MCP.  
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ENDNOTES 
                                                           
1 The common term for link demand in the network equilibrium literature is flow.  However, flows cannot exceed 
capacities, while demand loads routinely do, resulting in queuing and significant delays.  Here the common term 
flow will be used.  This will help avoid confusion with the demand variable q, which signifies total demand between 
zones, rather than link-specific demands. 
2 Demand for travel is assumed to depend on the origin and destination only, and the cost between them, regardless 
of other travel pattern costs.  This assumption is standard in network models but is unfortunately unrealistic, since 
travelers often can (and do) substitute destinations (and even origins) in many of their travel decisions. 
3 In reality, route variations are unlikely to be independent, particularly when some routes overlap more than others.  
There has been some work on such specifications where routes are correlated, based on a logit framework (e.g., 
Koppelman and Wen 2000).  
4 Readers may refer to Cantarella and Binetti (1998) and Yang and Zhang (2002) for a more detailed discussion of 
VOTT distribution assumptions, and their role in the formulation. 
5 In reality, after imposition of tolls, some links may exhibit higher demand, due to substitution.  The assumption of 
demand Drs depending only on O-D pair rs’s travel times results in this reduced-demand result, and is a standard 
model shortcoming. 
6 Road users can trade toll tags/identification units among themselves, some users are new/unknown, and a user’s 
VOTT can change (from day to day and from one trip to the next). 
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Table 1. Calculated Tolls on Selected Links and Their Flows after 51 Iterations 

Initial Demand = Actual Demand Initial Demand = 0.5 Actual 
Demand  Selected Links 

Link Toll ($) Flow (vph) Link Toll ($) Flow (vph) 
1 (US 183 North) 0.07 591 0.07 591 

2 (IH 35) 0.10 4174 0.10 4175 
3 (US 290 E) 0.15 2141 0.16 2140 
4 (Loop 1 S) 0.08 3806 0.08 3807 
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Figure 1. Network Used for Numerical Example – Austin, Texas Road Network 
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Figure 2. Convergence of the Iterative Procedure, using Two Step-Size Rules 
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